Developer’s Guide

Borland®
Kylix* 3

Delphi” and C++ for Linux’

Borland Software Corporation
100 Enterprise Way, Scotts Valley, CA 95066-3249

Refer to the DEPLOY document located in the root directory of your Kylix product for a complete list of files that you
can distribute in accordance with the Kylix License Statement and Limited Warranty.

Borland Software Corporation may have patents and/or pending patent applications covering subject matter in this
document. Please refer to the product CD or the About dialog box for the list of applicable patents. The furnishing of
this document does not give you any license to these patents.

CoPYRIGHT © 20012002 Borland Software Corporation. All rights reserved. All Borland brand and product names
are trademarks or registered trademarks of Borland Software Corporation in the United States and other countries.
All other marks are the property of their respective owners.

Printed in the U.S.A.

HDE7030WW21001 3E3R0502
02030405-98765432 1
D3

Contents

Chapter 1
Introduction 11
What’sin thismanual? 1-1
Manual conventions. 1-2
Developer support services. 1-3
Chapter 2
Developing applications with Kylix ~ 2-1
Integrated development environment. 2-1
Designing applications 2-2
Creating projects. 2-2
Editingcode 2-3
Compiling applications 2-4
Debugging applications. 2-4
Deploying applications 2-5
Chapter 3
Using the class libraries 3-1
Understanding the class libraries 3-1
Properties, methods, and events 3-2
Properties 3-2
Methods 3-3
Events 3-3
Userevents 3-3
Systemevents. 3-3
Internalevents 3-4
Objects, components, and controls. 3-4
TObjectbranch 3-5
TPersistentbranch 3-6
TComponentbranch. 3-7
TControlbranch 3-8
TWidgetControlbranch 3-8
Chapter 4
Using the object model in Delphi
programming 4-1
Whatisanobject? 41
Examining a Delphi object 4-2
Changing the name of a component 4-4
Inheriting data and code from an object. 4-5
Scope and qualifiers 4-5
Private, protected, public, and published
declarations 4-6
Using object variables 4-7

Creating, instantiating, and destroying objects. 4-8

Components and ownership. 4-9
Definingnewclasses 49
Using interfacesin Delphi 4-11

Using interfaces across the hierarchy 4-12

Using interfaces with procedures 4-14

Implementing IInterface 4-14

TInterfacedObject 4-15

Using the as operator with interfaces. . . . 4-15

Reusing code and delegation. 4-16

Using implements for delegation 4-16
Aggregation 4-17
Memory management of interface objects . 4-18
Using reference counting 4-18
Not using reference counting. 4-19
Chapter 5
Using BaseCLX 5-1
Usingstreams 5-2
Using streams to read or write data. 5-2
Stream methods for reading and writing . 5-2
Reading and writing components 5-3

Reading and writing strings in Delphi . .5-3
Copying data from one stream to another . . 5-3

Specifying the stream position and size. . . .5-4
Seeking to a specific position. 5-4
Using Position and Size properties5-5

Working withfiles 5-5

Approaches to fileI/O 5-6

Using filestreams 5-6
Creating and opening files using file streams

5-7
Using the filehandle 5-8

Manipulating files. 5-8
Deletingafile. 5-8
Findingafile. 5-8
Renamingafile. 5-10
File date-time routines 5-10

Working withinifiles. 5-11
Working with lists. 5-13

Common list operations 5-13
Adding listitems. 5-13
Deleting listitems 5-14
Accessing listitems 5-14
Rearranging listitems. 5-14

Persistentlists 5-15

Working with string lists. 5-15

Loading and saving string lists 5-16
Creating a new stringlist 5-16
Short-term string lists 5-16
Long-term string lists. 5-17
Manipulating stringsinalist 5-19
Counting the stringsinalist. 5-19
Accessing a particular string 5-19
Locating items in a string list 5-20
Iterating through strings inalist 5-20
Adding astringtoalist 5-20
Moving a string withinalist. 5-21
Deleting a string fromalist 5-21

Associating objects with a string list . . .5-22
Working with strings
Wide character routines
Commonly used routines for AnsiStrings . .5-23
Commonly used routines for null-terminated
strings
Declaring and initializing strings in Delphi .5-27
Mixing and converting Delphi string types .5-28
String to PChar conversions. 5-28

String dependencies 5-29
Returning a PChar local variable 5-29
Passing a local variable as a PChar5-29
Delphi Compiler directives for strings. . . .5-30
Creating drawing spaces 5-31
Printing, ... 5-32
Converting measurements 5-33
Performing conversions 5-33
Performing simple conversions 5-33
Performing complex conversions. 5-34
Adding new measurement types. 5-34
Creating a simple conversion family and adding
units ... 5-34
Declare variables 5-35
Register the conversion family 5-35
Register measurement units. 5-35

Usethenewunits. 5-36

Using a conversion function 5-36
Declare variables 5-36
Register the conversion family 5-37
Register the base unit. 5-37
Write methods to convert to and from the

baseunit 5-37
Register the other units. 5-38
Usethenewunits. 5-38

Using a class to manage conversions. 5-39
Creating the conversionclass 5-40
Declare variables 5-41

ii

Register the conversion family and the other

units.o 5-42
Usethenewunits 5-44
Defining custom variants in Delphi. 5-44
Storing a custom variant type’s data 5-45

Creating a class to enable the custom variant

typeo 5-46
Enabling casting 5-46
Implementing binary operations. 5-47

Implementing comparison operations. . 5-49
Implementing unary operations 5-51
Copying and clearing custom variants . . . 5-51
Loading and saving custom variant values. .
5-52
Using the TCustomVariantType descendant .
5-53
Writing utilities to work with a custom variant
type 5-53
Supporting properties and methods in custom

variants. oo 5-54
Using TInvokeableVariantType 5-55
Using TPublishableVariantType 5-56

Chapter 6
Working with components

Setting component properties 6-2
Setting properties at design time 6-2
Using property editors 6-3
Setting properties at runtime. 6-4
Callingmethods. 6-4
Working with events and event handlers6-5
Generating a new event handler. 6-6

Generating a handler for a component’s default

event e 6-6
Locating event handlers 6-7
Associating an event with an existing event

handler 6-7

Using the Sender parameter 6-8

Displaying and coding shared events . . . 6-9
Associating menu events with event handlers. .
6-9

Deleting event handlers 6-10
Cross-platform and non-cross-platform
cComponents on the Component palette. . . 6-11

Adding custom components to the Component
palette. L 6-13

Chapter 7

Working with controls 7-1

Implementing drag and drop in controls 7-1
Starting a drag operation 7-1
Accepting dragged items 7-2
Droppingitems. 7-3
Ending a drag operation. 7-4

Customizing drag and drop with a drag object.
7-4

Working with text in controls. 7-5
Setting text alignment 7-5
Adding scroll bars at runtime. 7-6
Adding the clipboard object. 7-7
Selectingtext 7-7
Selecting alltext 7-8
Cutting, copying, and pasting text 7-9
Deleting selected text 7-10
Disabling menuitems 7-10
Providing a pop-upmenu. 7-11
Handling the OnPopup event. 7-11

Adding graphics to controls 7-12
Indicating that a control is owner-drawn . .7-13
Adding graphical objects to a string list . . .7-13

Adding images to an application 7-14
Adding images to a string list. 7-14
Sizing owner-draw items 7-14
Drawing owner-draw items. 7-15

Chapter 8
Building applications and shared objects
81

Creating applications 8-1
.GUI applications. 8-1
SDI applications. 8-2

MDI applications 8-2

Setting IDE, project, and compiler options 8-2

Programming templates. 8-3
Console applications. 8-3
Creating and packages 8-4
Working with shared object libraries. 8-5
When to use shared objects and packages. . 8-5
Using shared objects inC++ 8-6
Creating C++ shared objects 8-6
Creating shared objects containing CLX
components. L. 8-7
Linking shared objects inC++ 8-7
Writing database applications 8-8
Distributing database applications. 8-8
Developing applications for the Internet 8-8
Creating Web server applications. 8-9
Creating Web Broker applications 8-9

iii

Creating WebSnap applications 8-10
Creating Web Services applications 8-10
Using datamodules 8-10

Creating and editing standard data modules . .
8-11
Naming a data module and its unit file . 8-12
Placing and naming components 8-12
Using component properties and events in a
data module 8-13
Creating business rules in a data module 8-13
Accessing a data module from a form . . . 8-14
Adding a remote data module to an application

server project. 8-14
Using the Object Repository. 8-15
Sharing items within a project. 8-15

Adding items to the Object Repository . . . 8-15
Sharing objects in a team environment . . . 8-16
Using an Object Repository item in a project8-16

Copyinganitem. 8-16
Inheriting anitem 8-16
Usinganitem. 8-17
Using project templates. 8-17
Modifying shared items 8-17
Specifying a default project, new form, and
mainform 8-17
Enabling Help in applications. 8-18
Help system interfaces 8-18
Implementing ICustomHelpViewer. 8-19

Communicating with the Help Manager . . 8-19
Asking the Help Manager for information . 8-20

Displaying keyword-based Help 8-20
Displaying tables of contents. 8-21
Implementing IExtendedHelpViewer. . . . 8-22
Implementing IHelpSelector. 8-23
Registering Help system objects. 8-23

Registering Help viewers. 8-23

Registering Help selectors 8-24

Using Help in a cross-platform application. . 8-24
How TApplication processes cross-platform

Help 8-24

How cross-platform controls process Help. 8-25

Calling a Help system directly 8-25
Using IHelpSystem 8-25
Customizing the IDE Help system 8-26
Chapter 9

Developing the application user interface
9-1

Controlling application behavior

Working at the applicationlevel 9-2

Handling thescreen 9-2
Settingupforms 9-2
Using the mainform. 9-2
Hiding the mainform 9-3
Adding forms. oL 9-3
Linking forms. 9-3
Avoiding circular unit references in Delphi .
9-4
Managing layout 9-4
Usingforms. 9-5
Controlling when forms reside in memory . 9-5
Displaying an auto-created form 9-6
Creating forms dynamically. 9-6
Creating modeless forms such as windows .
9-7
Creating a form instance using a local
variable. 9-8
Passing additional arguments to forms . . . 9-8
Retrieving data from forms 9-10
Retrieving data from modeless forms . .9-10
Retrieving data from modal forms9-13

Reusing components and groups of components .
9-16

Creating and using component templates . . .9-16
Working with frames 9-17
Creating frames. 9-18
Adding frames to the Component palette. .9-18
Using and modifying frames 9-18
Sharing frames 9-19
Developing dialogboxes 9-20
Using open dialog boxes. 9-20
Organizing actions for toolbars and menus. . .9-21
Whatisanaction? 9-22
Using actionlists. 9-22
Setting up actionlists 9-23
What happens when an action fires 9-24
Responding withevents 9-24

How actions find their targets. 9-26
Updatingactions 9-26
Predefined actionclasses 9-27
Writing action components 9-27
Registering actions 9-28
Creating and managing menus. 9-29
Opening the Menu Designer 9-30
Buildingmenus. 9-30
Namingmenus 9-31
Naming the menuitems 9-31

Adding, inserting, and deleting menu items .

9-32
Adding separatorbars 9-33
Specifying accelerator keys and keyboard
shortcuts 9-33
Creating submenus 9-34
Creating submenus by demoting existing
MENUS . . « v v v v v v v e e 9-34
Moving menuitems. 9-35
Adding images to menu items 9-35
Viewing themenu 9-36

Editing menu items in the Object Inspector 9-36
Using the Menu Designer context menu . . 9-37

Commands on the context menu. 9-37
Switching between menus at design time9-37
Using menu templates 9-38
Saving a menu as a template. 9-39
Naming conventions for template menu
items and event handlers 9-40
Manipulating menu items at runtime. . . . 9-40
Mergingmenus 9-41
Specifying the active menu: Menu property .
9-41
Determining the order of merged menu
items: GroupIndex property 9-41
Designing toolbars 9-42
Adding a toolbar using a panel component 9-42
Adding a speed button to a panel 9-43
Assigning a speed button’s glyph 9-43
Setting the initial condition of a speed button
9-44
Creating a group of speed buttons. . . . 9-44
Allowing toggle buttons 9-44

Adding a toolbar using the toolbar component .
9-44
Adding atool button 9-45
Assigning images to tool buttons 9-46
Setting tool button appearance and initial

conditions. 9-46
Creating groups of tool buttons 9-46
Allowing toggled tool buttons 9-47

Responding toclicks 9-47
Assigning a menu to a tool button. . . . 9-47
Adding hidden toolbars 9-47
Hiding and showing toolbars 9-48
Sample programs 9-48
Chapter 10

Types of controls

Textcontrols 10-1 Types of graphic objects 11-2

Editcontrols. 10-1 Common properties and methods of Canvas . .
Edit control properties. 10-2 11-3
Memocontrols 10-2 Using the properties of the Canvas object . 11-4
Text viewing controls 10-3 Usingpens 11-5
Labels 10-3 Usingbrushes 11-8
Specialized input controls. 10-4 Using Canvas methods to draw graphic objects .
Scrollbars 10-4 11-10
Trackbars 10-4 Drawing lines and polylines 11-11
Spineditcontrols 10-5 Drawing shapes 11-12
Splitter controls. 10-5 Handling multiple drawing objects in your
Buttons and similar controls 10-6 application 11-14
Buttoncontrols 10-6 Keeping track of which drawing tool to use .
Bitmap buttons 10-6 11-14
Speed buttons. 10-7 Changing the tool with speed buttons. .11-16
Checkboxes. 10-7 Using drawing tools. 11-17
Radiobuttons. 10-7 Drawing on a graphic. 11-22
Toolbars 10-8 Making scrollable graphics 11-22
Listcontrols. 10-8 Adding an image control 11-22
List boxes and check-list boxes 10-8 Loading and saving graphics files. 11-25
Comboboxes 10-9 Loading a picture fromafile 11-25
Treeviews., 10-10 Saving a picturetoafile. 11-26
Listviews, 10-10 Replacing the picture 11-27
Iconviews 10-10 Using the clipboard with graphics 11-28
Groupingcontrols 10-10 Copying graphics to the clipboard. . . .11-29
Group boxes and radio groups 10-11 Cutting graphics to the clipboard11-29
Panels 10-11 Pasting graphics from the clipboard. . .11-30
Scrollboxes 10-11 Rubber banding example. 11-31
Tabcontrols 10-12 Responding to the mouse. 11-31
Pagecontrols 10-12 Responding to a mouse-down action . .11-33
Header controls. 10-12 Adding a field to a form object to track
Display controls 10-13 mouse actions 11-35
Statusbars. L. 10-13 Refining line drawing 11-37
Progressbars 10-13 Working with multimedia 11-40
Help and hint properties 10-14 Adding silent video clips to an application 11-40
Grids. o 10-14
Draw grids 10-14 Chapter 12
Stringgrids 1014 Writing multi-threaded applications 12-1
Graphic controls 10-15 Defining thread objects. 12-1
Images. 10-15 Initializing the thread. 12-3
Shapes. 10-15 Assigning a default priority 12-3
Bevels 10-15 Indicating when threads are freed 12-4
Paintboxes 10-15 Writing the thread function 12-4
Animationcontrol 10-16 Using the main CLX thread. 12-4
Using thread-local variables 12-6
Cha}?ter 11) Checiing for termination by other threads . .
Working with graphics 11-1 12-7
Overview of graphics programming. 111 Handling exceptions in the thread function .
Refreshing thescreen 11-2 12-7

Writing clean-upcode 12-8
Coordinating threads 12-8
Avoiding simultaneous access 12-8
Locking objects 12-9
Using critical sections 12-9
Using the multi-read exclusive-write
synchronizer. 12-10

Other techniques for sharing memory . 12-10
Waiting for other threads 12-10
Waiting for a thread to finish executing 12-11

Waiting for a task to be completed . . . 12-11
Executing thread objects 12-13
Overriding the default priority 12-14
Starting and stopping threads 12-14
Debugging multi-threaded applications . . . 12-15

Chapter 13
Exception handling

Defining protected blocks. 13-1
Writing the try block. 13-2
Raising an exception in Delphi 13-4
Raising an exceptionin C++. 13-4
Writing exception handlers 13-5

Exception-handling statements in Delphi13-5
Exception-handling statements in C++. .13-7

Handling classes of exceptions 13-7
Scope of exception handlers. 13-8
Reraising exceptions 13-10
Writing finally blocks 13-11
Writing a finally block in Delphi 13-12
Writing a finally block in C++. 13-12
Handling exceptions in CLX applications. . . 13-13
CLX exceptionclasses 13-14
Default exception handling in CLX 13-15
Silent exceptions 13-16
Defining your own CLX exceptions 13-17
Handling CLX exceptions in C++ 13-18
Exceptions thrown from constructors . 13-18
Catching and throwing exceptions . . 13-18

Handling C++ operating system exceptions.

13-19
Floating point and arithmetic exceptions . .

13-19
Portability considerations in C++. . . . 13-20
C++ exceptions innon-CLX code 13-20
Exception specifications in C++ 13-20
Unwinding exceptions in C++ 13-21
Safe pointersinC++ 13-21

Constructors in exception handling in C++13-22

vi

Handling uncaught and unexpected exceptions

NCH+. . ..o 13-22
C++ exception handling options. 13-23
Chapter 14

C++ language support for CLX 14-1

C++ and Delphi object models 14-2
Inheritance and interfaces 14-3
Using interfaces instead of multiple
inheritance 14-3
Declaring interface classes 14-4
IUnknown and IInterface. 14-5

Creating classes that support IUnknown 14-6
Interfaced classes and lifetime management .
14-7
Object identity and instantiation 14-8
Distinguishing C++ and Delphi references . .

14-9
Copying objects 14-9
Objects as function arguments 14-10

Construction of CLX-style objects in C++ 14-10

Standard C++ object construction14-11
Delphi object construction 14-11
CLX-style object construction 14-11
Calling virtual methods in base class
constructors 14-14
Standard C++model 14-15
Delphimodel. 14-15
CLX-stylemodel 14-15
Example: calling virtual methods . . . 14-16

Constructor initialization of data members
for virtual functions 14-17
Object destruction 14-18
Exceptions thrown from constructors . 14-18
Virtual methods called from destructors14-19
AfterConstruction and BeforeDestruction 14-20

Class virtual functions 14-20
Support for Delphi data types and language

concepts 14-21

Typedefs 14-22

Classes that support the Delphi language 14-22
C++ language counterparts to the Delphi

language 14-23
Var parameters. 14-23
Untyped parameters. 14-24

Openarrays 14-24
Calculating the number of elements. . 14-25
Temporaries 14-26
arrayofconst. 14-26

OPENARRAY macro. 14-27
EXISTINGARRAY macro 14-28
C++ functions that take open array
arguments 14-28
Types defined differently 14-28
Boolean datatypes 14-29
Chardatatypes. 14-29
Delphi interfaces 14-30
Resourcestrings 14-30
Default parameters. 14-31
Runtime type information. 14-32
Unmappedtypes. 14-33
6-byte Real types 14-33
Arrays as return types of functions . . . 14-33
Keyword extensions 14-34
_cdassid. 14-34
_closure.o L 14-35
_property. L. 14-37
__published. 14-38
The __declspec keyword extension. 14-39
__declspec(delphiclass) 14-39
__declspec(delphireturn). 14-40
__declspec(delphirtti) 14-40
__declspec(dynamic) 14-40
__declspec(hidesbase) 14-40
__declspec(package) 14-41
__declspec(pascalimplementation) . . . 14-41
__declspec(uuid) 14-41
Chapter 15

Developing cross-platform applications
15-1

Creating cross-platform applications 15-1
Porting Windows applications to Linux. 15-2
Porting techniques 15-2
Platform-specificports. 15-2
Cross-platformports 15-2
Windows emulation ports 15-3
Porting your application. 15-3
CLXclass library 15-5
What VisualCLX does differently. 15-6
Lookandfeel 15-7
Styles. 15-7
Variants 15-7
Custom variant data handler in Delphi .15-7
Registry 15-7
Sharing methods 15-8

Other differences 15-8

Features that do not port directly or are missing
15-9
Windows-only and cross-platform unit

comparison. 15-10
Differences in CLX object constructors . . 15-12
Handling system and widget events . . . 15-12

Sharing source files between Windows and

Linux 15-13
Environmental differences between Windows
and Linux. 15-13
Directory structure on Linux. 15-15
Writing portablecode. 15-16
Using conditional directives 15-18

Terminating Delphi conditional directives . .
15-19

Emitting messages. 15-20
Including inline assembler code 15-21
Programming differences on Linux 15-22
Cross-platform database applications 15-22
dbExpress differences. 15-23
Component-level differences. 15-24
User interface-level differences 15-24
Porting database applications to Linux. . 15-25
Updating data in dbExpress applications 15-27
Cross-platform Internet applications 15-28
Porting Internet applications to Linux . . 15-29

Chapter 16

Working with packages and components
16-1

Why use packages?. 16-3

Packages and standard DLLsshared object files .
16-3

Runtime packages 16-5
Loading packages in an application. 16-6
Loading packages with the LoadPackage

function. 16-7
Deciding which runtime packages to use. . 16-8
Custom packages 16-10
Design-time packages 16-10
Installing component packages 16-11
Creating and editing packages 16-13
Creatingapackage 16-14
Editing an existing package 16-15

Understanding the structure of a package 16-15

Naming packages 16-16
Requireslist 16-16
Containslist 16-17

Editing package source files manually in Delphi
16-17
Package source files and project options files in

CHooon oo 16-18
Packaging components in C++ 16-19
Building packages 16-20

Package-specific compiler directives . . 16-21
Compiling and linking from the command

line 16-24
Package files created when building . . 16-25
Deploying packages. 16-26

Deploying applications that use packages. 16-27
Distributing packages to other developers 16-27

Package collection files 16-27
Chapter 17
Creating international applications 17-1
Internationalization and localization 17-1
Internationalization 17-1
Localization. 17-1
Internationalizing applications. 17-2
Enabling applicationcode. 17-2
Charactersets. 17-2
Multibyte charactersets 17-2
Wide characters. 17-3
Designing the user interface. 17-4
Text. o oo 17-4
Graphicimages 17-4
Formats and sortorder. 17-4
Keyboard mappings 17-5
Isolating resources 17-5
Creating resource modules 17-5
Using resource modules. 17-5
Localizing applications 17-6
Chapter 18
Deploying applications 18-1
Deploying general applications 18-1
Deploymentissues. 18-2
Using installation programs. 18-3
Identifying application files 18-3
Packagefiles. 18-3
Helper applications. 18-4
Shared object locations 18-4
Deploying database applications. 18-4
Connecting to a database 18-4
Updating configuration files. 18-5
Deploying Web applications 18-5
Deploying to Apache servers 18-6

Programming for varying host environments . 18-7

Screen resolutions and color depths. 18-7
Considerations when not dynamically
resizing 18-7
Considerations when dynamically resizing
formsand controls. 18-8
Accommodating varying color depths . 18-9
Fonts 18-9
Software license requirements. 18-9
DEPLOY 18-9
README. 18-10
No-nonsense license agreement 18-10
GPL license agreement 18-10
Third-party product documentation . . . 18-10
Chapter 19
Designing database applications ~ 19-1
Using databases. 19-1
Types of databases. 19-2
Database security 19-3
Transactions 19-3
Referential integrity, stored procedures, and
triggers 19-4
Database architecture. 19-4
General structure 19-5
The user interface form 19-5
Thedatamodule. 19-5

Using a client dataset with data stored on disk .
19-7
Using a unidirectional dataset directly . . . 19-8

Using a client dataset to buffer records . . . 19-9
Using a multi-tiered architecture 19-12
Combining approaches. 19-13
Chapter 20
Using data controls 201
Using common data control features 20-2

Associating a data control with a dataset. . 20-3
Changing the associated dataset at runtime .
20-3
Enabling and disabling the data source . 20-4
Responding to changes mediated by the data

SOUICE .« v v v v v e e e e e e e e e 20-4
Editing and updatingdata 20-5
Enabling editing in controls on user entry . .
20-5
Editing datainacontrol. 20-6
Disabling and enabling data display 20-6

Refreshing data display. 20-7

Enabling mouse, keyboard, and timer events. .
20-8

Choosing how to organize thedata 20-8
Displaying a singlerecord. 20-8
Displaying data aslabels. 20-8
Displaying and editing fields in an edit box.
20-9
Displaying and editing text in a memo
control 20-9
Displaying and editing graphics fields in an
imagecontrol 20-10
Displaying and editing data in list and
comboboxes. 20-10
Handling Boolean field values with check
boxes 20-13
Restricting field values with radio controls .
20-14
Displaying multiple records. 20-14
Viewing and editing data with TDBGrid . . . 20-15
Using a grid control in its default state . . 20-16
Creating a customized grid 20-17
Understanding persistent columns . . . 20-17
Creating persistent columns. 20-18
Deleting persistent columns. 20-19
Arranging the order of persistent columns .
20-19
Setting column properties at design time . .
20-20
Defining a lookup list column. 20-21
Putting a buttonina column 20-21
Restoring default values to a column. . 20-21
Displaying composite fields. 20-22
Setting grid options 20-23
Editinginthegrid 20-24
Controlling grid drawing 20-25
Responding to user actions at runtime. . . 20-25
Navigating and manipulating records. 20-26

Choosing navigator buttons to display . . 20-27
Hiding and showing navigator buttons at
designtime 20-27
Hiding and showing navigator buttons at
runtime. 20-28
Displaying fly-overhelp. 20-29
Using a single navigator for multiple datasets .
20-29

Chapter 21
Connecting to databases 211

Controlling connections. 21-2

Describing the server connection 21-2
Identifying the driver 21-2
Specifying connection parameters. . . . 21-2
Naming a connection description 21-3
Using the Connection Editor 21-3

Opening and closing server connections . . 21-4
Opening a connection. 21-4
Disconnecting from a database server. . 21-5

Controlling serverlogin 21-5
Managing transactions 21-7

Starting a transaction 21-8

Ending a transaction 21-9
Ending a successful transaction 21-9
Ending an unsuccessful transaction . . . 21-9

Specifying the transaction isolation level . 21-10

Accessing server metadata. 21-10
Working with associated datasets. 21-11
Closing datasets without disconnecting from the
SEIVEL . . . v v it i 21-12
Iterating through the associated datasets. 21-12
Sending commands to the server 21-13
Debugging database applications. 21-15

Using TSQLMonitor to monitor SQL commands
21-15

Using a callback to monitor SQL commands. . .
21-16

Chapter 22
Understanding datasets 221
Types of datasets 22-2
Opening and closing datasets 22-2
Determining and setting dataset states. 22-3
Inactivating a dataset 22-5
Browsing adataset 22-6
Enabling dataset editing 22-7
Enabling insertion of new records. 22-8
Enabling index-based operations 22-8
Calculating fields 22-9
Filteringrecords 22-9
Applyingupdates. 22-9
Navigating datasets. 22-9
Using the First and Last methods 22-10
Using the Next and Prior methods 22-11
Using the MoveBy method. 22-11
Using the Eof and Bof properties 22-12
Eof. 22-12
Bof. 22-13
Marking and returning to records. 22-14
Searching datasets 22-16

Using Locate 22-16

Using Lookup. 22-17

Displaying and editing a subset of data using filters
22-20

Enabling and disabling filtering 22-20
Creating filters 22-20
Setting filter options 22-23

Navigating records in a filtered dataset . . 22-24

Modifyingdata. 22-25

Editingrecords 22-25

Addingnewrecords 22-26
Insertingrecords 22-27
Appending records. 22-27

Deleting records 22-27

Posting data to the database 22-28

Cancelingchanges 22-28

Modifying entirerecords 22-28

Using datasetevents. 22-30
Aborting amethod 22-31
Using OnCalcFields 22-31

Chapter 23

Working with field components 231

Dynamic field components 23-2

Persistent field components 23-3

Creating persistent fields 23-4

Arranging persistent fields 23-5

Defining new persistent fields 23-5
Defining a data field 23-6
Defining a calculated field. 23-7
Defining a lookup field. 23-8
Defining an aggregate field 23-10

Deleting persistent field components . . . 23-10
Setting persistent field properties and events. .
23-11
Setting display and edit properties at design

time. 23-11
Setting field component properties at
runtime. L. 23-12

Controlling and masking user input . . 23-13
Using default formatting for numeric, date,
and time fields. 23-13
Handlingevents 23-14
Working with field component methods at runtime
23-14
Displaying, converting, and accessing field values
23-15
Displaying field component values in standard
controls 23-16

Converting field values. 23-16
Accessing field values with the default dataset

property L. 23-18
Accessing field values with a dataset’s Fields
property 23-18
Accessing field values with a dataset’s
FieldByName method. 23-19
Checking a field’s current value. 23-19
Setting a default value forafield 23-20
Specifying constraints 23-20
Using object fields 23-21
Displaying ADT and array fields 23-21
Working with ADT fields. 23-22

Using persistent field components. . . 23-22
Using the dataset’s FieldByName method . .

23-23
Using the dateset’s FieldValues property . . .

23-23
Using the ADT field’s FieldValues property .

23-23
Using the ADT field’s Fields property. 23-23
Working with array fields 23-24
Using persistent fields. 23-24
Using the array field’s FieldValues property .

23-24
Using the array field’s Fields property 23-25
Working with dataset fields 23-25
Displaying dataset fields 23-25
Accessing data in a nested dataset. . . 23-25
Working with reference fields 23-26
Displaying reference fields 23-26
Accessing data in a reference field. . . 23-26

Chapter 24

Using unidirectional datasets 2441
Types of unidirectional datasets. 24-2
Connecting to the Server. 24-2
Specifying what data to display. 24-3
Representing the results of a query 24-3

Specifying a query using TSQLDataSet . 24-4
Specifying a query using TSQLQuery. . 24-4
Using parameters in queries 24-4
Representing the recordsina table 24-6
Representing a table using TSQLDataSet 24-6
Representing a table using TSQLTable . 24-7
Representing the results of a stored procedure .
24-7
Specifying a stored procedure using
TSQLDataSet 24-8

Specifying a stored procedure using

TSQLStoredProc. 24-8
Working with stored procedure parameters .
24-8
Fetching thedata. 24-11
Preparing the dataset 24-11
Fetching multiple datasets 24-12

Executing commands that do not return records. .
24-12

Specifying the command to execute 24-12
Executing the command 24-13
Creating and modifying server metadata . 24-13
Setting up master/detail relationships 24-15

Setting up master/detail relationships with
TSQLDataSet or TSQLQuery 24-15

Setting up master/detail relationships with

TSQLTable 24-16
Accessing schema information. 24-17
Fetching data after using the dataset for
metadata. L 24-18
The structure of metadata datasets. 24-18
Information about tables. 24-18
Information about stored procedures. . 24-19
Information about fields 24-19
Information about indexes. 24-20
Information about stored procedure
parameters. 24-21
Information about Oracle packages. . . 24-22
Chapter 25
Using client datasets 25-1
Working with data using a client dataset25-2
Navigating data in client datasets 25-2

Specifying the index to use for searching 25-3
Executing a search with Goto methods. .25-4
Executing a search with Find methods. .25-5
Specifying the current record after a

successful search 25-5
Searching on partialkeys 25-5
Repeating or extending a search 25-5

Limiting what records appear. 25-6
Understanding the differences between

ranges and filters 25-6
Specifyingranges. 25-6
Modifyingarange 25-10
Applying or canceling arange 25-11

Representing master/detail relationships . 25-11
Making the client dataset a detail of another
dataset 25-12

xi

Using nested detail tables. 25-14
Constraining data values. 25-15
Making dataread-only 25-16
Editingdata 25-16

Undoing changes 25-17

Saving changes. 25-17
Sorting and indexing 25-18

Adding anewindex. 25-18

Deleting and switching indexes 25-19

Obtaining information about indexes . 25-19

Using indexes to group data 25-20
Representing calculated values 25-21

Using internally calculated fields in client

datasets 25-22
Using maintained aggregates 25-22
Specifying aggregates. 25-22
Aggregating over groups of records. . 25-23
Obtaining aggregate values. 25-24

Adding application-specific information to the

data..................... 25-25
Copying data from another dataset. 25-25
Assigning data directly. 25-25
Cloning a client dataset cursor. 25-27
Using a client dataset with a provider 25-27
Specifying a data provider 25-28

Getting parameters from the source dataset . . .
25-29
Passing parameters to the source dataset. 25-29
Sending query or stored procedure
parameters
Limiting records with parameters . . .
Specifying the command to execute on the
server 25-31
Requesting data from the source dataset . 25-32

Incremental fetching. 25-32
Fetch-on-demand 25-33
Updatingrecords 25-33
Applyingupdates 25-34
Reconciling update errors. 25-34
Refreshing records. 25-36

Communicating with providers using custom

events. 25-36
Using an SQL client dataset 25-37
When to use TSQLClientDataSet 25-38
Setting up an SQL client dataset. 25-38
Configuring the internal provider. 25-39
Using a client dataset with file-based data. . 25-40
Creating anew dataset 25-41

Creating a new dataset using persistent fields

25-41
Creating a dataset using field and index
definitions 25-41
Creating a dataset based on an existing table
25-43
Loading data from a file or stream 25-43
Merging changes intodata 25-44
Saving data to a file or stream. 25-44

Chapter 26
Using provider components

Determining the source of data.
Using a dataset as the source of the data . .26-2
Using an XML document as the source of the

data. 26-2
Communicating with the client dataset 26-2
Choosing how to apply updates 26-4

Controlling what information is included in data
packets
Specifying what fields appear in data packets .
26-4
Setting options that influence the data packets .
26-5
Adding custom information to data packets 26-6

Responding to client data requests. 26-7

Responding to client update requests 26-8
Editing delta packets before updating the

database 26-9

Influencing how updates are applied . . . 26-10
Screening individual updates
Resolving update errors on the provider . 26-12
Applying updates to datasets that do not
represent a single table
Responding to client-generated events

Chapter 27
Using Web Services to create

multi-tiered database applications 27-1
Advantages of the multi-tiered database model27-2
Understanding multi-tiered database applications

27-3

Overview of a three-tiered application. . . .27-4
The structure of the client application27-6
The structure of the application server. . . .27-7

The contents of the remote data module .27-7
Creating the application server
Setting up the remote data module.

Xii

Extending the application server’s interface . . .
27-11

Supporting master/detail relationships . 27-12

Supporting state information in remote data

modules. 27-13
Creating the client application. 27-15
Connecting to the application server . . . 27-16
Managing server connections 27-18
Connecting to theserver 27-18

Dropping or changing a server connection . .
27-19
Calling server interfaces

Chapter 28
Using XML in database applications 28-1

Defining transformations 28-1
Mapping between XML nodes and data packet

fields 28-2
Using XMLMapper 28-4
Loading an XML schema or data packet 28-4
Defining mappings 28-4
Generating transformation files 28-5

Converting XML documents into data packets 28-6

Specifying the source XML document . . . 28-6
Specifying the transformation 28-6
Obtaining the resulting data packet. 28-7
Converting user-defined nodes 28-7
Using an XML document as the source for a
provider L. 28-8

Using an XML document as the client of a provider
289
Fetching an XML document from a provider . .
28-10
Applying updates from an XML document to a
provider. L. 28-11

Chapter 29
Creating Internet server applications29-1

About Web Broker and WebSnap 29-1
Terminology and standards 29-3
Parts of a Uniform Resource Locator 29-3
URIvs.URL 29-4
HTTP request header information. 29-4
HTTP server activity 29-5
Composing client requests 29-5
Serving clientrequests 29-5
Responding to client requests 29-6
Types of Web server applications 29-6
CGIstand-alone 29-6

Apache. 29-6
Web App Debugger. 29-8
Converting Web server application target types
29-8

Debugging server applications. 29-9
Using the Web App Debugger 29-10
Launching your application with the Web
App Debugger. 29-10
Converting your application to another type
of Web server application 29-10
Debugging CGI applications 29-11
Debugging Apache DSO applications . . . 29-12
Deploying a DSO application 29-12
Setting up for DSO debugging 29-13
Chapter 30

Using Web Broker

Creating Web server applications with Web Broker
30-1

TheWebmodule 30-2
The Web Application object. 30-2
The structure of a Web Broker application . . .30-3
The Web dispatcher 30-4
Adding actions to the dispatcher. 30-4
Dispatching request messages 30-4
Actionitems 30-5
Determining when action items fire 30-5
Thetarget URL 30-5
The request method type. 30-6
Enabling and disabling action items . . .30-6
Choosing a default action item 30-6
Responding to request messages with action
items, 30-7
Sending theresponse. 30-7
Using multiple actionitems 30-7
Accessing client request information 30-8
Properties that contain request header
information 30-8
Properties that identify the target. 30-8

Properties that describe the Web client. .30-8
Properties that identify the purpose of the

request 30-9
Properties that describe the expected
TESPONSE . . « v v v v v v 30-9
Properties that describe the content . . .30-9
The content of HTTP request messages . . 30-10
Creating HTTP response messages 30-10
Filling in the response header. 30-10
Indicating the response status. 30-10

Indicating the need for client action . . .30-11
Describing the server application30-11
Describing the content 30-11
Setting the response content 30-11
Sending theresponse 30-12
Generating the content of response messages 30-12
Using page producer components. 30-13
HTML templates. 30-13
Using predefined HTML-transparent tag
Names 30-13
Specifying the HTML template. 30-14

Converting HTML-transparent tags. . 30-14
Using page producers from an action item . .
30-14

Chaining page producers together. . . 30-15
Using database information in responses . . 30-17
Adding a session to the Web module . . . 30-17

Both console CGI applications and Apache DSO
applications are launched in response to HTTP
request messages. When working with
databases in these types of applications, you
can use the default session to manage your
database connections, because each request
message has its own instance of the
application. Representing database

informationin HTML. 30-17
Using dataset page producers 30-17
Using table producers. 30-18
Specifying the table attributes 30-18
Specifying the row attributes. 30-18
Specifying the columns 30-19
Embedding tables in HTML documents 30-19
Setting up a dataset table producer . . 30-19
Setting up a query table producer . . . 30-19

Chapter 31
Creating Web server applications using
WebSnap 311

Fundamental WebSnap components 31-2
Webmodules. 31-2
Web application module types. 31-3

Web pagemodules. 31-4

Web datamodules. 31-4
Adapters 31-5
Fields 31-5
Actions oL 31-6
Errors o . 31-6
Records 31-6

Page producers 31-6

Creating Web server applications with WebSnap .
31-7

Selecting a server type
Specifying application module components 31-8
Selecting Web application module options 31-10
WebSnap tutorial 31-11
Create a new application 31-11
Step 1. Start the WebSnap application wizard

31-11
Step 2. Save the generated files and project .
31-11
Step 3. Specify the application title . . . 31-12
Create a CountryTable page. 31-12

Step 1. Add a new Web page module. . 31-12
Step 2. Save the new Web page module 31-13
Add data components to the CountryTable
module
Step 1. Add data-aware components . . 31-13
Step 2. Specify a key field
Step 3. Add an adapter component. . . 31-14
Create a grid to display the data
Step 1. Add a grid
Step 2. Add editing commands to the grid. .
31-16
Add an edit form
Step 1. Add a new Web page module. . 31-17
Step 2. Save the new module
Step 3. Make CountryTableU accessible to the

newmodule 31-18
Step 4. Add input fields 31-18
Step 5. Add buttons. 31-19

Step 6. Link form actions to the grid page . .

31-20
Step 7. Link grid actions to the form page . .
31-20
Run the completed application. 31-21
Add error reporting 31-21

Step 1. Add error support to the grid. . 31-21
Step 2. Add error support to the form . 31-21
Step 3. Test the error-reporting mechanism .
31-22
Advanced HTML design
Manipulating server-side script in HTML files .
31-23

Loginsupport 31-24
Adding loginsupport 31-24
Using the sessions service. 31-25

TSessionsService 31-26
TCookieSessionsService 31-26

Xiv

Changing sessions service behavior. . 31-26
Loginpages 31-27
Setting pages to require logins. 31-28
User accessrights 31-29

Dynamically displaying fields as edit or text

boxes. L. 31-29
Hiding fields and their contents 31-30
Preventing pageaccess 31-30

Server-side scripting in WebSnap 31-31
Scriptengine. L. 31-32
Scriptblocks oL 31-32
Creating script. 31-32

Wizard templates 31-33
TAdapterPageProducer. 31-33
Editing and viewing script. 31-33
Including scriptinapage. 31-33
Scriptobjects. 31-33

Dispatching requests and responses 31-34
Dispatcher components. 31-34
Adapter dispatcher operation 31-35

Using adapter components to generate

content. 31-35
Receiving adapter requests and generating
TESPONSES« . v v 31-36
Imagerequest 31-38
Imageresponse. 31-38
Dispatching actionitems 31-39
Page dispatcher operation 31-39

Chapter 32
Working with XML documents

Using the Document Object Model 32-2
Working with XML components 32-3
Using TXMLDocument. 32-3
Working with XML nodes 32-4
Working with anode’s value. 32-4
Working with a node’s attributes 32-5
Adding and deleting child nodes 32-5

Abstracting XML documents with the Data Binding

wizard 32-6
Using the XML Data Binding wizard 32-8
Using code that the XML Data Binding wizard

generates 32-10
Chapter 33
Using Web Services 33-1

Understanding invokable interfaces 33-2
Using nonscalar types in invokable interfaces . .
33-4

Registering nonscalar types

Using holder classes to register C++ types. .
33-7

Using remotable objects

Representing attachments

Managing the lifetime of remotable objects .
33-10

Remotable object example 33-10
Writing servers that support Web Services . . 33-12
Building a Web Service server 33-13
Using the SOAP application wizard 33-14
Adding new Web Services. 33-15
Editing the generated code 33-15
Using a different baseclass 33-15
Using the Web Services Importer. 33-17
Creating custom exception classes for Web
Services L 33-18
Generating WSDL documents for a Web Service
application. 33-18
Writing clients for Web Services 33-19
Importing WSDL documents 33-19
Calling invokable interfaces. 33-20

Chapter 34
Working with sockets

Implementing services 34-1
Understanding service protocols 34-2
Communicating with applications34-2
Servicesand ports 34-2
Types of socket connections. 34-2
Client connections 34-3
Listening connections 34-3
Server connections 34-3
Describing sockets. 34-3
Describing thehost. 34-4
Choosing between a host name and an IP
address. 34-4
Usingports 34-5
Using socket components. 34-5

Getting information about the connection. .34-6

Using clientsockets 34-6
Specifying the desired server 34-6
Forming the connection 34-6

Getting information about the connection . .
34-6

Closing the connection. 34-7
Using serversockets 34-7
Specifying theport 34-7
Listening for client requests 34-7

XV

Connecting toclients 34-7
Closing server connections 34-7
Responding to socket events. 34-8
Errorevents 34-8
Clientevents. 34-8
Serverevents. 34-9
Events when listening. 34-9
Events with client connections 34-9

Reading and writing over socket connections . 34-9

Non-blocking connections 34-10
Reading and writing events 34-10
Blocking connections 34-10

Chapter 35

Overview of component creation ~ 35-1
Component Library for Cross-Platform (CLX) 35-1

Componentsand classes 35-2
Creating components. 35-2
Modifying existing components. 35-3
Creating controls 35-3
Creating graphic controls. 35-4
Subclassing controls. 35-4
Creating nonvisual components. 35-4
What goes into a component? 35-5
Removing dependencies 35-5
Setting properties, methods, and events . . 35-5
Properties. 35-6
Methods. 35-6
Events., 35-6
Encapsulating graphics. 35-7
Registering components 35-7
Creating a new component 35-7
Creating a component with the Component
wizard. L L 35-8
Creating a component manually. 35-11
Creating aunitfile. 35-12
Deriving the component 35-12
Declaring a new constructor in C++. . 35-13
Registering the component 35-13
Creating a bitmap for a component 35-15

Installing a component on the Component palette .
35-16

Making source files available 35-16
Testing uninstalled components. 35-17
Testing installed components 35-20
Chapter 36
Object-oriented programming for

component writers 36-1

Defining new classes
Deriving new classes

To change class defaults to avoid repetition .

36-2

To add new capabilities to a class
Declaring a new component class
Ancestors, descendants, and class hierarchies .36-3
Controlling access
Hiding implementation details
Defining the component writer’s interface .36-8

Defining the runtime interface 36-8
Defining the design-time interface 36-9
Dispatching methods 36-10
Static methods in Delphi. 36-10

An example of static methods in Delphi 36-10

Regular methods in C++. 36-11
Virtual methods 36-11
Overriding methods 36-12
Dynamic methods in Delphi. 36-13
Abstract classmembers L. 36-13
Classes and pointers. 36-14
Chapter 37
Creating properties 37-1
Why create properties? 37-1
Types of properties. 37-2
Publishing inherited properties 37-3
Defining properties 37-3
Property declarations 37-4
Internal data storage 37-4
Directaccess. 37-5
Accessmethods. 37-6
Theread method 37-8
The write method. 37-8
Default property values 37-9
Specifying no default value 379
Creating array properties 37-11
Creating properties for subcomponents. . . . 37-12

Creating properties for interfaces in Delphi . 37-14

Storing and loading properties. 37-15
Using the store-and-load mechanism . . . 37-15
Specifying default values 37-16
Determining what tostore. 37-17
Initializing after loading. 37-18

Storing and loading unpublished properties . .
37-18
Creating methods to store and load property
37-19

XVi

Overriding the DefineProperties method . . .

37-20
Chapter 38
Creating events 38-1
Whatareevents? 38-1
Events are method pointers or closures. . . 38-2
Events are properties 38-2

Event types are method pointer or closure types
38-3
Event-handler types are procedures in

Delphi. 38-3

Event handlers have a return type of void in
CHt o e 38-4
Event handlers are optional 38-5
Implementing the standard events 38-5
Identifying standard events 38-5
Standard events for all controls 38-5

Standard events for widget-based controls . .
38-6

Making events visible. 38-6
Changing the standard event handling. . . 38-7
Defining yourownevents. 38-7
Triggering theevent. 38-8
Two kindsofevents 38-8
Defining the handler type 38-8
Simple notifications 38-9
Event-specifichandlers 38-9

Returning information from the handler 38-9

Declaring theevent 38-9
Event names start with “On”. 38-9
Calling theevent. 38-10

Chapter 39
Creating methods

Avoiding dependencies 39-1
Naming methods 39-2
Protecting methods 39-2

Methods that should be public. 39-3

Methods that should be protected. 39-3

Abstract methods in Delphi 39-3
Making methods virtual 39-4
Declaringmethods 39-4
Chapter 40

Using graphics in components 40-1

Usingthecanvas 40-1
Working with pictures 40-2
Using a picture, graphic, or canvas 40-2

Loading and storing graphics. 40-3

Off-screenbitmaps. 40-3
Creating and managing off-screen bitmaps .40-4
Copying bitmapped images. 40-4

Responding tochanges 40-5

Chapter 41

Handling system notifications 411
Responding to system notifications using CLX.41-1

Responding tosignals 41-1
Assigning custom signal handlers41-2
Responding to systemevents. 41-3
Commonly used events 41-4
Overriding the EventFilter method. . . .41-6
Generating Qtevents. 41-7
Chapter 42

Making components available at design
time 42-1

Registering components. 42-1
Declaring the Register procedure. 42-2
Writing the Register procedure 42-3
Specifying the components 42-3
Specifying the palette page 42-4
Using the RegisterComponents function.42-4
Adding property editors 42-5
Deriving a property-editor class 42-5
Editing the property astext. 42-7
Displaying the property value. 42-7
Setting the property value. 42-8
Editing the property asawhole 42-9
Specifying editor attributes 42-10
Registering the property editor. 42-11
Property categories 42-12
Registering one property ata time 42-12
Registering multiple properties at once . . 42-13
Specifying property categories 42-14
Using the IsPropertyInCategory function . 42-15
Adding component editors. 42-15
Adding items to the context menu 42-16
Specifying menu items. 42-16
Implementing commands 42-17
Changing the double-click behavior 42-18
Adding clipboard formats. 42-19
Registering the component editor 42-20

Compiling components into packages. 42-21

Troubleshooting custom components in C++. 42-21

XVii

Chapter 43
Modifying an existing component 43-1
Creating and registering the component. . . . 43-1
Modifying the componentclass. 43-3
Overriding the constructor. 43-4
Specifying the new default property value. 43-5

Chapter 44
Creating a graphic control 441
Creating and registering the component. . . . 44-1
Publishing inherited properties 44-3
Adding graphic capabilities 44-4
Determining what todraw. 44-4
Declaring the property type 44-5
Declaring the property 44-5

Writing the implementation method . . 44-6
Overriding the constructor and destructor . 44-6

Changing default property values. . . . 44-7
Publishing the penand brush 44-8
Declaring the data members 44-8
Declaring the access properties. 44-9
Initializing owned classes. 44-10
Setting owned classes’ properties . . . 44-12
Drawing the component image 44-13
Refining the shape drawing 44-15
Chapter 45
Customizing a grid 451
Creating and registering the component. . . . 45-1
Publishing inherited properties 45-3
Changing initial values. 45-4
Resizing thecells 45-6
Fillinginthecells. 45-7
Tracking thedate 45-8
Storing the internal date 45-8
Accessing the day, month, and year . . 45-10
Generating the day numbers 45-12
Selecting the currentday 45-16
Navigating months and years. 45-16
Navigatingdays. 45-18
Moving the selection 45-18
Providing an OnChange event. 45-19
Excluding blankcells 45-20
Chapter 46
Making a control data aware 46-1
Creating a data browsing control 46-1

Creating and registering the component . .

Making the control read-only. 46-4

Adding the ReadOnly property. 46-4
Allowing needed updates 46-6
Adding thedatalink. 46-7
Declaring the data members. 46-7
Declaring the access properties 46-8

An example of declaring access properties .

46-8

Initializing the datalink 46-10
Responding to data changes 46-11
Creating a data editing control 46-12

Changing the default value of FReadOnly 46-13
Handling mouse-down and key-down events .
46-13

Responding to mouse-down events . . 46-14
Responding to key-down events 46-15
Updating the field data link class. 46-16
Modifying the Change method 46-18
Updating the dataset. 46-19
Chapter 47
Making a dialog box a component 47-1
Defining the component interface 47-1
Creating and registering the component47-2
Creating the component interface 47-4
Including the form unit files 47-4
Adding interface properties. 47-4
Adding the Execute method 47-6
Testing the component 47-9
Chapter 48
Extending the IDE 48-1
Overview of the Tools APT 48-1
Writing a wizardclass. 48-3
Implementing the wizard interfaces 48-4
Installing the wizard package. 48-6
Obtaining Tools API services. 48-7
Debuggingawizard 48-8
Interface version numbers. 48-8
Working with files and editors 48-9
Using module interfaces. 48-9
Using editor interfaces. 48-10
Creating forms and projects 48-11
Creatingmodules. 48-12
Notifying a wizard of IDEevents 48-18

Xviii

1.1
3.1
32
51
52
53

54
55
5.6
5.7
5.8
59
5.10

5.11

5.12
5.13
5.14
5.15
6.1
7.1
7.2
8.1
82
8.3
9.1
9.2
9.3
9.4
9.5
9.6
10.1
11.1
11.2
11.3
11.4
11.5
11.6
12.1
13.1
13.2

14.1
14.2

Tables

Typefaces and symbols 1-2
CLXlibraries 3-1
Important base classes 3-5
Openmodes 5-7
Sharemodes 5-7

Shared modes available for each open mode.
5-7

Attribute constants and values. 5-9
Classes for managing lists 5-13
String comparison routines. 5-24
Case conversionroutines 5-25
String modification routines 5-25
Sub-string routines 5-25

Null-terminated string comparison routines .
5-26
Case conversion routines for null-terminated

strings. L 5-26
String modification routines 5-26
Sub-string routines 5-26
String copying routines 5-27
Compiler directives for strings. 5-30
Component palette pages 6-11
Properties of selected text. 7-8
Fixed vs. variable owner-draw styles . . .7-13
Delphi compiler directives for libraries . . 8-5
Web server applications. 89

Context menu options for data modules . 8-11
Action setup terminology.
Action classes
Sample captions and their derived names 9-31
Menu Designer context menu commands 9-37

Setting speed buttons’ appearance. 9-44
Setting tool buttons” appearance. 9-46
Edit control properties 10-2
Graphic object types. 11-3

Common properties of the Canvas object. 11-3
Common methods of the Canvas object. .11-4

CLX MIME types and constants 11-29
Mouseevents. 11-32
Mouse-event parameters 11-32
WaitFor returnvalues 12-12
Selected exception classes. 13-15

C++ exception-handling compiler options . .
13-23

Object model comparison. 14-14
Equality comparison !A == !B of BOOL
variables 14-29

14.3

15.1
15.2
15.3
15.4

15.5

15.6
15.7
15.8

16.1
16.2
16.3
16.4

16.5

16.6

16.7

16.8
17.1
17.2
20.1
20.2
20.3
20.4

20.5
20.6
20.7
221
22.2
22.3
224
22.5
22.6
22.7

22.8
229
23.1

Examples of RTTI mappings from Delphi to

CH+. oo oo 14-32
Porting techniques 15-2
CLX libraries 15-5
Changed or different features 159

Windows-only and equivalent cross-platform

units . ..o 15-11
Differences in the Linux and Windows

operating environments 15-13
Common Linux directories 15-15
Comparable data-access components . 15-24

Properties, methods, and events for cached

updates 15-28
Delphi package files 16-4
C++ packagefiles. 16-4
Runtime packages 16-9

Delphi package-specific compiler directives. .
16-22

C++ package-specific compiler directives . . .
16-22

Delphi package-specific command-line
compiler switches. 16-24
C++ package-specific command-line compiler

and linker switches. 16-24
C++ files deployed with a package. . . 16-26
Estimating string lengths 17-4
Resbind options. 17-6
Datacontrols 20-2
Column properties 20-20
Expanded TColumn Title properties . . 20-20

Properties that affect the way composite fields
appear 20-23
Expanded TDBGrid Options properties 20-23
Grid control events 20-25
TDBNavigator buttons
Values for the dataset State property . . . 22-3

Navigational methods of datasets . . . 22-10
Navigational properties of datasets. . . 22-10
Operators that can appear in a filter . . 22-21
FilterOptions values 22-24
Filtered dataset navigational methods . 22-24

Dataset methods for inserting, updating, and
deleting data 22-25
Methods that work with entire records 22-29
Datasetevents. 22-30
TFloatField properties that affect data display
23-1

23.2
23.3
234
23.5
23.6
23.7
23.8
239

241

24.2

24.3

244

24.5

24.6

25.1
25.2

25.3

26.1
26.2
26.3
26.4
26.5
27.1

29.1
30.1
31.1
31.2
31.3
314
31.5

33.1

33.2
35.1
35.2
35.3
36.1

Special persistent field kinds
Field component properties 23-11
Field component formatting routines . . 23-13

Field componentevents. 23-14
Selected field component methods . . . 23-15
Special conversion results 23-17
Types of object field components 23-21

Common object field descendant properties .
23-21

Columns in tables of metadata listing tables .
24-18

Columns in tables of metadata listing stored
procedures 24-19
Columns in tables of metadata listing fields .
24-19

Columns in tables of metadata listing indexes
24-20

Columns in tables of metadata listing

parameters 24-21
Columns in tables of metadata listing stored
procedures 24-22
Index-based search methods 25-3
Summary operators for maintained
aggregates 25-23

Client datasets properties and method for

handling data requests 25-32
AppServer interface members 26-3
Provideroptions. 26-5
UpdateStatus values. 26-9
UpdateMode values. 26-10
ProviderFlags values 26-11

Components used in multi-tiered applications
27-4

Web Broker versus WebSnap 29-2
MethodTypevalues 30-6
Web application module types. 31-3
Web server application types. 31-8
Web application components. 31-9
Scriptobjects L. 31-33

Request information found in action requests
31-37
Scalar types automatically marshaled in Web

Services applications 33-4
Remotableclasses 33-9
Component creation starting points. . . .35-3
Delphi component files 35-8
C++ component files 35-8
Levels of visibility within an object36-4

XX

37.1

40.1
40.2
41.1

41.2

421
422

42.3
42.4
48.1
48.2
48.3

How properties appear in the Object

Inspector 37-2
Canvas capability summary. 40-2
Image-copying methods 40-5
TWidgetControl protected methods for

responding to system notifications 41-5
TWidgetControl protected methods for

responding to events from controls. . . . 41-5
Predefined property-editor types. 42-6

Methods for reading and writing property

values 42-7
Property-editor attribute flags. 42-10
Property categories. 42-14
The four kinds of wizards 48-3
Tools API service interfaces 48-7
Notifier interfaces. 48-18

Figures

3.1 A simplified hierarchy diagram 34
41 Asimpleform 4-3
9.1 A frame with data-aware controls and a data
source component 9-19
9.2 Menuterminology. 9-29
9.3 MainMenu and PopupMenu components 9-30
9.5 Adding menu items to a main menu . . .9-33
9.6 Nested menu structures. 9-34
10.2 Aprogressbar 10-13
14.1 Order of CLX-style object construction . 14-12
19.1 Generic database architecture 19-5
19.2 Architecture of a file-based database
application 19-7
19.3 Architecture of a unidirectional database
application, 19-8
19.4 Architecture combining a client dataset and a
unidirectional dataset. 19-10
19.5 Architecture using a client dataset with an
internal unidirectional dataset 19-11
19.6 Multi-tiered database architecture. . . . 19-12
20.1 TDBGridcontrol. 20-15

20.2 Buttons on the TDBNavigator control. . 20-27
22.1 Relationship of Inactive and Browse states . .

22-5
22.2 Relationship of Browse to other dataset states
22-7
29.1 Parts of a Uniform Resource Locator . . .29-3
30.1 Structure of a Server Application 30-3
31.2 Web App Components dialog 31-9
31.5 CountryTable Previewtab 31-15
31.6 CountryTable HTML Scripttab 31-16
31.7 CountryTable Preview after editing
commands have beenadded 31-17
31.10Web App Components dialog with options
for login support selected. 31-25
31.11 An example of a login page as seen from a
Web pageeditor 31-28
31.12Generating content flow 31-36
31.13 Action request and response 31-38
31.14Image response to arequest 31-39
31.15Dispatchingapage 31-40
35.1 CLX class hierarchy 35-2
35.2 Componentwizard 35-9
41.1 Signalrouting 41-2
41.2 Systemeventrouting 41-4

Xxii

Introduction

The Developer’s Guide describes intermediate and advanced development topics, such
as building client/server database applications, creating Internet Web server
applications, writing custom components, and including support for industry-
standard specifications such as SOAP and TCP/IP. Many of the advanced features
that support Web development, advanced XML technologies, and database
development require components or wizards that are not available in all editions of
Kylix.

The Developer’s Guide assumes you are familiar with using Linux and understand
fundamental Delphi or C++ programming techniques. For an introduction to Kylix
programming and the integrated development environment (IDE), see the Quick
Start and the online Help.

In Kylix, Delphi refers to the Delphi programming language, previously called the
Object Pascal programming language. The text and code examples for both the
Delphi and C++ programming languages are combined so you can use either IDE.

What’s in this manual?

This manual contains four parts, as follows:

Part I, “Programming with Kylix,” describes how to build general-purpose
Delphi and C++ applications. This part provides details on programming
techniques you can use in any Kylix application. For example, it describes how to
use common Component Library for Cross-Platform (CLX) objects that make user
interface programming easy, such as handling strings and manipulating text. This
section includes chapters on working with graphics, error and exception handling,
using shared objects, writing cross-platform and international applications, and
deploying your applications.

While it rarely matters that Kylix’s underlying CLX is written in Delphi, there are
a few instances where it affects your C++ programs. The chapter on C++ language

Introduction 1-1

Manual conventions

support and CLX describes language issues such as how C++ class instantiation
differs when using CLX classes and the C++ language extensions added to
support the Kylix “component-property-event” model of programming.

¢ PartII, “Developing database applications,” describes how to build database
applications using database tools and components. You can access several SQL
server databases using the data access mechanism, dbExpress. To implement the
more advanced database applications, you need the Kylix features that are not
available in all editions.

o PartIII, “Writing Internet applications,” describes how to create applications that
are distributed over the Internet. Kylix includes a wide array of tools for writing
Web server applications, including: Web Broker, an architecture with which you
can create cross-platform server applications; WebSnap, with which you can
design Web pages in a GUI environment; support for working with XML
documents; and BizSnap, an architecture for using SOAP-based Web Services. For
lower-level support that underlies much of the messaging in Internet applications,
this section also describes how to work with socket components.

e PartIV, “Creating custom components,” describes how to design and implement
your own components, and how to make them available on the Component
palette of the IDE. A component can be almost any program element that you
want to manipulate at design time. Implementing custom components entails
deriving a new class from an existing class type in the CLX class library.

Manual conventions

This manual uses the typefaces and symbols described in Table 1.1 to indicate special
text.

Table 1.1 Typefaces and symbols
Typeface or symbol Meaning

Monospace type Monospaced text represents text as it appears on screen or in code. It also
represents anything you must type.

[1 Square brackets in text or syntax listings enclose optional items. Text of this
sort should not be typed verbatim.

Boldface Boldfaced words in text or code listings represent reserved words or
compiler options.

Italics Italicized words in text represent Delphi or C++ identifiers, such as
variable or type names. Italics are also used to emphasize certain words,
such as new terms.

Keycaps This typeface indicates a key on your keyboard. For example, “Press Esc to
exit a menu.”

D The Delphi printed icon represents Delphi programming language text and
code examples.

F.. The C++ printed icon represents C++ programming language text and code
= examples.

1-2 Developer’'s Guide

Developer support services

Developer support services

Borland offers a variety of support options, including free services on the Internet,
where you can search our extensive information base and connect with other users of
Borland products, technical support, and fee-based consultant-level support.

For more information about Borland’s developer support services, please see our
Web site at http:/ /www .borland.com/devsupport/kylix, call Borland Assist at
(800) 523-7070, or contact our Sales Department at (831) 431-1064. For customers
outside of the United States of America, see our Web site at

http:/ /www .borland.com/bww.

When contacting support, be prepared to provide complete information about your
environment, the version and edition of the product you are using, and a detailed
description of the problem.

Introduction 1-3

1-4 Developer’'s Guide

Programming with Kylix

The chapters in “Programming with Kylix” introduce concepts and skills necessary
for creating basic applications using any edition.

Programming with Kylix

Developing applications with Kylix

Borland Kylix is an object-oriented, visual programming environment to develop 32-
bit applications for deployment on Windows and Linux. Using Kylix, you can create
highly efficient applications with a minimum of manual coding.

Kylix provides a comprehensive class library called the Borland Component Library
for Cross-Platform (CLX) and a suite of Rapid Application Development (RAD)
design tools, including programming wizards and application and form templates.

¢ CLX includes objects that encapsulate the Qt library, and is used to run cross-
platform applications on Windows or Linux.

This chapter briefly describes the Kylix development environment and how it fits
into the development life cycle. The rest of this manual provides technical details on
developing general-purpose, database, Internet and Intranet applications, and
writing your own components.

Integrated development environment

When you start Kylix, you can either start Kylix for Delphi or Kylix for C++. You are
immediately placed within the integrated development environment, also called the
IDE. Either IDE provides all the tools you need to design, develop, test, debug, and
deploy applications, allowing rapid prototyping and a shorter development time.

The IDE includes all the tools necessary to start designing applications, such as the:

* Form Designer, or form, a blank window on which to design the user interface for
your application.

¢ Component palette for displaying visual and nonvisual components you can use

to design your user interface.

Object Inspector for examining and changing an object’s properties and events.

Object TreeView for displaying and changing a components’ logical relationships.

Code editor for writing and editing the underlying program logic.

Project Manager for managing the files that make up one or more projects.

Developing applications with Kylix 2-1

Designing applications

¢ Integrated debugger for finding and fixing errors in your code.

* Many other tools such as property editors to change the values for an object’s
property.

* Command-line tools including compilers, linkers, and other utilities.

¢ Extensive class libraries with many reusable objects. Many of the objects provided
in the class library are accessible in the IDE from the Component palette. By
convention, the names of objects in the class library begin with a T, such as
TStatusBar. Names of objects that begin with a Q are based on the Qt library.

Some tools may not be included in all editions of the product.
You can write code in either the Delphi or C++ programming languages.

A more complete overview of the development environment is presented in the
Quick Start manual included with the product. In addition, the online Help system
provides help on all menus, dialog boxes, and windows.

Designing applications

You can use Kylix to design any kind of 32-bit application—from general-purpose
utilities to sophisticated data access programs or distributed applications.

As you visually design the user interface for your application, the Code editor
generates the underlying Delphi or C++ code to support the application. As you
select and modify the properties of components and forms, the results of those
changes appear automatically in the source code, and vice versa. You can modify the
source files directly with any text editor, including the built-in Code editor. The
changes you make are immediately reflected in the visual environment.

In Kylix, you can create your own components. Most of the components provided are
written in Delphi. You can add components that you write to the Component palette
and customize the palette for your use by including new tabs if needed.

You can also use Kylix to design applications that run on both Windows and Linux
by using CLX. CLX contains a set of classes that allows your program to port
between Windows and Linux. Refer to Chapter 15, “Developing cross-platform
applications,” for details about cross-platform programming and the differences
between the Windows and Linux environments.

Chapter 8, “Building applications and shared objects,” introduces Kylix’s support for
different types of applications.

Creating projects

All of Kylix’s application development revolves around projects. When you create an
application in Kylix you are creating a project. A project is a collection of files that
make up an application. Some of these files are created at design time. Others are
generated automatically when you compile the project source code.

2-2 Developer’s Guide

Editingcode

You can view the contents of a project in a project management tool called the Project
Manager. The Project Manager lists, in a hierarchical view, the unit names, the forms
contained in the unit (if there is one), and shows the paths to the files in the project.
Although you can edit many of these files directly, it is often easier and more reliable
to use the visual tools in Kylix.

At the top of the project hierarchy is a group file. You can combine multiple projects
into a project group. This allows you to open more than one project at a time in the
Project Manager. Project groups let you organize and work on related projects, such
as applications that function together or parts of a multi-tiered application. If you are
only working on one project, you do not need a project group file to create an
application.

Project files, which describe individual projects, files, and associated options, have a
.dpr (Delphi) or .bpr (C++) extension. Project files contain directions for building an
application or shared object. When you add and remove files using the Project
Manager, the project file is updated. You specify project options using a Project
Options dialog which has tabs for various aspects of your project such as forms,
application, and compiler. These project options are stored in the project file with the
project.

Units and forms are the basic building blocks of a Kylix application. A project can
share any existing form and unit file including those that reside outside the project
directory tree. This includes custom procedures and functions that have been written
as standalone routines.

If you add a shared file to a project, realize that the file is not copied into the current
project directory; it remains in its current location. Adding the shared file to the
current project registers the file name and path in the uses clause (Delphi) or an
include statement (C++) of the project file. Kylix automatically handles this as you
add units to a project.

When you compile a project, it does not matter where the files that make up the
project reside. The compiler treats shared files the same as those created by the
project itself.

Editing code

The Kylix Code editor is a full-featured ASCII editor. If using the visual
programming environment, a form is automatically displayed as part of a new
project. You can start designing your application interface by placing objects on the
form and modifying how they work in the Object Inspector. But other programming
tasks, such as writing event handlers for objects, must be done by typing the code.

The contents of the form, all of its properties, its components, and their properties
can be viewed and edited as text in the Code editor. You can adjust the generated
code in the Code editor and add more components within the editor by typing code.
As you type code into the editor, the compiler is constantly scanning for changes and
updating the form with the new layout. You can then go back to the form, view and
test the changes you made in the editor, and continue adjusting the form from there.

Developing applications with Kylix 2-3

Compiling applications

The Kylix code generation and property streaming systems are completely open to
inspection. The source code for everything that is included in your final executable
file—all of the CLX objects, RTL sources, and project files—can be viewed and edited
in the Code editor.

Compiling applications

When you have finished designing your application interface on the form and
writing additional code so it does what you want, you can compile the project from
the IDE or from the command line.

All projects have as a target a single distributable executable file. You can view or test
your application at various stages of development by compiling, building, or
running it:

* When you compile, only units that have changed since the last compile are
recompiled.

* When you build, all units in the project are compiled, regardless of whether they
have changed since the last compile. This technique is useful when you are unsure
of exactly which files have or have not been changed, or when you simply want to
ensure that all files are current and synchronized. It's also important to build when
you've changed global compiler directives to ensure that all code compiles in the
proper state.You can also test the validity of your source code without attempting
to compile the project.

* When you run, you compile and then execute your application. If you modified
the source code since the last compilation, the compiler recompiles those changed
modules and relinks your application.

If you have grouped several projects together, you can compile or build all projects in
a single project group at once. Choose Project | Compile All Projects or Project | Build
All Projects with the project group selected in the Project Manager.

Debugging applications

Kylix provides an integrated debugger that helps you find and fix errors in your
applications. The integrated debugger lets you control program execution, monitor
variable values and items in data structures, and modify data values while
debugging.

The integrated debugger can track down both runtime errors and logic errors. By
running to specific program locations and viewing the variable values, the functions
on the call stack, and the program output, you can monitor how your program
behaves and find the areas where it is not behaving as designed. The debugger is
described in online Help.

You can also use exception handling to recognize, locate, and deal with errors.
Exceptions in Kylix are classes, like other classes in Kylix, except, by convention, they

2-4 Developer’s Guide

Deploying applications

begin with an initial E rather than a T. See Chapter 13, “Exception handling” for
details on exception handling.

Deploying applications

Kylix includes add-on tools to help with application deployment. For example,
InstallShield Express (not available in all editions) helps you to create an installation
package for your application that includes all of the files needed for running a
distributed application. TeamSource software (not available in all editions) is also
available for tracking application updates.

Note Not all editions of Kylix have deployment capabilities.

Refer to Chapter 18, “Deploying applications,” for specific information on
deployment.

Developing applications with Kylix 2-5

2-6 Developer’s Guide

Using the class libraries

This chapter presents an overview of the class libraries and introduces some of the
components that you can use while developing applications. The class libraries are
collectively called CLX (Component Library for Cross-Platform). The hierarchy is
extensive, containing both components that you can work with in the IDE and classes
that you create and use in runtime code.

Understanding the class libraries

CLX is a class library made up of objects that you use when developing applications.
It is composed of several sublibraries, each of which serves a different purpose. These
sublibraries are listed in Table 3.1:

Table 3.1 CLX libraries

Part Description

BaseCLX Low-level classes and routines available for all CLX applications.
BaseCLX includes the CLX Runtime Library up to and including the
Classes unit.

DataCLX Client data-access components. These components are used in
applications that access databases. They can access data from a file on
disk or from a database server using dbExpress.

NetCLX Components for building Web Server applications. These include
support for applications that use Apache or CGI Web Servers.

VisualCLX GUI components and graphics classes. VisualCLX classes make use of an
underlying widget library (Qt).

All CLX classes descend from TObject. TObject introduces methods that implement
fundamental behavior like construction, destruction, and message handling.

Components are a subset of CLX that descend from the class TComponent. You can
place components on a form or data module and manipulate them at design time.

Using the class libraries 3-1

Understanding the class libraries

Using the Object Inspector, you can assign property values without writing code.
Most components are either visual or nonvisual, depending on whether they are
visible at runtime. Some components appear on the Component palette.

Visual components, such as TForm and TSpeedButton, are called controls and descend
from TControl. Controls are used in GUI applications, and appear to the user at
runtime. TControl provides properties that specify the visual attributes of controls,
such as their height and width.

Nonvisual components are used for a variety of tasks. For example, if you are writing
an application that connects to a database, you can place a TDataSource component
on a form to connect a control and a dataset used by the control. This connection is
not visible to the user, so TDataSource is nonvisual. At design time, nonvisual
components are represented by an icon. This allows you to manipulate their
properties and events just as you would a visual control.

Classes that are not components (that is, CLX classes that descend from TObject but
not TComponent) are also used for a variety of tasks. Typically, these classes are used
for accessing system objects (such as a file or the clipboard) or for transient tasks
(such as storing data in a list). You can’t create instances of these classes at design
time, although they are sometimes created by the components that you add in the
forms designer.

Detailed reference material on all CLX objects is accessible through online Help while
you are programming. In the Code editor, place the cursor anywhere on the object
and press F1 to display the Help topic.

Properties, methods, and events

CLX is a hierarchy of objects that are tied to the IDE, where you can develop
applications quickly. The classes in CLX are based on properties, methods, and
events. Each class includes data members (properties), functions that operate on the
data (methods), and a way to interact with users of the class (events). CLX is written
in the Delphi language, although it is available to C++ applications as well.

Properties

Properties are characteristics of an object that influence either the visible behavior or
the operations of the object. For example, the Visible property determines whether an
object can be seen in an application interface. Well-designed properties make your
components easier for others to use and easier for you to maintain.

Here are some of the useful features of properties:

¢ Unlike methods, which are only available at runtime, you can see and change
some properties at design time and get immediate feedback as the components
change in the IDE.

* You can access some properties in the Object Inspector, where you can modify the
values of your object visually. Setting properties at design time is easier than
writing code and makes your code easier to maintain.

* Because the data is encapsulated, it is protected and private to the actual object.

3-2 Developer’s Guide

Understanding the class libraries

* The calls to get and set the values of properties can be methods, so special
processing can be done that is invisible to the user of the object. For example, data
could reside in a table, but could appear as a normal data member to the
programmer.

* You can implement logic that triggers events or modifies other data during the
access of a property. For example, changing the value of one property may require
you to modify another. You can change the methods created for the property.

¢ Properties can be virtual.

* A property is not restricted to a single object. Changing one property on one object
can affect several objects. For example, setting the Checked property on a radio
button affects all of the radio buttons in the group.

Methods

A method is a function that is a member of a class. Methods define the behavior of an
object. Methods can access all the public, protected, and private properties and data
members of the class and are commonly referred to as member functions. (For dtails
on public, protected, and private members, see “Controlling access” on page 36-4.)
Although most methods belong to an instance of a class, some methods belong
instead to the class type. In Delphi, these are called class methods, while in C++ they
use the static keyword.

Events

An event is an action or occurrence detected by a program. Most modern applications
are said to be event-driven, because they are designed to respond to events. In a
program, the programmer has no way of predicting the exact sequence of actions a
user will perform. For example, the user may choose a menu item, click a button, or
mark some text. You can write code to handle the events in which you are interested,
rather than writing code that always executes in the same restricted order.

Regardless of how an event is triggered, CLX objects look to see if you have written
any code to handle that event. If you have, that code is executed; otherwise, the
default event handling behavior takes place.

The kinds of events that can occur can be divided into three main categories:

e User events
* System events
¢ Internal events

User events

User events are actions that the user initiates. Examples of user events are OnClick
(the user clicked the mouse), OnKeyPress (the user pressed a key on the keyboard),
and OnDbIClick (the user double-clicked a mouse button).

System events

System events are events that the operating system fires for you. For example, the
OnTimer event (which the Timer component issues whenever a predefined interval

Using the class libraries 3-3

Objects, components, and controls

has elapsed), the OnPaint event (a component or window needs to be redrawn), and
so on. Usually, system events are not directly initiated by a user action.

Internal events

Internal events are events that are generated by the objects in your application. An
example of an internal event is the OnPost event that a dataset generates when your
application tells it to post the current record.

Objects, components, and controls

Figure 3.1 is a greatly simplified view of the inheritance hierarchy that illustrates the
relationship between objects, components, and controls.

Figure 3.1 A simplified hierarchy diagram

TObject (TPersistent ’—»(TComponent)—»(TControl ’—»{TWidgetControI'

/ /

»|[Objects] - . ' :
N [Objects] [Objects] (TGraphicControl) [Objects]

»|[Objects]
/\

Y

(Exception '—» [Objects]

Every object (class) inherits from TObject. Objects that can appear in the forms
designer inherit from TPersistent or TComponent. Controls, which appear to the user
at runtime, inherit from TControl. There are two types of controls, graphic controls,
which inherit from TGraphicControl, and widget controls, which inherit from
TWidgetControl. A control like TCheckBox inherits all the functionality of TObject,
TPersistent, TComponent, TControl, and TWidgetControl, and adds specialized
capabilities of its own.

3-4 Developer’s Guide

Objects, components, and controls

The figure shows several important base classes, which are described in the
following table:

Table 3.2 Important base classes

Class Description

TObject Signifies the base class and ultimate ancestor of everything in CLX. TObject
encapsulates the fundamental behavior common to all CLX objects by
introducing methods that perform basic functions such as creating,
maintaining, and destroying an instance of an object.

Exception Specifies the base class of all classes that relate to CLX exceptions. Exception
provides a consistent interface for error conditions, and enables applications
to handle error conditions gracefully.

TPersistent Specifies the base class for all objects that implement publishable properties.
Classes under TPersistent deal with sending data to streams and allow for the
assignment of classes.

TComponent Specifies the base class for all components. Components can be added to the
Component palette and manipulated at design time. Components can own
other components.

TControl Represents the base class for all controls that are visible at runtime. TControl
is the common ancestor of all visual components and provides standard
visual controls like position and cursor. This class also provides events that
respond to mouse actions.

TWidgetControl Specifies the base class of all controls that can have keyboard focus. Controls
under TWidgetControl are called widgets.

The next few sections present a general description of the types of classes that each
branch contains. For a complete overview of the CLX object hierarchy, refer to the
CLX Object Hierarchy wall chart included with this product.

TObject branch

The TObject branch includes all CLX classes that descend from TObject but not from
TPersistent. Much of the powerful capability of CLX is established by the methods
that TObject introduces. TObject encapsulates the fundamental behavior common to
all classes in CLX by introducing methods that provide:

* The ability to respond when object instances are created or destroyed.

* (Class type and instance information on an object, and runtime type information
(RTTI) about its published properties.

* Support for handling notifications.

TObject is the immediate ancestor of many simple classes. Classes in the TObject
branch have one common, important characteristic: they are transitory. This means
that these classes do not have a method to save the state that they are in prior to
destruction; they are not persistent.

One of the main groups of classes in this branch is the Exception class. This class
provides a large set of built-in exception classes for automatically handling divide-
by-zero errors, file I/O errors, invalid typecasts, and many other exception
conditions.

Using the class libraries 3-5

Objects, components, and controls

Another group in the TObject branch is classes that encapsulate data structures, such
as:

TBits, a class that stores an “array” of Boolean values.

TList, a linked list class.

TStack, a class that maintains a last-in first-out array of pointers.
TQueue, a class that maintains a first-in first-out array of pointers.

Another group in the TObject branch are wrappers for external objects like TPrinter,
which encapsulates a printer interface, and TIniFile, which lets a program read from
or write to an ini file.

TStream is a good example of another type of class in this branch. TStream is the base
class type for stream objects that can read from or write to various kinds of storage
media, such as disk files, dynamic memory, and so on. (see “Using streams” on
page 5-2 for information on streams)

See Chapter 5, “Using BaseCLX,” for information on many of the classes in the
TObject branch (as well as on many global routines in the CLX Runtime Library).

TPersistent branch

The TPersistent branch includes all CLX classes that descend from TPersistent but not
from TComponent. Persistence determines what gets saved with a form file or data
module and what gets loaded into the form or data module when it is retrieved from
memory.

Because of their persistence, objects from this branch can appear at design time.
However, they can’t exist independantly. Rather, they implement properties for
components. Properties are only loaded and saved with a form if they have an
owner. The owner must be some component. TPersistent introduces the GetOwner
method, which lets the form designer determine the owner of the object.

Classes in this branch are also the first to include a published section where
properties can be automatically loaded and saved. A DefineProperties method lets
each class indicate how to load and save properties.

Following are some of the classes in the TPersistent branch of the hierarchy:

¢ Graphics objects such as: TBrush, TFont, and TPen.

¢ Classes such as TBitmap and TIcon, which store and display visual images.

e String lists, such as TStringList, which represent text or lists of strings that can be
assigned at design time.

* TClipboard, a class that contains text or graphics that have been cut or copied from
an application.

e Collections and collection items, which descend from TCollection or
TCollectionltem. These classes maintain indexed collections of specially defined
items that belong to a component. Examples include THeaderSections and
THeaderSection or TListColumns and TListColumn.

3-6 Developer’s Guide

Objects, components, and controls

TComponent branch

The TComponent branch contains classes that descend from TComponent but not
TControl. Objects in this branch are components that you can manipulate on forms at
design time but which do not appear to the user at runtime. They are persistent
objects that can do the following;:

¢ Appear on the Component palette and be changed in the form designer.
¢ Own and manage other components.
* Load and save themselves.

Several methods introduced by TComponent dictate how components act during
design time and what information gets saved with the component. Streaming (the
saving and loading of form files, which store information about the property values
of objects on a form) is introduced in this branch. Properties are persistent if they are
published and published properties are automatically streamed.

The TComponent branch also introduces the concept of ownership that is propagated
throughout CLX. Two properties support ownership: Owner and Components. Every
component has an Owner property that references another component as its owner. A
component may own other components. In this case, all owned components are
referenced in the component’s Components property.

The constructor for every component takes a parameter that specifies the new
component's owner. If the passed-in owner exists, the new component is added to
that owner's Components list. Aside from using the Components list to reference owned
components, this property also provides for the automatic destruction of owned
components. As long as the component has an owner, it will be destroyed when the
owner is destroyed. For example, since TForm is a descendant of TComponent, all
components owned by a form are destroyed and their memory freed when the form
is destroyed. (Assuming, of course, that the components have properly designed
destructors that clean them up correctly.)

If a property type is a TComponent or a descendant, the streaming system creates an
instance of that type when reading it in. If a property type is TPersistent but not
TComponent, the streaming system uses the existing instance available through the
property and reads values for that instance’s properties.

Some of the classes in the TComponent branch include:

o TActionList, a class that maintains a list of actions, which provides an abstraction
of the responses your program can make to user input.

* TMainMenu, a class that provides a menu bar and its accompanying drop-down
menus for a form.

* TOpenDialog, TSaveDialog, TFontDialog, TFindDialog, TColorDialog, and so on,
classes that display and gather information from commonly used dialog boxes.

¢ TScreen, a class that keeps track of the forms and data modules that an application
creates, the active form, the active control within that form, the size and resolution
of the screen, and the cursors and fonts available for the application to use.

Components that do not need a visual interface can be derived directly from
TComponent. To make a tool such as a TTimer device, you can derive from
TComponent. This type of component resides on the Component palette but performs

Using the class libraries 3-7

Objects, components, and controls

internal functions that are accessed through code rather than appearing in the user
interface at runtime.

See Chapter 6, “Working with components,” for details on setting properties, calling
methods, and working with events for components.

TControl branch

The TControl branch consists of components that descend from TControl but not
TWidgetControl. Classes in this branch are controls: visual objects that the user can see
and manipulate at runtime. All controls have properties, methods, and events in
common that relate to how the control looks, such as its position, the cursor
associated with the control’s window, methods to paint or move the control, and
events to respond to mouse actions. Controls in this branch, however, can never
receive keyboard input.

Whereas TComponent defines behavior for all components, TControl defines behavior
for all visual controls. This includes drawing routines, standard events, and
containership.

TControl introduces many visual properties that all controls inherit. These include the
Caption, Color, Font, and HelpContext or HelpKeyword. While these properties inherited
from TControl, they are only published—and hence appear in the Object Inspector—
for controls to which they are applicable. For example, TImage does not publish the
Color property, since its color is determined by the graphic it displays. TControl also
introduces the Parent property, which specifies another control that visually contains
the control.

Classes in the TControl branch often called graphic controls, because they all descend
from TGraphicControl, which is an immediate descendant of TControl. Although these
controls appear to the user at runtime, graphic controls do not have their own
underlying widget. Instead, they use their parent’s widget. It is because of this
limitation that graphic controls cant receive keyboard input or act as a parent to other
controls. However, because they do not have their own widget, graphic controls use
fewer system resources. For details on many of the classes in the TControl branch, see
“Graphic controls” on page 10-15.

See Chapter 7, “Working with controls,” for details on how to interact with controls
at runtime.

TWidgetControl branch

Most controls fall into the TWidgetControl branch. Unlike graphic controls, controls in
this branch have their own associated widget. Because of this, they are sometimes
called widget controls. Widget controls all descend from TWidgetControl.

Controls in the TWidgetControl branch:

* Can receive focus while an application is running, which means they can receive
keyboard input from the application user. In comparison, graphic controls can
only display data and respond to the mouse.

3-8 Developer’s Guide

Objects, components, and controls

¢ Can be the parent of one or more child controls.

¢ Have a handle, or unique identifier, that allows them to access the underlying
widget.

The TWidgetControl branch includes both controls that are drawn automatically (such

as TEdit, TListBox, TComboBox, TPageControl, and so on) and custom controls that do

not correspond directly to a single underlying widget. Controls in this latter

category, which includes classes like TStringGrid and TDBNavigator, must handle the

details of painting themselves. Because of this, they descend from TCustomControl,

which introduces a Canvas property on which they can paint themselves.

For details on many of the controls in the TWidgetControl branch, see Chapter 10,

“Types of controls,”.

Using the class libraries 3-9

3-10 Developer’s Guide

Using the object model in Delphi
programming

The Delphi language is a set of object-oriented extensions to standard Pascal. Object-
oriented programming is an extension of structured programming that emphasizes
code reuse and encapsulation of data with functionality. Once you define a class, you
and other programmers can use it in different applications, thus reducing
development time and increasing productivity.

This chapter is a brief introduction of object-oriented concepts for programmers who
are just starting out with the Delphi language. Most of this material should be
familiar if you already know an object-oriented language such as C++. For more
details on object-oriented programming for programmers who want to write
components that can be installed on the Component palette, see Chapter 35,
“Overview of component creation.”

Note This chapter only addresses object-oriented programming in Delphi. It is assumed
that C++ programmers are already familiar with object-oriented concepts.
(Programmers who are starting out with C++ are advised to use one of the many
available texts on the C++ language.) However, the C++ programmer may want to
look over this chapter for information on how classes interact with the IDE, and to
gain insight into some of the peculiarities of the Delphi language, in which CLX is
written. For details on Borland extensions to C++ that support its use for CLX, see
Chapter 14, “C++ language support for CLX.”

What is an object?

A class is a data type that encapsulates data and operations on data in a single unit.

Before object-oriented programming, data and operations (functions) were treated as
separate elements. An object is an instance of a class. That is, it is a value whose type
is a class. The term object is often used more loosely in this documentation and where

Using the object model in Delphi programming 4-1

What is an object?

the distinction between a class and an instance of the class is not important, the term
“object” may also refer to a class.

You can begin to understand objects if you understand Pascal records or structures in
C. Records are made of up fields that contain data, where each field has its own type.
Records make it easy to refer to a collection of varied data elements.

Objects are also collections of data elements. But objects—unlike records—contain
procedures and functions that operate on their data. These procedures and functions
are called methods.

An object’s data elements are accessed through properties. The properties of many
Delphi objects have values that you can change at design time without writing code.
If you want a property value to change at runtime, you need to write only a small
amount of code.

The combination of data and functionality in a single unit is called encapsulation. In
addition to encapsulation, object-oriented programming is characterized by
inheritance and polymorphism. Inheritance means that objects derive functionality from
other objects (called ancestors); objects can modify their inherited behavior.
Polymorphism means that different objects derived from the same ancestor support
the same method and property interfaces, which often can be called interchangeably.

Examining a Delphi object

When you create a new project, the IDE displays a new form for you to customize. In
the Code editor, the automatically generated unit declares a new class type for the
form and includes the code that creates the new form instance. The generated code

looks like this:

unit Unitl;
interface
uses SysUtils, Types, Classes, Variants, QGraphics, QControls, QForms, QDialogs;
type

TForml = class(TForm){ The type declaration of the form begins here }

private

{ Private declarations }
public

{ Public declarations }
end;{ The type declaration of the form ends here }

var
Forml: TForml;

implementation{ Beginning of implementation part }
{SR *.xfm}
end.{ End of implementation part and unit}

The new class type is TForm1, and it is derived from type TForm, which is also a class.

A class is like a record in that they both contain data fields, but a class also contains
methods—code that acts on the object’s data. So far, TForm1 appears to contain no
fields or methods, because you haven’t added any components (the fields of the new

4-2 Bookname goes here

What is an object?

object) to the form and you haven’t created any event handlers (the methods of the
new object). TForm1 does contain inherited fields and methods, even though you
don’t see them in the type declaration.

This variable declaration declares a variable named Form1 of the new type TForm1.

var
Forml: TForml;

Form1 represents an instance, or object, of the class type TForm1. You can declare
more than one instance of a class type; you might want to do this, for example, to
create multiple child windows in a Multiple Document Interface (MDI) application.
Each instance maintains its own data, but all instances use the same code to execute
methods.

Although you haven’t added any components to the form or written any code, you
already have a complete GUI application that you can compile and run. All it does is
display a blank form.

Suppose you add a button component to this form and write an OnClick event
handler that changes the color of the form when the user clicks the button. The result
might look like this:

Figure 4.1 A simple form

ORI Bumnt D TTTIIIII

When the user clicks the button, the form'’s color changes to green. This is the event-
handler code for the button’s OnClick event:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Forml.Color := clGreen;
end;

Objects can contain other objects as data fields. Each time you place a component on
a form, a new field appears in the form’s type declaration. If you create the
application described above and look at the code in the Code editor, this is what you
see:

unit Unitl;
interface

uses SysUtils, Types, Classes, Variants, QGraphics, QControls, QForms, QDialogs;

Using the object model in Delphi programming 4-3

What is an object?

type
TForml = class (TForm)
Buttonl: TButton;{ New data field }
procedure ButtonlClick(Sender: TObject);{ New method declaration }
private
{ Private declarations }
public
{ Public declarations }
end;

var
Forml: TForml;

implementation
{SR *.xfm}

procedure TForml.ButtonlClick(Sender: TObject);{ The code of the new method }
begin

Forml.Color := clGreen;
end;

end.

TForm1 has a Button1 field that corresponds to the button you added to the form.
TButton is a class type, so Button1 refers to an object.

All the event handlers you write using the IDE are methods of the form object. Each
time you create an event handler, a method is declared in the form object type. The
TForm1 type now contains a new method, the Button1Click procedure, declared in the
TForm]1 type declaration. The code that implements the Button1Click method appears
in the implementation part of the unit.

Changing the name of a component

You should always use the Object Inspector to change the name of a component. For
example, suppose you want to change a form’s name from the default Form1 to a
more descriptive name, such as ColorWindow. When you change the form’s Name
property in the Object Inspector, the new name is automatically reflected in the
form’s xfm file (which you usually don’t edit manually) and in the source code that
the IDE generates:

unit Unitl;

interface

uses SysUtils, Types, Classes, Variants, QGraphics, QControls, QForms, QDialogs;

type

TColorWindow = class(TForm){ Changed from TForml to TColorWindow }
Buttonl: TButton;
procedure ButtonlClick(Sender: TObject);

private
{ Private declarations }

public
{ Public declarations }

end;

4-4 Bookname goes here

Inheriting data and code from an object

var
ColorWindow: TColorWindow;{ Changed from Forml to ColorWindow }

implementation
{SR *.xfm}

procedure TColorWindow.ButtonlClick(Sender: TObject);
begin

Forml.Color := clGreen;{ The reference to Forml didn't change! }
end;

end.
Note that the code in the OnClick event handler for the button hasn’t changed.

Because you wrote the code, you have to update it yourself and correct any
references to the form:

procedure TColorWindow.ButtonlClick(Sender: TObject);
begin

ColorWindow.Color := clGreen;
end;

Inheriting data and code from an object

The TForm1 object seems simple. TForm1 appears to contain one field (Buttonl), one
method (Button1Click), and no properties. Yet you can show, hide, or resize of the
form, add or delete standard border icons, and set up the form to become part of a
Multiple Document Interface (MDI) application. You can do these things because the
form has inherited all the properties and methods of the component TForm. When you
add a new form to your project, you start with TForm and customize it by adding
components, changing property values, and writing event handlers. To customize
any object, you first derive a new object from the existing one; when you add a new
form to your project, the IDE automatically derives a new form from the TForm type:

TForml = class(TForm)

A derived class inherits all the properties, events, and methods of the class from
which it derives. The derived class is called a descendant and the class from which it
derives is called an ancestor. If you look up TForm in the online Help, you’ll see lists of
its properties, events, and methods, including the ones that TForm inherits from its
ancestors. A Delphi clss can have only one immediate ancestor, but it can have many
direct descendants.

Scope and qualifiers

Scope determines the accessibility of an object’s fields, properties, and methods. All
members declared in a class are available to that class and, as is discussed later, often
to its descendants. Although a method’s implementation code appears outside of the
class declaration, the method is still within the scope of the class because it is
declared in the class declaration.

Using the object model in Delphi programming 4-5

Scope and qualifiers

When you write code to implement a method that refers to properties, methods, or
fields of the class where the method is declared, you don’t need to preface those
identifiers with the name of the class. For example, if you put a button on a new form,
you could write this event handler for the button’s OnClick event:

procedure TForml.ButtonlClick(Sender: TObject);
begin

Color := clFuchsia;

Buttonl.Color := clLime;
end;

The first statement is equivalent to

Forml.Color := clFuchsia

You don’t need to qualify Color with Form1 because the Button1Click method is part of
TForm1; identifiers in the method body therefore fall within the scope of the TForm1
instance where the method is called. The second statement, in contrast, refers to the
color of the button object (not of the form where the event handler is declared), so it
requires qualification.

The IDE creates a separate unit (source code) file for each form. If you want to access
one form’s components from another form’s unit file, you need to qualify the
component names, like this:

Form2.Editl.Color := clLime;

In the same way, you can access a component’s methods from another form. For
example,

Form2.Editl.Clear;

To access Form2’s components from Form1’s unit file, you must also add Form2’s unit
to the uses clause of Form1’s unit.

The scope of a class extends to its descendants. You can, however, redeclare a field,
property, or method in a descendant class. Such redeclarations either hide or
override the inherited member.

For more information about scope, inheritance, and the uses clause, see the Delphi
Language Guide.

Private, protected, public, and published declarations

A class type declaration contains three or four possible sections that control the
accessibility of its fields and methods:

Type
TClassName = Class(TObject)
public
{public fields}
{public methods}
protected
{protected fields}
{protected methods}
private

4-6 Bookname goes here

Using object variables

{private fields}
{private methods}
end;

¢ The public section declares fields and methods with no access restrictions. Class
instances and descendant classes can access these fields and methods. A public
member is accessible from wherever the class it belongs to is accessible—that is,
from the unit where the class is declared and from any unit that uses that unit.

* The protected section includes fields and methods with some access restrictions. A
protected member is accessible within the unit where its class is declared and by
any descendant class, regardless of the descendant class’s unit.

¢ The private section declares fields and methods that have rigorous access
restrictions. A private member is accessible only within the unit where it is
declared. Private members are often used in a class to implement other (public or
published) methods and properties.

* For classes that descend from TPersistent, a published section declares properties
and events that are available at design time. A published member has the same
visibility as a public member, but the compiler generates runtime type information
for published members. Published properties appear in the Object Inspector at
design time.

When you declare a field, property, or method, the new member is added to one of
these four sections, which gives it its visibility: private, protected, public, or
published.

For more information about visibility, see the Delphi Language Guide.

Using object variables

You can assign one object variable to another object variable if the variables are of the
same type or are assignment compatible. In particular, you can assign an object
variable to another object variable if the type of the variable to which you are
assigning is an ancestor of the type of the variable being assigned. For example, here
is a TSimpleForm type declaration and a variable declaration section declaring two
variables, AForm and Simple:

type
TSimpleForm = class(TForm)
Buttonl: TButton;
Editl: TEdit;
private
{ Private declarations }
public
{ Public declarations }
end;

var
AForm: TForm;
SimpleForm: TSimpleForm;

Using the object model in Delphi programming 4-7

Creating, instantiating, and destroying objects

AForm is of type TForm, and SimpleForm is of type TSimpleForm. Because TSimpleForm
is a descendant of TForm, this assignment statement is legal:

AForm := SimpleForm;

Suppose you write an event handler for the OnClick event of a button. When the
button is clicked, the event handler for the OnClick event is called. Each event handler
has a Sender parameter of type TObject:

procedure TForml.ButtonlClick(Sender: TObject);
begin

end;

Because Sender is of type TObject, any object can be assigned to Sender. The value of
Sender is always the control or component that responds to the event. You can test
Sender to find the type of component or control that called the event handler using
the reserved word is. For example,

if Sender is TEdit then
DoSomething

else
DoSomethingElse;

Creating, instantiating, and destroying objects

Many of the objects you use in the forms designer, such as buttons and edit boxes, are
visible at both design time and runtime. Some, such as common dialog boxes, appear
only at runtime. Still others, such as timers and datasource components, have no
visual representation at runtime.

You may want to create your own classes. For example, you could create a TEmployee
class that contains Name, Title, and HourlyPayRate properties. You could then add a
CalculatePay method that uses the data in HourlyPayRate to compute a paycheck
amount. The TEmployee type declaration might look like this:

type

TEmployee = class(TObject)

private
FName: string;
FTitle: string;
FHourlyPayRate: Double;

public
property Name: string read FName write FName;
property Title: string read FTitle write FTitle;
property HourlyPayRate: Double read FHourlyPayRate write FHourlyPayRate;
function CalculatePay: Double;

end;

In addition to the fields, properties, and methods you've defined, TEmployee inherits
all the methods of TObject. You can place a type declaration like this one in either the
interface or implementation part of a unit, and then create instances of the new class
by calling the Create method that TEmployee inherits from TObject:

4-8 Bookname goes here

Defining new classes

var

Employee: TEmployee;
begin

Employee := TEmployee.Create;
end;

The Create method is called a constructor. It allocates memory for a new instance
object and returns a reference to the object.

Components on a form are created and destroyed automatically. However, if you
write your own code to instantiate objects, you are responsible for disposing of them
as well. Every object inherits a Destroy method (called a destructor) from TObject. To
destroy an object, however, you should call the Free method (also inherited from
TObject), because Free checks for a nil reference before calling Destroy. For example,

Employee.Free;

destroys the Employee object and deallocates its memory.

Components and ownership

Delphi components have a built-in memory-management mechanism that allows one
component to assume responsibility for freeing another. The former component is
said to own the latter. The memory for an owned component is automatically freed
when its owner's memory is freed. The owner of a component—the value of its
Owner property—is determined by a parameter passed to the constructor when the
component is created. By default, a form owns all components on it and is in turn
owned by the application. Thus, when the application shuts down, the memory for
all forms and the components on them is freed.

Ownership applies only to TComponent and its descendants. If you create, for
example, a TStringList or TCollection object (even if it is associated with a form), you
are responsible for freeing the object.

Defining new classes

Although there are many classes in the object hierarchy, you are likely to need to
create additional classes if you are writing object-oriented programs. The classes you
write must descend from TObject or one of its descendants.

The advantage of using classes comes from being able to create new classes as
descendants of existing ones. Each descendant class inherits the fields and methods
of its parent and ancestor classes. You can also declare methods in the new class that
override inherited ones, introducing new, more specialized behavior.

The general syntax of a descendant class is as follows:

Type
TClassName = Class (TParentClass
public
{public fields}
{public methods}

Using the object model in Delphi programming 4-9

protected
{protected fields}
{protected methods}
private
{private fields}
{private methods}
end;

If no parent class name is specified, the class inherits directly from TObject. TObject
defines only a handful of methods, including a basic constructor and destructor.

To define a class:

1 In the IDE, start with a project open and choose File | New | Unit to create a new
unit where you can define the new class.

Add the uses clause and type section to the interface section.

3 In the type section, write the class declaration. You need to declare all the member
variables, properties, methods, and events.

TMyClass = class; {This implicitly descends from TObject}
public

private

pﬁblished {If descended from TPersistent or below}

If you want the class to descend from a specific class, you need to indicate that
class in the definition:

TMyClass = class(TParentClass); {This descends from TParentClass}
For example:

type TMyButton = class(TButton)
property Size: Integer;
procedure DoSomething;

end;

4 Some versions of the IDE include a feature called class completion that simplifies
the work of defining and implementing new classes by generating skeleton code
for the class members you declare. If you have code completion, invoke it to finish
the class declaration: place the cursor within a method definition in the interface
section and press Ctrl+Shift+C (or right-click and select Complete Class at
Cursor). Any unfinished property declarations are completed, and for any
methods that require an implementation, empty methods are added to the
implementation section.

If you do not have class completion, you need to write the code yourself,
completing property declarations and writing the methods.

4-10 Bookname goes here

Given the example above, if you have class completion, read and write specifiers
are added to your declaration, including any supporting fields or methods:

type TMyButton = class(TButton)
property Size: Integer read FSize write SetSize;
procedure DoSomething;
private
FSize: Integer;
procedure SetSize(const Value: Integer);

The following code is also added to the implementation section of the unit.

{ TMyButton }
procedure TMyButton.DoSomething;

begin
end;
procedure TMyButton.SetSize(const Value: Integer);
begin
FSize := Value;
end;

5 Fill in the methods. For example, to make it so the button beeps when you call the
DoSomething method, add the Beep between begin and end.

{ TMyButton }
procedure TMyButton.DoSomething;
begin
Beep;
end;

procedure TMyButton.SetSize(const Value: Integer);
begin
if fsize < > value then
begin
FSize := Value;
DoSomething;
end;
end;

Note that the button also beeps when you call SetSize to change the size of the
button.

For more information about the syntax, language definitions, and rules for classes,
see the Delphi Language Guide.

Using interfaces in Delphi

Delphi is a single-inheritance language. That means that any class has only a single
direct ancestor. However, there are times you want a new class to inherit properties
and methods from more than one base class so that you can use it sometimes like one
and sometimes like the other. Interfaces let you achieve something like this effect.

An interface is like a class that contains only abstract methods (methods with no
implementation) and a clear definition of their functionality. Interface method

Using the object model in Delphi programming 4-11

definitions include the number and types of their parameters, their return type, and
their expected behavior. By convention, interfaces are named according to their
behavior and prefaced with a capital I. For example, an IMalloc interface would
allocate, free, and manage memory. Similarly, an IPersist interface could be used as a
general base interface for descendants, each of which defines specific method
prototypes for loading and saving the state of an object to a storage, stream, or file.

An interface has the following syntax:

IMyObject = interface
procedure MyProcedure;
end;

A simple example of an interface declaration is:

type

IEdit = interface
procedure Copy;
procedure Cut;
procedure Paste;
function Undo: Boolean;

end;

Interfaces can never be instantiated. To use an interface, you need to obtain it from an
implementing class.

To implement an interface, define a class that declares the interface in its ancestor list,
indicating that it will implement all of the methods of that interface:

TEditor = class(TInterfacedObject, IEdit)
procedure Copy;
procedure Cut;
procedure Paste;
function Undo: Boolean;
end;

While interfaces define the behavior and signature of their methods, they do not
define the implementations. As long as the class’s implementation conforms to the
interface definition, the interface is fully polymorphic, meaning that accessing and
using the interface is the same for any implementation of it.

For more details about the syntax, language definitions and rules for interfaces, see
the Delphi Language Guide

Using interfaces across the hierarchy

Using interfaces lets you separate the way a class is used from the way it is
implemented. Two classes can implement the same interface without descending
from the same base class. By obtaining an interface from either class, you can call the
same methods without having to know the type of the class. This polymorphic use of
the same methods on unrelated objects is possible because the objects implement the
same interface. For example, consider the interface,

TPaint = interface
procedure Paint;

4-12 Bookname goes here

end;
and the two classes,

TSquare = class(TPolygonObject, IPaint)
procedure Paint;
end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;
end;

Whether or not the two classes share a common ancestor, they are still assignment
compatible with a variable of [Paint as in

var
Painter: IPaint;

begin
Painter := TSquare.Create;
Painter.Paint;
Painter := TCircle.Create;
Painter.Paint;

end;

This could have been accomplished by having TCircle and TSquare descend from a
common ancestor (say, TFigure), which declares a virtual method Paint. Both TCircle
and TSquare would then have overridden the Paint method. In the previous example,
IPaint could be replaced by TFigure. However, consider the following interface:

IRotate = interface
procedure Rotate(Degrees: Integer);
end;

IRotate makes sense for the rectangle but not the circle. The classes would look like

TSquare = class(TRectangularObject, IPaint, IRotate)
procedure Paint;
procedure Rotate(Degrees: Integer);

end;

TCircle = class(TCustomShape, IPaint)
procedure Paint;
end;

Later, you could create a class TFilledCircle that implements the IRotate interface to
allow rotation of a pattern that fills the circle without having to add rotation to the
simple circle.

Note For these examples, the immediate base class or an ancestor class is assumed to have
implemented the methods of IInferface, the base interface from which all interfaces
descend. For more information on IInterface, see “Implementing IInterface” on
page 4-14 and “Memory management of interface objects” on page 4-18.

Using the object model in Delphi programming 4-13

Using interfaces with procedures

Interfaces allow you to write generic procedures that can handle objects without
requiring that the objects descend from a particular base class. Using the IPaint and
IRotate interfaces defined previously, you can write the following procedures,

procedure PaintObjects(Painters: array of IPaint);
var
I: Integer;
begin
for I := Low(Painters) to High(Painters) do
Painters[I].Paint;
end;

procedure RotateObjects(Degrees: Integer; Rotaters: array of IRotate);
var
I: Integer;
begin
for I := Low(Rotaters) to High(Rotaters) do
Rotaters[I].Rotate(Degrees);
end;

RotateObjects does not require that the objects know how to paint themselves and
PaintObjects does not require the objects know how to rotate. This allows the generic
procedures to be used more often than if they were written to only work against a
TFigure class.

Implementing linterface

Just as all objects descend, directly or indirectly, from TObject, all interfaces derive
from the IInterface interface. IInterface provides for dynamic querying and lifetime
management of the interface. This is established in the three IInterface methods:

* Querylnterface dynamically queries a given object to obtain interface references for
the interfaces that the object supports.

¢ _AddRef is a reference counting method that increments the count each time a call
to Querylnterface succeeds. While the reference count is nonzero the object must
remain in memory.

® _Release is used with _AddRef to allow an object to track its own lifetime and
determine when it is safe to delete itself. Once the reference count reaches zero, the
object is freed from memory.

Every class that implements interfaces must implement the three IInterface methods,
as well as all of the methods declared by any other ancestor interfaces, and all of the
methods declared by the interface itself. You can, however, inherit the
implementations of methods of interfaces declared in your class.

By implementing these methods yourself, you can provide an alternative means of
lifetime management, disabling reference-counting. This is a powerful technique that
lets you decouple interfaces from reference-counting.

4-14 Bookname goes here

TinterfacedObject

When defining a class that supports one or more interfaces, it is convenient to use
TInterfacedObject as a base class because it implements the methods of IInterface.
TInterfacedObject class is declared in the System unit as follows:

type
TInterfacedObject = class(TObject, IInterface)
protected
FRefCount: Integer;
function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
function _AddRef: Integer; stdcall;
function _Release: Integer; stdcall;
public
procedure AfterConstruction; override;
procedure BeforeDestruction; override;
class function NewInstance: TObject; override;
property RefCount: Integer read FRefCount;
end;

Deriving directly from TInterfacedObject is straightforward. In the following example
declaration, TDerived is a direct descendant of TInterfacedObject and implements a
hypothetical IPaint interface.

type
TDerived = class(TInterfacedObject, IPaint)

end;

Because it implements the methods of IInterface, TInterfacedObject automatically
handles reference counting and memory management of interfaced objects. For more
information, see “Memory management of interface objects” on page 4-18, which
also discusses writing your own classes that implement interfaces but that do not
follow the reference-counting mechanism inherent in TInterfacedObject.

Using the as operator with interfaces

Classes that implement interfaces can use the as operator for dynamic binding on the
interface. In the following example:

procedure PaintObjects(P: TInterfacedObject)
var

X: IPaint;
begin

X := P as IPaint;

{ statements }
end;

the variable P of type TInterfacedObject, can be assigned to the variable X, which is an
IPaint interface reference. Dynamic binding makes this assignment possible. For this
assignment, the compiler generates code to call the Querylnterface method of P’s
IInterface interface. This is because the compiler cannot tell from P’s declared type
whether P’s instance actually supports [Paint. At runtime, P either resolves to an

Using the object model in Delphi programming 4-15

IPaint reference or an exception is raised. In either case, assigning P to X will not
generate a compile-time error as it would if P was of a class type that did not
implement IInterface.

When you use the as operator for dynamic binding on an interface, you should be
aware of the following requirements:

¢ Explicitly declaring IInterface: Although all interfaces derive from Ilnterface, it is
not sufficient, if you want to use the as operator, for a class to simply implement
the methods of IInterface. This is true even if it also implements the interfaces it
explicitly declares. The class must explicitly declare IInterface in its interface list.

* Using an IID: Interfaces can use an identifier that is based on a GUID (globally
unique identifier). GUIDs that are used to identify interfaces are referred to as
interface identifiers (IIDs). If you are using the as operator with an interface, it
must have an associated IID. To create a new GUID in your source code you can
use the Cirl+Shift+G editor shortcut key.

Reusing code and delegation

One approach to reusing code with interfaces is to have one interfaced object contain,
or be contained by another. Using properties that are object types provides an
approach to containment and code reuse. To support this design for interfaces, the
Delphi language has a keyword implements, that makes if easy to write code to
delegate all or part of the implementation of an interface to a subobject.

Aggregation is another way of reusing code through containment and delegation. In
aggregation, an outer object uses an inner object that implements interfaces which are
exposed only by the outer object.

Using implements for delegation

Many classes have properties that are subobjects. You can also use interfaces as
property types. When a property is of an interface type (or a class type that
implements the methods of an interface) you can use the keyword implements to
specify that the methods of that interface are delegated to the object or interface
reference which is the value of the property. The delegate only needs to provide
implementation for the methods. It does not have to declare the interface support.
The class containing the property must include the interface in its ancestor list.

By default, using the implements keyword delegates all interface methods. However,
you can use methods resolution clauses or declare methods in your class that
implement some of the interface methods to override this default behavior.

The following example uses the implements keyword in the design of a color adapter
object that converts an 8-bit RGB color value to a Color reference:

unit cadapt;

type

IRGB8bit = interface
['{1d76360a-f4f5-11d1-87d4-00c04fb17199} "]
function Red: Byte;

4-16 Bookname goes here

function Green: Byte;
function Blue: Byte;
end;

IColorRef = interface
["{1d76360b-f4f5-11d1-87d4-00c04fb17199} "]
function Color: Integer;

end;

{ TRGB8ColorRefAdapter map an IRGB8bit to an IColorRef }
TRGB8ColorRefAdapter = class(TInterfacedObject, IRGB8bit, IColorRef
private
FRGB8bit: IRGBSbit;
FPalRelative: Boolean;

public
constructor Create(rgb: IRGB8bit);
property RGB8Intf: IRGB8bit read FRGB8bit implements IRGB8bLit;
property PalRelative: Boolean read FPalRelative write FPalRelative;
function Color: Integer;

end;

implementation

constructor TRGB8ColorRefAdapter.Create(rgb: IRGB8bit);
begin

FRGB8bit := rgb;
end;

function TRGB8ColorRefAdapter.Color: Integer;
begin
if FPalRelative then
Result := PaletteRGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue)
else
Result := RGB(RGB8Intf.Red, RGB8Intf.Green, RGB8Intf.Blue);
end;
end.

For more information about the syntax, implementation details, and language rules
of the implements keyword, see the Delphi Language Guide.

Aggregation

Aggregation offers a modular approach to code reuse through sub-objects that make
up the functionality of a containing object, but that hide the implementation details
from that object. In aggregation, an outer object implements one or more interfaces.
At a minimum, it must implement IInterface. The inner object, or objects, also
implement one or more interfaces. However, only the outer object exposes the
interfaces. That is, the outer object exposes both the interfaces it implements and the
ones that its contained objects implement.

Clients know nothing about inner objects. While the outer object provides access to
the inner object interfaces, their implementation is completely transparent. Therefore,
the outer object class can exchange the inner object class type for any class that
implements the same interface. Correspondingly, the code for the inner object classes
can be shared by other classes that want to use it.

Using the object model in Delphi programming 4-17

The aggregation model defines explicit rules for implementing IInterface using
delegation. The inner object must implement two versions of the IInterface methods.

¢ It must implement IInterface on itself, controlling its own reference count. This
implementation of IInterface tracks the relationship between the outer and the
inner object. For example, when an object of its type (the inner object) is created,
the creation succeeds only for a requested interface of type IInterface.

¢ It also implements a second IInterface for all the interfaces it implements that the
outer object exposes. This second IInterface delegates calls to QueryInterface,
_AddRef, and _Release to the outer object. The outer IInterface is referred to as the
“controlling Unknown.”

Memory management of interface objects

One of the concepts behind the design of interfaces is ensuring the lifetime
management of the objects that implement them. The _AddRef and _Release methods
of IInterface provide a way to implement this lifetime management. _AddRef and
_Release track the lifetime of an object by incrementing the reference count on the
object when an interface reference is passed to a client, and will destroy the object
when that reference count is zero. This lifetime management model is optional, but a
convention for most interfaced objects.

Using reference counting

The Delphi compiler provides most of the IInterface memory management for you by
its implementation of interface querying and reference counting. Therefore, if you
have an object that lives and dies by its interfaces, you can easily use reference
counting by deriving from TInterfacedObject. If you decide to use reference counting,
then you must be careful to only hold the object as an interface reference, and to be
consistent in your reference counting. For example:

procedure beep (x: ITest);

function test_func()

var
y: ITest;

begin
y := TTest.Create; // because y is of type ITest, the reference count is one
beep(y); // the act of calling the beep function increments the reference count
// and then decrements it when it returns
y.something; // object is still here with a reference count of one

end;

This is the cleanest and safest approach to memory management; and if you use
TInterfacedObject it is handled automatically. If you do not follow this rule, your
object can unexpectedly disappear, as demonstrated in the following code:

function test_func()
var
x: TTest;
begin
x := TTest.Create; // no count on the object yet

4-18 Bookname goes here

Note

beep(x as ITest); // count is incremented by the act of calling beep
// and decremented when it returns
x.something; // surprise, the object is gone

end;

In the examples above, the beep procedure, as it is declared, increments the reference
count (call _AddRef) on the parameter, whereas either of the following declarations
do not:

procedure beep(const x: ITest);
or
procedure beep(var x: ITest);
These declarations generate smaller, faster code.

One case where you cannot use reference counting, because it cannot be consistently
applied, is if your object is a component or a control owned by another component.
In that case, you can still use interfaces, but you should not use reference counting
because the lifetime of the object is not dictated by its interfaces.

Not using reference counting

If your object is a component or a control that is owned by another component, then
it is part of a different memory management system that is based in TComponent.
Although some classes mix the object lifetime management approaches of
TComponent and interface reference counting, this is very tricky to implement
correctly.

To create a component that supports interfaces but bypasses the interface reference
counting machanism, you must implement the _AddRef and _Release methods in code
such as the following:

function TMyObject._AddRef: Integer;
begin

Result := -1;
end;

function TMyObject._ Release: Integer;
begin

Result := -1;
end;

You would still implement Querylnterface as usual to provide dynamic querying on
your object.

Note that, because you implement Querylnterface, you can still use the as operator for
interfaces, as long as you create an interface identifier (IID). You can also use
aggregation. If the outer object is a component, the inner object implements reference
counting as usual, by delegating to the “controlling Unknown.” It is at the level of the
outer object that the decision is made to circumvent the _AddRef and _Release
methods, and to handle memory management via another approach. In fact, you can
use TlnterfacedObject as a base class for an inner object of an aggregation that has a as
its containing outer object one that does not follow the interface lifetime model.

Using the object model in Delphi programming 4-19

Note The “controlling Unknown” is the IUnknown implemented by the outer object and
the one for which the reference count of the entire object is maintained. IUnknown is
the same as IInterface. For more information distinguishing the various
implementations of the IUnknown or Iinterface interface by the inner and outer
objects, see “Aggregation” on page 4-17.

4-20 Bookname goes here

[w]

Note

Using BaseCLX

There are a number of units in CLX that provide the underlying support for most of
the component library. These units include the global routines that make up the CLX
runtime library, a number of utility classes such as those that represent streams and
lists, and the classes TObject, TPersistent, and TComponent. Collectively, these units
are called BaseCLX. BaseCLX does not include any of the components that appear on
the component palette. Rather, the classes and routines in BaseCLX are used by the
components that do appear on the component palette and are available for you to use
in application code or when you are writing your own classes.

Do not confuse the CLX runtime library that is part of BaseCLX with C++ runtime
library. Many of the routines in the CLX runtime liabrary perform functions similar
to those in the C++ runtime library, but can be distinguished because the function
names begin with a capital letter and they are declared in the header of a unit.

The following topics discuss many of the classes and routines that make up BaseCLX
and illustrate how to use them. These uses include:

Using streams

Working with files

Working with .ini files

Working with lists

Working with string lists

Working with strings

Converting measurements

Creating drawing spaces

Defining custom variants in Delphi ~DefiningCustomVariants

This list of tasks is not exhaustive. The runtime library in BaseCLX contains many
routines to perform tasks that are not mentioned here. These include a host of
mathematical functions (defined in the Math unit), routines for working with date/
time values (defined in the SysUtils and DateUltils units), and routines for working
with Variant values (defined in the Variants unit).

Using BaseCLX 5-1

Using streams

Using streams

)

[w]

)

D

Streams are classes that let you read and write data. They provide a common
interface for reading and writing to different media such as memory, strings, sockets,
and BLOB fields in databases. There are several stream classes, which all descend
from TStream. Each stream class is specific to one media type. For example,
TMemoryStream reads from or writes to a memory image; TFileStream reads from or
writes to a file.

Using streams to read or write data

Stream classes all share several methods for reading and writing data. These methods
are distinguished by whether they

* Return the number of bytes read or written.
* Require the number of bytes to be known.
¢ Raise an exception on error.

Stream methods for reading and writing

The Read method reads a specified number of bytes from the stream, starting at its
current Position, into a buffer. Read then advances the current position by the number
of bytes actually transferred. The prototype for Read is

function Read(var Buffer; Count: Longint): Longint;
virtual int __fastcall Read(void *Buffer, int Count);

Read is useful when the number of bytes in the file is not known. Read returns the
number of bytes actually transferred, which may be less than Count if the stream did
not contain Count bytes of data past the current position.

The Write method writes Count bytes from a buffer to the stream, starting at the
current Position. The prototype for Write is:

function Write(const Buffer; Count: Longint): Longint;
virtual int __fastcall Write(const void *Buffer, int Count);

After writing to the file, Write advances the current position by the number bytes
written, and returns the number of bytes actually written, which may be less than
Count if the end of the buffer is encountered or the stream can’t accept any more
bytes.

The counterpart procedures are ReadBuffer and WriteBuffer which, unlike Read and
Write, do not return the number of bytes read or written. These procedures are useful
in cases where the number of bytes is known and required, for example when
reading in structures. ReadBuffer and WriteBuffer raise an exception (EReadError and
EWriteError) if the byte count can not be matched exactly. This is in contrast to the
Read and Write methods, which can return a byte count that differs from the
requested value. The prototypes for ReadBuffer and WriteBuffer are:

procedure ReadBuffer(var Buffer; Count: Longint);

5-2 Developer’s Guide

[w]

Using streams

procedure WriteBuffer (const Buffer; Count: Longint);
virtual int __fastcall ReadBuffer(void *Buffer, int Count);
virtual int __fastcall WriteBuffer (const void *Buffer, int Count);

These methods call the Read and Write methods to perform the actual reading and
writing.

Reading and writing components

TStream defines specialized methods, ReadComponent and WriteComponent, for
reading and writing components. You can use them in your applications as a way to
save components and their properties when you create or alter them at runtime.

ReadComponent and WriteComponent are the methods that the IDE uses to read
components from or write them to form files. When streaming components to or
from a form file, stream classes work with the TFiler classes, TReader and TWriter, to
read objects from the form file or write them out to disk. For more information about
using the component streaming system, see the online Help on the TStream, TFiler,
TReader, TWriter, and TComponent classes.

Reading and writing strings in Delphi

In Delphi code, if you are passing a string to a read or write function, you need to be
aware of the correct syntax. The Buffer parameters for the read and write routines are
var and const types, respectively. These are untyped parameters, so the routine takes
the address of a variable.

The most commonly used type when working with strings is a long string. However,
passing a long string as the Buffer parameter does not produce the correct result.
Long strings contain a size, a reference count, and a pointer to the characters in the
string. Consequently, dereferencing a long string does not result in the pointer
element. You need to first cast the string to a Pointer or PChar, and then dereference it.
For example:

procedure caststring;

var
fs: TFileStream;
const
s: string = 'Hello';
begin

fs := TFileStream.Create('temp.txt', fmCreate or fmOpenWrite);
fs.Write(s, Length(s));// this will give you garbage
fs.Write(PChar(s)”, Length(s));// this is the correct way

end;

Copying data from one stream to another

When copying data from one stream to another, you do not need to explicitly read
and then write the data. Instead, you can use the CopyFrom method, as illustrated in
the following example.

The application includes two edit controls (From and To) and a Copy File button.

Using BaseCLX 5-3

Using streams

D Delphi example

procedure TForml.CopyFileClick(Sender: TObject);
var
streaml, stream2:TStream;
begin
streaml:=TFileStream.Create (From.Text,fmOpenRead or fmShareDenyWrite);
try
stream? := TFileStream.Create(To.Text fmOpenCreate or fmShareDenyRead);
try
stream?.CopyFrom(Streaml, Streaml.Size);
finally
stream2.Free;
finally
streaml.Free
end;

¥+ C++example

void __fastcall TForml::CopyFileClick(TObject *Sender)
{
TStream* streaml= new TFileStream(From->Text,fmOpenRead | fmShareDenyWrite);
try
{
TStream* stream2 = new TFileStream(To->Text, fmOpenWrite | fmShareDenyRead);
try
{
stream2 -> CopyFrom(streaml, streaml->Size);
}
__finally
{
delete stream?2;
}
}
__finally
{
delete streaml;
}
}

Specifying the stream position and size

In addition to methods for reading and writing, streams permit applications to seek
to an arbitrary position in the stream or change the size of the stream. Once you seek
to a specified position, the next read or write operation starts reading from or writing
to the stream at that position.

Seeking to a specific position
The Seek method is the most general mechanism for moving to a particular position
in the stream. There are two overloads for the Seek method:

D function Seek(Offset: Longint; Origin: Word): Longint;

5-4 Developer’s Guide

Working with files

function Seek(const Offset: Int64; Origin: TSeekOrigin): Int64;
E" virtual int __fastcall Seek(int Offset, Word Origin);
virtual __int64 __fastcall Seek(const __int64 Offset, TSeekOrigin Origin);

Both overloads work the same way. The difference is that one version uses a 32-bit
integer to represent positions and offsets, while the other uses a 64-bit integer.

The Origin parameter indicates how to interpret the Offset parameter. Origin should
be one of the following values:

Value Meaning

soFromBeginning Offset is from the beginning of the resource. Seek moves to the position
Offset. Offset must be >= 0.

soFromCurrent Offset is from the current position in the resource. Seek moves to Position +
Offset.
soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a

number of bytes before the end of the file.

Seek resets the current stream position, moving it by the indicated offset. Seek returns
the new current position in the stream.

Using Position and Size properties

All streams have properties that hold the current position and size of the stream.
These are used by the Seek method, as well as all the methods that read from or write

to the stream.

The Position property indicates the current offset, in bytes, into the stream (from the
beginning of the streamed data). The declaration for Position is:

-

property Position: Int64;
__property __int64 Position = {read=GetPosition, write=SetPosition, nodefault};

(]

The Size property indicates the size of the stream in bytes. It can be used to determine
the number of bytes available for reading, or to truncate the data in the stream. The
declaration for Size is:

property Size: Int64;
__property __int64 Size = {read=GetSize, write=SetSize64, nodefault};

[T]:

Size is used internally by routines that read and write to and from the stream.

Setting the Size property changes the size of the data in the stream. For example, on a
file stream, setting Size inserts an end of file marker to truncate the file. If the Size of
the stream cannot be changed, an exception is raised. For example, trying to change
the Size of a read-only file stream raises an exception.

Working with files

BaseCLX supports several ways of working with files. The previous section, “Using
streams,” has already mentioned that you can use specialized streams to read from or

Using BaseCLX 5-5

Working with files

write to files. In addition to using file streams, there are several runtime library
routines for performing file I/O. Both file streams and the global routines for reading
from and writing to files are described in “Approaches to file I/O” on page 5-6.

In addition to input/output operations, you may want to manipulate files on disk.
Support for operations on the files themselves rather than their contents is described
in “Manipulating files” on page 5-8.

[) InDelphi, remember that although the Delphi language is not case sensitive, the
Linux operating system is. When using objects and routines that work with files, be
attentive to the case of file names.

Approaches to file I/0

There are a few different approaches you can take when reading from and writing to
files:

¢ The recommended approach for working with files is to use file streams. File
streams are instances of the TFileStream class used to access information in disk
files. File streams are a portable and high-level approach to file I/O. Because file
streams make the file handle available, this approach can be combined with the
next one. The next section, “Using file streams” discusses TFileStream in detail.

* You can work with files using a handle-based approach. File handles are provided
by the operating system when you create or open a file to work with its contents.
The SysUtils unit defines a number of file-handling routines that work with files
using file handles. To use a handle-based approach, you first open a file using the
FileOpen function or create a new file using the FileCreate function. Once you have
the handle, use handle-based routines to work with its contents (write a line, read
text, and so on).

¢ In Delphi, the System unit defines a number of file I/ O routines that work with file
variables, usually of the format "F: Text:" or "F: File". File variables can have one of
three types: typed, text, and untyped. A number of file-handling routines, such as
AssignPrn and writeln, use them. The use of file variables is deprecated, and these
file types are supported only for backward compatibility. They are incompatible
with file handles. If you need to work with them, see the Delphi Language Guide.

¢ The C runtime library and standard C++ library include a number of functions
and classes for working with files. These have the advantage that they can be used
in applications that do not use CLX. For information on these functions, see the
online documentation for the C runtime library or the standard C++ library.

Using file streams

The TFileStream class enables applications to read from and write to a file on disk.
Because TFileStream is a stream object, it shares the common stream methods. You
can use these methods to read from or write to the file, copy data to or from other
stream classes, and read or write components values. See “Using streams” on
page 5-2 for details on the capabilities that files streams inherit by being stream
classes.

5-6 Developer’s Guide

Working with files

In addition, file streams give you access to the file handle, so that you can use them
with global file handling routines that require the file handle.

Creating and opening files using file streams

To create or open a file and get access to its handle, you simply instantiate a
TFileStream. This opens or creates a specified file and provides methods to read from
or write to it. If the file cannot be opened, the TFileStream constructor raises an
exception.

(-

(constructor Create(const filename: string; Mode: Word);

[w]

__fastcall TFileStream(const AnsiString FileName, Word Mode);

The Mode parameter specifies how the file should be opened when creating the file
stream. The Mode parameter consists of an open mode and a share mode OR’ed
together. The open mode must be one of the following values:

Table 5.1 Open modes

Value Meaning

fmCreate TFileStream a file with the given name. If a file with the given name
exists, open the file in write mode.

fmOpenRead Open the file for reading only.

fmOpenWrite Open the file for writing only. Writing to the file completely replaces the

current contents.
fmOpenReadWrite Open the file to modify the current contents rather than replace them.

The share mode can be one of the following values with the restrictions listed below:

Table5.2 Share modes

Value Meaning

fmShareCompat Sharing is compatible with the way FCBs are opened.
fmShareExclusive Other applications can not open the file for any reason.
fmShareDenyWrite Other applications can open the file for reading but not for writing.
fmShareDenyRead Other applications can open the file for writing but not for reading.
fmShareDenyNone No attempt is made to prevent other applications from reading from or

writing to the file.

Note that which share mode you can use depends on which open mode you used.
The following table shows shared modes that are available for each open mode.

Table 5.3 Shared modes available for each open mode

Open Mode fmShareCompat fmShareExclusive fmShareDenyWrite fmShareDenyRead fmShareDenyNone

fmOpenRead Can’t use Can’t use Available Can’t use Available
fmOpenWrite Available Available Can’t use Available Available
fmOpenReadWrite Available Available Available Available Available

The file open and share mode constants are defined in the SysUltils unit.

Using BaseCLX 5-7

Working with files

Using the file handle

When you instantiate TFileStream you get access to the file handle. The file handle is
contained in the Handle property. Handle is read-only and reflects the mode in which
the file was opened. If you want to change the attributes of the file Handle, you must
create a new file stream object.

Some file manipulation routines take a file handle as a parameter. Once you have a
file stream, you can use the Handle property in any situation in which you would use
a file handle. Be aware that, unlike handle streams, file streams close file handles
when the object is destroyed.

Manipulating files

Several common file operations are built into the BaseCLX runtime library. The
routines for working with files operate at a high level. For most routines, you specify
the name of the file and the routine makes the necessary calls to the operating system
for you. In some cases, you use file handles instead.

D Although the Delphi language is not case sensitive, the Linux operating system is. Be
attentive to case when working with files.

Deleting a file

Deleting a file erases the file from the disk and removes the entry from the disk's
directory. There is no corresponding operation to restore a deleted file, so
applications should generally allow users to confirm before deleting files. To delete a
file, pass the name of the file to the DeleteFile function:

DeleteFile(FileName);

DeleteFile returns true if it deleted the file and false if it did not (for example, if the file
did not exist or if it was read-only). DeleteFile erases the file named by FileName from
the disk.

Finding a file

There are three routines used for finding a file: FindFirst, FindNext, and FindClose.
FindFirst searches for the first instance of a filename with a given set of attributes in a
specified directory. FindNext returns the next entry matching the name and attributes
specified in a previous call to FindFirst. FindClose releases memory allocated by
FindFirst. You should always use FindClose to terminate a FindFirst/FindNext
sequence. If you want to know if a file exists, a FileExists function returns true if the
file exists, false otherwise.

The three file find routines take a TSearchRec as one of the parameters. T'SearchRec
defines the file information searched for by FindFirst or FindNext. If a file is found, the
fields of the TSearchRec type parameter are modified to describe the found file.

5-8 Developer’s Guide

(-

[w]

+

o

[w]

+

Working with files
On field of TSearchRec that is of particular interest is the Attr field. You can test Attr
against the following attribute constants or values to determine if a file has a specific
attribute:

Table 5.4 Attribute constants and values

Constant Value Description
faReadOnly 1 Read-only files
faHidden 2 Hidden files
faSysFile 4 System files
faVolumelD 8 Volume ID files
faDirectory 16 Directory files
faArchive 32 Archive files
faAnyFile 79 Any file

To test for an attribute, combine the value of the Attr field with the attribute constant
using the and (Delphi) or & (C++) operator. If the file has that attribute, the result will
be greater than 0. For example, if the found file is a hidden file, the following
expression will evaluate to true

(SearchRec.Attr and faHidden > 0).
(SearchRec.Attr & faHidden > 0).

Attributes can be combined by OR’ing their constants or values. For example, to
search for read-only and hidden files in addition to normal files, pass the following
value as the Attr parameter:

(faReadOnly or faHidden).
(faReadOnly | faHidden) .

The following example illustrates the use of the three file find routines. It uses a label,
a button named Search, and a button named Again on a form. When the user clicks the
Search button, the first file in the specified path is found, and the name and the
number of bytes in the file appear in the label's caption. Each time the user clicks the
Again button, the next matching filename and size is displayed in the label.

Delphi example

var
SearchRec: TSearchRec;

procedure TForml.SearchClick(Sender: TObject);
begin

FindFirst('/usr/local/MyProgram/*.*', faAnyFile, SearchRec);

Labell.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size';
end;

procedure TForml.AgainClick(Sender: TObject);
begin
if FindNext (SearchRec) = 0 then
Labell.Caption := SearchRec.Name + ' is ' + IntToStr(SearchRec.Size) + ' bytes in size'
else

Using BaseCLX 5-9

Working with files

FindClose (SearchRec) ;
end;

E+ C++ example

TSearchRec SearchRec; // global variable

void __fastcall TForml::SearchClick(TObject *Sender)
{
FindFirst ("/usr/local/MyProgram/*.*", faAnyFile, SearchRec);
Labell->Caption = SearchRec->Name + " is " + IntToStr(SearchRec.Size) + " bytes in size";

}

void __fastcall TForml::AgainClick(TObject *Sender)
{
if (FindNext (SearchRec) == 0)
Labell->Caption = SearchRec->Name + " is " + IntToStr(SearchRec.Size) + " bytes in
size";
else
FindClose (SearchRec) ;

Renaming a file
To change a file name, use the RenameFile function:

o

function RenameFile(const OldFileName, NewFileName: string): Boolean;

B extern PACKAGE bool __fastcall RenameFile(const AnsiString OldName, comst AnsiString
NewName) ;

RenameFile changes a file name, identified by OldFileName, to the name specified by
NewFileName. If the operation succeeds, RenameFile returns true. If it cannot rename
the file (for example, if a file called NewFileName already exists), RenameFile returns
false. For example:

D if not RenameFile('OLDNAME.TXT', 'NEWNAME.TXT') then

ErrorMsg ('Error renaming file!');
Ly if (!RenameFile("OLDNAME.TXT", "NEWNAME.TXT"))

ErrorMsg ("Error renaming file!");

File date-time routines

The FileAge, FileGetDate, and FileSetDate routines operate on operating system date-
time values. FileAge returns the date-and-time stamp of a file. FileSetDate sets the
date-and-time stamp for a specified file, and returns zero on success or an error code
on failure. FileGetDate returns a date-and-time stamp for the specified file or -1 if the
handle is invalid.

As with most of the file manipulating routines, FileAge uses a string filename.
FileGetDate and FileSetDate, however, use a Handle type as a parameter in Delphi, or
an integer parameter which takes a file handle in C++. To get the file handle either

* Use the FileOpen or FileCreate function to create a new file or open an existing file.
Both FileOpen and FileCreate return the file handle.

5-10 Developer’s Guide

Working with ini files

¢ Instantiate TFileStream to create or open a file. Then use its Handle property. See
“Using file streams” on page 5-6 for more information.

Working with ini files

Many applications use ini files to store configuration information. BaseCLX includes
two classes for working with ini files: TIniFile and TMemIniFile.

TMemIniFile and TIniFile are identical. When you instantiate the TIniFile or
TMemlIniFile object, you pass the name of the ini file as a parameter to the constructor.
If the file does not exist, it is automatically created. You are then free to read values
using the various read methods, such as ReadString, ReadDate, Readlnteger, or
ReadBool. Alternatively, if you want to read an entire section of the ini file, you can
use the ReadSection method. Similarly, you can write values using methods such as
WriteBool, Writelnteger, WriteDate, or WriteString.

Following is an example of reading configuration information from an ini file in a
form's OnCreate event handler (Delphi) or constructor (C++) and writing values in
the OnClose event handler.

D Delphi example

procedure TForml.FormCreate(Sender: TObject);

var
Ini: TIniFile;
begin
Ini := TIniFile.Create(ChangeFileExt(Application.ExeName, '.INI'));
try
Top := Ini.ReadInteger('Form', 'Top', 100);
Left := Ini.ReadInteger('Form', 'Left', 100);

Caption := Ini.ReadString('Form', 'Caption', 'New Form');
if Ini.ReadBool('Form', 'InitMax', false) then
WindowState = wsMaximized
else
WindowState = wsNormal;
finally
TIniFile.Free;
end;
end;

procedure TForml.FormClose(Sender: TObject; var Action TCloseAction)

var
Ini: TIniFile;

begin
Ini := TIniFile.Create(ChangeFileExt(Application.ExeName, '.INI'));
try

Ini.WriteInteger('Form', 'Top', Top);

Ini.WriteInteger('Form', 'Left', Left);

Ini.WriteString('Form', 'Caption', Caption);

Ini.WriteBool('Form', 'InitMax', WindowState = wsMaximized);
finally

TIniFile.Free;

Using BaseCLX 5-11

Working with ini files

end;
end;

E+ C++ example

__fastcall TForml::TForml (TComponent *Owner) : TForm(Owner)
{
TIniFile *ini;
ini = new TIniFile(ChangeFileExt(Application->ExeName, ".INI"));
Top = 1ini->ReadInteger("Form", "Top", 100);
Left = ini->ReadInteger("Form", "Left", 100);
Caption = 1ini->ReadString("Form", "Caption",
"Default Caption");
ini->ReadBool ("Form", "InitMax", false) ?
WindowState = wsMaximized :
WindowState = wsNormal;

delete ini;

}

void __fastcall TForml::FormClose(TObject *Sender, TCloseAction &Action)
{

TIniFile *ini;

ini = new TIniFile(ChangeFileExt (Application->ExeName, ".INI"));

ini->WriteInteger("Form", "Top", Top);

ini->WriteInteger("Form", "Left", Left);

ini->WriteString ("Form", "Caption", Caption);

ini->WriteBool ("Form", "InitMax",

WindowState == wsMaximized);

delete ini;

}

Each of the Read routines takes three parameters. The first parameter identifies the
section of the ini file. The second parameter identifies the value you want to read,
and the third is a default value in case the section or value doesn't exist in the ini file.
Just as the Read methods gracefully handle the case when a section or value does not
exist, the Write routines create the section and/or value if they do not exist. The
example code creates an ini file the first time it is run that looks like this:

[Form]

Top=185

Left=280
Caption=Default Caption
InitMax=0

On subsequent execution of this application, the ini values are read in when the form
is created and written back out in the OnClose event.

5-12 Developer’s Guide

Working with lists

Working with lists

BaseCLX includes many classes that represents lists or collections of items. They vary
depending on the types of items they contain, what operations they support, and
whether they are persistent.

The following table lists various list classes, and indicates the types of items they
contain:

Table 5.5 Classes for managing lists

Object Maintains

TList A list of pointers

TThreadList A thread-safe list of pointers

TBucketList A hashed list of pointers

TObjectBucketList A hashed list of object instances

TObjectList A memory-managed list of object instances

TComponentList A memory-managed list of components (that is, instances of classes
descended from TComponent)

TClassList A list of class references (metaclasses)

TInterfaceList A list of interface pointers.

TQueue A first-in first-out list of pointers

TStack A last-in first-out list of pointers

TObjectQueue A first-in first-out list of objects

TObjectStack A last-in first-out list of objects

TCollection Base class for many specialized classes of typed items.

TStringList A list of strings

THashedStringList A list of strings with the form Name=Value, hashed for performance.

Common list operations

Although the various list classes contain different types of items and have different
ancestries, most of them share a common set of methods for adding, deleting,
rearranging, and accessing the items in the list.

Adding list items

Most list classes have an Add method, which lets you add an item to the end of the list
(if it is not sorted) or to its appropriate position (if the list is sorted). Typically, the
Add method takes as a parameter the item you are adding to the list and returns the
position in the list where the item was added. In the case of bucket lists (TBucketList
and TObjectBucketList), Add takes not only the item to add, but also a datum you can
associate with that item. In the case of collections, Add takes no parameters, but
creates a new item that it adds. The Add method on collections returns the item it
added, so that you can assign values to the new item’s properties.

Using BaseCLX 5-13

Working with lists

Some list classes have an Insert method in addition to the Add method. Insert works
the same way as the Add method, but has an additional parameter that lets you
specify the position in the list where you want the new item to appear. If a class has
an Add method, it also has an Insert method unless the position of items is
predetermined For example, you can’t use Insert with sorted lists because items must
go in sort order, and you can’t use Insert with bucket lists because the hash algorithm
determines the item position.

The only classes that do not have an Add method are the ordered lists. Ordered lists
are queues and stacks. To add items to an ordered list, use the Push method instead.
Push, like Add, takes an item as a parameter and inserts it in the correct position.

Deleting list items

To delete a single item from one of the list classes, use either the Delete method or the
Remove method. Delete takes a single parameter, the index of the item to remove.
Remove also takes a single parameter, but that parameter is a reference to the item to
remove, rather than its index. Some list classes support only a Delete method, some
support only a Remove method, and some have both.

As with adding items, ordered lists behave differently than all other lists. Instead of
using a Delete or Remove method, you remove an item from an ordered list by calling
its Pop method. Pop takes no arguments, because there is only one item that can be
removed.

If you want to delete all of the items in the list, you can call the Clear method. Clear is
available for all lists except ordered lists.

Accessing list items

All list classes (except TThreadList and the ordered lists) have a property that lets you
access the items in the list. Typically, this property is called Items. For string lists, the
property is called Strings, and for bucket lists it is called Data. The Items, Strings, or
Data property is an indexed property, so that you can specify which item you want to
access.

On TThreadList, you must lock the list before you can access items. When you lock the
list, the LockList method returns a TList object that you can use to access the items.

Ordered lists only let you access the “top” item of the list. You can obtain a reference
to this item by calling the Peek method.

Rearranging list items

Some list classes have methods that let you rearrange the items in the list. Some have
an Exchange method, that swaps the position of two items. Some have a Move method
that lets you move an item to a specified location. Some have a Sort method that lets
you sort the items in the list.

To see what methods are available, check the Online help for the list class you are
using.

5-14 Developer’s Guide

Working with string lists

Persistent lists

Persistent lists can be saved to a form file. Because of this, they are often used as the
type of a published property on a component. You can add items to the list at design
time, and those items are saved with the object so that they are there when the
component that uses them is loaded into memory at runtime. There are two main
types of persistent lists: string lists and collections.

Examples of string lists include TStringList and THashedStringList. String lists, as the
name implies, contain strings. They provide special support for strings of the form
Name=Value, so that you can look up the value associated with a name. In addition,
most string lists let you associate an object with each string in the list. String lists are
described in more detail in “Working with string lists” on page 5-15.

Collections descend from the class TCollection. Each TCollection descendant is
specialized to manage a specific class of items, where that class descends from
TCollectionltem. Collections support many of the common list operations. All
collections are designed to be the type of a published property, and many can not
function independently of the object that uses them to implement on of its properties.
At design time, the property whose value is a collection can use the collection editor
to let you add, remove, and rearrange items. The collection editor provides a
common user interface for manipulating collections.

Working with string lists

One of the most commonly used types of list is a list of character strings. Examples
include items in a combo box, lines in a memo, names of fonts, and names of rows
and columns in a string grid. BaseCLX provides a common interface to any list of
strings through an object called TStrings and its descendants such as TStringList and
THashedStringList. TStringList implements the abstract properties and methods
introduced by TStrings, and introduces properties, events, and methods to

¢ Sort the strings in the list.
¢ Prohibit duplicate strings in sorted lists.
* Respond to changes in the contents of the list.

In addition to providing functionality for maintaining string lists, these objects allow
easy interoperability; for example, you can edit the lines of a memo (which are a
TStrings descendant) and then use these lines as items in a combo box (also a TStrings
descendant).

A string-list property appears in the Object Inspector with TStrings in the Value
column. Double-click TStrings to open the String List editor, where you can edit, add,
or delete lines.

You can also work with string-list objects at runtime to perform such tasks as

* Loading and saving string lists

* Creating a new string list

¢ Manipulating strings in a list

* Associating objects with a string list

Using BaseCLX 5-15

Working with string lists

Loading and saving string lists

String-list objects provide SaveToFile and LoadFromFile methods that let you store a
string list in a text file and load a text file into a string list. Each line in the text file
corresponds to a string in the list. Using these methods, you could, for example,
create a simple text editor by loading a file into a memo component, or save lists of
items for combo boxes.

The following example loads a copy of the MyFile.ini file into a memo field and
makes a backup copy called MyFile.bak.
Delphi example

procedure EditWinIni;

var
FileName: string;{ storage for file name }

begin
FileName := '/usr/local/MyProgram/MyFile.ini'; { set the file name }
with Forml.Memol.Lines do
begin

LoadFromFile (FileName);{ load from file }
SaveToFile(ChangeFileExt (FileName, '.bak'));{ save into backup file }
end;
end;

C++ example

void __fastcall EditWinIni()
{

AnsiString FileName = "C:/usr/local/MyProgram/MyFile.ini";// set the file name
Forml->Memol->Lines->LoadFromFile (FileName); // load from file
Forml->Memol->Lines->SaveToFile (ChangeFileExt (FileName, ".bak")); // save to backup

}

Creating a new string list

A string list is typically part of a component. There are times, however, when it is
convenient to create independent string lists, for example to store strings for a lookup
table. The way you create and manage a string list depends on whether the list is
short-term (constructed, used, and destroyed in a single routine) or long-term
(available until the application shuts down). Whichever type of string list you create,
remember that you are responsible for freeing the list when you finish with it.

Short-term string lists

If you use a string list only for the duration of a single routine, you can create it, use
it, and destroy it all in one place. This is the safest way to work with string lists.
Because the string-list object allocates memory for itself and its strings, you should
use a try...finally block (Delphi) or try...__finally block (C++) to ensure that the
memory is freed even if an exception occurs.

5-16 Developer’s Guide

Working with string lists

1 Construct the string-list object.
2 In the try part of a try...finally block, use the string list.
3 In the finally (__finally) part, free the string-list object.

The following event handler responds to a button click by constructing a string list,
using it, and then destroying it.
D Delphi example

procedure TForml.ButtonlClick(Sender: TObject);

var
TempList: TStrings;{ declare the list }
begin
TempList := TStringList.Create;{ construct the list object }
try
{ use the string list }
finally
TempList.Free;{ destroy the list object }
end;
end;

E+ C++ example

void __fastcall TForml::ButtonClickl (TObject *Sender)

{
TStringList *TempList = new TStringList; // declare the list
try{
//use the string list
}
__finally{
delete TempList; // destroy the list object
}
}

Long-term string lists

If a string list must be available at any time while your application runs, construct the
list at start-up and destroy it before the application terminates.

1 In the unit file for your application’s main form, add a field of type TStrings to the
form’s declaration.

2 Write an event handler for the main form’s OnCreate event that executes before the
form appears. It should create a string list and assign it to the field you declared in
the first step. In C++, if OldCreateOrder is true, you should create the string list in
the constructor for the main form instead.

3 Write an event handler that frees the string list for the form’s OnClose event.
This example uses a long-term string list to record the user’s mouse clicks on the
main form, then saves the list to a file before the application terminates.

D Delphi example

unit Unitl;

Using BaseCLX 5-17

Working with string lists

interface
uses SysUtils, Variants, Classes, QGraphics, WControls, QForms, QDialogs;

type
TForml = class (TForm)
procedure FormCreate(Sender: TObject);
procedure FormDestroy (Sender: TObject);
procedure FormMouseDown (Sender: TObject; Button: TMouseButton;
Shift: TShiftState; X, Y: Integer);
private
{ Private declarations }
public
{ Public declarations }
ClickList: TStrings;{ declare the field }
end;

var
Forml: TForml;

implementation
{SR *.xfm}

procedure TForml.FormCreate(Sender: TObject);
begin

ClickList := TStringList.Create;{ construct the list }
end;

procedure TForml.FormDestroy (Sender: TObject);

begin
ClickList.SaveToFile(ChangeFileExt (Application.ExeName, '.log'));{ save the list }
ClickList.Free;{ destroy the list object }

end;

procedure TForml.FormMouseDown (Sender: TObject; Button: TMouseButton;

Shift: TShiftState; X, Y: Integer);
begin

ClickList.Add(Format ('Click at (%d, %d)', [X, Y]));{ add a string to the list }
end;

end.

E+ C++ example

#include <clx.h>
#pragma hdrstop

#include "Unitl.h"

#pragma package(smart_init)
#pragma resource "*.xfm"
TForml *Forml;

__fastcall TForml::TForml (TComponent* Owner)
: TForm(Owner)

{
ClickList = new TStringList;

}

5-18 Developer’'s Guide

[w]

Working with string lists

void __fastcall TForml::FormClose(TObject *Sender, TCloseAction &Action)

{
ClickList->SaveToFile(ChangeFileExt (Application->ExeName, ".log"));//Save the list
delete ClickList;

void __fastcall TForml::FormMouseDown (TObject *Sender, TMouseButton Button,
TShiftState Shift, int X, int Y)
{
TVarRec v[] = {X,Y};
ClickList->Add (Format ("Click at (%d, %d)",v,ARRAYSIZE(v) - 1));//add a string to the list
}

Manipulating strings in a list

Operations commonly performed on string lists include

Counting the strings in a list

Accessing a particular string

Finding the position of a string in the list
Iterating through strings in a list
Adding a string to a list

Moving a string within a list

Deleting a string from a list

Copying a complete string list

Counting the strings in a list

The read-only Count property returns the number of strings in the list. Since string
lists use zero-based indexes, Count is one more than the index of the last string.

Accessing a particular string

The Strings array property contains the strings in the list, referenced by a zero-based
index.

In Delphi, because Strings is the default property for string lists, you can omit the
Strings identifier when accessing the list; thus

StringListl.Strings([0] := 'This is the first string.';

is equivalent to
StringList1[0] := 'This is the first string.';

In C++, you can use the [] operator for a similar effect. That is,
StringList1->Strings[0] = “This is the first string.”;

is equivalent to

(*StringListl) [0] = “This is the first string.”;

Using BaseCLX 5-19

Working with string lists

Locating items in a string list

To locate a string in a string list, use the IndexOf method. IndexOf returns the index of
the first string in the list that matches the parameter passed to it, and returns -1 if the
parameter string is not found. IndexOf finds exact matches only; if you want to match
partial strings, you must iterate through the string list yourself.

For example, you could use IndexOf to determine whether a given file name is found
among the Items of a list box:

o

if FileListBoxl.Items.IndexOf (TargetFileName) > -1 ...

[w]

if (FileListBoxl->Items->IndexOf (TargetFileName) > -1) ...

lterating through strings in a list
To iterate through the strings in a list, use a for loop that runs from zero to Count — 1.

This example converts each string in a list box to uppercase characters.

D Delphi example

procedure TForml.ButtonlClick(Sender: TObject);
var
Index: Integer;
begin
for Index := 0 to ListBoxl.Items.Count - 1 do
ListBoxl.Items[Index] := UpperCase(ListBoxl.Items[Index]);
end;

E+ C++ example

void __fastcall TForml::ButtonlClick(TObject *Sender)
{
for (int 1 = 0; 1 < ListBoxl->Items->Count; 1++)
ListBoxl->Items->Strings[i] = UpperCase(ListBoxl->Items->Strings(i]);

}

Adding a string to a list

To add a string to the end of a string list, call the Add method, passing the new string
as the parameter. To insert a string into the list, call the Insert method, passing two
parameters: the string and the index of the position where you want it placed. For
example, to make the string “Three” the third string in a list, you would use:

o

Insert (2, 'Three');

[w]

StringListl->Insert (2, "Three");

To append the strings from one list onto another, call AddStrings:

o

StringListl.AddStrings (StringList2); { append the strings from StringList2 to StringListl }

[w]

StringListl->AddStrings (StringList2); // append the strings from StringList2 to StringListl

5-20 Developer’s Guide

o

[w]

o

[w]

(-

[w]

o

[w]

Working with string lists

Moving a string within a list

To move a string in a string list, call the Move method, passing two parameters: the
current index of the string and the index you want assigned to it. For example, to
move the third string in a list to the fifth position, you would use:

StringListObject.Move(2, 4);
StringListObject->Move (2, 4);

Deleting a string from a list

To delete a string from a string list, call the list’s Delete method, passing the index of
the string you want to delete. If you don’t know the index of the string you want to
delete, use the IndexOf method to locate it. To delete all the strings in a string list, use
the Clear method.

This example uses IndexOf and Delete to find and delete a string:

Delphi example

with ListBoxl.Items do
begin
BIndex := IndexOf ('bureaucracy');
if BIndex > -1 then
Delete (BIndex) ;
end;

C++ example

int BIndex = ListBoxl->Items->IndexOf ("bureaucracy");
if (BIndex > -1)
ListBoxl->Items->Delete(BIndex);

Copying a complete string list

You can use the Assign method to copy strings from a source list to a destination list,
overwriting the contents of the destination list. To append strings without
overwriting the destination list, use AddStrings. For example,

Memol.Lines.Assign (ComboBox1.Items); { overwrites original strings }
Memol->Lines->Assign(ComboBoxl->Item)s; //overwrites original strings

copies the lines from a combo box into a memo (overwriting the memo), while
Memol.Lines.AddStrings (ComboBoxl.Items); { appends strings to end }
Memol->Lines->AddStrings (ComboBox1->Items);//appends strings to end

appends the lines from the combo box to the memo.

When making local copies of a string list, use the Assign method. If you assign one
string-list variable to another—

StringListl := StringList2;
StringListl = StringList2;

—the original string-list object will be lost, often with unpredictable results.

Using BaseCLX 5-21

Working with strings

Associating objects with a string list

In addition to the strings stored in its Strings property, a string list can maintain
references to objects, which it stores in its Objects property. Like Strings, Objects is an
array with a zero-based index. The most common use for Objects is to associate
bitmaps with strings for owner-draw controls.

Use the AddObject or InsertObject method to add a string and an associated object to
the list in a single step. IndexOfObject returns the index of the first string in the list
associated with a specified object. Methods like Delete, Clear, and Move operate on
both strings and objects; for example, deleting a string removes the corresponding
object (if there is one).

To associate an object with an existing string, assign the object to the Objects property
at the same index. You cannot add an object without adding a corresponding string.

Working with strings

The BaseCLX runtime library provides many specialized string-handling routines
specific to a string type. These are routines for wide strings, long strings
(AnsiStrings), and null-terminated strings (PChar in Delphi or char * in C++).
Routines that deal with null-terminated strings use the null-termination to determine
the length of the string.

D Thereareno categories of routines listed for the Delphi ShortString type. However,
some Delphi built-in compiler routines deal with the ShortString type. These include,
for example, the Low and High standard functions. For more details about the various
string types, see the Delphi Language Guide.

The following topics provide an overview of many of the string-handling routines in
the runtime library.

Wide character routines

Wide strings are used in a variety of situations. Some technologies, such as XML, use
wide strings as a native type. You may also choose to use wide strings because they
simplify some of the string-handling issues in applications that have multiple target
locales. Using a wide character encoding scheme has the advantage that you can
make many of the usual assumptions about strings that do not work for MBCS
systems. There is a direct relationship between the number of bytes in the string and
the number of characters in the string. You do not need to worry about cutting
characters in half or mistaking the second part of a character for the start of a
different character.

The following functions convert between standard single-byte character strings (or
MBCS strings) and Unicode strings:

StringToWideChar
WideCharLenToString
WideCharLenToStrVar
WideCharToString

5-22 Developer’s Guide

Working with strings

e WideCharToStrVar

In addition, the following functions translate between WideStrings and other
representations:

¢ UCS4StringToWideString
* WideStringToUCS45tring
* VarToWideStr

¢ VarToWideStrDef

The following routines work directly with WideStrings:

WideCompareStr
WideCompareText
WideSameStr

WideSameText
WideSameCaption (CLX only)
WideFmtStr

WideFormat

WideLowerCase
WideUpperCase

Finally, some routines include overloads for working with wide strings:

¢ UniqueString
Length

Trim
TrimLeft
TrimRight

Commonly used routines for AnsiStrings

The Delphi long string type is represented as the AnsiString class in C++. This string
type is one of the most common ways to represent string values in CLX. The
BaseCLX runtime library includes a number of routines for dealing with these
strings, which we will call AnsiStrings.

AnsiString-handling routines cover several functional areas. Within these areas,
some are used for the same purpose, the differences being whether they use a
particular criterion in their calculations. The following tables list these routines by
these functional areas:

¢ Comparison

e Case conversion
¢ Modification

* Sub-string

Where appropriate, the tables also provide columns indicating whether a routine
satisfies the following criteria.

* Uses case sensitivity: If locale settings are used, it determines the definition of case.
If the routine does not use locale settings, analyses are based upon the ordinal

Using BaseCLX 5-23

Working with strings

values of the characters. If the routine is case-insensitive, there is a logical merging
of upper and lower case characters that is determined by a predefined pattern.

¢ Uses locale settings: Locale settings allow you to customize your application for
specific locales, in particular, for Asian language environments. Most locale
settings consider lowercase characters to be less than the corresponding uppercase
characters. This is in contrast to ASCII order, in which lowercase characters are
greater than uppercase characters. Routines that use the system locale are typically
prefaced with Ansi (that is, AnsiXXX).

* Supports the multi-byte character set (MBCS): MBCSs are used when writing code
for far eastern locales. Multi-byte characters are represented by one or more
character codes, so the length in bytes does not necessarily correspond to the
length of the string. The routines that support MBCS parse one- and multi-byte
characters.

ByteType and StrByteType determine whether a particular byte is the lead byte of a
multibyte character. Be careful when using multibyte characters not to truncate a
string by cutting a character in half. Do not pass characters as a parameter to a
function or procedure, since the size of a character cannot be predetermined. Pass,
instead, a pointer to a to a character or string. For more information about MBCS,
see “Enabling application code” on page 17-2 of Chapter 17, “Creating
international applications.”

Table 5.6 String comparison routines

Routine Case-sensitive Uses locale settings ~ Supports MBCS
AnsiCompareStr yes yes yes
AnsiCompareText no yes yes
AnsiCompareFileName no yes yes
AnsiMatchStr yes yes yes
AnsiMatchText no yes yes
AnsiContainsStr yes yes yes
AnsiContainsText no yes yes
AnsiStartsStr yes yes yes
AnsiStartsText no yes yes
AnsiEndsStr yes yes yes
AnsiEndsText no yes yes
AnsilndexStr yes yes yes
AnsiIndexText no yes yes
CompareStr yes no no
CompareText no no no
AnsiResemblesText no no no

5-24 Developer’s Guide

Note

Table 5.7 Case conversion routines

Uses locale settings

Routine

AnsiLowerCase yes
AnsiLowerCaseFileName yes
AnsiUpperCaseFileName yes
AnsiUpperCase yes
LowerCase no
UpperCase no

Working with strings

Supports MBCS

yes
yes
yes
yes
no
no

The routines used for string file names: AnsiCompareFileName,
AnsiLowerCaseFileName, and AnsillpperCaseFileName all use the system locale. You
should always use file names that are portable because the locale (character set) used
for file names can and might differ from the default user interface.

Table 5.8 String modification routines

Routine

AdjustLineBreaks
AnsiQuotedStr
AnsiReplaceStr
AnsiReplaceText
StringReplace
ReverseString
StuffString

Trim

TrimLeft
TrimRight
WrapText

Case-sensitive

NA
NA
yes
no
optional by flag
NA
NA
NA
NA
NA
NA

Supports MBCS

yes
yes
yes
yes
yes
no

no

yes
yes
yes
yes

Table 5.9 Sub-string routines

Routine
AnsiExtractQuotedStr
AnsiPos

IsDelimiter
IsPathDelimiter
LastDelimiter

LeftStr

RightStr

MidStr

QuotedStr

Case-sensitive

NA
yes
yes
yes
yes
NA
NA
NA

no

Supports MBCS

yes
yes
yes
yes
yes
no
no
no

no

Using BaseCLX 5-25

Working with strings

Commonly used routines for null-terminated strings

The null-terminated string handling routines cover several functional areas. Within
these areas, some are used for the same purpose, the differences being whether or not
they use a particular criteria in their calculations. The following tables list these
routines by these functional areas:

Sub-string
Copying

Comparison
Case conversion
Modification

Where appropriate, the tables also provide columns indicating whether the routine is
case-sensitive, uses the current locale, and/or supports multi-byte character sets.

Table 5.10 Null-terminated string comparison routines

Routine

AnsiStrComp
AnsiStrIComp
AnsiStrLComp
AnsiStrLIComp
StrComp
StrIComp
StrLComp
StrLIComp

Case-sensitive

yes
no

yes
no
yes
no

yes
no

Uses locale settings Supports MBCS

yes
yes
yes
yes
no
no
no

no

yes
yes
yes
yes
no
no
no

no

Table 5.11 Case conversion routines for null-terminated strings

Routine Uses locale settings Supports MBCS
AnsiStrLower yes yes
AnsiStrUpper yes yes
StrLower no no
StrUpper no no
Table 5.12 String modification routines
Routine
StrCat
StrLCat
Table 5.13 Sub-string routines
Routine Case-sensitive ~ Supports MBCS
AnsiStrPos yes yes
AnsiStrScan yes yes
AnsiStrRScan yes yes

5-26 Developer’s Guide

Working with strings

Table 5.13 Sub-string routines

Routine Case-sensitive ~ Supports MBCS
StrPos yes no
StrScan yes no
StrRScan yes no

Table 5.14 String copying routines

Routine

StrCopy
StrLCopy
StrECopy
StrMove
StrPCopy
StrPLCopy

Declaring and initializing strings in Delphi

In Delphi, when you declare a long string:
S: string;

you do not need to initialize it. Long strings are automatically initialized to empty. To
test a string for empty you can either use the EmptyStr variable:

S = EmptyStr;
or test against an empty string:
s = I,;

An empty string has no valid data. Therefore, trying to index an empty string is like
trying to access nil and will result in an access violation:

var
S: string;

begin
S[i]; // this will cause an access violation
// statements

end;

Similarly, if you cast an empty string to a PChar, the result is a nil pointer. So, if you
are passing such a PChar to a routine that needs to read or write to it, be sure that the
routine can handle nil:

var
S: string; // empty string

begin
proc (PChar(S)); // be sure that proc can handle nil
// statements

end;

If it cannot, then you can either initialize the string:

Using BaseCLX 5-27

Working with strings
S := 'No longer nil’;
proc (PChar(S));// proc does not need to handle nil now
or set the length, using the SetLength procedure:

SetLength(S, 100);//sets the dynamic length of S to 100
proc (PChar(S));// proc does not need to handle nil now

When you use SetLength, existing characters in the string are preserved, but the
contents of any newly allocated space is undefined. Following a call to SetLength, S is
guaranteed to reference a unique string, that is a string with a reference count of one.
To obtain the length of a string, use the Length function.

Remember when declaring a string that:
S: string[n];

implicitly declares a short string, not a long string of n length. To declare a long string
of specifically n length, declare a variable of type string and use the SetLength
procedure.

S: string;
SetLength(S, n);

D Mixing and converting Delphi string types

Short, long, and wide strings can be mixed in assignments and expressions, and the
Delphi compiler automatically generates code to perform the necessary string type
conversions. However, when assigning a string value to a short string variable, be
aware that the string value is truncated if it is longer than the declared maximum
length of the short string variable.

Long strings are already dynamically allocated. If you use one of the built-in pointer
types, such as PAnsiString, PString, or PWideString, remember that you are
introducing another level of indirection. Be sure this is what you intend.

Additional functions (CopyQStringListToTstrings, Copy TStringsToQStringList,
QStringListToTStringList) are provided for converting underlying Qt string types and
CLX string types. These functions are located in Qtypes.pas.

D String to PChar conversions

Delphi long string to PChar conversions are not automatic. Some of the differences
between strings and PChars can make conversions problematic:

* Long strings are reference-counted, while PChars are not.
* Assigning to a string copies the data, while a PChar is a pointer to memory.

* Long strings are null-terminated and also contain the length of the string, while
PChars are simply null-terminated.

Situations in which these differences can cause subtle errors are discussed in the
following topics.

5-28 Developer’s Guide

Working with strings

String dependencies

Sometimes you need convert a Delphi long string to a null-terminated string, for
example, if you are using a function that takes a PChar. If you must cast a string to a
PChar, be aware that you are responsible for the lifetime of the resulting PChar.
Because long strings are reference counted, typecasting a string to a PChar increases
the dependency on the string by one, without actually incrementing the reference
count. When the reference count hits zero, the string will be destroyed, even though
there is an extra dependency on it. The cast PChar will also disappear, while the
routine you passed it to may still be using it. For example:

procedure my_func(x: string);
begin
// do something with x
some_proc (PChar (x)); // cast the string to a PChar
// you now need to guarantee that the string remains
// as long as the some_proc procedure needs to use it
end;

Returning a PChar local variable

A common error when working with the Delphi PChar type is to store a local variable
in a data structure or return it as a value. When your routine ends, the PChar
disappears because it is a pointer to memory, and not a reference-counted copy of the
string. For example:

function title(n: Integer): PChar;
var
s: string;
begin
s := Format(‘title - %d', [n]);
Result := PChar(s); // DON'T DO THIS
end;

This example returns a pointer to string data that is freed when the title function
returns.

Passing a local variable as a PChar

Consider the case where you have a local string variable that you need to initialize by
calling a function that takes a PChar. One approach is to create a local array of char
and pass it to the function, then assign that variable to the string:

// assume FillBuffer is a predefined function
function FillBuffer (Buf:PChar;Count:Integer):Integer
begin
end;
// assume MAX_SIZE is a predefined constant
var
i: Integer;
buf: array[0..MAX_SIZE] of char;
S: string;
begin
1 := FillBuffer (0, buf, SizeOf (buf));// treats buf as a PChar

Using BaseCLX 5-29

Working with strings

S := buf;
//statements
end;

This approach is useful if the size of the buffer is relatively small, since it is allocated
on the stack. It is also safe, since the conversion between an array of char and a string
is automatic. The Length of the string is automatically set to the right value after
assigning buf to the string.

To eliminate the overhead of copying the buffer, you can cast the string to a PChar (if
you are certain that the routine does not need the PChar to remain in memory).
However, synchronizing the length of the string does not happen automatically, as it
does when you assign an array of char to a string. You should reset the string Length
so that it reflects the actual width of the string. If you are using a function that returns
the number of bytes copied, you can do this safely with one line of code:

var
S: string;
begin
SetLength(S, MAX_SIZE;// when casting to a PChar, be sure the string is not empty
SetLength (S, GetModuleFilename(0, PChar(S), Length(S)));
// statements
end;

D Delphi Compiler directives for strings

The following compiler directives affect character and string types.

Table 5.15 Compiler directives for strings

Directive Description

{$H+/-} A compiler directive, $H, controls whether the reserved word string represents a
short string or a long string. In the default state, {$H+}, string represents a long string.
You can change it to a ShortString by using the {$H-} directive.

{$P+/-} The $P directive is meaningful only for code compiled in the {$H-} state, and is
provided for backwards compatibility. $P controls the meaning of variable
parameters declared using the string keyword in the {$H-} state.

In the {$P-} state, variable parameters declared using the string keyword are normal
variable parameters, but in the {$P+} state, they are open string parameters.
Regardless of the setting of the $P directive, the OpenString identifier can always be
used to declare open string parameters.

5-30 Developer’s Guide

Creating drawing spaces

Table 5.15 Compiler directives for strings (continued)

Directive Description

{$V+/-} The $V directive controls type checking on short strings passed as variable
parameters. In the {$V+} state, strict type checking is performed, requiring the formal
and actual parameters to be of identical string types.

In the {$V-} (relaxed) state, any short string type variable is allowed as an actual
parameter, even if the declared maximum length is not the same as that of the formal
parameter. Be aware that this could lead to memory corruption. For example:

var S: string(3];

procedure Test (var T: string);
begin

T := 12347,
end;

begin
Test (S);
end.

{$X+/-} The {$X+} compiler directive enables support for null-terminated strings by
activating the special rules that apply to the built-in PChar type and zero-based
character arrays. (These rules allow zero-based arrays and character pointers to be
used with Write, Writeln, Val, Assign, and Rename from the System unit.)

Creating drawing spaces

The TCanvas class encapsulates a paint device (Qt painter). This class handles all
drawing for forms, visual containers (such as panels) and the printer object (see
“Printing” on page 5-32). Using the canvas object, you need not worry about
allocating pens, brushes, palettes, and so on—all the allocation and deallocation are
handled for you.

TCanuvas includes a large number of primitive graphics routines to draw lines, shapes,
polygons, fonts, etc. onto any control that contains a canvas. For example, here is a
button event handler that draws a line from the upper left corner to the middle of the
form and outputs some raw text onto the form:

D Delphi example

procedure TForml.ButtonlClick(Sender: TObject);
begin

Canvas.Pen.Color := clBlue;

Canvas.MoveTo(10, 10);

Canvas.LineTo(100, 100);

Canvas.Brush.Color := clBtnFace;

Canvas.Font.Name := ‘Arial’;

Canvas.TextOut (Canvas.PenPos.x, Canvas.PenPos.y,'This is the end of the line’);
end;

E+ C++ example

void __fastcall TForml::ButtonlClick(TObject *Sender)

Using BaseCLX 5-31

Printing

Canvas->Pen->Color = clBlue;

Canvas->MoveTo(10, 10);

Canvas->LineTo(100, 100);

Canvas->Brush->Color = clBtnFace;

Canvas->Font->Name = "Arial";

Canvas->TextOut (Canvas->PenPos.x, Canvas->PenPos.y,"This is the end of the line");

}

TCanuvas is used everywhere in CLX that drawing is required or possible, and makes
drawing graphics both fail-safe and easy.

See TCanvas in the online help reference for a complete listing of properties and
methods.

Printing

The TPrinter object is a paint device that paints on a printer. It generates postscript
and sends that to Ipr, lp, or another print command.

To get a list of installed and available printers, use the Printers property. TPrinter uses
a TCanvas (which is identical to the form's TCanvas). This means that anything that
can be drawn on a form can be printed as well. To print an image, call the BeginDoc
method followed by whatever canvas graphics you want to print (including text
through the TextOut method) and send the job to the printer by calling the EndDoc
method.

This example uses a button and a memo on a form. When the user clicks the button,
the content of the memo is printed with a 200-pixel border around the page.

To run this example successfully, add QPrinters to your uses clause (Delphi) or
include <QPrinters.hpp> in your unit file (C++).

Delphi example

procedure TForml.ButtonlClick(Sender: TObject);
var
r: TRect;
i: Integer;
begin
with Printer do
begin
r := Rect (200,200, (Pagewidth - 200), (PageHeight - 200));
BeginDoc;
Canvas.Brush.Style := bsClear;
for 1 := 0 to Memol.Lines.Count do
Canvas.TextOut (200,200 + (i *
Canvas.TextHeight (Memol.Lines.Strings[i])),
Memol.Lines.Strings[i]);
Canvas.Brush.Color := clBlack;
Canvas.FrameRect (r);
EndDoc;
end;

5-32 Developer’'s Guide

Convertingmeasurements

end;

E+ C++ example

void __fastcall TForml::ButtonlClick(TObject *Sender)

{
TPrinter *Prntr = Printer();
TRect r = Rect (200,200, Prntr->PageWidth - 200, Prntr->PageHeight- 200);
Prntr->BeginDoc () ;
Canvas->Brush->Style := bsClear;
for(int 1 = 0; 1 < Memol->Lines->Count; 1i++)

Prntr->Canvas->TextOut (200,200 + (1 *

Prntr->Canvas->TextHeight (Memol->Lines->Strings(i])),
Memol->Lines->Strings[i]);
Prntr->Canvas->Brush->Color = clBlack;
Prntr->Canvas->FrameRect (1) ;
Prntr->EndDoc () ;

}

For more information on the use of the TPrinter object, look in the online help under
TPrinter.

Converting measurements

The ConvUtils unit declares a general-purpose Convert function that you can use to
convert a measurement from one set of units to another. You can perform
conversions between compatible units of measurement such as feet and inches or
days and weeks. Units that measure the same types of things are said to be in the
same conversion family. The units you're converting must be in the same conversion
family. For information on doing conversions, see “Performing conversions” on
page 5-33 and refer to Convert in the online Help.

The StdConvs unit defines several conversion families and measurement units
within each family. In addition, you can create customized conversion families and
associated units using the RegisterConversionType and RegisterConversionFamily
functions. For information on extending conversion and conversion units, see
“Adding new measurement types” on page 5-34 and refer to Convert in the online
Help.

Performing conversions

You can use the Convert function to perform both simple and complex conversions. It
includes a simple syntax and a second syntax for performing conversions between
complex measurement types.

Performing simple conversions

You can use the Convert function to convert a measurement from one set of units to
another. The Convert function converts between units that measure the same type of
thing (distance, area, time, temperature, and so on).

Using BaseCLX 5-33

To use Convert, you must specify the units from which to convert and to which to
convert. You use the TConvType type to identify the units of measurement.

For example, this converts a temperature from degrees Fahrenheit to degrees Kelvin:

o

TempInKelvin := Convert (StrToFloat (Editl.Text), tuFahrenheit, tuKelvin);

[w]

TempInKelvin = Convert (StrToFloat (Editl->Text), tuFahrenheit, tuKelvin);

Performing complex conversions

You can also use the Convert function to perform more complex conversions between
the ratio of two measurement types. Examples of when you might need to use this
this are when converting miles per hour to meters per minute for calculating speed or
when converting gallons per minute to liters per hour for calculating flow.

For example, the following call converts miles per gallon to kilometers per liter:

o

nKPL := Convert (StrToFloat (Editl.Text), duMiles, vuGallons, duKilometers, vuliter);

[w]

double nKPL = Convert (StrToFloat (Editl.Text), duMiles, vuGallons, duKilometers, vuLiter);

The units you're converting must be in the same conversion family (they must
measure the same thing). If the units are not compatible, Convert raises an
EConversionError exception. You can check whether two TConvType values are in the
same conversion family by calling CompatibleConversionTypes.

The StdConvs unit defines several families of TConvType values. See Conversion
family variables in the online Help for a list of the predefined families of
measurement units and the measurement units in each family.

Adding new measurement types

If you want to perform conversions between measurement units not already defined
in the StdConvs unit, you need to create a new conversion family to represent the
measurement units (TConvType values). When two TConvType values are registered
with the same conversion family, the Convert function can convert between
measurements made using the units represented by those TConvType values.

You first need to obtain TConvFamily values by registering a conversion family using
the RegisterConversionFamily function. After you get a TConvFamily value (by
registering a new conversion family or using one of the global variables in the
StdConvs unit), you can use the RegisterConversionType function to add the new units
to the conversion family. The following examples show how to do this.

Creating a simple conversion family and adding units

One example of when you could create a new conversion family and add new
measurement types might be when performing conversions between long periods of
time (such as months to centuries) where a loss of precision can occur.

To explain this further, the cbTime family uses a day as its base unit. The base unit is
the one that is used when performing all conversions within that family. Therefore,
all conversions must be done in terms of days. An inaccuracy can occur when

5-34 Developer’s Guide

[w]

(-

[wr]

+

performing conversions using units of months or larger (months, years, decades,
centuries, millennia) because there is not an exact conversion between days and
months, days and years, and so on. Months have different lengths; years have
correction factors for leap years, leap seconds, and so on.

If you are only using units of measurement greater than or equal to months, you can
create a more accurate conversion family with years as its base unit. This example
creates a new conversion family called cbLongTime.

Declare variables

First, you need to declare variables for the identifiers. The identifiers are used in the
new LongTime conversion family, and the units of measurement that are its
members:

Delphi example

var
cbLongTime: TConvFamily;
1tMonths: TConvType;
ltYears: TConvType;
1tDecades: TConvType;
ltCenturies: TConvType;
ltMillennia: TConvType;

C++ example
tConvFamily cbLongTime;
TConvType ltMonths;
TConvType ltYears;
TConvType ltDecades;
TConvType ltCenturies;
TConvType 1tMillennia;

Register the conversion family
Next, register the conversion family:

cbLongTime := RegisterConversionFamily (‘Long Times');
cbLongTime = RegisterConversionFamily (“Long Times”);

Although an UnregisterConversionFamily procedure is provided, you don’t need to
unregister conversion families unless the unit that defines them is removed at
runtime. They are automatically cleaned up when your application shuts down.

Register measurement units

Next, you need to register the measurement units within the conversion family that
you just created. You use the RegisterConversionType function, which registers units of
measurement within a specified family. You need to define the base unit which in the
example is years, and the other units are defined using a factor that indicates their
relation to the base unit. So, the factor for [tMonths is 1/12 because the base unit for
the LongTime family is years. You also include a description of the units to which
you are converting.

Using BaseCLX 5-35

The code to register the measurement units is shown here:

D Delphi example

ltMonths:=RegisterConversionType (chLongTime, ‘Months’,1/12);
ltYears:=RegisterConversionType (chLongTime, 'Years’,1);
1tDecades:=RegisterConversionType (chLongTime, 'Decades’,10) ;
ltCenturies:=RegisterConversionType (cbLongTime, 'Centuries’,100);
1tMillennia:=RegisterConversionType (cbLongTime, 'Millennia’, 1000);

E+ C++ example

ltMonths = RegisterConversionType (cbLongTime, "Months”,1/12);
ltYears = RegisterConversionType (cbLongTime, ”"Years”, 1);

1tDecades = RegisterConversionType (cbLongTime, “Decades”,10);
ltCenturies = RegisterConversionType (cbLongTime, "Centuries”,100);
ltMillennia = RegisterConversionType (cbLongTime, “Millennia”,1000);

Use the new units

You can now use the newly registered units to perform conversions. The global
Convert function can convert between any of the conversion types that you registered
with the cbLongTime conversion family.

So instead of using the following Convert call,

(-

Convert (StrToFloat (Editl.Text), tuMonths,tuMillennia);

[w]

Convert (StrToFloat (Edit1->Text),tuMonths, tuMillennia);

you can now use this one for greater accuracy:

(-

Convert (StrToFloat (Editl.Text),ltMonths,1tMillennia);

[w]

Convert (StrToFloat (Edit1->Text),ltMonths,1tMillennia);

Using a conversion function

For cases when the conversion is more complex, you can use a different syntax to
specify a function to perform the conversion instead of using a conversion factor. For
example, you can’t convert temperature values using a conversion factor, because
different temperature scales have a different origins.

This example, which comes from the StdConvs unit, shows how to register a
conversion type by providing functions to convert to and from the base units. (The
C++ version is a translation of the code in the StdConvs unit.)

Declare variables

First, declare variables for the identifiers. The identifiers are used in the cbTemperature
conversion family, and the units of measurement are its members:

D Delphi example

var

5-36 Developer’s Guide

[w]

Note

o

[w]

o

[w]

cbTemperature: TConvFamily;
tuCelsius: TConvType;
tuKelvin: TConvType;
tuFahrenheit: TConvType;

C++ example

TConvFamily cbTemperature;

TConvType tuCelsius;

TConvType tuKelvin;

TConvType tuFahrenheit;
The units of measurement listed here are a subset of the temperature units actually
registered in the StdConvs unit.

Register the conversion family
Next, register the conversion family:

cbTemperature := RegisterConversionFamily (‘Temperature’);

cbTemperature = RegisterConversionFamily (“Temperature”);

Register the base unit

Next, define and register the base unit of the conversion family, which in the example
is degrees Celsius. Note that in the case of the base unit, we can use a simple
conversion factor, because there is no actual conversion to make:

tuCelsius:=RegisterConversionType (cbTemperature, ‘Celsius’,1);

tuCelsius = RegisterConversionType (cbTemperature, "Celsius”,1);

Write methods to convert to and from the base unit

You need to write the code that performs the conversion from each temperature scale
to and from degrees Celsius, because these do not rely on a simple conversion factor.
These functions are taken from the StdConvs unit:

Delphi example

function FahrenheitToCelsius(const AValue: Double): Double;
begin

Result := ((AValue - 32) * 5) / 9;
end;

function CelsiusToFahrenheit (const AValue: Double): Double;
begin

Result := ((AValue * 9) / 5) + 32;
end;

function KelvinToCelsius(const AValue: Double): Double;
begin

Result := AValue - 273.15;
end;

function CelsiusToKelvin(const AValue: Double): Double;
begin

Using BaseCLX 5-37

Result := AValue + 273.15;
end;

E+ C++ example

double __fastcall FahrenheitToCelsius(const double AValue)
{

return (((AValue - 32) * 5) / 9);
}

double __fastcall CelsiusToFahrenheit (const double AValue)

{
return (((AValue * 9) / 5) + 32);

}
double __fastcall KelvinToCelsius(const double AValue)
{
return (AValue - 273.15);
}

double __fastcall CelsiusToKelvin(const double AValue)

{
return (AValue + 273.15);

}

Register the other units

Now that you have the conversion functions, you can register the other measurement
units within the conversion family. You also include a description of the units.

The code to register the other units in the family is shown here:

D Delphi example

tuKelvin := RegisterConversionType (cbTemperature, 'Kelvin', KelvinToCelsius,

CelsiusToKelvin);
tuFahrenheit := RegisterConversionType (cbTemperature, 'Fahrenheit', FahrenheitToCelsius,
CelsiusToFahrenheit);

Ee Ci+ example

tuKelvin = RegisterConversionType (cbTemperature, “Kelvin”, KelvinToCelsius,
CelsiusToKelvin);

tuFahrenheit = RegisterConversionType (cbTemperature, “Fahrenheit”, FahrenheitToCelsius,
CelsiusToFahrenheit);

Use the new units

You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the conversion
types that you registered with the chTemperature conversion family. For example the
following code converts a value from degrees Fahrenheit to degrees Kelvin.

D Convert (StrToFloat (Editl.Text), tuFahrenheit, tuKelvin);

5-38 Developer’s Guide

[w]

[

Convert (StrToFloat (Edit1->Text), tuFahrenheit, tuKelvin);

Using a class to manage conversions

You can always use conversion functions to register a conversion unit. There are
times, however, when this requires you to create an unnecessarily large number of
functions that all do essentially the same thing.

If you can write a set of conversion functions that differ only in the value of a
parameter or variable, you can create a class to handle those conversions. For
example, there is a set standard techniques for converting between the various
European currencies since the introduction of the Euro. Even though the conversion
factors remain constant (unlike the conversion factor between, say, dollars and
Euros), you can’t use a simple conversion factor approach to properly convert
between European currencies for two reasons:

* The conversion must round to a currency-specific number of digits.

* The conversion factor approach uses an inverse factor to the one specified by the
standard Euro conversions.

However, this can all be handled by the conversion functions such as the following;:

Delphi example

function FromEuro(const AValue: Double, Factor; FRound: TRoundToRange): Double;
begin

Result := RoundTo(AValue * Factor, FRound);
end;

function ToEuro(const AValue: Double, Factor): Double;
begin

Result := AValue / Factor;
end;

C++ example

double __fastcall FromEuro(const double AValue, const double Factor, TRoundToRange FRound)

{

return (RoundTo (AValue * Factor, FRound));

}

double __fastcall ToEuro(const double AValue, const double Factor)

{

return (AValue / Factor);

}

The problem is, this approach requires extra parameters on the conversion function,
which means you can’t simply register the same function with every European
currency. In order to avoid having to write two new conversion functions for every
European currency, you can make use of the same two functions by making them the
members of a class.

Using BaseCLX 5-39

Creating the conversion class

The class must be a descendant of TConvTypeFactor. TConvTypeFactor defines two
methods, ToCommon and FromCommon, for converting to and from the base units of a
conversion family (in this case, to and from Euros). Just as with the functions you use
directly when registering a conversion unit, these methods have no extra parameters,
so you must supply the number of digits to round off and the conversion factor as
private members of your conversion class:

D Delphi example

type
TConvTypeEuroFactor = class(TConvTypeFactor)
private
FRound: TRoundToRange;
public

constructor Create(const AConvFamily: TConvFamily;
const ADescription: string; const AFactor: Double;
const ARound: TRoundToRange) ;
function ToCommon (const AValue: Double): Double; override;
function FromCommon (const AValue: Double): Double; override;
end;
end;

Ee Ci+ example

class PASCALIMPLEMENTATION TConvTypeEuroFactor : public Convutils::TConvTypeFactor
{
private:
TRoundToRange FRound;
public:
__fastcall TConvTypeEuroFactor (const TConvFamily AConvFamily,
const AnsiString ADescription, const double AFactor, comst TRoundToRange ARound);
TConvTypeFactor (AConvFamily, ADescription, AFactor);
virtual double ToCommon (const double AValue);
virtual double FromCommon (const double AValue);

}

The constructor assigns values to those private members:

D Delphi example

constructor TConvTypeEuroFactor.Create(const AConvFamily: TConvFamily;
const ADescription: string; comnst AFactor: Double;
const ARound: TRoundToRange);
begin
inherited Create(AConvFamily, ADescription, AFactor);
FRound := ARound;
end;

E C++example

__fastcall TConvTypeEuroFactor::TConvTypeEuroFactor (const TConvFamily AConvFamily,
const AnsiString ADescription, const double AFactor, comst TRoundToRange ARound) :

5-40 Developer’s Guide

TConvTypeFactor (AConvFamily, ADescription, AFactor);
{
FRound = ARound;
}

The two conversion functions simply use these private members:

D Delphi example

function TConvTypeEuroFactor.FromCommon (const AValue: Double): Double;
begin

Result := RoundTo(AValue * Factor, FRound);
end;

function TConvTypeEuroFactor.ToCommon (const AValue: Double): Double;
begin

Result := AValue / Factor;
end;

E+ C++ example

virtual double TConvTypeEuroFactor::ToCommon (const double AValue)
{
return (RoundTo(AValue * Factor, FRound));

}

virtual double TConvTypeEuroFactor::ToCommon (const double AValue)
{
return (AValue / Factor);

}

Declare variables

Now that you have a conversion class, begin as with any other conversion family, by
declaring identifiers:

D Delphi example

var
euEUR: TConvType;
euBEF: TConvType;
euDEM: TConvType;
euGRD: TConvType;
euESP: TConvType;
euFFR: TConvType;
eulEP: TConvType;
eulTL: TConvType;
eulUF: TConvType;
eulNLG: TConvType;
eUATS: TConvType; { Austrian schillings }
euPTE: TConvType; { Portuguese escudos }
euFIM: TConvType; { Finnish marks }
cbEuro: TConvFamily;

EU euro }

Belgian francs }
German marks }
Greek drachmas }
Spanish pesetas }
French francs }
Irish pounds }
Italian lire }
Luxembourg francs }
Dutch guilders }

Using BaseCLX 5-41

¥ C++example

TConvFamily cbEuro;

TConvType euEUR; // EU euro

TConvType euBEF; // Belgian francs
TConvType euDEM; // German marks
TConvType euGRD; // Greek drachmas
TConvType euESP; // Spanish pesetas
TConvType euFFR; // French francs
TConvType eulEP; // Irish pounds
TConvType eulTL; // Italian lire
TConvType eulUF; // Luxembourg francs
TConvType eulNLG; // Dutch guilders
TConvType euATS; // Austrian schillings
TConvType euPTE; // Protuguese escudos
TConvType euFIM; // Finnish marks

Register the conversion family and the other units

Now you are ready to register the conversion family and the European monetary
units, using your new conversion class. Register the conversion family the same way
you registered the other conversion families:

D cbEuro := RegisterConversionFamily ('European currency');
cbEuro = RegisterConversionFamily (“European currency”);

To register each conversion type, create an instance of the conversion class that
reflects the factor and rounding properties of that currency, and call the
RegisterConversionType method:

D Delphi example

var
LInfo: TConvTypeInfo;
begin
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'EUEuro', 1.0, -2);
if not RegisterConversionType(LInfo, euEUR) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'BelgianFrancs', 40.3399, 0);
if not RegisterConversionType(LInfo, euBEF) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'GermanMarks', 1.95583, -2);
if not RegisterConversionType(LInfo, euDEM) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'GreekDrachmas', 340.75, 0);
if not RegisterConversionType(LInfo, euGRD) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'SpanishPesetas', 166.386, 0);
if not RegisterConversionType(LInfo, euESP) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'FrenchFrancs', 6.55957, -2);
if not RegisterConversionType(LInfo, euFFR) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'IrishPounds', 0.787564, -2);

5-42 Developer’'s Guide

if not RegisterConversionType(LInfo, eulEP) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'ItalianLire', 1936.27, 0);
if not RegisterConversionType(LInfo, euITL) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'LuxembourgFrancs', 40.3399, -2);
if not RegisterConversionType(LInfo, euLUF) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'DutchGuilders', 2.20371, -2);
if not RegisterConversionType(LInfo, euNLG) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'AustrianSchillings', 13.7603, -2);
if not RegisterConversionType(LInfo, euATS) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'PortugueseEscudos', 200.482, -2);
if not RegisterConversionType(LInfo, euPTE) then
LInfo.Free;
LInfo := TConvTypeEuroFactor.Create(cbEuro, 'FinnishMarks', 5.94573, 0);
if not RegisterConversionType(LInfo, euFIM) then
LInfo.Free;
end;

EF+ C++ example

TConvTypeInfo *pInfo = new TConvTypeEuroFactor (cbEuro, “EUEuro”, 1.0, -2);
if (!RegisterConversionType(pInfo, euEUR))

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “BelgianFrancs”, 40.3399, 0);
if (!RegisterConversionType(pInfo, euBEF))

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “GermanMarks”, 1.95583, -2);
if (!RegisterConversionType(pInfo, euDEM))

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “GreekDrachmas”, 340.75, 0);
if (!RegisterConversionType (pInfo, euGRD)

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “SpanishPesetas”, 166.386, 0);
if (!RegisterConversionType (pInfo, euESP)

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “FrenchFrancs”, 6.55957, -2);
if (!RegisterConversionType (pInfo, euFFR)

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “IrishPounds”, 0.787564, -2);
if (!RegisterConversionType (pInfo, eulEP)

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “ItalianLire”, 1936.27, 0);
if (!RegisterConversionType (pInfo, eulTL)

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “LuxembourgFrancs”, 40.3399, -2);
if (!RegisterConversionType (pInfo, euLUF)

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “DutchGuilders”, 2.20371, -2);
if (!RegisterConversionType (pInfo, euNLG)

delete pInfo;

Using BaseCLX 5-43

Note

D

Fer
=

pInfo = new TConvTypeEuroFactor (cbEuro, “AutstrianSchillings”, 13.7603, -2);
if (!RegisterConversionType (pInfo, euATS)

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “PortugueseEscudos”, 200.482, -2);
if (!RegisterConversionType (pInfo, euPTE)

delete pInfo;
pInfo = new TConvTypeEuroFactor (cbEuro, “FinnishMarks”, 5.94573, 0);
if (!RegisterConversionType (pInfo, euFIM)

delete pInfo;

The ConvertIt demo provides an expanded version of this example that includes
other currencies (that do not have fixed conversion rates) and more error checking.

Use the new units

You can now use the newly registered units to perform conversions in your
applications. The global Convert function can convert between any of the European
currencies you have registered with the new cbEuro family. For example, the
following code converts a value from Italian Lire to German Marks:

Edit2.Text = FloatToStr (Convert (StrToFloat (Editl.Text), euITL, euDEM));
Edit2->Text = FloatToStr(Convert (StrToFloat (Editl->Text), euITL, euDEM));

D Defining custom variants in Delphi

Note

One powerful built-in type of the Delphi language is the Variant type. Variants
represent values whose type is not determined at compile time. Instead, the type of
their value can change at runtime. Variants can mix with other variants and with
integer, real, string, and boolean values in expressions and assignments; the compiler
automatically performs type conversions.

By default, variants can’t hold values that are records, sets, static arrays, files, classes,
class references, or pointers. You can, however, extend the Variant type to work with
any particular example of these types. All you need to do is create a descendant of
the TCustomVariantType class that indicates how the Variant type performs standard
operations.

Defining custom Variants is not fully supported in the C++ language.
To create a Variant type in Delphi:
1 Map the storage of the variant’s data on to the TVarData record.

2 Declare a class that descends from TCustomVariantType. Implement all required
behavior (including type conversion rules) in the new class.

3 Write utility methods for creating instances of your custom variant and
recognizing its type.

The above steps extend the Variant type so that the standard operators work with
your new type and the new Variant type can be cast to other data types. You can
further enhance your new Variant type so that it supports properties and methods
that you define. When creating a Variant type that supports properties or methods,

5-44 Developer’s Guide

Note

use TInvokeableVariantType or TPublishableVariantType as a base class rather than
TCustomVariantType.

Storing a custom variant type’s data

Variants store their data in the TVarData record type. This type is a record that
contains 16 bytes. The first word indicates the type of the variant, and the remaining
14 bytes are available to store the data. While your new Variant type can work
directly with a TVarData record, it is usually easier to define a record type whose
members have names that are meaningful for your new type, and cast that new type
onto the TVarData record type.

For example, the VarConv unit defines a custom variant type that represents a
measurement. The data for this type includes the units (TConvType) of measurement,
as well as the value (a double). The VarConv unit defines its own type to represent
such a value:

TConvertVarData = packed record
VType: TVarType;
VConvType: TConvIype;
Reservedl, Reserved2: Word;
VValue: Double;

end;

This type is exactly the same size as the TVarData record. When working with a
custom variant of the new type, the variant (or its TVarData record) can be cast to
TConvertVarData, and the custom Variant type simply works with the TVarData
record as if it were a TConvertVarData type.

When defining a record that maps onto the TVarData record in this way, be sure to
define it as a packed record.

If your new custom Variant type needs more than 14 bytes to store its data, you can

define a new record type that includes a pointer or object instance. For example, the
VarCmplx unit uses an instance of the class TComplexData to represent the data in a

complex-valued variant. It therefore defines a record type the same size as TVarData
that includes a reference to a TComplexData object:

TComplexVarData = packed record
VType: TVarType;
Reservedl, Reserved?2, Reserved3: Word;
VComplex: TComplexData;
Reservedd: LongInt;
end;

Object references are actually pointers (two Words), so this type is the same size as
the TVarData record. As before, a complex custom variant (or its TVarData record),
can be cast to TComplexVarData, and the custom variant type works with the
TVarData record as if it were a TComplexVarData type.

Using BaseCLX 5-45

Creating a class to enable the custom variant type

Custom variants work by using a special helper class that indicates how variants of
the custom type can perform standard operations. You create this helper class by
writing a descendant of TCustom VariantType. This involves overriding the
appropriate virtual methods of TCustomVariantType.

Enabling casting

One of the most important features of the custom variant type for you to implement
is typecasting. The flexibility of variants arises, in part, from their implicit typecasts.

There are two methods for you to implement that enable the custom Variant type to
perform typecasts: Cast, which converts another variant type to your custom variant,
and CastTo, which converts your custom Variant type to another type of Variant.

When implementing either of these methods, it is relatively easy to perform the
logical conversions from the built-in variant types. You must consider, however, the
possibility that the variant to or from which you are casting may be another custom
Variant type. To handle this situation, you can try casting to one of the built-in
Variant types as an intermediate step.

For example, the following Cast method, from the TComplexVariantType class uses the
type Double as an intermediate type:

procedure TComplexVariantType.Cast (var Dest: TVarData; const Source: TVarData);
var
LSource, LTemp: TVarData;
begin
VarDatalnit (LSource);
try
VarDataCopyNoInd(LSource, Source);
if VarDatalsStr(LSource) then
TComplexVarData (Dest) .VComplex := TComplexData.Create(VarDataToStr (LSource)
else
begin
VarDatalnit (LTemp);
try
VarDataCastTo (LTemp, LSource, varDouble);
TComplexVarData (Dest) .VComplex := TComplexData.Create (LTemp.VDouble, 0);

finally
VarDataClear (LTemp) ;
end;
end;
Dest.VIype := VarType;
finally
VarDataClear (LSource) ;
end;
end;

5-46 Developer’s Guide

In addition to the use of Double as an intermediate Variant type, there are a few
things to note in this implementation:

* The last step of this method sets the VType member of the returned TVarData
record. This member gives the Variant type code. It is set to the VarType property
of TComplexVariantType, which is the Variant type code assigned to the custom
variant.

* The custom variant’s data (Dest) is typecast from TVarData to the record type that
is actually used to store its data (TComplexVarData). This makes the data easier to
work with.

* The method makes a local copy of the source variant rather than working directly
with its data. This prevents side effects that may affect the source data.

When casting from a complex variant to another type, the CastTo method also uses an
intermediate type of Double (for any destination type other than a string):

procedure TComplexVariantType.CastTo(var Dest: TVarData; const Source: TVarData;
const AVarType: TVarType);
var
LTemp: TVarData;
begin
if Source.VType = VarType then
case AVarType of
varOleStr:
VarDataFromOleStr (Dest, TComplexVarData (Source).VComplex.AsString);
varString:
VarDataFromStr (Dest, TComplexVarData (Source).VComplex.AsString);
else
VarDatalnit (LTemp);
try
LTemp.VType := varDouble;
LTemp.VDouble := TComplexVarData (LTemp).VComplex.Real;
VarDataCastTo (Dest, LTemp, AVarType);
finally
VarDataClear (LTemp) ;
end;
end
else
RaiseCastError;
end;

Note that the CastTo method includes a case where the source variant data does not
have a type code that matches the VarType property. This case only occurs for empty
(unassigned) source variants.

Implementing binary operations

To allow the custom variant type to work with standard binary operators (+, -, *, /,
div, mod, shl, shr, and, or, xor listed in the System unit), you must override the
BinaryOp method. BinaryOp has three parameters: the value of the left-hand operand,
the value of the right-hand operand, and the operator. Implement this method to
perform the operation and return the result using the same variable that contained
the left-hand operand.

Using BaseCLX 5-47

5-48

For example, the following BinaryOp method comes from the TComplexVariantType
defined in the VarCmplx unit:

procedure TComplexVariantType.BinaryOp(var Left: TVarData; const Right: TVarData;
const Operator: TVarOp);
begin
if Right.VType = VarType then
case Left.VType of
varString:
case Operator of
opAdd: Variant (Left) := Variant(Left) + TComplexVarData(Right).VComplex.AsString;
else
RaiseInvalidOp;
end;
else
if Left.VType = VarType then
case Operator of
opAdd:
TComplexVarData (Left) .VComplex.DoAdd (TComplexVarData (Right).VComplex) ;
opSubtract:
TComplexVarData (Left) .VComplex.DoSubtract (TComplexVarData (Right).VComplex);
opMultiply:
TComplexVarData (Left) .VComplex.DoMultiply (TComplexVarData (Right).VComplex);
opDivide:
TComplexVarData (Left) .VComplex.DoDivide (TComplexVarData (Right) .VComplex) ;
else
RaiseInvalidOp;
end
else
RaiseInvalidOp;
end
else
RaiseInvalidOp;
end;

There are several things to note in this implementation:

This method only handles the case where the variant on the right side of the operator
is a custom variant that represents a complex number. If the left-hand operand is a
complex variant and the right-hand operand is not, the complex variant forces the
right-hand operand first to be cast to a complex variant. It does this by overriding the
RightPromotion method so that it always requires the type in the VarType property:

function TComplexVariantType.RightPromotion(const V: TVarData;
const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
{ Complex Op TypeX }
RequiredVarType := VarType;
Result := True;
end;

The addition operator is implemented for a string and a complex number (by casting
the complex value to a string and concatenating), and the addition, subtraction,
multiplication, and division operators are implemented for two complex numbers
using the methods of the TComplexData object that is stored in the complex variant’s

Developer’'s Guide

data. This is accessed by casting the TVarData record to a TComplexVarData record
and using its VComplex member.

Attempting any other operator or combination of types causes the method to call the
RaiselnvalidOp method, which causes a runtime error. The TCustomVariantType class
includes a number of utility methods such as RaiselnvalidOp that can be used in the
implementation of custom variant types.

BinaryOp only deals with a limited number of types: strings and other complex
variants. It is possible, however, to perform operations between complex numbers
and other numeric types. For the BinaryOp method to work, the operands must be
cast to complex variants before the values are passed to this method. We have
already seen (above) how to use the RightPromotion method to force the right-hand
operand to be a complex variant if the left-hand operand is complex. A similar
method, LeftPromotion, forces a cast of the left-hand operand when the right-hand
operand is complex:

function TComplexVariantType.LeftPromotion(const V: TVarData;
const Operator: TVarOp; out RequiredVarType: TVarType): Boolean;
begin
{ TypeX Op Complex }
if (Operator = opAdd) and VarDatalsStr(V) then
RequiredVarType := varString
else
RequiredVarType := VarType;
Result := True;
end;

This LeftPromotion method forces the left-hand operand to be cast to another complex
variant, unless it is a string and the operation is addition, in which case LeftPromotion
allows the operand to remain a string.

Implementing comparison operations

There are two ways to enable a custom variant type to support comparison operators
(=, <>, <, <=,>,>=). You can override the Compare method, or you can override the
CompareOp method.

The Compare method is easiest if your custom variant type supports the full range of
comparison operators. Compare takes three parameters: the left-hand operand, the
right-hand operand, and a var Parameter that returns the relationship between the
two. For example, the TConvertVariantType object in the VarConv unit implements
the following Compare method:

procedure TConvertVariantType.Compare (const Left, Right: TVarData;
var Relationship: TVarCompareResult);
const
CRelationshipToRelationship: array [TValueRelationship] of TVarCompareResult =
(crLessThan, crEqual, crGreaterThan);
var
LValue: Double;
LType: TConvTlype;
LRelationship: TValueRelationship;
begin
// supports...

Using BaseCLX 5-49

// convvar cmp number

// Compare the value of convvar and the given number
// convvarl cmp convvar?
// Compare after converting convvar2 to convvarl's unit type

// The right can also be a string. If the string has unit info then it is
// treated like a varConvert else it is treated as a double
LRelationship := EqualsValue;
case Right.VType of
varString:
if TryStrToConvUnit (Variant (Right), LValue, LType) then
if LType = CIllegalConvType then
LRelationship := CompareValue(TConvertVarData (Left).VValue, LValue)
else
LRelationship := ConvUnitCompareValue (TConvertVarData (Left).Vvalue,
TConvertVarData (Left).VConvType, LValue, LType)

else
RaiseCastError;
varDouble:
LRelationship := CompareValue (TConvertVarData(Left).VVvalue, TVarData(Right).VDouble);
else

if Left.VType = VarType then
LRelationship := ConvUnitCompareValue(TConvertVarData (Left).VValue,
TConvertVarData (Left) .VConvType, TConvertVarData(Right).VValue,
TConvertVarData (Right) .VConvType)

else
RaiseInvalidOp;
end;
Relationship := CRelationshipToRelationship[LRelationship];
end;

If the custom type does not support the concept of “greater than” or “less than,” only
“equal” or “not equal,” however, it is difficult to implement the Compare method,
because Compare must return crLessThan, crEqual, or crGreaterThan. When the only
valid response is “not equal,” it is impossible to know whether to return crLessThan
or crGreaterThan. Thus, for types that do not support the concept of ordering, you can
override the CompareOp method instead.

CompareOp has three parameters: the value of the left-hand operand, the value of the
right-hand operand, and the comparison operator. Implement this method to
perform the operation and return a boolean that indicates whether the comparison is
true. You can then call the RaiselnvalidOp method when the comparison makes no
sense.

For example, the following CompareOp method comes from the TComplexVariantType
object in the VarCmplx unit. It supports only a test of equality or inequality:

function TComplexVariantType.CompareOp (const Left, Right: TVarData;
const Operator: Integer): Boolean;
begin
Result := False;
if (Left.VIype = VarType) and (Right.VType = VarType) then
case Operator of
OopCmpEQ:
Result := TComplexVarData(Left).VComplex.Equal (TComplexVarData (Right).VComplex);
OpCmpNE :

5-50 Developer’'s Guide

Result := not TComplexVarData (Left).VComplex.Equal (TComplexVarData(Right).VComplex);
else
RaiseInvalidOp;
end
else
RaiseInvalidOp;
end;

Note that the types of operands that both these implementations support are very
limited. As with binary operations, you can use the RightPromotion and LeftPromotion
methods to limit the cases you must consider by forcing a cast before Compare or
CompareOp is called.

Implementing unary operations

To allow the custom variant type to work with standard unary operators (-, not), you
must override the UnaryOp method. UnaryOp has two parameters: the value of the
operand and the operator. Implement this method to perform the operation and
return the result using the same variable that contained the operand.

For example, the following UnaryOp method comes from the TComplexVariantType
defined in the VarCmplx unit:

procedure TComplexVariantType.UnaryOp(var Right: TVarData; const Operator: TVarOp);
begin
if Right.VType = VarType then
case Operator of
opNegate:
TComplexVarData (Right) .VComplex.DoNegate;
else
RaiseInvalidOp;
end
else
RaiseInvalidOp;
end;

Note that for the logical not operator, which does not make sense for complex values,
this method calls RaiselnvalidOp to cause a runtime error.

Copying and clearing custom variants

In addition to typecasting and the implementation of operators, you must indicate
how to copy and clear variants of your custom Variant type.

To indicate how to copy the variant’s value, implement the Copy method. Typically,
this is an easy operation, although you must remember to allocate memory for any
classes or structures you use to hold the variant’s value:

procedure TComplexVariantType.Copy (var Dest: TVarData; const Source: TVarData;
const Indirect: Boolean);
begin
if Indirect and VarDatalsByRef (Source) then
VarDataCopyNoInd(Dest, Source)
else

Using BaseCLX 5-51

with TComplexVarData(Dest) do
begin
VIype := VarType;
VComplex := TComplexData.Create(TComplexVarData (Source).VComplex) ;
end;
end;

Note The Indirect parameter in the Copy method signals that the copy must take into
account the case when the variant holds only an indirect reference to its data.

Tip If your custom variant type does not allocate any memory to hold its data (if the data
fits entirely in the TVarData record), your implementation of the Copy method can
simply call the SimplisticCopy method.

To indicate how to clear the variant’s value, implement the Clear method. As with the
Copy method, the only tricky thing about doing this is ensuring that you free any
resources allocated to store the variant’s data:

procedure TComplexVariantType.Clear (var V: TVarData);
begin

V.VType := varEmpty;

FreeAndNil (TComplexVarData (V) .VComplex) ;
end;

You will also need to implement the IsClear method. This way, you can detect any
invalid values or special values that represent “blank” data:

function TComplexVariantType.IsClear (const V: TVarData): Boolean;

begin
Result := (TComplexVarData(V).VComplex = nil) or
TComplexVarData (V) .VComplex.IsZero;
end;

Loading and saving custom variant values

By default, when the custom variant is assigned as the value of a published property,
itis typecast to a string when that property is saved to a form file, and converted back
from a string when the property is read from a form file. You can, however, provide
your own mechanism for loading and saving custom variant values in a more natural
representation. To do so, the TCustomVariantType descendant must implement the
IVarStreamable interface from Classes.pas.

IVarStreamable defines two methods, StreamlIn and StreamOut, for reading a variant’s
value from a stream and for writing the variant’s value to the stream. For example,
TComplexVariantType, in the VarCmplx unit, implements the IVarStreamable methods
as follows:

procedure TComplexVariantType.StreamIn(var Dest: TVarData; const Stream: TStream);
begin
with TReader.Create(Stream, 1024) do
try
with TComplexVarData(Dest) do
begin
VComplex := TComplexData.Create;
VComplex.Real := ReadFloat;
VComplex.Imaginary := ReadFloat;

5-52 Developer’s Guide

end;
finally
Free;
end;
end;

procedure TComplexVariantType.StreamOut (const Source: TVarData; comst Stream: TStream);
begin
with TWriter.Create(Stream, 1024) do
try
with TComplexVarData(Source).VComplex do
begin
WriteFloat (Real);
WriteFloat (Imaginary);
end;
finally
Free;
end;
end;

Note how these methods create a Reader or Writer object for the Stream parameter to
handle the details of reading or writing values.

Using the TCustomVariantType descendant
In the initialization section of the unit that defines your TCustomVariantType
descendant, create an instance of your class. When you instantiate your object, it
automatically registers itself with the variant-handling system so that the new
Variant type is enabled. For example, here is the initialization section of the
VarCmplx unit:

initialization

ComplexVariantType := TComplexVariantType.Create;

In the finalization section of the unit that defines your TCustom VariantType
descendant, free the instance of your class. This automatically unregisters the variant
type. Here is the finalization section of the VarCmplx unit:

finalization
FreeAndNil (ComplexVariantType) ;

Writing utilities to work with a custom variant type

Once you have created a TCustomVariantType descendant to implement your custom
variant type, it is possible to use the new Variant type in applications. However,
without a few utilities, this is not as easy as it should be.

It is a good idea to create a method that creates an instance of your custom variant
type from an appropriate value or set of values. This function or set of functions fills
out the structure you defined to store your custom variant’s data. For example, the
following function could be used to create a complex-valued variant:

function VarComplexCreate(const AReal, AImaginary: Double): Variant;
begin
VarClear (Result) ;

Using BaseCLX 5-53

TComplexVarData (Result).VType := ComplexVariantType.VarType;
TComplexVarData (ADest).VComplex := TComplexData.Create(ARead, Almaginary);
end;

This function does not actually exist in the VarCmplx unit, but is a synthesis of
methods that do exist, provided to simplify the example. Note that the returned
variant is cast to the record that was defined to map onto the TVarData structure
(TComplexVarData), and then filled out.

Another useful utility to create is one that returns the variant type code for your new
Variant type. This type code is not a constant. It is automatically generated when you
instantiate your TCustomVariantType descendant. It is therefore useful to provide a
way to easily determine the type code for your custom variant type. The following
function from the VarCmplx unit illustrates how to write one, by simply returning
the VarType property of the TCustomVariantType descendant:

function VarComplex: TVarType;
begin

Result := ComplexVariantType.VarType;
end;

Two other standard utilities provided for most custom variants check whether a
given variant is of the custom type and cast an arbitrary variant to the new custom
type. Here is the implementation of those utilities from the VarCmplx unit:

function VarIsComplex(const AValue: Variant): Boolean;
begin

Result := (TVarData(AValue).VType and varTypeMask) = VarComplex;
end;

function VarAsComplex(const AValue: Variant): Variant;
begin
if not VarIsComplex(AValue) then
VarCast (Result, AValue, VarComplex)
else
Result := AValue;
end;

Note that these use standard features of all variants: the VType member of the
TVarData record and the VarCast function, which works because of the methods
implemented in the TCustomVariantType descendant for casting data.

In addition to the standard utilities mentioned above, you can write any number of
utilities specific to your new custom variant type. For example, the VarCmplx unit
defines a large number of functions that implement mathematical operations on
complex-valued variants.

Supporting properties and methods in custom variants

Some variants have properties and methods. For example, when the value of a
variant is an interface, you can use the variant to read or write the values of
properties on that interface and call its methods. Even if your custom variant type
does not represent an interface, you may want to give it properties and methods that
an application can use in the same way.

5-54 Developer’s Guide

Using TinvokeableVariantType

To provide support for properties and methods, the class you create to enable the
new custom variant type should descend from TInvokeableVariantType instead of
directly from TCustomVariantType.

TInvokeableVariantType defines four methods:

DoFunction
DoProcedure
GetProperty
SetProperty

that you can implement to support properties and methods on your custom variant
type.
For example, the VarConv unit uses TInvokeableVariantType as the base class for

TConvertVariantType so that the resulting custom variants can support properties.
The following example shows the property getter for these properties:

function TConvertVariantType.GetProperty(var Dest: TVarData;
const V: TVarData; const Name: String): Boolean;

var
LType: TConvTlype;
begin
// supports...
// 'Value'
// 'Type'
// 'TypeName'
// ‘'Family'
// 'FamilyName'
// 'As[Type]'

Result := True;
if Name = 'VALUE' then
Variant (Dest) := TConvertVarData(V).VValue
else if Name = 'TYPE' then
Variant (Dest) := TConvertVarData (V) .VConvType
else if Name = 'TYPENAME' then
Variant (Dest) := ConvTypeToDescription(TConvertVarData (V) .VConvType)
else if Name = 'FAMILY' then
Variant (Dest) := ConvTypeToFamily (TConvertVarData (V) .VConvType)
else if Name = 'FAMILYNAME' then
Variant (Dest) := ConvFamilyToDescription (ConvTypeToFamily (TConvertVarData (V) .VConvType))
else if System.Copy (Name, 1, 2) = 'AS' then
begin
if DescriptionToConvType (ConvTypeToFamily (TConvertVarData (V) .VConvType),
System.Copy (Name, 3, MaxInt), LType) then
VarConvertCreatelInto(Variant (Dest), Convert (TConvertVarData (V).VValue,
TConvertVarData (V) .VConvType, LType), LType)

else
Result := False;
end
else
Result := False;
end;

Using BaseCLX 5-55

The GetProperty method checks the Name parameter to determine what property is
wanted. It then retrieves the information from the TVarData record of the Variant (V),
and returns it as a Variant (Dest). Note that this method supports properties whose
names are dynamically generated at runtime (As[Type]), based on the current value
of the custom variant.

Similarly, the SetProperty, DoFunction, and DoProcedure methods are sufficiently
generic that you can dynamically generate method names, or respond to variable
numbers and types of parameters.

Using TPublishableVariantType

If the custom variant type stores its data using an object instance, then there is an
easier way to implement properties, as long as they are also properties of the object
that represents the variant’s data. If you use TPublishableVariantType as the base class
for your custom variant type, then you need only implement the GetInstance method,
and all the published properties of the object that represents the variant’s data are
automatically implemented for the custom variants.

For example, as was seen in “Storing a custom variant type’s data” on page 5-45,
TComplexVariantType stores the data of a complex-valued variant using an instance of
TComplexData. TComplexData has a number of published properties (Real, Imaginary,
Radius, Theta, and FixedTheta), that provide information about the complex value.
TComplexVariantType descends from TPublishableVariantType, and implements the
GetInstance method to return the TComplexData object (in TypInfo.pas) that is stored
in a complex-valued variant’s TVarData record:

function TComplexVariantType.GetInstance(const V: TVarData): TObject;
begin

Result := TComplexVarData (V).VComplex;
end;

TPublishableVariantType does the rest. It overrides the GetProperty and SetProperty
methods to use the runtime type information (RTTI) of the TComplexData object for
getting and setting property values.

Note For TPublishableVariantType to work, the object that holds the custom variant’s data
must be compiled with RTTI. This means it must be compiled using the {$M+}
compiler directive, or descend from TPersistent.

5-56 Developer’s Guide

[

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

{bmc
IC_C16.b
mp}

Working with components

<~TOPIC<~HEAD

A# pcbUsingComponents

A Usingcomponents

X
VCLStandardComponents;Developingtheapplicationuserinterface;Usingcomponents;
CreatingAndManagingMenus;C++languagesupportforthevcl
"$ Working with components

A+ pcb:000

K components

AT 2_DESIGN

~C3

HEAD~>Working with components

Many components are provided in the integrated development environment (IDE)
on the Component palette. You select components from the Component palette and
drop them onto a form or data module. You design the application’s user interface by
arranging the visual components such as buttons and list boxes on a form. You can
also place nonvisual components such as data access components on either a form or
a data module.

At first glance, Galileothe IDE’s components appear to be just like any other classes.
But there are differences between CLX components and the standard class
hierarchies that most programmers work with. Some differences are described here:

* All components descend from TComponent.

* Components are most often used as is and are changed through their properties,
rather than serving as “base classes” to be subclassed to add or change
functionality. When a component is inherited, it is usually to add specific code to
existing event handling member functions.

¢ In C++, CLX components can only be allocated on the heap, not on the stack (that
is, they must be created with the new operator).

* Properties of components intrinsically contain runtime type information.

Working with components 6-1

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

Setting component properties

* Components can be added to the Component palette in the IDE and manipulated
on a form.

Components often achieve a better degree of encapsulation than is usually found in
standard classes. For example, consider the use of a dialog containing a push button.
In a Windows program developed using CLX components, when a user clicks on the
button, the system generates a WM_LBUTTONDOWN message. The program must
catch this message (typically in a switch statement, a message map, or a response
table) and dispatch it to a routine that will execute in response to the message.

Most Windows messages (WinCLX) or
Linux system events (VisualCLX) are handled by CLX components. When you want
to respond to a message or system event, you only need to provide an event handler.

Chapter 9, “Developing the application user interface,” provides details on using
forms such as creating modal forms dynamically, passing parameters to forms, and
retrieving data from forms.

TOPIC~>

Setting component properties

<~TOPIC<~HEAD

A# IDH_USEOP_settingComponentProperties

A$ Setting component properties

A Setting component properties;SettingComponentProperties
AX Using the Object Inspector;Setting properties at runtime

K properties:setting

A+pcb:000

AT 2_DESIGN

AC3

HEAD~>Setting component properties

To set published properties at design time, you can use the Object Inspector and, in
some cases, special property editors. To set properties at runtime, assign their values
in your application source code.

For information about the properties of each component, see the online Help.
TOPIC~>

Setting properties at design time

<~TOPIC<~HEAD

A# IDH_USEOP_propertyDisplay

A$ Setting properties at design time

A Using the Object Inspector;

AX Using property editors

K Object Inspector;published properties, setting
A+pcb:000

6-2 Developer’s Guide

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

Setting component properties

AT 2_DESIGN

~C3

HEAD~>Setting properties at design time

When you select a component on a form at design time, the Object Inspector displays
its published properties and (when appropriate) allows you to edit them. Use the Tab
key to toggle between the left-hand Property column and the right-hand Value
column. When the cursor is in the Property column, you can navigate to any property
by typing the first letters of its name. For properties of Boolean or enumerated types,
you can choose values from a drop-down list or toggle their settings by double-
clicking in Value column.

If a plus (+) symbol appears next to a property name, clicking the plus symbol or
typing ‘+” when the property has focus displays a list of subvalues for the property.
Similarly, if a minus (-) symbol appears next to the property name, clicking the minus
symbol or typing ‘-" hides the subvalues.

By default, properties in the Legacy category are not shown; to change the display
filters, right-click in the Object Inspector and choose View. For more information, see
<~JMPProperty and event categories in the Object

Inspector~!ALink(Property AndEventCategoriesInTheObjectInspector,1)
JMP~>“property categories” in the online Help.

When more than one component is selected, the Object Inspector displays all
properties—except Name—that are shared by the selected components. If the value
for a shared property differs among the selected components, the Object Inspector
displays either the default value or the value from the first component selected.
When you change a shared property, the change applies to all selected components.

Changing code-related properties, such as the name of an event handler, in the
Object Inspector automatically changes the corresponding source code. In addition,
changes to the source code, such as renaming an event handler method in a form
class declaration, is immediately reflected in the Object Inspector.

TOPIC~>

Using property editors

<~TOPIC<~HEAD

A# IDH_USEOP_usingPropertyEditors

"$ Using property editors

AA Using property editors;

K property editors

A+pcb:000

AT 2_DESIGN

AC3

HEAD~>Using property editors

Some properties, such as Font, have special property editors. Such properties appear
with ellipsis marks (...) next to their values when the property is selected in the Object
Inspector. To open the property editor, double-click in the Value column, click the
ellipsis mark, or type Ctrl+Enter when focus is on the property or its value. With some
components, double-clicking the component on the form also opens a property editor.

Working with components 6-3

D

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

Calling methods

{bme
IC_D16.b
mp}
{bmc
IC_C16.b
mp}

Property editors let you set complex properties from a single dialog box. They
provide input validation and often let you preview the results of an assignment.

TOPIC~>

Setting properties at runtime

<~TOPIC<~HEAD

" IDH_USEOP_settingPropertiesAtRuntime
A$ Setting properties at runtime

A Setting properties at runtime;

AX Setting component properties

K properties:setting

A+pcb:000

AT 2_DESIGN

~C3

HEAD~>Setting properties at runtime

Any writable property can be set at runtime in your source code. For example, you
can dynamically assign a caption to a form:

Forml.Caption := MyString;

Forml->Caption = MyString;
TOPIC~>

Calling methods

{bme
IC_D16.b

mp}

<~TOPIC<~HEAD

A# IDH_USEOP_callingMethods
A$ Calling methods

AA Calling methods;

AX UsingObjectPascalWithTheVCL
AK methods

A+pcb:000

AT 2_DESIGN

~C3

HEAD~>Calling methods

Methods are called just like ordinary procedures and functions. For example, visual
controls have a Repaint method that refreshes the control’s image on the screen. You
could call the Repaint method in a draw-grid object like this:

DrawGridl.Repaint;

6-4 Developer's Guide

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

{bme
IC_C16.b

mp}

{bme
IC_D16.b

mp}

{bme
IC_C16.b

mp}

Working with events and event handlers

DrawGridl->Repaint;

As with properties, the scope of a method name determines the need for qualifiers. If
you want, for example, to repaint a form within an event handler of one of the form’s
child controls, you don’t have to prepend the name of the form to the method call:

Delphi example

procedure TForml.ButtonlClick(Sender: TObject);
begin

Repaint;
end;

For more information about scope in Delphi, see “Scope and qualifiers” on
page 4-5<~JMP Scope and qualifiers~!AL(Scope and qualifiers,1) JMP~>.

C++ example

void __fastcall TForml::ButtonlClick(TObject *Sender)
{
Repaint;

}
TOPIC~>

Working with events and event handlers

<~TOPIC<~HEAD

N IDH_USEOP_workingWithEventHandlers

"$ Working with events and event handlers

AA Working with events and event handlers;eventhandlers
AX UsingObjectPascalWithTheVCL

K events:handling;event handlers

A+pcb:000

AT 2_DESIGN

~C3

HEAD~>Working with events and event handlers

In GalileoKylix, almost all the code you write is executed, directly or indirectly, in
response to events. An event is a special kind of property that represents a runtime
occurrence, often a user action. The code that responds directly to an event—called
an event handler—is a procedure (Delphi) or a method of an object (C++). The sections
that follow show how to:

¢ <~JMP Generate a new event handler.~!AL(Generating a new event handler,1)
JMP~>

¢ <~JMP Generate a handler for a component’s default event.~!AL(Generating a
handler for a components default event,1) JMP~>

* <~JMP Locate event handlers.~!AL(Locating event handlers,1) JMP~>

Working with components 6-5

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

Working with events and event handlers

¢ <~JMP Associate an event with an existing event handler.~!AL(Associating an
event with an existing event handler,1) JMP~>

* <~JMP Associate menu events with event handlers.~!AL(Associating menu events
with event handlers,1) JMP~>

¢ <~JMP Delete event handlers.~!AL(Deleting event handlers,1) J]MP~>

TOPIC~>

Generating a new event handler

<~TOPIC<~HEAD

A# IDH_USEOP_generatingANewEventHandler
"$ Generating a new event handler

A Generating a new event handler;eventhandlers

AX Working with events and event handlers

AK events:handling;event handlers;skeleton code

A+pcb:000

AT 2_DESIGN

AC3

HEAD~>Generating a new event handler

GalileoKylix can generate skeleton event handlers for forms and other components.
To create an event handler,

1 Select a component.

2 Click the Events tab in the Object Inspector. The Events page of the Object
Inspector displays all events defined for the component.

3 Select the event you want, then double-click the Value column or press Ctri+Enter.
The Code editor opens with the cursor inside the skeleton event handler.

4 Type the code that you want to execute when the event occurs.
TOPIC~>

Generating a handler for a component’s default event

<~TOPIC<~HEAD

A# IDH_USEOP_generatingTheDefaultEventHandler

A$ Generating a handler for a component’s default event

A Generating a handler for a components default event;eventhandlers

AX Working with events and event handlers

AK events:default;events:handling;event handlers

A+pcb:000

AT 2_DESIGN

~C3

HEAD~>Generating a handler for a component’s default event

Some components have a default event, which is the event the component most
commonly needs to handle. For example, a button’s default event is OnClick. To
create a default event handler, double-click the component in the Form Designer; this

6-6 Developer's Guide

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

Working with events and event handlers

generates a skeleton event-handling procedure and opens the Code editor with the
cursor in the body of the procedure, where you can easily add code.

Not all components have a default event. Some components, such as TBevel, don’t
respond to any events. Other components respond differently when you double-click
them in the Form Designer. For example, many components open a default property
editor or other dialog when they are double-clicked at design time.

TOPIC~>

Locating event handlers

<~TOPIC<~HEAD

A IDH_USEOP_locatingEventHandlers

"$ Locating event handlers

A Locating event handlers;eventhandlers

AX Working with events and event handlers

AK events:handling;event handlers

A+pcb:000

AT 2_DESIGN

AC3

HEAD~>Locating event handlers

If you generated a default event handler for a component by double-clicking it in the
Form Designer, you can locate that event handler in the same way. Double-click the

component, and the Code editor opens with the cursor at the beginning of the event-
handler body.

To locate an event handler that’s not the default,
1 In the form, select the component whose event handler you want to locate.
2 In the Object Inspector, click the Events tab.

3 Select the event whose handler you want to view and double-click in the Value
column. The Code editor opens with the cursor inside the skeleton event handler.

TOPIC~>

Associating an event with an existing event handler

<~TOPIC<~HEAD

At IDH_USEOP_eventHandlerAssociation

A$ Associating an event with an existing event handler

A Associating an event with an existing event handler;eventhandlers
AX Working with events and event handlers;Using the Sender parameter;Displaying
and coding shared events;Associating menu events with event handlers
AK events:handling;event handlers

A+pcb:000

AT 2_DESIGN

AC3

HEAD~>Associating an event with an existing event handler

Working with components 6-7

D

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

Working with events and event handlers

{bme
IC_D16.b

mp}

You can reuse code by writing event handlers that respond to more than one event.
For example, many applications provide speed buttons that are equivalent to drop-
down menu commands. When a button initiates the same action as a menu
command, you can write a single event handler and assign it to both the button’s and
the menu item’s OnClick event.

To associate an event with an existing event handler,
1 On the form, select the component whose event you want to handle.

2 On the Events page of the Object Inspector, select the event to which you want to
attach a handler.

3 Click the down arrow in the Value column next to the event to open a list of
previously written event handlers. (The list includes only event handlers written
for events of the same name on the same form.) Select from the list by clicking an
event-handler name.

The previous procedure is an easy way to reuse event handlers. <~JMPAction
lists~!AL(UsingActionLists,1) JMP~> and action
bands~!AL(SettingUpActionBands,1) JMP~>, however, provide powerful tools for
centrally organizing the code that responds to user commands. Action lists can be
used in cross-platform applications, whereas action bands cannot. For more
information about action lists , see “Organizing actions for toolbars
and menus” on page 9-21.

TOPIC~>

Using the Sender parameter

<~TOPIC<~HEAD

A IDH_USEOP_usingTheSenderParameter

A$ Using the Sender parameter

AA Using the Sender parameter;

AX Working with events and event handlers;Associating an event with an existing
event handler

AK events:handling;Sender parameter;handling events

A+pcb:000

AT 2_DESIGN

AC3

HEAD~>Using the Sender parameter

In an event handler, the Sender parameter indicates which component received the
event and therefore called the handler. Sometimes it is useful to have several
components share an event handler that behaves differently depending on which
component calls it. You can do this by using the Sender parameter.

In Delphi, use the Sender parameter in an if...then...else statement. For example, the
following code displays the title of the application in the caption of a dialog box only
if the OnClick event was received by ButtonI.

procedure TMainForm.ButtonlClick(Sender: TObject);
begin
if Sender = Buttonl then

AboutBox.Caption := 'About ' + Application.Title

6-8 Developer’s Guide

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

else

AboutBox.Caption := '';
AboutBox. ShowModal;
end;

TOPIC~>

Displaying and coding shared events

<~TOPIC<~HEAD

A# IDH_USEOP_displayingAndCodingSharedEvents

A$ Displaying and coding shared events

AA Displaying and coding shared events;eventhandlers

AX Working with events and event handlers;Associating an event with an existing
event handler;UsingActionLists

K events:handling;event handlers;events:shared

A+pcb:000

AT 2_DESIGN

AC3

HEAD~>Displaying and coding shared events

When components share events, you can display their shared events in the Object
Inspector. First, select the components by holding down the Shift key and clicking on
them in the Form Designer; then choose the Events tab in the Object Inspector. From
the Value column in the Object Inspector, you can now create a new event handler
for, or assign an existing event handler to, any of the shared events.

TOPIC~>

Associating menu events with event handlers

<~TOPIC<~HEAD

A# IDH_USEOP_associatingMenuEventsWithCode

A$ Associating menu events with event handlers

A Associating menu events with event handlers;eventhandlers

AX Working with events and event handlers;

AK events:menu;menu events;event handlers

A+pcb:000

AT 2_DESIGN

~C3

HEAD~>Associating menu events with event handlers

The Menu Designer, along with the MainMenu and PopupMenu components, make it
easy to supply your application with drop-down and pop-up menus. For the menus
to work, however, each menu item must respond to the OnClick event, which occurs
whenever the user chooses the menu item or presses its accelerator or shortcut key.
This sectiontopic explains how to associate event handlers with menu items. For
information about the Menu Designer and related components, see “Creating and
managing menus” on page 9-29<~JMP Creating and managing
menus~!AL(CreatingAndManagingMenus,1) JMP~>.

To create an event handler for a menu item,

Working with components 6-9

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

1 Open the Menu Designer by double-clicking on a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 From the Menu Designer, double-click the menu item. The Code editor opens with
the cursor inside the skeleton event handler.

4 Type the code that you want to execute when the user selects the menu command.
To associate a menu item with an existing OnClick event handler,

1 Open the Menu Designer by double-clicking a MainMenu or PopupMenu
component.

2 Select a menu item in the Menu Designer. In the Object Inspector, make sure that a
value is assigned to the item’s Name property.

3 On the Events page of the Object Inspector, click the down arrow in the Value
column next to OnClick to open a list of previously written event handlers. (The
list includes only event handlers written for OnClick events on this form.) Select
from the list by clicking an event handler name.

TOPIC~>

Deleting event handlers

<~TOPIC<~HEAD

" IDH_USEOP_deletingEventHandlers

7$ Deleting event handlers

A Deleting event handlers;eventhandlers

AX Working with events and event handlers

AK event handlers, deleting

A+pcb:000

AT 2_DESIGN

AC3

HEAD~>Deleting event handlers

When you delete a component from a form using the Form Designer, the Code editor
removes the component from the form’s type declaration. It does not, however,
delete any associated methods from the unit file, since these methods may still be
called by other components on the form. You can manually delete a method—such as
an event handler—but if you do so, be sure to delete both the method’s forward
declaration (the unit’s interface section in Delphi; the header file in C++) and its
implementation (the unit’s implementation section in Delphi; the cpp file in C++).
Otherwise you'll get a compiler error when you build your project.

TOPIC~>

6-10 Developer’'s Guide

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

Cross-platform and non-cross-platform cComponents on the
Component palette

<~TOPIC<~HEAD

A IDH_USEOP_standardComponents

an) omponents on the Component palette
AA VCL standard components;VCLStandardComponents

AX UsingComponents

AK components:cross-platform;cross-platform components

"+ pcb:000

AT 2_DESIGN
AC3
HEAD~>
palette

omponents on the Component

The Component palette contains a selection of components that handle a wide
variety of programming tasks. The components are arranged in pages according to
their purpose and functionality. For example, commonly used components such as
those to create menus, edit boxes, or buttons are located on the Standard page. Which
pages appear in the default configuration depends on the edition of the product you
are running.

lists typical default pages and components available for
creating applications, including those that are not cross-platform. You can use all
CLX components, except WinCLX and VisualCLX, in both Windows and Linux
applications. You can use WinCLX components in Windows-only applications and
VisualCLX in cross-platform-only applications; however, the applications will not be
cross-platform unless you isolate these portions of the code.

Table 6.1 Component palette pages

Page name Description Cross-platform?

Standard Standard controls, menus. Yes

Additional Specialized controls. Yes, except ApplicationEvents,
ActionManager, ActionMain-
MenuBar, ActionToolBar, and
CustomizeDlg. LCDNumber is in
VisualCLX only.

Win32 (Win- Common Windows controls used for Many of the same components on the

CLX)/ developing a graphical user interface. Win32 page are on the Common

Common Controls page that appears when cre-

Controls (Visual- ating a cross-platform application.

CLX) RichEdit, UpDown, HotKey, Ani-

mate, DataTimePicker, MonthCalen-
dar, Coolbar, PageScroller, and
ComboBoxEx are in WinCLX only.

TextBrowser, TextViewer, Icon-
Viewer, and SpinEdit are in Visual-
CLX only.

Working with components 6-11

Copyright © 2002, Borland Software Corporation. All rights reserved.
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

Table 6.1 Component palette pages (continued)
Page name Description
System Components and controls for system-

level access, including timers, multime-
dia, and DDE.

Data Access Components for working with database
data that are not tied to any particular

data access mechanism.

Data Controls Visual, data-aware controls to design

user interface.

dbExpress Database controls that use dbExpress, a
cross-platform, database-independent
layer that provides methods for dynamic
SQL processing. It defines a common

interface for accessing SQL servers.

BORLAND CONFIDENTIAL

Cross-platform?

Yes, but uses different components
such as DirectoryTreeView, FilesList-
View. No,
except for Timer and PaintBox,
which are on the Additional page
when creating a CLX application.

Yes, except for XMLTransform,
XMLTransformProvider, and XML-
TransformClient.

Yes, except for DBRichEdit,
DBCtrlGrid, and DBChart.

Yes

DataSnap

Components that enable you to build
ulti-tier database applications.

omponents that provide data access
through the Borland Database Engine.

omponents that provide data access
through the ADO framework.

omponents that provide direct access
to the InterBase database.

nterBase

nterBaseAdmin

nternetbkxpress

omponents that access InterBase Ser-
ices API calls.

omponents that are simultaneously a
eb server application and the client of
a multi-tiered database application.

Internet Components for Internet communication Yes
protocols and Web applications.
WebSnap Components for building Web server Yes
applications.
astNet etMasters Internet controls. 0

eport uickReport components for creating o
embedded reports
Dialogs Commonly used dialog boxes. Yes, except for OpenPictureDialog,
SavePictureDialog, PrintDialog, and
PrinterSetupDialog.
in 3.1 Old style Win 3.1 components. 0

IActiveX

OM+

ample custom components.

ample ActiveX controls; see Microsoft
documentation (msdn.microsoft.com).

omponent for handling M+ events.

No

WebServices Components for writing applications
that implement or use SOAP-based Web

Services.

6-12 Developer’'s Guide

Yes

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

Table 6.1 Component palette pages (continued)

Page name Description Cross-platform?
Servers Components for embedding the o

Microsoft Internet Browser.
Indy Clients Cross-platform Internet components for Yes

the client (open source Winshoes Inter-
net components).

Indy Servers Cross-platform Internet components for Yes
the server (open source Winshoes Inter-
net components).

Indy Misc Additional cross-platform Internet com- Yes
ponents (open source Winshoes Internet
components).

Office2K COM Server examples for Microsoft o
Excel, Word, and so on (see Microsoft

SDN documentation).

You can add, remove, and rearrange components on the palette, and you can create
component <~JMPtemplates~!Alink(CreatingComponentTemplates,1) JMP~> and
<~JMPframes~!Alink(CreatingFrames,1) JMP~> that group several components.
Some of the components on the ActiveX, Servers, and Samples pages, however, are
provided as examples only and are not documented.

For more information about the components on the Component palette, see online
Help. You can press F1 on the Component palette itself, on the component itself
when it is selected, or after it has been dropped onto a form to display Help. If a tab
of the Component palette is selected, the Help gives a general description for all of
the components on that tab. You can also bring up Help on any object by placing the
cursor anywhere on its name in the code in the editor and pressing F1.

For more information on the differences between cross-platform and Windows-only
components, see

TOPIC~>

Adding custom components to the Component palette

<~TOPIC<~HEAD

A# IDH_USEOP_addingCustomComponents

A$ Adding custom components to the component palette

AA Adding custom components to the IDE;AddingCustomComponentsToThelDE
"X installingcomponentpackages;OverviewOfComponentCreation

AK components:installing;custom components;components:custom

A+pcb:000

AT 2_DESIGN

~C3

HEAD~>Adding custom components to the component palette

Working with components 6-13

Copyright © 2002, Borland Software Corporation. All rights reserved. BORLAND CONFIDENTIAL
April 19,2002 10:05 am (I\SOURCE\Devguide\BOOK\components.fm)

You can install custom components—written by yourself or third parties—on the
Component palette and use them in your applications. To write a custom component,
see Part IV, “Creating custom
components.”<~JMP Overview of component
creation.~!Alink(OverviewOfComponentCreation,1) JMP~> To install an existing
component, see “Installing component packages” on page 16-7<~JMP Installing
component packages~!Alink(installingcomponentpackages,1) JMP~>.

TOPIC~>

6-14 Developer’'s Guide

Working with controls

Controls are visual components that the user can interact with at runtime. This
chapter describes a variety of features common to many controls.

Implementing drag and drop in controls

Drag-and-drop is often a convenient way for users to manipulate objects. You can let
users drag an entire control, or let them drag items from one control—such as a list
box or tree view— into another.

e Starting a drag operation

® Accepting dragged items

* Dropping items

¢ Ending a drag operation

* Customizing drag and drop with a drag object

Starting a drag operation

Every control has a property called DragMode that determines how drag operations
are initiated. If DragMode is dmAutomatic, dragging begins automatically when the
user presses a mouse button with the cursor on the control. Because dmAutomatic can
interfere with normal mouse activity, you may want to set DragMode to dmManual
(the default) and start the dragging by handling mouse-down events.

To start dragging a control manually, call the control’s BeginDrag method. BeginDrag
takes a Boolean parameter called Immediate and (optionally in Delphi) an integer
parameter called Threshold. If you pass true for Immediate, dragging begins
immediately. If you pass false, dragging does not begin until the user moves the
mouse the number of pixels specified by Threshold. In C++, if Threshold is -1, a default
value is used. Calling

Working with controls 7-1

Implementing drag and drop in controls

lj' BeginDrag (False, -1);
k- BeginDrag (false, -1);
allows the control to accept mouse clicks without beginning a drag operation.

You can place other conditions on whether to begin dragging, such as checking
which mouse button the user pressed, by testing the parameters of the mouse-down
event before calling BeginDrag. The following code, for example, handles a mouse-
down event in a file list box by initiating a drag operation only if the left mouse
button was pressed.

D Delphi example

procedure TFMForm.FileListBoxIMouseDown (Sender: TObject;
Button: TMouseButton; Shift: TShiftState; X, Y: Integer);
begin
if Button = mbLeft then { drag only if left button pressed }
with Sender as TFileListBox do { treat Sender as TFileListBox }
begin
if ItemAtPos(Point (X, Y), True) >= 0 then { is there an item here? }
BeginDrag(False); { if so, drag it }
end;
end;

EF+ C++ example
void __fastcall TFMForm::FileListBox1MouseDown (TObject *Sender,
TMouseButton Button, TShiftState Shift, int X, int Y)

{
if (Button == mbLeft)// drag only if left button pressed

{
TFileListBox *pLB = (TFileListBox *)Sender; // cast to TFileListBox
if (pLB->ItemAtPos(Point(X,Y), true) >= 0) // is there an item here?
pLB->BeginDrag (false, -1); // if so, drag it

Accepting dragged items

When the user drags something over a control, that control receives an OnDragOver
event, at which time it must indicate whether it can accept the item if the user drops it
there. The drag cursor changes to indicate whether the control can accept the
dragged item. To accept items dragged over a control, attach an event handler to the
control’s OnDragQOver event.

The drag-over event has a parameter called Accept that the event handler can set to
true if it will accept the item. If Accept is true, the application sends a drag-and-drop
event to the control.

The drag-over event has other parameters, including the source of the dragging and
the current location of the mouse cursor, that the event handler can use to determine
whether to accept the drop. In the following example, a directory tree view accepts
dragged items only if they come from a file list box.

7-2 Developer’s Guide

[w]

[w]

Implementing drag and drop in controls

Delphi example

procedure TFMForm.DirectoryOutlinelDragOver (Sender, Source: TObject; X,
Y: Integer; State: TDragState; var Accept: Boolean);
begin
if Source is TFileListBox then
Accept := True
else
Accept := False;
end;

C++ example

void __fastcall TForml::TreeViewlDragOver (TObject *Sender, TObject *Source,
int X, int Y, TDragState State, bool &Accept)
{

if (Source->InheritsFrom(__classid(TFileListBox)))
Accept = true;

Dropping items

If a control indicates that it can accept a dragged item, it needs to handle the item
should it be dropped. To handle dropped items, attach an event handler to the
OnDragDrop event of the control accepting the drop. Like the drag-over event, the
drag-and-drop event indicates the source of the dragged item and the coordinates of
the mouse cursor over the accepting control. The latter parameter allows you to
monitor the path an item takes while being dragged; you might, for example, want to
use this information to change the color of components as they are passed over.

In the following example, a directory tree view, accepting items dragged from a file
list box, responds by moving files to the directory on which they are dropped.

Delphi example

procedure TFMForm.DirectoryOutlinelDragDrop (Sender, Source: TObject; X,
Y: Integer);
begin
if Source is TFileListBox then
with DirectoryOutlinel do
ConfirmChange('Move', FileListBox1.FileName, Items[GetItem(X, Y)].FullPath);
end;

C++ example

void __fastcall TForml::TreeViewlDragDrop(TObject *Sender, TObject *Source,
int X, int Y){
if (Source->InheritsFrom(__classid(TFileListBox)))
{
TTreeNode *pNode = TreeViewl->GetNodeAt (X,Y); // pNode is drop target
AnsiString NewFile = pNode->Text + AnsiString("//") +
ExtractFileName (FileListBoxl->FileName); // build file name for drop target

Working with controls 7-3

Implementing drag and drop in controls

MoveFileEx (FileListBox1->FileName.c_str(), NewFile.c_str()
MOVEFILE_REPLACE_EXISTING | MOVEFILE_COPY_ALLOWED); // move the file

Ending a drag operation

A drag operation ends when the item is either successfully dropped or released over
a control that cannot accept it. At this point an end-drag event is sent to the control
from which the drag was initiated. To enable a control to respond when items have
been dragged from it, attach an event handler to the control’s OnEndDrag event.

The most important parameter in an OnEndDrag event is called Target, which
indicates which control, if any, accepts the drop. If Target is nil (Delphi) or NULL
(C++), it means no control accepts the dragged item. The OnEndDrag event also
includes the coordinates on the receiving control.

In this example, a file list box handles an end-drag event by refreshing its file list.

D Delphi example

procedure TFMForm.FileListBox1EndDrag (Sender, Target: TObject; X, Y: Integer);
begin

if Target <> nil then FileListBoxl.Update;
end;

Ee Ci+ example

void __fastcall TFMForm::FileListBoxl1EndDrag(TObject *Sender, TObject *Target, int X, int
Y)
if (Target)
FileListBoxl->Update();
}i

Customizing drag and drop with a drag object

You can use a TDragObject descendant to customize an object’s drag-and-drop
behavior. The standard drag-over and drag-and-drop events indicate the source of
the dragged item and the coordinates of the mouse cursor over the accepting control.
To get additional state information, derive a custom drag object from TDragObject
and override its virtual methods. Create the custom drag object in the OnStartDrag
event.

Normally, the source parameter of the drag-over and drag-and-drop events is the
control that starts the drag operation. If different kinds of control can start an
operation involving the same kind of data, the source needs to support each kind of
control. When you use a descendant of TDragObject, however, the source is the drag
object itself; if each control creates the same kind of drag object in its OnStartDrag
event, the target needs to handle only one kind of object. The drag-over and drag-
and-drop events can tell if the source is a drag object, as opposed to the control, by
calling the IsDragObject function.

7-4 Developer’s Guide

Working with text in controls
Drag objects let you drag items between a form implemented in the application’s

main executable file and a form implemented using a shared object or between forms
that are implemented using different shared objects.

Working with text in controls

The following sections explain how to use various features of edit and memo
controls. Some of these features work with edit controls as well.

Setting text alignment

Adding scroll bars at runtime
Adding the clipboard object
Selecting text

Selecting all text

Cutting, copying, and pasting text
Deleting selected text

Disabling menu items

Providing a pop-up menu
Handling the OnPopup event

Setting text alignment

In a rich edit or memo component, text can be left- or right-aligned or centered. To
change text alignment, set the edit component’s Alignment property. Alignment takes
effect only if the WordWrap property is true; if word wrapping is turned off, there is
no margin to align to. WordWrap turns wordwrapping on and off. When on, the
WrapMode, WrapBreak, and WrapAtValue properties allow fine-grain control on how
the wrapping is done.

You can also use the HMargin property to adjust the left and right margins in a memo
control.

D Delphi example

For example, in Delphi, the following code attaches an OnClick event handler to a
Character | Left menu item, then attaches the same event handler to both a
Character | Right and Character | Center menu items.

procedure TForml.AlignClick(Sender: TObject);
begin
Leftl.Checked := False; { clear all three checks }
Rightl.Checked := False;
Centerl.Checked := False;
with Sender as TMenultem do Checked := True; { check the item clicked }
with Editor do { then set Alignment to match }
if Leftl.Checked then
Alignment := talLeftJustify
else if Rightl.Checked then
Alignment := taRightJustify
else if Centerl.Checked then

Working with controls 7-5

Working with text in controls

[w]

[

Alignment := taCenter;
end;

C++ example

In C++, the following code sets the alignment depending on which toolbar button
(left aligned, right aligned, or center aligned) is chosen:

switch((int)Memol->Paragraph->Alignment)

{
case 0: LeftAlign->Down = true; break;
case 1: RightAlign->Down = true; break;
case 2: CenterAlign->Down = true; break;

}

Adding scroll bars at runtime

Rich edit and memo components can contain horizontal or vertical scroll bars, or
both, as needed. When word wrapping is enabled, the component needs only a
vertical scroll bar. If the user turns off word wrapping, the component might also
need a horizontal scroll bar, since text is not limited by the right side of the editor.

To add scroll bars at runtime:

1 Determine whether the text might exceed the right margin. In most cases, this
means checking whether word wrapping is enabled. You might also check
whether any text lines actually exceed the width of the control.

2 Set the rich edit or memo component’s ScrollBars property to include or exclude
scroll bars.

The following example attaches an OnClick event handler to a Character | WordWrap
menu item.

Delphi example

procedure TForml.WordWraplClick(Sender: TObject);
begin
with Editor do
begin
WordWrap := not WordWrap; { toggle word wrapping }
if WordwWrap then
ScrollBars := ssVertical { wrapped requires only vertical }

else
ScrollBars := ssBoth; { unwrapped might need both }
WordWrapl.Checked := WordWrap; { check menu item to match property }
end;
end;
C++ example

void __fastcall TForml::WordWraplClick(TObject *Sender)
{

7-6 Developer’s Guide

[w]

Working with text in controls

Editor->WordWrap = ! (Editor->WordWrap); // toggle word wrapping
if (Editor->WordWrap)

Editor->ScrollBars = ssVertical; // wrapped requires only vertical
else

Editor->ScrollBars = ssBoth; // unwrapped can need both

WordWrapl->Checked = Editor->WordWrap; // check menu item to match property
}

The rich edit and memo components handle their scroll bars in a slightly different
way. The rich edit component can hide its scroll bars if the text fits inside the bounds
of the component. The memo always shows scroll bars if they are enabled.

Adding the clipboard object

Most text-handling applications provide users with a way to move selected text
between documents, including documents in different applications. TClipboard in
encapsulates a clipboard and includes methods for cutting, copying, and pasting text
(and other formats, including graphics). TClipboard is declared in the QClipbrd unit.

To add the Clipboard object to an application in Delphi:
1 Select the unit that will use the clipboard.

2 Search for the implementation reserved word.

3 Add QClipbrd to the uses clause below implementation.

o If there is already a uses clause in the implementation part, add QClipbrd to the
end of it.

e If there is not already a uses clause, add one that says
uses (OClipbrd;

For example, in an application with a child window, the uses clause in the unit's
implementation part might look like this:

uses
MDIFrame, QClipbrd;

To add the Clipboard object to an application in C++:
1 Select the unit that will use the clipboard.
2 In the form’s .h file, add:

#include <clx\QClipbrd.hpp>

Selecting text

For text in an edit control, before you can send any text to the clipboard, that text
must be selected. Highlighting of selected text is built into the edit components.
When the user selects text, it appears highlighted.

Working with controls 7-7

Working with text in controls
Table 7.1 lists properties commonly used to handle selected text.

Table 7.1 Properties of selected text

Property Description

SelText Contains a string representing the selected text in the component.
SelLength Contains the length of a selected string.

SelStart Contains the starting position of a string relative to the beginning of

an edit control’s text buffer.

For example, the following OnFind event handler searches a Memo component for
the text specified in the FindText property of a find dialog component. If found, the
first occurrence of the text in Memol is selected.

D Delphi example

procedure TForml.FindDialoglFind(Sender: TObject);

var
I, J, PosReturn, SkipChars: Integer;
begin
for I := 0 to Memol.Lines.Count do
begin

PosReturn := Pos(FindDialogl.FindText,Memol.Lines[I]);

if PosReturn <> 0 then {found!}

begin
Skipchars := 0;
for J :=0toI-14do

Skipchars := Skipchars + Length(Memol.Lines[J]);

SkipChars := SkipChars + (I*2);
SkipChars := SkipChars + PosReturn - 1;
Memol.SetFocus;
Memol.SelStart := SkipChars;
Memol.SelLength := Length(FindDialogl.FindText);
Break;

end;

end;
end;

Selecting all text

The SelectAll method selects the entire contents of an edit control, such as a rich edit
or memo component. This is especially useful when the component’s contents exceed
the visible area of the component. In most other cases, users select text with either
keystrokes or mouse dragging.

To select the entire contents of a rich edit or memo control, call the Meniol control’s
SelectAll method.

D Delphi example

procedure TMainForm.SelectAll (Sender: TObject);

7-8 Developer’'s Guide

Working with text in controls

begin
Memol.SelectAll; { select all text in Memo }
end;

C++ example

void __fastcall TMainForm::SelectAll (TObject *Sender)

{
Memol->SelectAll(); // select all text in Memo
}

Cutting, copying, and pasting text

Applications that use the QClipbrd unit can cut, copy, and paste text, graphics, and
objects through the clipboard. The edit components that encapsulate the standard
text-handling controls all have methods built into them for interacting with the
clipboard. (See “Using the clipboard with graphics” on page 11-28 for information on
using the clipboard with graphics.)

To cut, copy, or paste text with the clipboard, call the edit component’s
CutToClipboard, CopyToClipboard, and PasteFromClipboard methods, respectively.

For example, the following code attaches event handlers to the OnClick events of the
Edit| Cut, Edit| Copy, and Edit | Paste commands, respectively:

Delphi example

procedure TForm.CutToClipboard(Sender: TObject);
begin

Editor.CutToClipboard;
end;
procedure TForm.CopyToClipboard(Sender: TObject);
begin

Editor.CopyToClipboard;
end;
procedure TForm.PasteFromClipboard(Sender: TObject);
begin

Editor.PasteFromClipboard;
end;

C++ example

void __fastcall TMainForm::EditCutClick(TObject* Sender)

{ Memol->CutToClipboard();

}

void __fastcall TMainForm::EditCopyClick(TObject* Sender)
{ Memol->CopyToClipboard();

}

void __fastcall TMainForm::EditPasteClick(TObject* Sender)
{ Memol->PasteFromClipboard();

}

Working with controls 7-9

Working with text in controls

Deleting selected text

You can delete the selected text in an edit component without cutting it to the
clipboard. To do so, call the ClearSelection method. For example, if you have a Delete
item on the Edit menu, your code could look like this:

D Delphi example

procedure TForml.Delete(Sender: TObject);
begin

Memol.ClearSelection;
end;

[w]

C++ example

void __fastcall TMainForm::EditDeleteClick(TObject *Sender)
{
Memol->ClearSelection();

}

Disabling menu items

It is often useful to disable menu commands without removing them from the menu.
For example, in a text editor, if there is no text currently selected, the Cut, Copy, and
Delete commands are inapplicable. An appropriate time to enable or disable menu
items is when the user selects the menu. To disable a menu item, set its Enabled
property to false.

In the following example, an event handler is attached to the OnClick event for the
Edit item on a child form’s menu bar. It sets Enabled for the Cut, Copy, and Delete
menu items on the Edit menu based on whether Menio1 has selected text. The Paste
command is enabled or disabled based on whether any text exists on the clipboard.

D Delphi example

procedure TForml.Editl1Click(Sender: TObject);

var

HasSelection: Boolean; { declare a temporary variable }
begin

Pastel.Enabled := Clipboard.Provides('text'); {Enable/disable paste menu item}
end;

E+ C++ example

void __fastcall TMainForm::EditEditClick(TObject *Sender)
{
// enable or disable the Paste menu item
Pastel->Enabled = Clipboard()->Provides(“text”);
bool HasSelection = (Memol->SelLength > 0); // true if text is selected
Cutl->Enabled = HasSelection; // enable menu items if HasSelection is true

7-10 Developer’'s Guide

Working with text in controls

Copyl->Enabled = HasSelection;
Deletel->Enabled = HasSelection;

}

The Provides method of the clipboard returns a Boolean value based on whether the
clipboard contains objects, text, or images of a particular format. (In this case, the text
is generic. You can specify the type of text using a subtype such as text/plain for
plain text or text/html for html.) By calling Provides with the parameter text, you can
determine whether the clipboard contains any text, and you can enable or disable the
Paste item as appropriate.

Chapter 11, “Working with graphics” provides more information about using the
clipboard with graphics.

Providing a pop-up menu

Pop-up, or local, menus are a common ease-of-use feature for any application. They
enable users to minimize mouse movement by clicking the right mouse button in the
application workspace to access a list of frequently used commands.

In a text editor application, for example, you can add a pop-up menu that repeats the
Cut, Copy, and Paste editing commands. These pop-up menu items can use the same
event handlers as the corresponding items on the Edit menu. You don’t need to
create accelerator or shortcut keys for pop-up menus because the corresponding
regular menu items generally already have shortcuts.

A form’s PopupMenu property specifies what pop-up menu to display when a user
right-clicks any item on the form. Individual controls also have PopupMenu
properties that can override the form’s property, allowing customized menus for
particular controls.

To add a pop-up menu to a form:
1 Place a pop-up menu component on the form.
2 Use the Menu Designer to define the items for the pop-up menu.

3 Set the PopupMenu property of the form or control that displays the menu to the
name of the pop-up menu component.

4 Attach handlers to the OnClick events of the pop-up menu items.

Handling the OnPopup event

You may want to adjust pop-up menu items before displaying the menu, just as you
may want to enable or disable items on a regular menu. With a regular menu, you
can handle the OnClick event for the item at the top of the menu, as described in
“Disabling menu items” on page 7-10.

With a pop-up menu, however, there is no top-level menu bar, so to prepare the pop-
up menu commands, you handle the event in the menu component itself. The pop-up
menu component provides an event just for this purpose, called OnPopup.

Working with controls 7-11

Adding graphics to controls

To adjust menu items on a pop-up menu before displaying them:

1 Select the pop-up menu component.
2 Attach an event handler to its OnPopup event.
3 Write code in the event handler to enable, disable, hide, or show menu items.

In the following code, the Edit1Click event handler described previously in
“Disabling menu items” on page 7-10 is attached to the pop-up menu component’s
OnPopup event. A line of code is added to Edit1Click for each item in the pop-up
menu.

D Delphi example

procedure TForml.Edit1Click(Sender: TObject);

var
HasSelection: Boolean;

begin
Pastel.Enabled := Clipboard.Provides(’text’);
Paste2.Enabled := Pastel.Enabled;{Add this line}
HasSelection := Editor.SelLength <> 0;
Cutl.Enabled := HasSelection;
Cut2.Enabled := HasSelection;{Add this line}
Copyl.Enabled := HasSelection;
Copy2.Enabled := HasSelection;{Add this line}
Deletel.Enabled := HasSelection;

end;

E+ C++ example

void __fastcall TMainForm::EditEditClick(TObject *Sender)
{
// enable or disable the Paste menu item
Pastel->Enabled = Clipboard()->Provides(’text’);
Paste2->Enabled = Pastel->Enabled; // add this line
bool HasSelection = (Memol->SelLength > 0); // true if text is selected
Cutl->Enabled = HasSelection; // enable menu items if HasSelection is true
Cut2->Enabled = HasSelection; // add this line
Copyl->Enabled = HasSelection;
Copy2->Enabled = HasSelection; // add this line
Deletel->Enabled = HasSelection;

Adding graphics to controls

Several controls let you customize the way the control is rendered. These include list
boxes, combo boxes, menus, headers, tab controls, list views, status bars, tree views,
and toolbars. Instead of using the standard method of drawing a control or its items,
the control’s owner (generally, the form) draws them at runtime. The most common
use for owner-draw controls is to provide graphics instead of, or in addition to, text
for items. For information on using owner-draw to add images to menus, see
“Adding images to menu items” on page 9-35.

7-12 Developer’s Guide

Adding graphics to controls

All owner-draw controls contain lists of items. Usually, those lists are lists of strings
that are displayed as text, or lists of objects that contain strings that are displayed as
text. You can associate an object with each item in the list to make it easy to use that
object when drawing items.

In general, creating an owner-draw control in the IDE involves these steps:

1 Indicating that a control is owner-drawn.
2 Adding graphical objects to a string list.
3 Drawing owner-draw items

Indicating that a control is owner-drawn

To customize the drawing of a control, you must supply event handlers that render
the control’s image when it needs to be painted. Some controls receive these events
automatically. For example, list views, tree views, and toolbars all receive events at
various stages in the drawing process without your having to set any properties.
These events have names such as OnCustomDraw or OnAdvancedCustomDraw.

Other controls, however, require you to set a property before they receive owner-
draw events. List boxes, combo boxes, header controls, and status bars have a
property called Style. Style determines whether the control uses the default drawing
(called the “standard” style) or owner drawing. Grids use a property called
DefaultDrawing to enable or disable the default drawing. List views and tab controls
have a property called OwnerDraw that enables or disabled the default drawing.

List boxes and combo boxes have additional owner-draw styles, called fixed and
variable, as Table 7.2 describes. Other controls are always fixed, although the size of
the item that contains the text may vary, the size of each item is determined before
drawing the control.

Table7.2 Fixed vs. variable owner-draw styles

Owner-draw style Meaning Examples

Fixed Each item is the same height, with that height [bOwnerDrawFixed,
determined by the ItemHeight property. csOwnerDrawFixed

Variable Each item might have a different height, IbOwnerDrawVariable,
determined by the data at runtime. csOwnerDrawVariable

Adding graphical objects to a string list

Every string list has the ability to hold a list of objects in addition to its list of strings.
You can also add graphical objects of varying sizes to a string list.

For example, in a file manager application, you may want to add bitmaps indicating
the type of drive along with the letter of the drive. To do that, you need to add the
bitmap images to the application, then copy those images into the proper places in
the string list as described in the following sections.

Working with controls 7-13

Adding graphics to controls

Note that you can also organize graphical objects using an image list by creating a
TImageList. However, these images must all be the same size. See “Adding images to
menu items” on page 6-27 for an example of setting up an image list.

Adding images to an application

An image control is a nonvisual control that contains a graphical image, such as a
bitmap. You use image controls to display graphical images on a form. You can also
use them to hold hidden images that you'll use in your application. For example, you
can store bitmaps for owner-draw controls in hidden image controls, like this:

1 Add image controls to the main form.

2 Set their Name properties.

3 Set the Visible property for each image control to false.

4 Set the Picture property of each image to the desired bitmap using the Picture
editor from the Object Inspector.

The image controls are invisible when you run the application. The image is stored
with the form so it doesn’t have to be loaded from a file at runtime.

Adding images to a string list

Once you have graphical images in an application, you can associate them with the

strings in a string list. You can either add the objects at the same time as the strings,

or associate objects with existing strings. The preferred method is to add objects and
strings at the same time, if all the needed data is available.

Sizing owner-draw items

Before giving your application the chance to draw each item in a variable owner-
draw control, a measure-item event, TMeasureltemEvent. The measure-item event
tells the application where the item appears on the control.

Kylix determines the size of the item (generally, it is just large enough to display the
item’s text in the current font). Your application can handle the event and change the
rectangle chosen. For example, if you plan to substitute a bitmap for the item’s text,
change the rectangle to the size of the bitmap. If you want a bitmap and text, adjust the
rectangle to be large enough for both.

To change the size of an owner-draw item, attach an event handler to the measure-
item event in the owner-draw control. Depending on the control, the name of the
event can vary.List boxes and combo boxes use OnMeasureltem. Grids have no
measure-item event.

The sizing event has two important parameters: the index number of the item and the
height of that item. The height is variable: the application can make it either smaller
or larger. The positions of subsequent items depend on the size of preceding items.

For example, in a variable owner-draw list box, if the application sets the height of
the first item to five pixels, the second item starts at the sixth pixel down from the
top, and so on. In list boxes and combo boxes, the only aspect of the item the

7-14 Developer’'s Guide

[

Note

Adding graphics to controls
application can alter is the height of the item. The width of the item is always the
width of the control.

Owner-draw grids cannot change the sizes of their cells as they draw. The size of
each row and column is set before drawing by the ColWidths and RowHeights
properties.

The following code, attached to the OnMeasureltem event of an owner-draw list box,
increases the height of each list item to accommodate its associated bitmap.

Delphi example

procedure TFMForm.DriveTabSetMeasureTab(Sender: TObject; Index: Integer;

var TabWidth: Integer); { note that TabWidth is a var parameter}
var

BitmapWidth: Integer;
begin

BitmapWidth := TBitmap (DriveTabSet.Tabs.Objects[Index]).Width;
{ increase tab width by the width of the associated bitmap plus two }
Inc (TabWidth, 2 + BitmapWidth);

end;
C++ example
void __fastcall TForml::ListBoxIMeasurelItem(TWinControl *Control, int Index,
int &Height) // note that Height is passed by reference
{
int BitmapHeight = ((TBitmap *)ListBoxl->Items->Objects[Index])->Height + 2;

// make sure list item has enough room for bitmap (plus 2)
if (BitmapHeight > Height)
Height = BitmapHeight;
}

You must typecast the items from the Objects property in the string list. Objects is a
property of type TObject so that it can hold any kind of object. When you retrieve
objects from the array, you need to typecast them back to the actual type of the items.

Drawing owner-draw items

When an application needs to draw or redraw an owner-draw control, the operating
system generates draw-item events for each visible item in the control. Depending on
the control, the item may also receive draw events for the item as a part of the item.

To draw each item in an owner-draw control, attach an event handler to the draw-
item event for that control.

The names of events for owner drawing typically start with one of the following;:
e OnDraw, such as OnDrawltem or OnDrawCell
e OnCustomDraw, such as OnCustomDrawltem

The draw-item event contains parameters identifying the item to draw, the rectangle
in which to draw, and usually some information about the state of the item (such as

Working with controls 7-15

whether the item has focus). The application handles each event by rendering the
appropriate item in the given rectangle.

For example, the following code shows how to draw items in a list box that has
bitmaps associated with each string. It attaches this handler to the OnDrawltem event
for the list box:

D Delphi example

procedure TFMForm.DriveTabSetDrawTab (Sender: TObject; TabCanvas: TCanvas;
R: TRect; Index: Integer; Selected: Boolean);
var
Bitmap: TBitmap;
begin
Bitmap := TBitmap (DriveTabSet.Tabs.Objects[Index]);
with TabCanvas do
begin
Draw(R.Left, R.Top + 4, Bitmap); { draw bitmap }
TextOut (R.Left + 2 + Bitmap.Width, { position text }
R.Top + 2, DriveTabSet.Tabs[Index]); { and draw it to the right of the
bitmap }
end;
end;

E+ C++ example

void __fastcall TForml::ListBox1DrawItem(TWinControl *Control, int Index,
TRect &Rect, TOwnerDrawState State)

TBitmap *Bitmap = (TBitmap *)ListBoxl->Items->Objects[Index];

ListBoxl->Canvas->Draw(R.Left, R.Top + 2, Bitmap); // draw the bitmap

ListBoxl->Canvas->TextOut (R.Left + Bitmap->Width + 2, R.Top + 2,
ListBoxl->Items->Strings[Index]); // and write the text to its right

7-16 Developer’'s Guide

Building applications and shared
objects

This chapter provides an overview of how to create applications and shared objects.

Creating applications

The main use of Kylix is designing and building the following types of applications:

¢ GUI applications
¢ Console applications

PackagesWorking with shared object librariesGUI applications generally have an
easy-to-use interface. Console applications run from a console window.

.GUI applications

A graphical user interface (GUI) application is one that is designed using graphical
features such as windows, menus, dialog boxes, and features that make the
application easy to use. When you compile a GUI application, an executable file with
start-up code is created. The executable usually provides the basic functionality of
your program, and simple programs often consist of only an executable file. You can
extend the application by calling shared objects, packages, and other support files
from the executable.

The IDE offers two application Ul models:

¢ Single document interface (SDI)
* Multiple document interface (MDI)

Any form can be implemented as a single document interface (SDI) or multiple
document interface (MDI) form. An SDI application normally contains a single

Building applications and shared objects 8-1

Creating applications

document view. In an MDI application, in contrast, more than one document or child
window can be opened within a single parent window. This is common in
applications such as spreadsheets or word processors.

For more information on developing the Ul for an application, see Chapter 9,
“Developing the application user interface.”

SDI applications

To create a new SDI application, choose File | New | Application.

By default, the FormStyle property of your Form object is set to fsNormal, so the IDE
assumes that all new applications are SDI applications.

MDI applications

To create a new MDI application using a wizard:

1 Choose File | New | Other to bring up the New Items dialog.

2 Click on the Projects page and double-click MDI Application.
3 Click OK.

MDI applications require more planning and are somewhat more complex to design
than SDI applications. MDI applications spawn child windows that reside within the
client window; the main form contains child forms. Set the FormStyle property of the
TForm object to specify whether a form is a child (fsMDIChild) or main form
(fsMDIForm). It is a good idea to define a base class for your child forms and derive
each child form from this class, to avoid having to reset the child form’s properties.

MDI applications often include a main menu that has items such as Cascade and Tile
for viewing multiple windows in various styles. When a child window is minimized,
its icon is located in the MDI parent form.

To create a new MDI application without using a wizard:

1 Create the main window form or MDI parent window. Set its FormStyle property
to fsMDIForm.

2 Create a menu for the main window that includes File | Open, File | Save, and
Window which has Cascade, Tile, and Arrange All items.

3 Create the MDI child forms and set their FormStyle properties to fsMDIChild.

Setting IDE, project, and compiler options

In addition to the implementation model of your applications, the design-time
behavior of your project and the runtime behavior of your application can be
manipulated by setting project options in the IDE. To specify various options for
your project, choose Project | Options

8-2 Developer’'s Guide

[w]

Creating applications

Setting default project options

To change the default options that apply to all future projects, set the options in the
Project Options dialog box and check the Default box at the bottom right of the
window. All new projects will use the current options selected by default.

For more information, see the online Help.

Programming templates

Programming templates are commonly used skeleton structures that you can add to
your source code and then fill in. Some standard code templates such as those for
array, class, and function declarations, and many statements, are included with
Kylix.

You can also write your own templates for coding structures that you often use. For
example, if you want to use a for loop in your code, you could insert the following
template:

Delphi example

for := to do
begin
end;

C++ example
for (; ;)

{
}

To insert a code template in the Code editor, press Cirl-j and select the template you
want to use. You can also add your own templates to this collection. To add a
template:

1 Choose Tools | Editor Options.

2 Click the Code Insight tab.

3 In the Templates section, click Add.
4

Type a name for the template after Shortcut name, enter a brief description of the
new template, and click OK.

Add the template code to the Code text box.
6 Click OK.

(2]

Console applications

Console applications are 32-bit programs that run without a graphical interface,
usually in a console window. These applications typically don’t require much user

Building applications and shared objects 8-3

Creating packages
input and perform a limited set of functions. When you create a new console
application, the IDE does not create a new form. Only the Code editor appears.
D To create a new console application in Delphi:

1 Choose File | New | Other and double-click Console Application from the New
Items dialog box.

[w]

To create a new console application in C++:

1 Choose File | New | Other and double-click Console Wizard from the New Items
dialog box.

2 In the Console Wizard dialog box, choose the source type (C or C++) for the main
module of the project, or check Specify project source and choose a pre-existing
file that contains a main function. Check the Console Application option to create
a console window; uncheck this option if you want to create a GUI application.

3 To add objects in C++, indicate that you will be using CLX by checking the Use
CLX option. If you do not indicate in the wizard that you want to use CLX, you
will not be able use any of the CLX classes in this application later. Trying to do so
causes linker errors. , and click the OK button.

In both Delphi and C++, the IDE creates a project file for this type of source file and
displays the Code editor. You can then add CLX objects to your console application.

Note When you create a new console application, the IDE does not create a new form.
Only the Code editor appears.

Console applications should handle all exceptions to prevent windows from
displaying a dialog during its execution.

D Delphi example

For example, in Delphi, your application should include exception handling such as
shown in the following code:

program Projectl;

{SAPPTYPE CONSOLE}

begin

try
raise exception.create('hi');
except

WriteLn('exception occurred');

end;

end.

Creating packages

Packages are special DLLs used by Galileo applications, the IDE, or both. There are
two kinds of packages: runtime packages and design-time packages. Runtime
packages provide functionality to a program while that program is running. Design-
time packages extend the functionality of the IDE.

8-4 Developer's Guide

Creatingpackages

For more information on packages, see Chapter 16, “Working with packages and
components.”

Working with shared object libraries

Shared object libraries on Linux are similar to Windows DLLs. You can link with
third-party shared objects using external function declarations, just as you would
with DLL functions under Windows.

The Linux program loader ignores module name bindings when resolving external
function references. If an application uses two .so libraries that both export a function
named MyLibrary, the loader binds all MyLibrary references to the first MyLibrary
function it finds. (The search order is described in the section on “Shared Object
Dependencies” in the ELF standard.) When naming conflicts are unavoidable, you
can prevent unintended behavior by loading objects dynamically with dlopen().

When you build a library project, the compiler generates a shared object (.so file)
instead of a regular executable. By default, the name of the generated file starts with
“lib” or “bpl” (for a package). For example, if your project file is called something, the
compiler generates a shared object called libsomething.so or bplsomething.so.

The following Delphi compiler directives can be placed in library project files:

Table 8.1 Delphi compiler directives for libraries

Compiler Directive Description

{$SONAME 'string'} Provides a symbolic link to the .so file.

{$SOPREFIX 'string'} Overrides the default ‘lib” or ‘bpl’ prefix in the output file name. For
example, you could specify {$SOPREFIX 'dcl'} for a design-time
package, or use {$SOPREFIX ' '} to eliminate the prefix entirely.

{$SOSUFFIX 'string'} Adds a specified suffix to the output file name before the .so extension.
For example, use {$SOSUFFIX '-2.1.3'} in something.pas to generate
libsomething-2.1.3.s0.

{$SOVERSION 'string’} Adds a second extension to the output file name after the .so extension.
For example, use {$SOVERSION '2.1.3'} in something.pas to generate
libsomething.so.2.1.3.

When to use shared objects and packages

For most applications, packages provide greater flexibility and are easier to create
than shared objects. However, there are several situations where shared objects
would be better suited to your projects than packages:

¢ Your code module will be called from non-Kylix applications.
* You are extending the functionality of a Web server.
* You are creating a code module for third-party developers.

However, if your application includes VisualCLX, you must use packages instead of
shared objects. Only packages can manage the startup and shut down of the Qt
shared libraries.

Building applications and shared objects 8-5

Using shared objects in C++

You cannot pass runtime type information (RTTI) across shared objects or from a
shared object to an executable. That’s because shared objects all maintain their own
symbol information. Packages share symbol information.

D m Delphi, if you need to pass a TStrings object from a shared object using an is or as
operator, you need to create a package rather than a shared object.

- Using shared objects in C++

A shared object can be used in a Kylix for C++ application just as it would be in any
C++ application.

To statically load a shared object when your C++ application is loaded, link the
import library file for that shared object into your C++ application at link time. To
add an import library to a Kylix for C++ application, choose Project | Add to Project
and select the .a file you want to add.

The exported functions of that shared object then become available for use by your
application. Prototype the shared object functions your application uses with the
__declspec (dllimport) modifier:

__declspec (dllimport) return_type Imported_function_name(parameters);

To dynamically load a shared object during the run of a Kylix application, include the
import library, just as you would for static loading, and set the delay load linker
option on the Project | Options | Advanced Linker tab.

- Creating C++ shared objects

To create shared objects in C++:

1 Choose File | New | Other to display the New Items dialog box.
2 Double-click the Shared Object Wizard icon.

3 Choose the Source type (C or C++) for the main module.

4

Click Use CLX to create a shared object containing CLX components. This option is
only available for C++ source modules.
See “Creating shared objects containing CLX components” on page 8-7.

5 If you want the shared object to be multi-threaded, check the Multi-threaded
option.
6 Click OK.

Exported functions in the code should be identified with the __declspec (dllexport)
modifier. For example, the following code is legal in the C++ compiler:

// myso.cpp

double dblValue(double);

double halfValue (double);

extern "C" __declspec(dllexport) double changeValue(double, bool);

8-6 Developer’'s Guide

Creating shared objects containing CLX components

double dblValue(double value)
{

return value * value;

}i

double halfValue (double value)
{

return value / 2.0;

}

double changeValue (double value, bool whichOp)

{
return whichOp ? dblValue(value) : halfValue(value);

}

In the code above, the function changeValue is exported, and therefore made available
to calling applications. The functions dblValue and halfValue are internal, and cannot
be called from outside of the shared object.

& Creating shared objects containing CLX components

One of the strengths of shared objects is that a shared object created with one
development tool can often be used by application written using a different
development tool. When your shared object contains CLX components (such as
forms) that are to be used by the calling application, you need to provide exported
interface routines that use standard calling conventions, avoid C++ name mangling,
and do not require the calling application to support the CLX libraries in order to
work. To create CLX components that can be exported, use runtime packages. For
more information, see Chapter 16, “Working with packages and components.”

- Linking shared objects in C++

You can set the linker options for your shared object on the Linker page of the Project
Options dialog. The default check box on this page also creates an import library for
your shared object. If compiling from the command line, invoke the linker
executable, ilinkwith the -Tpd switch. For example:
ilink /c /aa /Tpd borintso.o.o0 myso.00, myso.so, myso.map, libborcrtl.so libborstl.so
libborunwind.so libc.so libm.so

For more information about the different options for linking shared objects and using
them with other modules that are statically or dynamically linked to the runtime
library, see the online Help.

Building applications and shared objects 8-7

Writing database applications

Writing database applications

Note

One of Kylix’s strengths is its support for creating advanced database applications.
Kylix includes built-in tools that allow you to connect to InterBase, MySQL, or other
servers while providing transparent data sharing between applications.

Database applications are built from user interface elements, components that
represent database information (datasets), and components that connect to the
database information itself. Kylix supports two kinds of datasets:

¢ dbExpress
¢ Client

Different kinds of datasets connect to the underlying database information in
different ways. dbExpress provides fast access to database information, supports
cross-platform development, but does not include many data manipulation
functions. Client datasets can buffer data in memory but you can’t connect a client
dataset directly to a database server, because client datasets do not include any built-
in database access mechanism. Instead, you need to connect the client dataset to
another dataset that can handle data access.

See Part 11, “Developing database applications” in this manual for details on design
database applications. For an overview of the architecture, see “Database
architecture” on page 14-4. See “Deploying database applications” on page 18-4 for
deployment information.

Not all editions of Kylix include database support.

Distributing database applications

Kylix provides support for creating distributed database applications using a
coordinated set of components. Distributed database applications can be built on a
variety of communications protocols, including TCP/IP and SOAP.

For more information about building distributed database applications, see
Chapter 27, “Using Web Services to create multi-tiered database applications.”

Developing applications for the Internet

You can use Kylix to develop different types of applications for use on the Internet.
Most developers will want to use technologies such as Web Broker and WebSnap to
develop Web server applications that deliver Web content. Another Internet
technology called Web Services are applications that are callable by other programs
across the Internet in a language-neutral fashion. If you're developing APIs for
communicating over the Internet, you would use Web Services.

Web Broker provides the underlying architecture for both Web Snap and Web
Services. Web Broker’s framework is the basis for responding to HTTP messages.

The next section provides an overview of the latest Web server technologies.

8-8 Developer’'s Guide

Developing applications for the Internet

Creating Web server applications

Web server applications are applications that run on servers that deliver Web content
such as HTML Web pages or XML documents over the Internet. Examples of Web
server applications include those which control access to a Web site, generate
purchase orders, or respond to information requests.

You can create several different types of Web server applications using the following
Kylix technologies:

e Web Broker
* WebSnap
e Web Services

Creating Web Broker applications

You can use Web Broker to create Web server applications such as CGI applications
or dynamic-link libraries (shared objects). These Web server applications can contain
any nonvisual component. Components on the Internet page of the Component
palette enable you to create event handlers, programmatically construct HTML or
XML documents, and transfer them to the client.

To create a new Web server application using the Web Broker architecture, choose
File | New | Other and double-click the Web Server Application in the New Items
dialog box. Then select the Web server application type:

Table 8.2 Web server applications

Web server

application type Description

CGI Stand-alone CGI Web server applications are console applications that receive

executable requests from clients on standard input, process those requests, and
sends back the results to the server on standard output to be sent to the
client.
In Delphi, selecting this type of application adds the required entries to
the uses clause of the project file and adds the appropriate $APPTYPE
directive to the source.

Apache Shared Selecting this type of application sets up your project as a shared object.

Module (SO) Apache Web server applications are shared objects loaded by the Web

server. Information is passed to the shared object, processed, and
returned to the client by the Web server.

Web App Debugger Selecting this type of application sets up an environment for developing

Stand-alone and testing Web server applications. Web App Debugger applications

executable are executable files loaded by the Web server. This type of application is
not intended for deployment.

When writing cross-platform applications, you should select CGI stand-alone or
Apache Shared Module (SO) for Web server development. These are also the same
options you see when creating WebSnap and Web Service applications.

Building applications and shared objects 89

Using data modules

For more information on building Web server applications, see Chapter 29, “Creating
Internet server applications.”

Creating WebSnap applications

WebSnap provides a set of components and wizards for building advanced Web
servers that interact with Web browsers. WebSnap components generate HTML or
other MIME content for Web pages. WebSnap is for server-side development.
WebSnap cannot be used in cross-platform applications at this time.

To create a new WebSnap application, select File | New | Other and select the
WebSnap tab in the New Items dialog box. Choose WebSnap Application. Then
select the Web server application type (CGI, Win-CGI, Apache). See Table 8.2, “Web
server applications” for details.

For more information on WebSnap, see Chapter 31, “Creating Web server
applications using WebSnap.”

Creating Web Services applications

Web Services are self-contained modular applications that can be published and
invoked over a network (such as the World Wide Web). Web Services provide well-
defined interfaces that describe the services provided. You use Web Services to
produce or consume programmable services over the Internet using emerging
standards such as XML, XML Schema, SOAP (Simple Object Access Protocol), and
WSDL (Web Service Definition Language).

Web Services use SOAP, a standard lightweight protocol for exchanging information
in a distributed environment. It uses HI'TP as a communications protocol and XML
to encode remote procedure calls.

You can use Kylix to build servers to implement Web Services and clients that call on
those services. You can write clients for arbitrary servers to implement Web Services
that respond to SOAP messages, and Kylix servers to publish Web Services for use by
arbitrary clients.

Refer to Chapter 33, “Using Web Services” for more information on Web Services.

Using data modules

A data module is like a special form that contains nonvisual components. All the
components in a data module could be placed on ordinary forms alongside visual
controls. But if you plan on reusing groups of database and system objects, or if you
want to isolate the parts of your application that handle database connectivity and
business rules, then data modules provide a convenient organizational tool.

There are several types of data modules, including standard, remote, and Web
modules. Each type of data module serves a special purpose.

8-10 Developer’'s Guide

Using data modules

¢ Standard data modules are particularly useful for single- and two-tiered database
applications, but can be used to organize the nonvisual components in any
application. For more information, see “Creating and editing standard data
modules” on page 8-11.

* Remote data modules form the basis of an application server in a multi-tiered
database application. They are not available in all editions. In addition to holding
the nonvisual components in the application server, remote data modules expose
the interface that clients use to communicate with the application server. For more
information about using them, see “Adding a remote data module to an
application server project” on page 8-14.

* Web modules form the basis of Web server applications. In addition to holding the
components that create the content of HTTP response messages, they handle the
dispatching of HTTP messages from client applications. See Chapter 29, “Creating
Internet server applications” for more information about using Web modules.

Creating and editing standard data modules

To create a standard data module for a project, choose File | New | Data Module. The
IDE opens a data module container on the desktop, displays the unit file for the new
module in the Code editor, and adds the module to the current project.

At design time, a data module looks like a standard form with a white background
and no alignment grid. As with forms, you can place nonvisual components from the
Component palette onto a module, and edit their properties in the Object Inspector.
You can resize a data module to accommodate the components you add to it.

You can also right-click a module to display a context menu for it. The following
table summarizes the context menu options for a data module.

Table 8.3 Context menu options for data modules

Menu item Purpose

Edit Displays a context menu with which you can cut, copy, paste,
delete, and select the components in the data module.

Position Aligns nonvisual components to the module’s invisible grid
(Align To Grid) or according to criteria you supply in the
Alignment dialog box (Align).

Tab Order Enables you to change the order that the focus jumps from
component to component when you press the tab key.

Creation Order Enables you to change the order that data access components are
created at start-up.

Revert to Inherited Discards changes made to a module inherited from another
module in the Object Repository, and reverts to the originally
inherited module.

Add to Repository Stores a link to the data module in the Object Repository.
View as Text Displays the text representation of the data module’s properties.
Text DFM Toggles between the formats (binary or text) in which this

particular form file is saved.

Building applications and shared objects 8-11

Using data modules

For more information about data modules, see the online Help.

Naming a data module and its unit file

The title bar of a data module displays the module’s name. The default name for a
data module is “DataModuleN” where N is a number representing the lowest
unused unit number in a project. For example, if you start a new project, and add a
module to it before doing any other application building, the name of the module
defaults to “DataModule2.” The corresponding unit file for DataModule2 defaults to
“Unit2.”

You should rename your data modules and their corresponding unit files at design
time to make them more descriptive. You should especially rename data modules
you add to the Object Repository to avoid name conflicts with other data modules in
the Repository or in applications that use your modules.

To rename a data module:
1 Select the module.
2 Edit the Name property for the module in the Object Inspector.

The new name for the module appears in the title bar when the Name property in the
Object Inspector no longer has focus.

Changing the name of a data module at design time changes its variable name in the
interface section of code. It also changes any use of the type name in procedure
declarations. You must manually change any references to the data module in code
you write.

To rename a unit file for a data module:

1 Select the unit file.

Placing and naming components

You place nonvisual components in a data module just as you place visual
components on a form. Click the desired component on the appropriate page of the
Component palette, then click in the data module to place the component. You
cannot place visual controls, such as grids, on a data module. If you attempt it, you
receive an error message.

For ease of use, components are displayed with their names in a data module. When
you first place a component, Kylix assigns it a generic name that identifies what kind
of component it is, followed by a 1. For example, the TDataSource component adopts
the name DataSourcel. This makes it easy to select specific components whose
properties and methods you want to work with.

You may still want to name a component a different name that reflects the type of
component and what it is used for.

To change the name of a component in a data module:

1 Select the component.
2 Edit the component’s Name property in the Object Inspector.

8-12 Developer’'s Guide

Using data modules

The new name for the component appears under its icon in the data module as soon
as the Name property in the Object Inspector no longer has focus.

For example, suppose your database application uses the CUSTOMER table. To
access the table, you need a minimum of two data access components: a data source
component (TDataSource) and a table component (TClientDataSet). When you place
these components in your data module, Kylix assigns them the names DataSourcel
and ClientDataSet1. To reflect the type of component and the database they access,
CUSTOMER, you could change these names to CustomerSource and CustomerTable.

Using component properties and events in a data module

Placing components in a data module centralizes their behavior for your entire
application. For example, you can use the properties of dataset components, such as
TClientDataSet, to control the data available to the data source components that use
those datasets. Setting the ReadOnly property to true for a dataset prevents users
from editing the data they see in a data-aware visual control on a form. You can also
invoke the Fields editor for a dataset, by double-clicking on ClientDataSet1, to restrict
the fields within a table or query that are available to a data source and therefore to
the data-aware controls on forms. The properties you set for components in a data
module apply consistently to all forms in your application that use the module.

In addition to properties, you can write event handlers for components. For example,
a TDataSource component has three possible events: OnDataChange, OnStateChange,
and OnUpdateData. A TClientDataSet component has over 20 potential events. You
can use these events to create a consistent set of business rules that govern data
manipulation throughout your application.

Creating business rules in a data module

Besides writing event handlers for the components in a data module, you can code
methods directly in the unit file for a data module. These methods can be applied to
the forms that use the data module as business rules. For example, you might write a
procedure to perform month-, quarter-, or year-end bookkeeping. You might call the
procedure from an event handler for a component in the data module.

Delphi example

In Delphi, the prototypes for the procedures and functions you write for a data
module should appear in the module’s type declaration:

type
TCustomerData = class(TDataModule)
Customers: TClientDataSet;
Orders: TClientDataSet;

private

{ Private declarations }
public

{ Public declarations }

procedure LineltemsCalcFields(DataSet: TDataSet); { A procedure you add }
end;

Building applications and shared objects 8-13

Using data modules

var
CustomerData: TCustomerData;

The procedures and functions you write in Delphi should follow in the
implementation section of the code for the module.

Accessing a data module from a form

To associate visual controls on a form with a data module, you must first add the
data module to the form’s uses clause (Delphi) or the data module’s header file to the
form’s cpp file (C++). You can do this in several ways:

¢ In the Code editor, open the form’s unit file and add the name of the data module
to the uses clause in the interface section (Delphi) or include the data module’s
header file using the #include directive (C++).

¢ (Click the form’s unit file, choose File | Use Unit (in the Delphi IDE) or File | Include
Unit Hdr (in the C++ IDE), and enter the name of the module or pick it from the
list box in the Use Unit dialog.

¢ For database components, in the data module click a dataset or query component
to open the Fields editor and drag any existing fields from the editor onto the
form. Kylix prompts you to confirm that you want to add the module to the form
(in the uses clause in Delphi), then creates controls (such as edit boxes) for the
fields.

For example, if you've added the TClientDataSet component to your data module,
double-click it to open the Fields editor. Select a field and drag it to the form. An edit
box component appears.

Because the data source is not yet defined, the IDE adds a new data source
component, DataSourcel, to the form and sets the edit box’s DataSource property to
DataSourcel. The data source automatically sets its DataSet property to the dataset
component, ClientDataSet1, in the data module.

You can define the data source before you drag a field to the form by adding a
TDataSource component to the data module. Set the data source’s DataSet property to
ClientDataSet1. After you drag a field to the form, the edit box appears with its
TDataSource property already set to DataSourcel. This method keeps your data access
model cleaner.

Adding a remote data module to an application server project

Some editions of Kylix allow you to add remote data modules to application server
projects. A remote data module has an interface that clients in a multi-tiered
application can access across networks.

To add a remote data module to a project:
1 Choose File | New | Other.
2 Select the Multitier page in the New Items dialog box.

8-14 Developer’'s Guide

Using the Object Repository
3 Double-click the Remote Data Module icon to open the Remote Data Module
wizard.

Once you add a remote data module to a project, use it just like a standard data
module.

For more information about multi-tiered database applications, see Chapter 27,
“Using Web Services to create multi-tiered database applications.”

Using the Object Repository

The Object Repository (Tools | Repository) makes it easy share forms, dialog boxes,
frames, and data modules. It also provides templates for new projects and wizards
that guide the user through the creation of forms and projects. The Repository is
maintained in the delphi69dro (the Delphi IDE) or bcb69dro (the C++ IDE) file (by
default in the .borland directory), a text file that contains references to the items that
appear in the Repository and New Items dialogs.

Sharing items within a project

You can share items within a project without adding them to the Object Repository.
When you open the New Items dialog box (File | New | Other), you'll see a page tab
with the name of the current project. This page lists all the forms, dialog boxes, and
data modules in the project. You can derive a new item from an existing item and
customize it as needed.

Adding items to the Object Repository

You can add your own projects, forms, frames, and data modules to those already
available in the Object Repository. To add an item to the Object Repository,

1 If the item is a project or is in a project, open the project.

2 For a project, choose Project | Add To Repository. For a form or data module, right-
click the item and choose Add To Repository.

3 Type a description, title, and author.

4 Decide which page you want the item to appear on in the New Items dialog box,
then type the name of the page or select it from the Page combo box. If you type
the name of a page that doesn’t exist, Kylix creates a new page.

5 Choose Browse to select an icon to represent the object in the Object Repository.
6 Choose OK.

Building applications and shared objects 8-15

Using the Object Repository

Note

Sharing objects in a team environment

You can share objects with your workgroup or development team by making a
repository available over a network. To use a shared repository, all team members
must select the same Shared Repository directory in the Environment Options dialog:

1 Choose Tools | Environment Options.

2 On the Preferences page, locate the Shared Repository panel. In the Directory edit
box, enter the directory where you want to locate the shared repository. Be sure to
specify a directory that’s accessible to all team members.

The first time an item is added to the repository, Kylix creates a delphi69dro (Delphi)
or bcb69dro (C++) file in the Shared Repository directory if one doesn’t exist already.

It is important that the access permissions on the Object Repository directory
(objrepos) are set up correctly on the because if the user does not have write
permissions to the directory, they cannot add items to it. Therefore, if you want
multiple users to access a common Object Repository, you should create a group and
give its members read-write access to the objrepos directory. For example, if you
name the group "dev," you would set the permissions on the command line by
entering:

cd <install directory>

chmod -R 775 objrepos

chgrp -R dev objrepos

See the group(5) man page for more information.

Using an Object Repository item in a project

To access items in the Object Repository, choose File | New | Other. The New Items
dialog appears, showing all the items available. Depending on the type of item you
want to use, you have up to three options for adding the item to your project:

e Copy
¢ Inherit
e Use

Copying an item

Choose Copy to make an exact copy of the selected item and add the copy to your
project. Future changes made to the item in the Object Repository will not be
reflected in your copy, and alterations made to your copy will not affect the original
Object Repository item.

Copy is the only option available for project templates.

Inheriting an item

Choose Inherit to derive a new class from the selected item in the Object Repository
and add the new class to your project. When you recompile your project, any changes
that have been made to the item in the Object Repository will be reflected in your

8-16 Developer’'s Guide

Using the Object Repository
derived class, in addition to changes you make to the item in your project. Changes
made to your derived class do not affect the shared item in the Object Repository.

Inherit is available for forms, dialog boxes, and data modules, but not for project
templates. It is the only option available for reusing items within the same project.

Using an item

Choose Use when you want the selected item itself to become part of your project.
Changes made to the item in your project will appear in all other projects that have
added the item with the Inherit or Use option. Select this option with caution.

The Use option is available for forms, dialog boxes, and data modules.

Using project templates

Templates are predesigned projects that you can use as starting points for your own
work. To create a new project from a template:

1 Choose File | New | Other to display the New Items dialog box.

2 Choose the Projects tab.

3 Select the project template you want and choose OK.

4 In the Select Directory dialog, specify a directory for the new project’s files.

Kylix copies the template files to the specified directory, where you can modify them.
The original project template is unaffected by your changes.

Modifying shared items

If you modify an item in the Object Repository, your changes will affect all future
projects that use the item as well as existing projects that have added the item with
the Use or Inherit option. To avoid propagating changes to other projects, you have
several alternatives:

* Copy the item and modify it in your current project only.

* Copy the item to the current project, modify it, then add it to the Repository under
a different name.

¢ Create a component, shared object, component template, or frame from the item. If
you create a component or shared object, you can share it with other developers.

Specifying a default project, new form, and main form

By default, when you choose File | New | Application or File | New | Form, Kylix
displays a blank form. You can change this behavior by reconfiguring the Repository:

1 Choose Tools | Repository.

2 If you want to specify a default project, select the Projects page and choose an item
under Objects. Then select the New Project check box.

Building applications and shared objects 8-17

Enabling Help in applications

3 If you want to specify a default form, select a Repository page (such as Forms),
them choose a form under Objects. To specify the default new form (File | New |
Form), select the New Form check box. To specify the default main form for new
projects, select the Main Form check box.

4 Click OK.

Enabling Help in applications

CLX supports displaying Help from applications using an object-based mechanism
that allows Help requests to be passed on to one of multiple external Help viewers
(such as Man, Info, and HyperHelp). To support this, an application must include a
class that implements the ICustomHelpViewer interface (and, optionally, one of
several interfaces descended from it), and registers itself with the global Help
Manager.

The Help Manager maintains a list of registered viewers and passes requests to them
in a two-phase process: it first asks each viewer if it can provide support for a
particular Help keyword or context, and then it passes the Help request on to the
viewer which says it can provide such support.

If more than one viewer supports the keyword, as would be the case in an
application that had registered viewers for both WinHelp and HyperHelp on
Windows or Man and Info on Linux, the Help Manager can display a selection box
through which the user of the application can determine which Help viewer to
invoke. Otherwise, it displays the first responding Help system encountered.

Help system interfaces

The Help system allows communication between your application and Help viewers
through a series of interfaces. These interfaces are all defined in the HelpIntfs unit,
which also contains the implementation of the Help Manager.

ICustomHelpViewer provides support for displaying Help based upon a provided
keyword and for displaying a table of contents listing all Help available in a
particular viewer.

IExtendedHelpViewer provides support for displaying Help based upon a numeric
Help context and for displaying topics; in most Help systems, topics function as
high-level keywords (for example, “IntToStr” might be a keyword in the Help
system, but “String manipulation routines” could be the name of a topic).

ISpecialWinHelpViewer provides support for responding to specialized WinHelp
messages that an application running under Windows may receive and which are
not easily generalizable. In general, only applications operating in the Windows
environment need to implement this interface, and even then it is only required for
applications that make extensive use of non-standard WinHelp messages.

8-18 Developer’'s Guide

Enabling Help in applications

IHelpManager provides a mechanism for the Help viewer to communicate back to the
application’s Help Manager and request additional information. IHelpManager is
obtained at the time the Help viewer registers itself.

IHelpSystem provides a mechanism through which TApplication passes Help requests
on to the Help system. TApplication obtains an instance of an object which
implements both IHelpSystem and IHelpManager at application load time and exports
that instance as a property; this allows other code within the application to file Help
requests directly when appropriate.

IHelpSelector provides a mechanism through which the Help system can invoke the
user interface to ask which Help viewer should be used in cases where more than one
viewer is capable of handling a Help request, and to display a Table of Contents. This
display capability is not built into the Help Manager directly to allow the Help
Manager code to be identical regardless of which widget set or class library is in use.

Implementing ICustomHelpViewer

The ICustomHelpViewer interface contains three types of methods: methods used to
communicate system-level information (for example, information not related to a
particular Help request) with the Help Manager; methods related to showing Help
based upon a keyword provided by the Help Manager; and methods for displaying a
table of contents.

Communicating with the Help Manager

ICustomHelpViewer provides four functions that can be used to communicate system
information with the Help Manager:

e GetViewerName
* NotifylD

e ShutDown

* SoftShutDown

The Help Manager calls through these functions in the following circumstances:

* GetViewerName is called when the Help Manager wants to know the name of the
viewer (for example, if the application is asked to display a list of all registered
viewers). This information is returned via a string, and is required to be logically
static (that is, it cannot change during the operation of the application). Multibyte
character sets are not supported.

* NotifylD is called immediately following registration to provide the viewer with a
unique cookie that identifies it. This information must be stored off for later use; if
the viewer shuts down on its own (as opposed to in response to a notification from
the Help Manager), it must provide the Help Manager with the identifying cookie
so that the Help Manager can release all references to the viewer. (Failing to
provide the cookie, or providing the wrong one, causes the Help Manager to
potentially release references to the wrong viewer.)

Building applications and shared objects 8-19

Enabling Help in applications

* ShutDown is called by the Help Manager to notify the Help viewer that the
Manager is shutting down and that any resources the Help viewer has allocated
should be freed. It is recommended that all resource freeing be delegated to this
method.

* SoftShutDown is called by the Help Manager to ask the Help viewer to close any
externally visible manifestations of the Help system (for example, windows
displaying Help information) without unloading the viewer.

Asking the Help Manager for information

Help viewers communicate with the Help Manager through the IHelpManager
interface, an instance of which is returned to them when they register with the Help
Manager. IHelpManager allows the Help viewer to communicate four things:

* A request for the window handle of the currently active control.

* A request for the name of the Help file which the Help Manager believes should
contain help for the currently active control.

* A request for the path to that Help file.

* A notification that the Help viewer is shutting itself down in response to
something other than a request from the Help Manager that it do so.

GetHandle is called by the Help viewer if it needs to know the handle of the currently
active control; the result is a window handle.

GetHandle is called by the Help viewer if it wishes to know the name of the Help file
which the currently active control believes contains its help.

Release is called to notify the Help Manager when a Help viewer is disconnecting. It
should never be called in response to a request through ShutDown; it is only used to
notify the Help Manager of unexpected disconnects.

Displaying keyword-based Help

Help requests typically come through to the Help viewer as either keyword-based
Help, in which case the viewer is asked to provide help based upon a particular

string, or as context-based Help, in which case the viewer is asked to provide help
based upon a particular numeric identifier.

Numeric help contexts are the default form of Help requests in applications running
under Windows, which use the WinHelp system; while CLX supports them, they are
not recommended for use in Linux applications because most Linux Help systems do
not understand them.

ICustomHelpViewer implementations are required to provide support for keyword-
based Help requests, while IExtendedHelpViewer implementations are required to
support context-based Help requests.

ICustomHelpViewer provides three methods for handling keyword-based Help:

¢ UnderstandsKeyword
* GetHelpStrings

8-20 Developer’'s Guide

[w]

[w]

Enabling Help in applications

* ShowHelp
ICustomHelpViewer.UnderstandsKeyword (const HelpString: String): Integer
int__fastcall ICustomHelpViewer::UnderstandsKeyword(const AnsiString HelpString)

++

[1r:::

is the first of the three methods called by the Help Manager, which will call each
registered Help viewer with the same string to ask if the viewer provides help for
that string; the viewer is expected to respond with an integer indicating how many
different Help pages it can display in response to that Help request. The viewer can
use any method it wants to determine this — inside the IDE, the HyperHelp viewer
maintains its own index and searches it. If the viewer does not support help on this
keyword, it should return zero. Negative numbers are currently interpreted as
meaning zero, but this behavior is not guaranteed in future releases.

(-

ICustomHelpViewer.GetHelpStrings (const HelpString: String): TStringList

Classes::TStringList*__fastcall ICustomHelpViewer::GetHelpStrings(const AnsiString
HelpString)

is called by the Help Manager if more than one viewer can provide Help on a topic.
The viewer is expected to return a T'StringList. The strings in the returned list should
map to the pages available for that keyword, but the characteristics of that mapping
can be determined by the viewer. In the case of the HyperHelp viewer on Linux, the
string list always contains exactly one entry. HyperHelp provides its own indexing,
and duplicating that elsewhere would be pointless duplication. In the case of the
Man page viewer (Linux), the string list consists of multiple strings, one for each
section of the manual which contains a page for that keyword.

o

ICustomHelpViewer.ShowHelp (const HelpString: String)
void__fastcall ICustomHelpViewer::ShowHelp (const AnsiString HelpString)

is called by the Help Manager if it needs the Help viewer to display help for a
particular keyword. This is the last method call in the operation; it is guaranteed to
never be called unless the UnderstandsKeyword method is invoked first.

Displaying tables of contents

ICustomHelpViewer provides two methods relating to displaying tables of contents:

* CanShowTableOfContents
* ShowTableOfContents

The theory behind their operation is similar to the operation of the keyword Help
request functions: the Help Manager first queries all Help viewers by calling the
CanShowTableOfContents method and then invokes a particular Help viewer by
calling the ShowTableOfContents method.

It is reasonable for a particular viewer to refuse to allow requests to support a table of
contents. The Man page viewer does this, for example, because the concept of a table
of contents does not map well to the way Man pages work; the HyperHelp viewer
supports a table of contents, on the other hand, by passing the request to display a
table of contents directly to HyperHelp. It is not reasonable, however, for an
implementation of ICustomHelpViewer to respond to queries through

Building applications and shared objects 8-21

Enabling Help in applications

[w]

o

[w]

o

[w]

CanShowTableOfContents with the answer true, and then ignore requests through
ShowTableOfContents.

Implementing IExtendedHelpViewer

ICustomHelpViewer only provides direct support for keyword-based Help. Some
Help systems (especially WinHelp) work by associating numbers (known as context
IDs) with keywords in a fashion which is internal to the Help system and therefore
not visible to the application. Such systems require that the application support
context-based Help in which the application invokes the Help system with that
context, rather than with a string, and the Help system translates the number itself.

Applications written in CLX can talk to systems requiring context-based Help by
extending the object that implements ICustomHelpViewer to also implement
IExtendedHelpViewer. IExtendedHelpViewer also provides support for talking to Help
systems that allow you to jump directly to high-level topics instead of using keyword
searches.

IExtendedHelpViewer exposes four functions. Two of them—UnderstandsContext and
DisplayHelpByContext—are used to support context-based Help; the other two—
UnderstandsTopic and DisplayTopic—are used to support topics.

When an application user presses F1, the Help Manager calls
IExtendedHelpViewer.UnderstandsContext (const ContextID: Integer;
const HelpFileName: String): Boolean

int__fastcall IExtendedHelpViewer::UnderstandsContext (const int ContextID, AnsiString
HelpFileName)

and the currently activated control supports context-based, rather than keyword-
based Help. As with the ICustomHelpViewer’s UnderstandsKeyword method, the Help
Manager queries all registered Help viewers iteratively. Unlike the case with
UnderstandsKeyword, however, if more than one viewer supports a specified context,
the first registered viewer with support for a given context is invoked.

The Help Manager calls

IExtendedHelpViewer.DisplayHelpByContext (const ContextID: Integer;

const HelpFileName: String)

void__fastcall IExtendedHelpViewer::DisplayHelpByContext (const int ContextID, AnsiString
HelpFileName)

after it has polled the registered Help viewers.

The topic support functions work the same way:
IExtendedHelpViewer.UnderstandsTopic (const Topic: String): Boolean
bool__fastcall IExtendedHelpViewer::UnderstandsTopic (const AnsiString Topic)

is used to poll the Help viewers asking if they support a topic;
IExtendedHelpViewer.DisplayTopic (const Topic: String)

void__fastcall IExtendedHelpViewer::DisplayTopic(const AnsiString Topic)

8-22 Developer’'s Guide

Note

Enabling Help in applications

is used to invoke the first registered viewer which reports that it is able to provide
help for that topic.

Implementing IHelpSelector

[HelpSelector is a companion to ICustomHelpViewer. When more than one registered
viewer claims to provide support for a given keyword, context, or topic, or provides
a table of contents, the Help Manager must choose between them. In the case of
contexts or topics, the Help Manager always selects the first Help viewer that claims
to provide support. In the case of keywords or the table of context, the Help Manager
will, by default, select the first Help viewer. This behavior can be overridden by an
application.

To override the decision of the Help Manager in such cases, an application must
register a class that provides an implementation of the IHelpSelector interface.
IHelpSelector exports two functions: SelectKeyword, and TableOfContents. Both take as
arguments a TStrings containing, one by one, either the possible keyword matches or
the names of the viewers claiming to provide a table of contents. The implementor is
required to return the index (in the T'StringList) that represents the selected string.

The Help Manager may get confused if the strings are rearranged; it is recommended
that implementors of IHelpSelector refrain from doing this. The Help system only
supports one HelpSelector; when new selectors are registered, any previously
existing selectors are disconnected.

Registering Help system objects

For the Help Manager to communicate with them, objects that implement
ICustomHelpViewer, IExtendedHelpViewer, ISpecial WinHelpViewer, and [HelpSelector
must register with the Help Manager.

To register Help system objects with the Help Manager, you need to:

¢ Register the Help viewer.
¢ Register the Help Selector.

Registering Help viewers

The unit that contains the object implementation must use HelpIntfs. An instance of
the object must be declared in the var section (Delphi) header file (C++) of the
implementing unit.

In Delphi, the initialization section of the implementing unit must assign the instance
variable and pass it to the function RegisterViewer. In C++, the implementing unit
must include a pragma startup directive that calls a method that assigns the instance
variable and passes it to the function RegisterViewer. RegisterViewer is a flat function
exported by the HelpIntfs.unit, which takes as an argument an ICustomHelpViewer
and returns an IHelpManager. The IHelpManager should be stored for future use.

Building applications and shared objects 8-23

Using Help in a cross-platform application

[
=

Note

o

[w]

C++ example

In C++, the corresponding .cpp file contains the code to register the interface. For the
interface described above, this registration code looks like the following:

void InitServices()
{
THelpImplementor GlobalClass;
Global = dynamic_cast<ICustomHelpViewer*>(GlobalClass);
Global->AddRef;
HelpIntfs::RegisterViewer (Global, GlobalClass->Manager);
}
#pragma startup InitServices
In C++, the Help Manager object must be freed in the destructor for the GlobalClass
object if it has not already been freed.

Registering Help selectors

The unit that contains the object implementation must use QForms. An instance of
the object must be declared in the var section (Delphi) or .cpp file (C++) of the
implementing unit.

The implementing unit (in Delphi, the initialization section) must register the Help
selector through the HelpSystem property of the global Application object:

Application.HelpSystem.AssignHelpSelector (myHelpSelectorInstance)
Application->HelpSystem->AssignHelpSelector (myHelpSelectorInstance)

This procedure does not return a value.

Using Help in a cross-platform application

The following sections explain how to use Help within a cross-platform application.

* How TApplication processes cross-platform Help
¢ How cross-platform controls process Help

¢ Calling a Help system directly
¢ Using IHelpSystem

How TApplication processes cross-platform Help

TApplication in CLX provides two methods that are accessible from application code:
* ContextHelp, which invokes the Help system with a request for context-based Help

* KeywordHelp, which invokes the Help system with a request for keyword-based
Help

Both functions take as an argument the context or keyword being passed and
forward the request on through a data member of TApplication, which represents the
Help system. That data member is directly accessible through the read-only property
HelpSystem.

8-24 Developer’'s Guide

Calling a Help system directly

How cross-platform controls process Help

All controls that derive from TControl expose four properties which are used by the
Help system: HelpType, HelpFile, HelpContext, and HelpKeyword. HelpFile is supposed
to contain the name of the file in which the control’s help is located; if the help is
located in an external Help system that does not care about file names (say, for
example, the Man page system), then the property should be left blank.

The HelpType property contains an instance of an enumerated type which determines
if the control’s designer expects help to be provided via keyword-based Help or
context-based Help; the other two properties are linked to it. If the HelpType is set to
htKeyword, then the Help system expects the control to use keyword-based Help, and
the Help system only looks at the contents of the HelpKeyword property. Conversely,
if the HelpType is set to htContext, the Help system expects the control to use context-
based Help and only looks at the contents of the HelpContext property.

In addition to the properties, controls expose a single method, InvokeHelp, which can
be called to pass a request to the Help system. It takes no parameters and calls the
methods in the global Application object, which correspond to the type of help the
control supports.

Help messages are automatically invoked when F1 is pressed because the KeyDown
method of TWidgetControl calls InvokeHelp.

Calling a Help system directly

For additional Help system functionality not provided by CLX, TApplication provides
a read-only property that allows direct access to the Help system. This property is an
instance of an implementation of the interface IHelpSystem. [HelpSystem and
IHelpManager are implemented by the same object, but one interface is used to allow
the application to talk to the Help Manager, and one is used to allow the Help
viewers to talk to the Help Manager.

Using IHelpSystem

IHelpSystem allows a cross-platform application to do three things:
¢ Provides path information to the Help Manager.

¢ Provides a new Help selector.

¢ Asks the Help Manager to display Help.

Providing path information is important because the Help Manager is platform-
independent and Help system-independent and so is not able to ascertain the
location of Help files. If an application expects help to be provided by an external
Help system that is not able to ascertain file locations itself, it must provide this
information through the IHelpSystem’s ProvideHelpPath method, which allows the

Building applications and shared objects 8-25

Customizing the IDE Help system

information to become available through the IHelpManager’s GetHelpPath method.
(This information propagates outward only if the Help viewer asks for it.)

Assigning a Help selector allows the Help Manager to delegate decision-making in
cases where multiple external Help systems can provide Help for the same keyword.
For more information, see “Implementing IHelpSelector” on page 8-23.

IHelpSystem exports four procedures and one function to request the Help Manager
to display Help:

ShowHelp
ShowContextHelp
ShowTopicHelp
ShowTableOfContents
Hook

Hook is intended entirely for WinHelp compatibility and should not be used in a
Linux-only application; it allows processing of WM_HELP messages that cannot be
mapped directly onto requests for keyword-based, context-based, or topic-based
Help. The other methods each take two arguments: the keyword, context ID, or topic
for which help is being requested, and the Help file in which it is expected that help
can be found.

In general, unless you are asking for topic-based help, it is equally effective and more
clear to pass help requests to the Help Manager through the InvokeHelp method of
your control.

Customizing the IDE Help system

The IDE supports multiple Help viewers in exactly the same way that a CLX
application does: it delegates Help requests to the Help Manager, which forwards
them to registered Help viewers. The IDE makes use of the same WinHelpViewer
that CLX uses.

The IDE comes with two Help viewers installed: the HyperHelp viewer, which
allows Help requests to be forwarded to HyperHelp, an external WinHelp emulator
under which the Kylix Help files are viewed, and the Man page viewer, which allows
you to access the Man system installed on most Unix machines. Because it is
necessary for Kylix Help to work, the HyperHelp viewer may not be removed; the
Man page viewer ships in a separate package whose source is available in the
examples directory.

To install a new Help viewer in the IDE, you do exactly what you would do in a CLX
application, with one difference. You write an object that implements
ICustomHelpViewer (and, if desired, IExtendedHelpViewer) to forward Help requests to
the external viewer of your choice, and you register the ICustomHelpViewer with the
IDE.

To register a custom Help viewer with the IDE:

1 Make sure that the unit implementing the Help viewer contains the HelpIntfs unit.

8-26 Developer’'s Guide

Customizing the IDE Help system

2 Build the unit into a design-time package registered with the IDE, and build the
package with runtime packages turned on. (This is necessary to ensure that the
Help Manager instance used by the unit is the same as the Help Manager instance
used by the IDE.)

3 Make sure that the Help viewer exists as a global instance within the unit.

4 In the initialization section of the unit (Delphi) or function blocked by #pragma
startup (C++) , make sure that the instance is passed to the RegisterHelpViewer
function.

Building applications and shared objects 8-27

Customizing the IDE Help system

8-28 Developer’'s Guide

Customizing the IDE Help system

Building applications and shared objects 8-29

Customizing the IDE Help system

8-30 Developer’'s Guide

Customizing the IDE Help system

Building applications and shared objects 8-31

Customizing the IDE Help system

8-32 Developer’'s Guide

Customizing the IDE Help system

Building applications and shared objects 8-33

Customizing the IDE Help system

8-34 Developer’'s Guide

Customizing the IDE Help system

Building applications and shared objects 8-35

Customizing the IDE Help system

8-36 Developer’'s Guide

Developing the application user
interface

When you open the IDE or create a new project, a blank form is displayed on the
screen. You design your application’s user interface (UI) by placing and arranging
visual components, such as windows, menus, and dialog boxes, from the Component
palette onto the form.

Once a visual component is on the form, you can adjust its position, size, and other
design-time properties, and code its event handlers. The Form Designer takes care of
the underlying programming details.

The following sections describe some of the major interface tasks, such as working
with forms, creating component templates, adding dialog boxes, and organizing
actions for menus and toolbars.

Controlling application behavior

TApplication, TScreen, and TForm are the classes that form the backbone of all Kylix
applications by controlling the behavior of your project. The TApplication class forms
the foundation of an application by providing properties and methods that
encapsulate the behavior of a standard Linux program. TScreen is used at runtime to
keep track of forms and data modules that have been loaded as well as maintaining
system-specific information such as screen resolution and available display fonts.
Instances of the TForm class are the building blocks of your application’s user
interface. The windows and dialog boxes in your application are based on TForm.

D m Delphi, you can set the form'’s Visible property to False using the Object Inspector at
design time rather than setting it at runtime as shown above.

Developing the application user interface 9-1

Setting up forms

Working at the application level

The global variable Application, of type TApplication, is in every CLX-based
application. Application encapsulates your application as well as providing many
functions that occur in the background of the program. For instance, Application
handles how you call a Help file from the menu of your program. Understanding
how TApplication works is more important to a component writer than to developers
of stand-alone applications, but you should set the options that Application handles in
the Project | Options Application page when you create a project.

In addition, Application receives many events that apply to the application as a whole.
For example, the OnActivate event lets you perform actions when the application first
starts up, the Onldle event lets you perform background processes when the
application is not busy, the OnEvent event lets you intercept events, and so on.
Although you can’t use the IDE to examine the properties and events of the global
Application variable, another component, TApplicationEvents, intercepts the events
and lets you supply event-handlers using the IDE.

Handling the screen

A global variable of type TScreen called Screen is created when you create a project.
Screen encapsulates the state of the screen on which your application is running.
Common tasks performed by Screen include specifying:

¢ The look of the cursor.
* The size of the window in which your application is running.
¢ A list of fonts available to the screen device.

For cross-platform programs, the default behavior is that applications create a screen
component based on information about the current screen device and assign it to
Screen.

Setting up forms

TForm is the key class for creating GUI applications. When you open Kylix displaying
a default project or when you create a new project, a form appears on which you can
begin your Ul design.

Using the main form

The first form you create and save in a project becomes, by default, the project’s main
form, which is the first form created at runtime. As you add forms to your projects,
you might decide to designate a different form as your application’s main form. Also,
specifying a form as the main form is an easy way to test it at runtime, because unless
you change the form creation order, the main form is the first form displayed in the
running application.

To change the project main form:

9-2 Developer’s Guide

[w]

Setting up forms

1 Choose Project | Options and select the Forms page.

2 In the Main Form combo box, select the form you want to use as the project’s main
form and choose OK.

Now if you run the application, the form you selected as the main form is displayed.

Hiding the main form

You can prevent the main form from displaying when your application starts. To do
so, you must use the global Application variable (described in “Working at the
application level” on page 9-2).

To hide the main form at startup:

1 Choose Project | View Source to display the main project file.

2 Add the following code after the call to TApplication’s CreateForm method and
before the call to the Run method.

Application.ShowMainForm := False;
Forml.Visible := False; { the name of your main form may differ }

Application->ShowMainForm = false;

3 In C++, use the Object Inspector to set the Visible property of your main form to
false.

Adding forms

To add a form to your project, select File | New | Form. You can see all your project’s
forms and their associated units listed in the Project Manager (View | Project
Manager) and you can display a list of the forms alone by choosing View | Forms.

Linking forms

Adding a form to a project adds a reference to it in the project file, but not to any
other units in the project. Before you can write code that references the new form,
you need to add a reference to it in the referencing forms’ unit files. This is called form
linking.

A common reason to link forms is to provide access to the components in that form.
For example, you'll often use form linking to enable a form that contains data-aware
components to connect to the data-access components in a data module.

To link a form to another form,

1 Select the form that needs to refer to another.

2 Choose File | Use Unit (the Delphi IDE) or File | Include Unit Hdr (the C++ IDE).
3 Select the name of the form unit for the form to be referenced.

4 Choose OK.

Linking a form to another just means that one form unit contains either a reference in
its uses clause to the other’s form unit (Delphi) or the header for the other’s form unit

Developing the application user interface 9-3

Setting up forms

(C++), meaning that the linked form and its components are now in scope for the
linking form.

D Avoiding circular unit references in Delphi

When two forms must reference each other, it’s possible to cause a “Circular
reference” error when you compile your program. To avoid such an error, do one of
the following:

¢ Place both uses clauses, with the unit identifiers, in the implementation parts of
the respective unit files. (This is what the File | Use Unit command does.)

* Place one uses clause in an interface part and the other in an implementation part.
(You rarely need to place another form’s unit identifier in this unit’s interface

part.)

Do not place both uses clauses in the interface parts of their respective unit files. This
will generate the “Circular reference” error at compile time.

Managing layout

At its simplest, you control the layout of your user interface by where you place
controls in your forms. The placement choices you make are reflected in the control’s
Top, Left, Width, and Height properties. You can change these values at runtime to
change the position and size of the controls in your forms.

Controls have a number of other properties, however, that allow them to
automatically adjust to their contents or containers. This allows you to lay out your
forms so that the pieces fit together into a unified whole.

Two properties affect how a control is positioned and sized in relation to its parent.
The Align property lets you force a control to fit perfectly within its parent along a
specific edge or filling up the entire client area after any other controls have been
aligned. When the parent is resized, the controls aligned to it are automatically
resized and remain positioned so that they fit against a particular edge.

If you want to keep a control positioned relative to a particular edge of its parent, but
don’t want it to necessarily touch that edge or be resized so that it always runs along
the entire edge, you can use the Anchors property.

If you want to ensure that a control does not grow too big or too small, you can use
the Constraints property. Constraints lets you specify the control’s maximum height,
minimum height, maximum width, and minimum width. Set these to limit the size
(in pixels) of the control’s height and width. For example, by setting the MinWidth
and MinHeight of the constraints on a container object, you can ensure that child
objects are always visible.

The value of Constraints propagates through the parent/child hierarchy so that an
object’s size can be constrained because it contains aligned children that have size
constraints. Constraints can also prevent a control from being scaled in a particular
dimension when its ChangeScale method is called.

9-4 Developer’s Guide

[w]

Using forms

TControl introduces a protected event, OnConstrainedResize, of type
TConstrainedResizeEvent:

TConstrainedResizeEvent = procedure(Sender: TObject; var MinWidth, MinHeight, MaxWidth,
MaxHeight: Integer) of object;

void __fastcall (__closure *TConstrainedResizeEvent) (System::TObject* Sender, int &MinWidth,

int &MinHeight, int &MaxWidth, int &MaxHeight);

This event allows you to override the size constraints when an attempt is made to
resize the control. The values of the constraints are passed as var parameters which
can be changed inside the event handler. OnConstrainedResize is published for
container objects (TForm, TScrollBox, TControlBar, and TPanel). In addition,
component writers can use or publish this event for any descendant of TControl.

Controls that have contents that can change in size have an AutoSize property that
causes the control to adjust its size to its font or contained objects.

Using forms

o

[w]

When you create a form from the IDE, Kylix automatically creates the form in
memory by including code in the main entry point of your application function.
Usually, this is the desired behavior and you don’t have to do anything to change it.
That is, the main window persists through the duration of your program, so you
would likely not change the default Kylix behavior when creating the form for your
main window.

However, you may not want all your application’s forms in memory for the duration
of the program execution. That is, if you do not want all your application’s dialogs in
memory at once, you can create the dialogs dynamically when you want them to
appear.

Forms can be modal or modeless. Modal forms are forms with which the user must
interact before switching to another form (for example, a dialog box requiring user
input). Modeless forms are windows that are displayed until they are either obscured
by another window or until they are closed or minimized by the user.

Controlling when forms reside in memory

By default, Kylix automatically creates the application’s main form in memory by
including the following code in the application’s project source unit (Delphi) or main
entry point (C++):

Application.CreateForm(TForml, Forml);

Application ->CreateForm(__classid(TForml), &Forml);

This function creates a global variable with the same name as the form. So, every
form in an application has an associated global variable. This variable is a pointer to
an instance of the form’s class and is used to reference the form while the application
is running. Any unit that in Delphi includes the form’s unit in its uses clause or in
C++ includes the source code (.cpp) file that includes the form’s header (.h) file can
access the form using this variable.

Developing the application user interface 9-5

Using forms

D In Delphi, all forms created in this way in the project unit appear when the program
is invoked and exist in memory for the duration of the application.

E In C++, because the form is added to the application’s main entry point, the form
appears when the program is invoked and it exists in memory for the duration of the
application.

Displaying an auto-created form

If you choose to create a form at startup, and do not want it displayed until sometime
later during program execution, the form’s event handler uses the ShowModal
method to display the form that is already loaded in memory:

D Delphi example

procedure TMainForm.ButtonlClick(Sender: TObject);
begin

ResultsForm.ShowModal;
end;

[w]

C++ example

void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)

{
ResultsForm->ShowModal () ;

}

In this case, since the form is already in memory, there is no need to create another
instance or destroy that instance.

Creating forms dynamically

You may not always want all your application’s forms in memory at once. To reduce
the amount of memory required at load time, you may want to create some forms
only when you need to use them. For example, a dialog box needs to be in memory
only during the time a user interacts with it.

To create a form at a different stage during execution using the IDE, you:
1 Select the File | New | Form from the main menu to display the new form.

2 Remove the form from the Auto-create forms list of the Project | Options | Forms
page.
This removes the form’s invocation at startup. As an alternative, you can manually
remove the following line from program’s main entry point:

Application.CreateForm(TResultsForm, ResultsForm);

-

.t” Application->CreateForm(__classid(TResultsForm), &ResultsForm);

3 Invoke the form when desired by using the form’s Show method, if the form is
modeless, or ShowModal method, if the form is modal.

9-6 Developer’s Guide

Note

Using forms

An event handler for the main form must create an instance of the result form and
destroy it. One way to invoke the result form is to use the global variable as follows.
Note that ResultsForm is a modal form so the handler uses the ShowModal method.

Delphi example

procedure TMainForm.ButtonlClick(Sender: TObject);
begin
ResultsForm := TResultForm.Create(self);
try
ResultsForm.ShowModal;
finally
ResultsForm.Free;
end;

In the above Delphi example, note the use of try..finally. Putting in the line
ResultsForm.Free; in the finally clause ensures that the memory for the form is freed
even if the form raises an exception.

C++ example

void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{
ResultsForm = new TResultsForm(this);
ResultsForm->ShowModal () ;
delete ResultsForm;

}

The event handler in the example deletes the form after it is closed, so the form
would need to be recreated (using the new operator in C++) if you needed to use
ResultsForm elsewhere in the application. If the form were displayed using Show you
could not delete the form within the event handler because Show returns while the
form is still open.

If you create a form using its constructor (Delphi) or the new operator (C++), be sure
to check that the form is not in the Auto-create forms list on the Project Options |
Forms page. Specifically, if you create the new form without deleting the form of the
same name from the list, Kylix creates the form at startup and this event-handler
creates a new instance of the form, overwriting the reference to the auto-created
instance. The auto-created instance still exists, but the application can no longer
access it. After the event-handler terminates, the global variable no longer points to a
valid form. Any attempt to use (Delphi) or dereference (C++) the global variable will
likely crash the application.

Creating modeless forms such as windows

You must guarantee that reference variables for modeless forms exist for as long as
the form is in use. This means that these variables should have global scope. In most
cases, you use the global reference variable that was created when you made the
form (the variable name that matches the name property of the form). If your
application requires additional instances of the form, declare separate global
variables (in C++, of type pointer to the form class) for each instance.

Developing the application user interface 9-7

Using forms

[w]

Creating a form instance using a local variable

A safer way to create a unique instance of a modal form is to use a local variable in the
event handler as a reference to a new instance. If a local variable is used, it does not
matter whether ResultsForm is auto-created or not. The code in the event handler
makes no reference to the global form variable. For example:

Delphi example

procedure TMainForm.ButtonlClick(Sender: TObject);
var
RF:TResultForm;
begin
RF:=TResultForm.Create(self)
RF.ShowModal;
RF.Free;
end;

C++ example

void __fastcall TMainMForm::FirstButtonClick(TObject *Sender)
{
TResultsForm *rf = new TResultsForm(this);// rf is local form instance
rf->ShowModal () ;
delete rf; // form safely destroyed
}

Notice how the global instance of the form is never used in this version of the event
handler.

Typically, applications use the global instances of forms. However, if you need a new
instance of a modal form, and you use that form in a limited, discrete section of the
application, such as a single function, a local instance is usually the safest and most
efficient way of working with the form.

Of course, you cannot use local variables in event handlers for modeless forms
because they must have global scope to ensure that the forms exist for as long as the
form is in use. Show returns as soon as the form opens, so if you used a local variable,
the local variable would go out of scope immediately.

Passing additional arguments to forms

Typically, you create forms for your application from within the IDE. When created
this way, the forms have a constructor that takes one argument, Owner, which is (a
pointer to in C++) the owner of the form being created. (The owner is the calling
application object or form object.) Owner can be nil (Delphi) or NULL (C++).

To pass additional arguments to a form, create a separate constructor and instantiate
the form using this new constructor (Delphi) or the new operator (C++). The example
form class below shows an additional constructor, with the extra argument
whichButton. This new constructor is added to the form class manually.

9-8 Developer’s Guide

Using forms

Delphi example

TResultsForm = class(TForm)
ResultsLabel: TLabel;
OKButton: TButton;
procedure OKButtonClick(Sender: TObject);
private
public
constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
end;

C++ example

class TResultsForm : public TForm
{
__published: // IDE-managed Components
TLabel *ResultsLabel;
TButton *OKButton;
void __fastcall OKButtonClick(TObject *Sender);
private: // User declarations
public: // User declarations
virtual __fastcall TResultsForm(TComponent* Owner);
virtual __fastcall TResultsForm(int whichButton, TComponent* Owner);

}i

Here’s the manually coded constructor that passes the additional argument,
whichButton. This constructor uses the whichButton parameter to set the Caption
property of a Label control on the form.

Delphi example

constructor CreateWithButton(whichButton: Integer; Owner: TComponent);
begin
inherited Create(Owner);
case whichButton of
1: ResultsLabel.Caption 'You picked the first button.';
2: ResultsLabel.Caption := 'You picked the second button.';
3: ResultsLabel.Caption := 'You picked the third button.';
end;
end;

C++ example

void__fastcall TResultsForm::TResultsForm(int whichButton, TComponent* Owner)
: TForm(Owner
{
switch (whichButton) {
case 1:
ResultsLabel->Caption = "You picked the first button!";
break;
case 2:
ResultsLabel->Caption = "You picked the second button!";
break;
case 3:

Developing the application user interface 9-9

Using forms
ResultsLabel->Caption = "You picked the third button!";

}

When creating an instance of a form with multiple constructors, you can select the
constructor that best suits your purpose. For example, the following OnClick handler
for a button on a form calls creates an instance of TResultsForm that uses the extra
parameter:

D Delphi example

procedure TMainForm.SecondButtonClick(Sender: TObject);
var
rf: TResultsForm;
begin
rf := TResultsForm.CreateWithButton(2, self);
rf.ShowModal;
rf.Free;
end;

Ee Ci+ example

void __fastcall TMainMForm::SecondButtonClick(TObject *Sender)
{
TResultsForm *rf = new TResultsForm(2, this);
rf->ShowModal () ;
delete rf;

Retrieving data from forms

Most real-world applications consist of several forms. Often, information needs to be
passed between these forms. Information can be passed to a form by means of
parameters to the receiving form'’s constructor, or by assigning values to the form’s
properties. The way you get information from a form depends on whether the form is
modal or modeless.

Retrieving data from modeless forms

You can easily extract information from modeless forms by calling public member
functions of the form or by querying properties of the form. For example, assume an
application contains a modeless form called ColorForm that contains a listbox called
ColorListBox with a list of colors (“Red,” “Green,” “Blue,” and so on). The selected
color name string in ColorListBox is automatically stored in a property called
CurrentColor each time a user selects a new color. The class declaration for the form is
as follows:

D Delphi example

TColorForm = class(TForm)
ColorListBox:TListBox;
procedure ColorListBoxClick(Sender: TObject);

9-10 Developer’s Guide

[

[

Using forms

private

FColor:String;
public

property CurColor:String read FColor write FColor;
end;

C++ example

class TColorForm : public TForm
{
__published: // IDE-managed Components
TListBox *ColorListBox;
void __fastcall ColorListBoxClick(TObject *Sender);
private: // User declarations
String getColor();
void setColor(String);
String curColor;
public: // User declarations
virtual __fastcall TColorForm(TComponent* Owner);
__property String CurrentColor = {read=getColor, write=setColor};
}i

The OnClick event handler for the listbox, ColorListBoxClick, sets the value of the
CurrentColor property each time a new item in the listbox is selected. The event
handler gets the string from the listbox containing the color name and assigns it to
CurrentColor. The CurrentColor property uses the setter function, SetColor (Delphi) or
setColor (C++), to store the actual value for the property in the private data member
FColor (Delphi) or curColor (C++):

Delphi example

procedure TColorForm.ColorListBoxClick(Sender: TObject);
var
Index: Integer;
begin
Index := ColorListBox.ItemIndex;
if Index >= 0 then
CurrentColor := ColorListBox.Items[Index]
else
CurrentColor := '';
end;

C++ example

void __fastcall TColorForm::ColorListBoxClick(TObject *Sender)
{
int index = ColorListBox->ItemIndex;
if (index >= 0) {// make sure a color is selected
CurrentColor = ColorListBox->Items->Strings[index];
}
else // no color selected
CurrentColor = "";

Developing the application user interface 9-11

Using forms

-

]

D

void TColorForm::setColor(String s)
{
curColor = s;

}

Now suppose that another form within the application, called ResultsForm, needs to
find out which color is currently selected on ColorForm whenever a button (called
UpdateButton) on ResultsForm is clicked. The OnClick event handler for UpdateButton
might look like this:

Delphi example

procedure TResultForm.UpdateButtonClick(Sender: TObject);

var
MainColor: String;

begin
if Assigned(ColorForm) then
begin

MainColor := ColorForm.CurrentColor;
{do something with the string MainColor}
end;
end;

C++ example

void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)
{
if (ColorForm) {// verify ColorForm exists
String s = ColorForm->CurrentColor;
// do something with the color name string

}

The event handler first verifies that ColorForm exists; in Delphi, by using the Assigned
function and in C++, by by checking whether the point is NULL. It then gets the
value of ColorForm’s CurrentColor property.

In C++, the query of CurrentColor calls its getter function getColor which is shown
here:

String TColorForm::getColor ()
{

return curColor;

}

Alternatively, if in Delphi, ColorForm had a public function named GetColor and in
C++, ColorForm’s getColor function were public, another form could get the current
color without using the CurrentColor property. For example:

MainColor := ColorForm.GetColor;
String s = ColorForm->getColor();

In fact, there’s nothing to prevent another form from getting the ColorForm’s
currently selected color by checking the listbox selection directly:

with ColorForm.ColorListBox do

9-12 Developer’s Guide

Using forms

MainColor := Items[ItemIndex];
String s = ColorListBox->Items->Strings[ColorListBox->ItemIndex];

However, using a property makes the interface to ColorForm very straightforward
and simple. All a form needs to know about ColorForm is to check the value of
CurrentColor.

Retrieving data from modal forms

Just like modeless forms, modal forms often contain information needed by other
forms. The most common example is when form A launches modal form B. When
form B is closed, form A needs to know what the user did with form B to decide how
to proceed with the processing of form A. If form B is still in memory, it can be
queried through properties or member functions just as in the modeless forms
example above. But how do you handle situations where form B is deleted from
memory upon closing? Since a form does not have an explicit return value, you must
preserve important information from the form before it is destroyed.

To illustrate, consider a modified version of the ColorForm form that is designed to be
a modal form. The class declaration is as follows:

Delphi example

TColorForm = class(TForm)
ColorListBox:TListBox;
SelectButton: TButton;
CancelButton: TButton;
procedure CancelButtonClick(Sender: TObject);
procedure SelectButtonClick(Sender: TObject);
private
FColor: Pointer;
public
constructor CreateWithColor(Value: Pointer; Owner: TComponent);
end;

C++ example

class TColorForm : public TForm
{
__published: // IDE-managed Components

TListBox *ColorListBox;
TButton *SelectButton;
TButton *CancelButton;
void __fastcall CancelButtonClick(TObject *Sender);
void __fastcall SelectButtonClick(TObject *Sender);

private: // User declarations
String* curColor;
public: // User declarations

virtual __fastcall TColorForm(TComponent* Owner);
virtual __fastcall TColorForm(String* s, TComponent* Owner);

Developing the application user interface 9-13

Using forms

The form has a listbox called ColorListBox with a list of names of colors. When
pressed, the button called SelectButton makes note of the currently selected color
name in ColorListBox then closes the form. CancelButton is a button that simply closes
the form.

Note that a user-defined constructor was added to the class that takes a Pointer
(Delphi) or String* (C++) argument. Presumably, this Pointer (Delphi) or String*
(C++) points to a string that the form launching ColorForm knows about. The
implementation of this constructor is as follows:

D Delphi example

constructor TColorForm(Value: Pointer; Owner: TComponent);
begin

FColor := Value;

String(FColor™) := '';
end;

E+ C++ example

void__fastcall TColorForm::TColorForm(String* s, TComponent* Owner)
: TForm(Owner)
{
curColor = s;
*curColor = "";

}

The constructor saves the pointer to a private data member FColor (Delphi) or
curColor (C++) and initializes the string to an empty string.

Note To use the above user-defined constructor, the form must be explicitly created. It
cannot be auto-created when the application is started. For details, see “Controlling
when forms reside in memory” on page 9-5.

In the application, the user selects a color from the listbox and presses SelectButton to
save the choice and close the form. The OnClick event handler for SelectButton might
look like this:

D Delphi example

procedure TColorForm.SelectButtonClick(Sender: TObject);
begin

with ColorListBox do

if TtemIndex >= 0 then
String(FColor”) := ColorListBox.Items[ItemIndex];

end;

Close;
end;

E+ C++ example

void __fastcall TColorForm::SelectButtonClick(TObject *Sender)
{

int index = ColorListBox->ItemIndex;

9-14 Developer’s Guide

}

if (index >= 0)

Using forms

*curColor = ColorListBox->Items->Strings[index];

Close();

Notice that the event handler stores the selected color name in the string referenced
by the pointer (Delphi) or string address (C++) that was passed to the constructor.

To use ColorForm effectively, the calling form must pass the constructor a pointer to

an existing string. For example, assume ColorForm was instantiated by a form called

ResultsForm in response to a button called UpdateButton on ResultsForm being clicked.
The event handler would look as follows:

D Delphi example

procedure TResultsForm.UpdateButtonClick(Sender: TObject);
var

MainColor: String;

begin

GetColor (Addr (MainColor));
if MainColor <> '' then

{do something with the MainColor string}

else

{do something else because no color was picked}

end;

procedure GetColor (PColor: Pointer);
begin
ColorForm := TColorForm.CreateWithColor (PColor, Self);

ColorForm.ShowModal;
ColorForm.Free;

end;

EF+ C++ example

void __fastcall TResultsForm::UpdateButtonClick(TObject *Sender)

{

String s;
GetColor(&s);
if (s 1= "") {

// do something with the color name string

}

else {

// do something else because no color was picked

void TResultsForm::GetColor(String *s)

{

ColorForm = new TColorForm(s, this);
ColorForm->ShowModal () ;

delete ColorForm;

ColorForm = 0; // NULL the pointer

Developing the application user interface 9-15

Reusing components and groups of components

UpdateButtonClick creates a String called MainColor (Delphi) or s (C++). The address
of MainColor (Delphi) or s (C++) is passed to the GetColor function which creates
ColorForm, passing the pointer to MainColor (Delphi) or s (C++) as an argument to
the constructor. As soon as ColorForm is closed it is deleted, but the color name that
was selected is still preserved in MainColor (Delphi) or s (C++), assuming that a color
was selected. Otherwise, MainColor (Delphi) or s (C++) contains an empty string
which is a clear indication that the user exited ColorForm without selecting a color.

This example uses one string variable to hold information from the modal form. Of
course, more complex objects can be used depending on the need. Keep in mind that
you should always provide a way to let the calling form know if the modal form was
closed without making any changes or selections (such as having MainColor (Delphi)
or s (C++) default to an empty string).

Reusing components and groups of components

The IDE offers several ways to save and reuse work you’ve done with components:

» Component templates provide a simple, quick way of configuring and saving
groups of components. See “Creating and using component templates” on
page 9-16.

* You can save forms, data modules, and projects in the Repository. This gives you a
central database of reusable elements and lets you use form inheritance to
propagate changes. See “Using the Object Repository” on page 8-15.

* You can save frames on the Component palette or in the repository. Frames use
form inheritance and can be embedded into forms or other frames. See “Working
with frames” on page 9-17.

* Creating a custom component is the most complicated way of reusing code, but it
offers the greatest flexibility. See Chapter 35, “Overview of component creation.”

Creating and using component templates

You can create templates that are made up of one or more components. After
arranging components on a form, setting their properties, and writing code for them,
save them as a component template. Later, by selecting the template from the
Component palette, you can place the preconfigured components on a form in a
single step; all associated properties and event-handling code are added to your
project at the same time.

Once you place a template on a form, you can reposition the components
independently, reset their properties, and create or modify event handlers for them
just as if you had placed each component in a separate operation.

To create a component template,

1 Place and arrange components on a form. In the Object Inspector, set their
properties and events as desired.

9-16 Developer’s Guide

Working with frames

2 Select the components. The easiest way to select several components is to drag the
mouse over all of them. Gray handles appear at the corners of each selected
component.

3 Choose Component | Create Component Template.

4 Specify a name for the component template in the Component Template
Information edit box. The default proposal is the component type of the first
component selected in step 2 followed by the word “Template.” For example, if
you select a label and then an edit box, the proposed name will be
“TLabelTemplate.” You can change this name, but be careful not to duplicate
existing component names.

5 In the Palette page edit box, specify the Component palette page where you want
the template to reside. If you specify a page that does not exist, a new page is
created when you save the template.

6 Next to Palette Icon, select a bitmap to represent the template on the palette. The
default proposal will be the bitmap used by the component type of the first
component selected in step 2. To browse for other bitmaps, click Change. The
bitmap you choose must be no larger than 24 pixels by 24 pixels.

7 Click OK.

To remove templates from the Component palette, choose Component | Configure
Palette.

Working with frames

A frame (TFrame), like a form, is a container for other components. It uses the same
ownership mechanism as forms for automatic instantiation and destruction of the
components on it, and the same parent-child relationships for synchronization of
component properties.

In some ways, however, a frame is more like a customized component than a form.
Frames can be saved on the Component palette for easy reuse, and they can be nested
within forms, other frames, or other container objects. After a frame is created and
saved, it continues to function as a unit and to inherit changes from the components
(including other frames) it contains. When a frame is embedded in another frame or
form, it continues to inherit changes made to the frame from which it derives.

Frames are useful to organize groups of controls that are used in multiple places in
your application. For example, if you have a bitmap that is used on multiple forms,
you can put it in a frame and only one copy of that bitmap is included in the
resources of your application. You could also describe a set of edit fields that are
intended to edit a table with a frame and use that whenever you want to enter data
into the table.

Developing the application user interface 9-17

Working with frames

Creating frames

To create an empty frame, choose File | New | Frame, or choose File | New | Other and
double-click Frame. You can then drop components (including other frames) onto
your new frame.

It is usually best—though not necessary—to save frames as part of a project. If you
want to create a project that contains only frames and no forms, choose File | New |
Application, close the new form and unit without saving them, then choose File |
New | Frame and save the project.

Note When you save frames, avoid using the default names Unit1, Project1, and so forth,
since these are likely to cause conflicts when you try to use the frames later.

At design time, you can display any frame included in the current project by
choosing View | Forms and selecting a frame. As with forms and data modules, you
can toggle between the Form Designer and the frame’s form file by right-clicking and
choosing View as Form or View as Text.

Adding frames to the Component palette

Frames are added to the Component palette as component templates. To add a frame
to the Component palette, open the frame in the Form Designer (you cannot use a
frame embedded in another component for this purpose), right-click the frame, and
choose Add to Palette. When the Component Template Information dialog opens,
select a name, palette page, and icon for the new template.

Using and modifying frames

To use a frame in an application, you must place it, directly or indirectly, on a form.
You can add frames directly to forms, to other frames, or to other container objects
such as panels and scroll boxes.

The Form Designer provides two ways to add a frame to an application:

* Select a frame from the Component palette and drop it onto a form, another frame,
or another container object. If necessary, the Form Designer asks for permission to
include the frame’s unit file in your project.

* Select Frames from the Standard page of the Component palette and click on a
form or another frame. A dialog appears with a list of frames that are already
included in your project; select one and click OK.

When you drop a frame onto a form or other container, Kylix declares a new class
that descends from the frame you selected. (Similarly, when you add a new form to a
project, Kylix declares a new class that descends from TForm.) This means that
changes made later to the original (ancestor) frame propagate to the embedded
frame, but changes to the embedded frame do not propagate backward to the
ancestor.

9-18 Developer’s Guide

Working with frames

Suppose, for example, that you wanted to assemble a group of data-access
components and data-aware controls for repeated use, perhaps in more than one
application. One way to accomplish this would be to collect the components into a
component template; but if you started to use the template and later changed your
mind about the arrangement of the controls, you would have to go back and
manually alter each project where the template was placed.

If, on the other hand, you put your database components into a frame, later changes
would need to be made in only one place; changes to an original frame automatically
propagate to its embedded descendants when your projects are recompiled. At the
same time, you are free to modify any embedded frame without affecting the original
frame or other embedded descendants of it. The only limitation on modifying
embedded frames is that you cannot add components to them.

Figure 9.1 A frame with data-aware controls and a data source component

dxiFramel

Hame I T

Address I

City I State/Province I Posgtal Code I

In addition to simplifying maintenance, frames can help you to use resources more
efficiently. For example, to use a bitmap or other graphic in an application, you might
load the graphic into the Picture property of a TImage control. If, however, you use
the same graphic repeatedly in one application, each Image object you place on a
form will result in another copy of the graphic being added to the form’s resource
file. (This is true even if you set Picture property once and save the Image control as a
component template.) A better solution is to drop the Image object onto a frame, load
your graphic into it, then use the frame where you want the graphic to appear. This
results in smaller form files and has the added advantage of letting you change the
graphic everywhere it occurs simply by modifying the Image on the original frame.

Sharing frames

You can share a frame with other developers in two ways:

* Add the frame to the Object Repository.
¢ Distribute the frame’s unit (.pas. in Delphi and cpp and .h in C++) and form (.xfm)
files.

To add a frame to the Repository, open any project that includes the frame, right-
click in the Form Designer, and choose Add to Repository. For more information, see
“Using the Object Repository” on page 8-15.

If you send a frame’s unit and form files to other developers, they can open them and
add them to the Component palette. If the frame has other frames embedded in it, the
frame must be opened as part of a project to add it to the Component palette.

Developing the application user interface 9-19

Developing dialog boxes

Developing dialog boxes

The dialog box components on the Dialogs page of the Component palette make
various dialog boxes available to your applications. These dialog boxes provide
applications with a familiar, consistent interface that enables the user to perform
common file operations such as opening, saving, and printing files. Dialog boxes
display and/or obtain data.

Each dialog box opens when its Execute method is called. Execute returns a Boolean
value: if the user chooses OK to accept any changes made in the dialog box, Execute
returns true; if the user chooses Cancel to escape from the dialog box without making
or saving changes, Execute returns false.

Note You can use the dialogs provided with CLX in the QDialogs unit. For operating
systems that have native dialog box types for common tasks, such as for opening or
saving a file or for changing font or color, you can use the UseNativeDialog property.
Set UseNativeDialog to true if your application will run in such an environment, and if
you want it to use the native dialogs instead of the Qt dialogs.

Using open dialog boxes

One of the commonly used dialog box components is TOpenDialog. This component
is usually invoked by a New or Open menu item under the File option on the main
menu bar of a form. The dialog box contains controls that let you select groups of files
using a wildcard character and navigate through directories.

The TOpenDialog component makes an Open dialog box available to your
application. The purpose of this dialog box is to let a user specify a file to open. You
use the Execute method to display the dialog box.

When the user chooses OK in the dialog box, the user’s file is stored in the
TOpenDialog FileName property, which you can then process as you want.

The following code can be placed in an Action and linked to the Action property of a
TMainMenu subitem or be placed in the subitem’s OnClick event:

D Delphi example

if OpenDialogl.Execute then
filename := OpenDialogl.FileName;

E+ C++ example

if (OpenDialogl->Execute())
{
filename = OpenDialogl->FileName;

}i

This code will show the dialog box and if the user presses the OK button, it will copy
the name of the file into a previously declared AnsiString variable named filename.

9-20 Developer’s Guide

Organizing actions for toolbars and menus

Organizing actions for toolbars and menus

Kylix provides several features that simplify the work of creating, customizing, and
maintaining menus and toolbars. These features allow you to organize lists of actions
that users of your application can initiate by pressing a button on a toolbar, choosing
a command on a menu, or pointing and clicking on an icon.

Often a set of actions is used in more than one user interface element. For example,
the Cut, Copy, and Paste commands often appear on both an Edit menu and on a
toolbar. You only need to add the action once to use it in multiple UI elements in

your application.

The following table defines the terminology related to setting up menus and toolbars:

Table 9.1 Action setup terminology

Term

Action

Action category

Action classes

Action client

Action list

Menu

Target

Toolbar

Definition

A response to something a user does, such as clicking a menu item. Many
standard actions that are frequently required are provided for you to use
in your applications as is. For example, file operations such as File Open,
File SaveAs, File Run, and File Exit are included along with many others

for editing, formatting, searches, help, dialogs, and window actions. You
can also program custom actions and access them using action lists.

Lets you group actions and drop them as a group onto a menu or toolbar.
For example, one of the standard action categories is Search which
includes Find, FindFirst, FindNext, and Replace actions all at once.

Classes that perform the actions used in your application. All of the
standard actions are defined in action classes such as TEditCopy, TEditCut,
and TEditUndo. You can use these classes by dragging and dropping them
from the Customize dialog onto an action band.

Most often represents a menu item or a button that receives a notification
to initiate an action. When the client receives a user command (such as a
mouse click), it initiates an associated action.

Maintains a list of actions that your application can take in response to
something a user does.

Lists commands that the user of the application can execute by clicking on
them. You can create menus by using cross-platform components such as
TMainMenu or TPopupMenu.

Represents the item an action does something to. The target is usually a
control, such as a memo or a data control. Not all actions require a target.
For example, the standard help actions ignore the target and simply
launch the Help system.

Displays a visible row of button icons which, when clicked, cause the
program to perform some action, such as printing the current document.
You can create toolbars by using the cross-platform component TToolBar.

Seeto .

Developing the application user interface 9-21

Using action lists

What is an action?

As you are developing your application, you can create a set of actions that you can
use on various Ul elements. You can organize them into categories that can be
dropped onto a menu as a set (for example, Cut, Copy, and Paste) or one at a time
(for example, Tools | Customize).

An action corresponds to one or more elements of the user interface, such as menu
commands or toolbar buttons. Actions serve two functions: (1) they represent
properties common to the user interface elements, such as whether a control is
enabled or checked, and (2) they respond when a control fires, for example, when the
application user clicks a button or chooses a menu item. You can create a repertoire
of actions that are available to your application through menus, through buttons,
through toolbars, context menus, and so on.

Actions are associated with other components:

¢ Clients: One or more clients use the action. The client most often represents a
menu item or a button (for example, TToolButton, TSpeedButton, TMenultem,
TButton, TCheckBox, TRadioButton, and so on). When the client receives a user
command (such as a mouse click), it initiates an associated action. Typically, a
client’s OnClick event is associated with its action’s OnExecute event.

¢ Target: The action acts on the target. The target is usually a control, such as a
memo or a data control. Component writers can create actions specific to the needs
of the controls they design and use, and then package those units to create more
modular applications. Not all actions use a target. For example, the standard help
actions ignore the target and simply launch the help system.

A target can also be a component. For example, data controls change the target to
an associated dataset.

The client influences the action—the action responds when a client fires the action.
The action also influences the client—action properties dynamically update the client
properties. For example, if at runtime an action is disabled (by setting its Enabled
property to false), every client of that action is disabled, appearing grayed.

You can add, delete, and rearrange actions using the Action List editor (displayed by
double-clicking an action list object, TActionList). These actions are later connected to
client controls.

Using action lists

Action lists maintain a list of actions that your application can take in response to
something a user does. By using action objects, you centralize the functions
performed by your application from the user interface. This lets you share common
code for performing actions (for example, when a toolbar button and menu item do
the same thing), as well as providing a single, centralized way to enable and disable
actions depending on the state of your application.

9-22 Developer’s Guide

Using action lists

Setting up action lists

Setting up action lists is fairly easy once you understand the basic steps involved:
¢ Create the action list.

¢ Add actions to the action list.

* Set properties on the actions.

¢ Attach clients to the action.

Here are the steps in more detail:

1 Drop a TActionList object onto your form or data module. (ActionList is on the
Standard page of the Component palette.)

2 Double-click the TActionList object to display the Action List editor.

a Use one of the predefined actions listed in the editor: right-click and choose
New Standard Action.

b The predefined actions are organized into categories (such as Dataset, Edit,
Help, and Window) in the Standard Action Classes dialog box. Select all the
standard actions you want to add to the action list and click OK.

or
¢ Create a new action of your own: right-click and choose New Action.

3 Set the properties of each action in the Object Inspector. (The properties you set
affect every client of the action.)

The Name property identifies the action, and the other properties and events
(Caption, Checked, Enabled, HelpContext, Hint, Imagelndex, ShortCut, Visible, and
Execute) correspond to the properties and events of its client controls. The client’s
corresponding properties are typically, but not necessarily, the same name as the
corresponding client property. For example, an action’s Enabled property
corresponds to a TToolButton’s Enabled property. However, an action’s Checked
property corresponds to a TToolButton’s Down property.

4 If you use the predefined actions, the action includes a standard response that
occurs automatically. If creating your own action, you need to write an event
handler that defines how the action responds when fired. See “What happens
when an action fires” on page 9-24 for details.

5 Attach the actions in the action list to the clients that require them:

e Click on the control (such as the button or menu item) on the form or data
module. In the Object Inspector, the Action property lists the available actions.

¢ Select the one you want.

The standard actions, such as TEditDelete or TDataSetPost, all perform the action you
would expect. You can look at the online reference Help for details on how all of the
standard actions work if you need to. If writing your own actions, you'll need to
understand more about what happens when the action is fired.

Developing the application user interface 9-23

Using action lists

What happens when an action fires

When an event fires, a series of events intended primarily for generic actions occurs.
Then if the event doesn’t handle the action, another sequence of events occurs.

Responding with events

When a client component or control is clicked or otherwise acted on, a series of
events occurs to which you can respond. For example, the following code illustrates
the event handler for an action that toggles the visibility of a toolbar when the action
is executed:

D Delphi example

procedure TForml.ActionlExecute(Sender: TObject);
begin
{ Toggle Toolbarl's visibility }
ToolBarl.Visible := not ToolBarl.Visible;
end;

[w]

C++ example

void __fastcall TForml::ActionlExecute(TObject *Sender)
{

// Toggle Toolbarl's visibility

ToolBarl->Visible = !ToolBarl->Visible;
}

Note For general information about events and event handlers, see “Working with events
and event handlers” on page 5.

You can supply an event handler that responds at one of three different levels: the
action, the action list, or the application. This is only a concern if you are using a new
generic action rather than a predefined standard action. You do not have to worry
about this if using the standard actions because standard actions have built-in
behavior that executes when these events occur.

The order in which the event handlers will respond to events is as follows:

* Action list
¢ Application
¢ Action

When the user clicks on a client control, Kylix calls the action's Execute method
which defers first to the action list, then the Application object, then the action itself if
neither action list nor Application handles it. To explain this in more detail, Kylix
follows this dispatching sequence when looking for a way to respond to the user
action:

1 If you supply an OnExecute event handler for the action list and it handles the
action, the application proceeds.

9-24 Developer’s Guide

Using action lists

The action list’s event handler has a parameter called Handled, that returns false by
default. If the handler is assigned and it handles the event, it returns true, and the
processing sequence ends here. For example:

Delphi example

procedure TForml.ActionListlExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin

Handled := True;
end;

C++ example

void __fastcall TForml::ActionListlExecuteAction(TBasicAction *Action, bool &Handled)

{

Handled = true;

}

If you don’t set Handled to true in the action list event handler, then processing
continues.

2 If you did not write an OnExecute event handler for the action list or if the event
handler doesn’t handle the action, the application’s OnActionExecute event handler
fires. If it handles the action, the application proceeds.

The global Application object receives an OnActionExecute event if any action list in
the application fails to handle an event. Like the action list’'s OnExecute event
handler, the OnActionExecute handler has a parameter Handled that returns false
by default. If an event handler is assigned and handles the event, it returns true,
and the processing sequence ends here. For example:

Delphi example

procedure TForml.ApplicationExecuteAction(Action: TBasicAction; var Handled: Boolean);
begin

{ Prevent execution of all actions in Application }

Handled := True;
end;

C++ example

void __fastcall TForml::ApplicationExecuteAction(TBasicAction *Action, bool &Handled)
{

// Prevent execution of all actions in Application

Handled = true;
}

3 If the application’s OnExecute event handler doesn’t handle the action, the action’s
OnExecute event handler fires.

You can use built-in actions or create your own action classes that know how to
operate on specific target classes (such as edit controls). When no event handler is
found at any level, the application next tries to find a target on which to execute the

Developing the application user interface 9-25

Using action lists

action. When the application locates a target that the action knows how to address, it
invokes the action. See the next section for details on how the application locates a
target that can respond to a predefined action class.

How actions find their targets

“What happens when an action fires” on page 9-24 describes the execution cycle that
occurs when a user invokes an action. If no event handler is assigned to respond to
the action, either at the action list, application, or action level, then the application
tries to identify a target object to which the action can apply itself.

The application looks for the target using the following sequence:
1 Active control: The application looks first for an active control as a potential target.

2 Active form: If the application does not find an active control or if the active
control can’t act as a target, it looks at the screen’s ActiveForm.

3 Controls on the form: If the active form is not an appropriate target, the
application looks at the other controls on the active form for a target.

If no target is located, nothing happens when the event is fired.

Some controls can expand the search to defer the target to an associated component;
for example, data-aware controls defer to the associated dataset component. Also,
some predefined actions do not use a target; for example, the File Open dialog.

Updating actions

When the application is idle, the Onlpdate event occurs for every action that is linked
to a control or menu item that is showing. This provides an opportunity for
applications to execute centralized code for enabling and disabling, checking and
unchecking, and so on. For example, the following code illustrates the Onlpdate
event handler for an action that is “checked” when the toolbar is visible:

D Delphi example

procedure TForml.ActionlUpdate(Sender: TObject);
begin
{ Indicate whether ToolBarl is currently visible }
(Sender as TAction).Checked := ToolBarl.Visible;
end;

E C++example

void __fastcall TForml::ActionlUpdate(TObject *Sender)
{
// Indicate whether ToolBarl is currently visible
((TAction *)Sender)->Checked = ToolBarl->Visible;
}

Warning Do not add time-intensive code to the OnUpdate event handler. This executes
whenever the application is idle. If the event handler takes too much time, it will
adversely affect performance of the entire application.

9-26 Developer’s Guide

Using action lists

Predefined action classes

The Action List editor lets you use predefined action classes that automatically
perform actions. The predefined actions fall into the following categories:

Table 9.2 Action classes

Class Description

Edit Used with an edit control target. TEditAction is the base class for
descendants that each override the ExecuteTarget method to implement
copy, cut, and paste tasks by using the clipboard.

Help Used with any target. THelpAction is the base class for descendants that
each override the ExecuteTarget method to pass the command onto a
Help system.

Window Used with forms as targets in an MDI application. TWindowAction is the

base class for descendants that each override the ExecuteTarget method to
implement arranging, cascading, closing, tiling, and minimizing MDI
child forms.

DataSet Used with a dataset component target. TDataSetAction is the base class
for descendants that each override the ExecuteTarget and UpdateTarget
methods to implement navigation and editing of the target.
TDataSetAction introduces a DataSource property that ensures actions are

performed on that dataset. If DataSource is nil (Delphi) or NULL (C++),
the currently focused data-aware control is used.

All of the action objects are described under the action object names in the online
reference Help. Refer to the Help for details on how they work.

Writing action components

You can also create your own predefined action classes. When you write your own
action classes, you can build in the ability to execute on certain target classes of
object. Then, you can use your custom actions in the same way you use pre-defined
action classes. That is, when the action can recognize and apply itself to a target class,
you can simply assign the action to a client control, and it acts on the target with no
need to write an event handler.

Component writers can use the classes in the QStd Actns and DBActns units as
examples for deriving their own action classes to implement behaviors specific to
certain controls or components. The base classes for these specialized actions
(TEditAction, TWindowAction, and so on) generally override HandlesTarget,
UpdateTarget, and other methods to limit the target for the action to a specific class of

Developing the application user interface 9-27

Using action lists

[w]

objects. The descendant classes typically override ExecuteTarget to perform a
specialized task. These methods are described here:

Method Description

HandlesTarget Called automatically when the user invokes an object (such as a tool button
or menu item) that is linked to the action. The HandlesTarget method lets the
action object indicate whether it is appropriate to execute at this time with
the object specified by the Target parameter as a target. See “IHow actions
find their targets” on page 9-26 for details.

UpdateTarget Called automatically when the application is idle so that actions can update
themselves according to current conditions. Use in place of OnlUpdateAction.
See “Updating actions” on page 9-26 for details.

ExecuteTarget Called automatically when the action fires in response to a user action in
place of OnExecute (for example, when the user selects a menu item or
presses a tool button that is linked to this action). See “What happens when
an action fires” on page 9-24 for details.

Registering actions

When you write your own actions, you can register actions to enable them to appear
in the Action List editor. You register and unregister actions by using the global
routines in the Actnlist unit:

Delphi example

procedure RegisterActions(const CategoryName: string; const AClasses: array of
TBasicActionClass; Resource: TComponentClass);

procedure UnRegisterActions(const AClasses: array of TBasicActionClass);

C++ example

extern PACKAGE void __fastcall RegisterActions(const AnsiString CategoryName, TMetaClass*
const * AClasses, const int AClasses_Size, TMetaClass* Resource);

extern PACKAGE void __fastcall UnRegisterActions(TMetaClass* const * AClasses, const int
AClasses_Size);

When you call RegisterActions, the actions you register appear in the Action List
editor for use by your applications. You can supply a category name to organize your
actions, as well as a Resource parameter that lets you supply default property values.

Delphi example
The following code registers the standard actions with the IDE:

{ Standard action registration }
RegisterActions('', [TAction], nil);
RegisterActions('Edit', [TEditCut, TEditCopy, TEditPaste], TStandardActions);

RegisterActions('Window', [TWindowClose, TWindowCascade, TWindowTileHorizontal,
TWindowTileVertical, TWindowMinimizeAll, TWindowArrange], TStandardActions);

9-28 Developer’s Guide

Creating and managing menus

F-- C++example
The following code registers actions with the IDE in the MyAction unit:

namespace MyAction
{
void __fastcall PACKAGE Register()
{
// code goes here to register any components and editors
TMetaClass classes([2] = {__classid(TMyActionl), __classid(TMyAction2)};
RegisterActions("MySpecialActions", classes, 1, NULL);
}
}

When you call UnRegisterActions, the actions no longer appear in the Action List
editor.

Creating and managing menus

Menus provide an easy way for your users to execute logically grouped commands.
The Menu Designer enables you to easily add a menu—either predesigned or custom
tailored—to your form. You add a menu component to the form, open the Menu
Designer, and type menu items directly into the Menu Designer window. You can
add or delete menu items, or drag and drop them to rearrange them during design
time.

You don't even need to run your program to see the results—your design is
immediately visible in the form, appearing just as it will during runtime. Your code
can also change menus at runtime, to provide more information or options to the
user.

This chapter explains how to use the Menu Designer to design menu bars and pop-
up (local) menus. It discusses the following ways to work with menus at design time
and runtime:

¢ Opening the Menu Designer.

¢ Building menus.

¢ Editing menu items in the Object Inspector.
¢ Using the Menu Designer context menu.

¢ Using menu templates.

¢ Saving a menu as a template.

* Adding images to menu items.

Figure 9.2 Menu terminology

Miew Project Bun Comp

Menu items on the menu bar

Eind . . .
Accelerator key ErptEs. %7 Menu items in a menu list
Search Again Cirl+L
Separator bar Incremental Search Shift+Cirl+3 Keyboard Shol’tcut

Go to Line Number...
Find Error...

Browse Symbol

Developing the application user interface 9-29

Creating and managing menus

For information about hooking up menu items to the code that executes when they
are selected, see “Associating menu events with event handlers” on page 6-9.

Opening the Menu Designer

You design menus for your application using the Menu Designer. Before you can
start using the Menu Designer, first add either a TMainMenu or TPopupMenu
component to your form. Both menu components are located on the Standard page of
the Component palette.

Figure 9.3 MainMenu and PopupMenu components

Standard w MainMenu component
IF { % PopupMenu component

A MainMenu component creates a menu that’s attached to the form’s title bar. A
PopupMenu component creates a menu that appears when the user right-clicks in
the form. Pop-up menus do not have a menu bar.

To open the Menu Designer, select a menu component on the form, and then either:
¢ Double-click the menu component.
or

* From the Properties page of the Object Inspector, select the Items property, and
then either double-click [Menu] in the Value column, or click the ellipsis (...)
button.

The Menu Designer appears, with the first (blank) menu item highlighted in the
Designer, and the Caption property selected in the Object Inspector.

Figure 9.4 Menu Designer for a main menu

& Form1.MainMenul

] Placeholder for first

menu item

Building menus

You add a menu component to your form, or forms, for every menu you want to
include in your application. You can build each menu structure entirely from scratch,
or you can start from one of the predesigned menu templates.

9-30 Developer’s Guide

Note

Creating and managing menus

This section discusses the basics of creating a menu at design time. For more
information about menu templates, see “Using menu templates” on page 9-38.

Naming menus

As with all components, when you add a menu component to the form, Kylix gives it
a default name; for example, MainMenul. You can give the menu a more meaningful
name that follows language naming conventions.

Kylix adds the menu name to the form’s type declaration, and the menu name then
appears in the Component list.

Naming the menu items

In contrast to the menu component itself, you need to explicitly name menu items as
you add them to the form. You can do this in one of two ways:

¢ Directly type the value for the Name property.

* Type the value for the Caption property first, and let Kylix derive the Name
property from the caption.

For example, if you give a menu item a Caption property value of File, Kylix
assigns the menu item a Name property of Filel. If you fill in the Name property
before filling in the Caption property, Kylix leaves the Caption property blank until
you type a value.

If you enter characters in the Caption property that are not valid for Delphi or C++
identifiers, Kylix modifies the Name property accordingly. For example, if you
want the caption to start with a number, Kylix precedes the number with a
character to derive the Name property.

The following table demonstrates some examples of this, assuming all menu items
shown appear in the same menu bar.

Table 9.3 Sample captions and their derived names

Component caption Derived name Explanation

&File Filel Removes ampersand

&File (2nd occurrence) File2 Numerically orders duplicate items

1234 N12341 Adds a preceding letter and numerical order

1234 (2nd occurrence) N12342 Adds a number to disambiguate the derived name
SQ@@# N1 Removes all non-standard characters, adding

preceding letter and numerical order

- (hyphen) N2 Numerical ordering of second occurrence of caption
with no standard characters

As with the menu component, Kylix adds any menu item names to the form's type
declaration, and those names then appear in the Component list.

Developing the application user interface 9-31

Creating and managing menus

Note

Adding, inserting, and deleting menu items

The following procedures describe how to perform the basic tasks involved in
building your menu structure. Each procedure assumes you have the Menu Designer
window open.

To add menu items at design time,
1 Select the position where you want to create the menu item.

If you've just opened the Menu Designer, the first position on the menu bar is
already selected.

2 Begin typing to enter the caption. Or enter the Name property first by specifically
placing your cursor in the Object Inspector and entering a value. In this case, you
then need to reselect the Caption property and enter a value.

3 Press Enter.
The next placeholder for a menu item is selected.

If you entered the Caption property first, use the arrow keys to return to the menu
item you just entered. You'll see that Kylix has filled in the Name property based
on the value you entered for the caption. (See “Naming the menu items” on

page 9-31.)

4 Continue entering values for the Name and Caption properties for each new item
you want to create, or press Esc to return to the menu bar.

Use the arrow keys to move from the menu bar into the menu, and to then move
between items in the list; press Enter to complete an action. To return to the menu
bar, press Esc.

To insert a new, blank menu item,

1 Place the cursor on a menu item.
2 Press Ins.

Menu items are inserted to the left of the selected item on the menu bar, and above
the selected item in the menu list.

To delete a menu item or command,

1 Place the cursor on the menu item you want to delete.
2 Press Del.

You cannot delete the default placeholder that appears below the item last entered in
a menu list, or next to the last item on the menu bar. This placeholder does not
appear in your menu at runtime.

9-32 Developer’s Guide

Creating and managing menus

Figure 9.5 Adding menu items to a main menu

Menu Designer displays WYSIWYG)
menu items as you build the menu. Title bar (shows Name property
for Menu component)

«. Form1_MainMenul
File Eclit (...

Cut
Copy

Menu bar

Object Inspector X
Pastel: Thenultern -

Progeries | events | A TMenultem object is created and the

Break mbNone Name property set to the menu item

(CaptonI &0t Caption you specify (minus any illegal
Chocked.. [oiee characters and plus a numeric suffix).
efault False
Enakled True
Groupindex 0
{ | HelpContext 0
Hint
MNarme Pastel
Placeh0|der for RFadioltern False
menu item ShorCut | (None)

Tag 1]
“isible True

Adding separator bars

Separator bars insert a line between menu items. You can use separator bars to
indicate groupings within the menu list, or simply to provide a visual break in a list.

To make the menu item a separator bar, type a hyphen (-) for the caption.

Specifying accelerator keys and keyboard shortcuts

Accelerator keys enable the user to access a menu command from the keyboard by
pressing Alt+ the appropriate letter, indicated in your code by the preceding
ampersand. The letter after the ampersand appears underlined in the menu.

Kylix automatically checks for duplicate accelerators and adjusts them at runtime.
This ensures that menus built dynamically at runtime contain no duplicate
accelerators and that all menu items have an accelerator. You can turn off this
automatic checking by setting the AutoHotkeys property of a menu item to maManual.

To specify an accelerator,
* Add an ampersand in front of the appropriate letter.

For example, to add a Save menu command with the S as an accelerator key, type
&Save.

Keyboard shortcuts enable the user to perform the action without using the menu
directly, by typing in the shortcut key combination.

To specify a keyboard shortcut,

* Use the Object Inspector to enter a value for the ShortCut property, or select a key
combination from the drop-down list.

This list is only a subset of the valid combinations you can type in.

When you add a shortcut, it appears next to the menu item caption.

Developing the application user interface 9-33

Creating and managing menus

Caution Keyboard shortcuts, unlike accelerator keys, are not checked automatically for
duplicates. You must ensure uniqueness yourself.

Creating submenus

Many application menus contain drop-down lists that appear next to a menu item to
provide additional, related commands. Such lists are indicated by an arrow to the
right of the menu item. Kylix supports as many levels of such submenus as you want
to build into your menu.

Organizing your menu structure this way can save vertical screen space. However,
for optimal design purposes you probably want to use no more than two or three
menu levels in your interface design. (For pop-up menus, you might want to use only
one submenu, if any.)

Figure 9.6 Nested menu structures

i Form1.MainMenul

File Edit Faormat——— Menu item on
il the menu bar
Font

Size t Menu item in

ayle » Bod ‘ amenu list

i ltalic
Undarline Nested
menu item

To create a submenu,
1 Select the menu item under which you want to create a submenu.

2 Press Cirl— to create the first placeholder, or right-click and choose Create
Submenu.

3 Type a name for the submenu item, or drag an existing menu item into this
placeholder.

4 Press Enter, or |, to create the next placeholder.
5 Repeat steps 3 and 4 for each item you want to create in the submenu.

6 Press Esc to return to the previous menu level.

Creating submenus by demoting existing menus

You can create a submenu by inserting a menu item from the menu bar (or a menu
template) between menu items in a list. When you move a menu into an existing
menu structure, all its associated items move with it, creating a fully intact submenu.
This pertains to submenus as well. Moving a menu item into an existing submenu
just creates one more level of nesting.

9-34 Developer’s Guide

Creating and managing menus

Moving menu items

During design time, you can move menu items simply by dragging and dropping.
You can move menu items along the menu bar, or to a different place in the menu
list, or into a different menu entirely.

The only exception to this is hierarchical: you cannot demote a menu item from the
menu bar into its own menu; nor can you move a menu item into its own submenu.
However, you can move any item into a different menu, no matter what its original
position is.

While you are dragging, the cursor changes shape to indicate whether you can
release the menu item at the new location. When you move a menu item, any items
beneath it move as well.

To move a menu item along the menu bar,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new location.

2 Release the mouse button to drop the menu item at the new location.
To move a menu item into a menu list,

1 Drag the menu item along the menu bar until the arrow tip of the drag cursor
points to the new menu.

This causes the menu to open, enabling you to drag the item to its new location.

2 Drag the menu item into the list, releasing the mouse button to drop the menu
item at the new location.

Adding images to menu items

Images can help users navigate in menus by matching glyphs and images to menu
item action, similar to toolbar images. You can add single bitmaps to menu items, or
you can organize images for your application into an image list and add them to a
menu from the image list. If you're using several bitmaps of the same size in your
application, it’s useful to put them into an image list.

To add a single image to a menu or menu item, set its Bitmap property to reference
the name of the bitmap to use on the menu or menu item.

To add an image to a menu item using an image list:

1 Drop a TMainMenu or TPopupMenu object on a form.

2 Drop a TImageList object on the form.

3 Open the ImageList editor by double clicking on the TImageList object.
4

Click Add to select the bitmap or bitmap group you want to use in the menu. Click
OK.

5 Set the TMainMenu or TPopupMenu object’s Images property to the ImageList you
just created.

6 Create your menu items and submenu items as described previously.

Developing the application user interface 9-35

Creating and managing menus

Note

7 Select the menu item you want to have an image in the Object Inspector and set the
Imagelndex property to the corresponding number of the image in the ImageList
(the default value for Imagelndex is -1, which doesn’t display an image).

Use images that are 16 by 16 pixels for proper display in the menu. Although you can
use other sizes for the menu images, alignment and consistency problems may result
when using images greater than or smaller than 16 by 16 pixels.

Viewing the menu

You can view your menu in the form at design time without first running your
program code. (Pop-up menu components are visible in the form at design time, but
the pop-up menus themselves are not. Use the Menu Designer to view a pop-up
menu at design time.)

To view the menu,

1 If the form is visible, click the form, or from the View menu, choose the form
whose menu you want to view.

2 If the form has more than one menu, select the menu you want to view from the
form’s Menu property drop-down list.

The menu appears in the form exactly as it will when you run the program.

Editing menu items in the Object Inspector

This section has discussed how to set several properties for menu items—for
example, the Name and Caption properties—by using the Menu Designer.

The section has also described how to set menu item properties, such as the ShortCut
property, directly in the Object Inspector, just as you would for any component
selected in the form.

When you edit a menu item by using the Menu Designer, its properties are still
displayed in the Object Inspector. You can switch focus to the Object Inspector and
continue editing the menu item properties there. Or you can select the menu item
from the Component list in the Object Inspector and edit its properties without ever
opening the Menu Designer.

To close the Menu Designer window and continue editing menu items,

1 Switch focus from the Menu Designer window to the Object Inspector by clicking
the properties page of the Object Inspector.

2 Close the Menu Designer as you normally would.

The focus remains in the Object Inspector, where you can continue editing
properties for the selected menu item. To edit another menu item, select it from the
Component list.

9-36 Developer’s Guide

Creating and managing menus

Using the Menu Designer context menu

The Menu Designer context menu provides quick access to the most common Menu
Designer commands, and to the menu template options. (For more information about
menu templates, refer to “Using menu templates” on page 9-38.)

To display the context menu, right-click the Menu Designer window, or press Alt+F10
when the cursor is in the Menu Designer window.

Commands on the context menu
The following table summarizes the commands on the Menu Designer context menu.

Table 9.4

Menu command

Menu Designer context menu commands
Action

Insert Inserts a placeholder above or to the left of the cursor.

Delete

Create Submenu
Select Menu

Save As Template
Insert From
Template

Delete Templates

Insert From
Resource

Deletes the selected menu item (and all its sub-items, if any).

Creates a placeholder at a nested level and adds an arrow to the right of
the selected menu item.

Opens a list of menus in the current form. Double-clicking a menu name
opens the designer window for the menu.

Opens the Save Template dialog box, where you can save a menu for
future reuse.

Opens the Insert Template dialog box, where you can select a template to
reuse.

Opens the Delete Templates dialog box, where you can choose to delete
any existing templates.

Opens the Insert Menu from Resource file dialog box, where you can
choose an .rc or .mnu file to open in the current form.

Switching between menus at design time

If you're designing several menus for your form, you can use the Menu Designer
context menu or the Object Inspector to easily select and move among them.

To use the context menu to switch between menus in a form,

1 Right-click in the Menu Designer and choose Select Menu.

Developing the application user interface 9-37

Creating and managing menus

The Select Menu dialog box appears.
Figure 9.7 Select Menu dialog box

Select Menu

Mainkdenul
Popuphenul

QK | Cancel | Help |

This dialog box lists all the menus associated with the form whose menu is
currently open in the Menu Designer.

2 From the list in the Select Menu dialog box, choose the menu you want to view or
edit.

To use the Object Inspector to switch between menus in a form,
1 Give focus to the form whose menus you want to choose from.
2 From the Component list, select the menu you want to edit.

3 On the Properties page of the Object Inspector, select the Items property for this
menu, and then either click the ellipsis button, or double-click [Menu].

Using menu templates

Kylix provides several predesigned menus, or menu templates, that contain
frequently used commands. You can use these menus in your applications without
modifying them (except to write code), or you can use them as a starting point,
customizing them as you would a menu you originally designed yourself. Menu
templates do not contain any event handler code.

The menu templates shipped with Kylix are stored in the .borland directory in the
delphi69dmt (Delphi) and bcb69dmt (C++) filesin a default installation.

You can also save as a template any menu that you design using the Menu Designer.
After saving a menu as a template, you can use it as you would any predesigned
menu. If you decide you no longer want a particular menu template, you can delete it
from the list.

To add a menu template to your application,
1 Right-click the Menu Designer and choose Insert From Template.

(If there are no templates, the Insert From Template option appears dimmed in the
context menu.)

9-38 Developer’s Guide

Creating and managing menus
The Insert Template dialog box opens, displaying a list of available menu
templates.
Figure 9.8 Sample Insert Template dialog box for menus

Insert Template

Edit Meny

File Menu

File Menu (for TextEdit Example)
Help dMenu

Help Menu (Expancded)

b0l Frame bdenu
“inclow benu

0K | Cancel | Help |

Select the menu template you want to insert, then press Enter or choose OK.

This inserts the menu into your form at the cursor’s location. For example, if your
cursor is on a menu item in a list, the menu template is inserted above the selected
item. If your cursor is on the menu bar, the menu template is inserted to the left of
the cursor.

To delete a menu template,

1

Right-click the Menu Designer and choose Delete Templates.

(If there are no templates, the Delete Templates option appears dimmed in the
context menu.)

The Delete Templates dialog box opens, displaying a list of available templates.
Select the menu template you want to delete, and press Del.

Kylix deletes the template from the templates list and from your hard disk.

Saving a menu as a template

Any menu you design can be saved as a template so you can use it again. You can use
menu templates to provide a consistent look to your applications, or use them as a
starting point which you then further customize.

The menu templates you save are stored in the .borland directory in the delphi69dmt
(Delphi) and bcb69dmt (C++) files.

To save a menu as a template,

1

Design the menu you want to be able to reuse.

This menu can contain as many items, commands, and submenus as you like;
everything in the active Menu Designer window will be saved as one reusable
menu.

Right-click in the Menu Designer and choose Save As Template.

Developing the application user interface 9-39

Creating and managing menus

Note

The Save Template dialog box appears.
Figure 9.9 Save Template dialog box for menus

Save Template

Ternplate Description:

Edit Menu

File Menu

File Menu ifor TextEdit Example)
Help Menu

Help Menu (Expanded)

MDI Frame Menu

Window Menu

QK | Cancel | Help |

3 In the Template Description edit box, type a brief description for this menu, and
then choose OK.

The Save Template dialog box closes, saving your menu design and returning you
to the Menu Designer window.

The description you enter is displayed only in the Save Template, Insert Template,
and Delete Templates dialog boxes. It is not related to the Name or Caption property
for the menu.

Naming conventions for template menu items and event handlers

When you save a menu as a template, Kylix does not save its Name property, since
every menu must have a unique name within the scope of its owner (the form).
However, when you insert the menu as a template into a new form by using the
Menu Designer, Kylix then generates new names for it and all of its items.

For example, suppose you save a File menu as a template. In the original menu, you
name it MyFile. If you insert it as a template into a new menu, Kylix names it Filel. If
you insert it into a menu with an existing menu item named Filel, Kylix names it
File2.

Kylix also does not save any OnClick event handlers associated with a menu saved as
a template, since there is no way to test whether the code would be applicable in the
new form. When you generate a new event handler for the menu template item,
Kylix still generates the event handler name. You can easily associate items in the
menu template with existing OnClick event handlers in the form.

For more information, see “Associating an event with an existing event handler” on
y ?7 %7
page 6-7.

Manipulating menu items at runtime

Sometimes you want to add menu items to an existing menu structure while the
application is running, to provide more information or options to the user. You can

9-40 Developer’s Guide

-

[l

+

Creating and managing menus

insert a menu item by using the menu item’s Add or Insert method, or you can
alternately hide and show the items in a menu by changing their Visible property.
The Visible property determines whether the menu item is displayed in the menu. To
dim a menu item without hiding it, use the Enabled property.

For examples that use the menu item’s Visible and Enabled properties, see “Disabling
menu items” on page 7-10.

In multiple document interface (MDI) applications, you can also merge menu items
into an existing menu bar. The following section discusses this in more detail.

Merging menus

For MDI applications, such as the text editor sample application, your application’s
main menu needs to be able to receive menu items either from another form. This is
often called merging menus.

You prepare menus for merging by specifying values for two properties:

® Menu, a property of the form
* Grouplndex, a property of menu items in the menu

Specifying the active menu: Menu property

The Menu property specifies the active menu for the form. Menu-merging operations
apply only to the active menu. If the form contains more than one menu component,
you can change the active menu at runtime by setting the Menu property in code. For
example,

Forml.Menu := SecondMenu;

Forml->Menu = SecondMenu;

Determining the order of merged menu items: Groupindex property

The GrouplIndex property determines the order in which the merging menu items
appear in the shared menu bar. Merging menu items can replace those on the main
menu bar, or can be inserted.

The default value for Grouplndex is 0. Several rules apply when specifying a value for
Grouplndex:

* Lower numbers appear first (farther left) in the menu.

For instance, set the GroupIndex property to 0 (zero) for a menu that you always
want to appear leftmost, such as a File menu. Similarly, specify a high number (it
needn’t be in sequence) for a menu that you always want to appear rightmost,
such as a Help menu.

* To replace items in the main menu, give items on the child menu the same
Grouplndex value.

This can apply to groupings or to single items. For example, if your main form has
an Edit menu item with a GroupIndex value of 1, you can replace it with one or

Developing the application user interface 9-41

Designing toolbars
more items from the child form's menu by giving them a GroupIndex value of 1 as
well.

Giving multiple items in the child menu the same GroupIndex value keeps their
order intact when they merge into the main menu.

* To insert items without replacing items in the main menu, leave room in the
numeric range of the main menu’s items and “plug in” numbers from the child
form.

For example, number the items in the main menu 0 and 5, and insert items from
the child menu by numbering them 1, 2, 3, and 4.

Designing toolbars

A toolbar is a panel, usually across the top of a form (under the menu bar), that holds
buttons and other controls. You can put controls of any sort on a toolbar. In addition
to buttons, you may want to put use color grids, scroll bars, labels, and so on.

You can add a toolbar to a form in several ways:
¢ Place a panel (TPanel) on the form and add controls (typically speed buttons) to it.

* Use a toolbar component (TToolBar) instead of TPanel, and add controls to it.
TToolBar manages buttons and other controls, arranging them in rows and
automatically adjusting their sizes and positions. If you use tool button
(TToolButton) controls on the toolbar, TToolBar makes it easy to group the buttons
functionally and provides other display options.

How you implement your toolbar depends on your application. The advantage of
using the Panel component is that you have total control over the look and feel of the
toolbar.

By using the toolbar component, you are ensuring that your application has a
consistent look and feel. If these operating system controls change in the future, your
application could change as well.

The following sections describe how to:

* Add a toolbar and corresponding speed button controls using the panel
component.

¢ Add a toolbar and corresponding tool button controls using the Toolbar
component.

® Respond to clicks.
¢ Add hidden toolbars.

e Hide and show toolbars.

Adding a toolbar using a panel component

To add a toolbar to a form using the panel component,

9-42 Developer’s Guide

Designingtoolbars

1 Add a panel component to the form (from the Standard page of the Component
palette).

2 Set the panel’s Align property to alTop. When aligned to the top of the form, the
panel maintains its height, but matches its width to the full width of the form’s
client area, even if the window changes size.

3 Add speed buttons or other controls to the panel.

Speed buttons are designed to work on toolbar panels. A speed button usually has no
caption, only a small graphic (called a glyph), which represents the button’s function.

Speed buttons have three possible modes of operation. They can

¢ Actlike regular pushbuttons
¢ Toggle on and off when clicked
* Actlike a set of radio buttons

To implement speed buttons on toolbars, do the following;:

Add a speed button to a toolbar panel.
Assign a speed button’s glyph.

Set the initial condition of a speed button.
Create a group of speed buttons.

Allow toggle buttons.

Adding a speed button to a panel
To add a speed button to a toolbar panel, place the speed button component (from the
Additional page of the Component palette) on the panel.

The panel, rather than the form, “owns” the speed button, so moving or hiding the
panel also moves or hides the speed button.

The default height of the panel is 41, and the default height of speed buttons is 25. If
you set the Top property of each button to 8, they’ll be vertically centered. The default
grid setting snaps the speed button to that vertical position for you.

Assigning a speed button’s glyph

Each speed button needs a graphic image called a glyph to indicate to the user what
the button does. If you supply the speed button only one image, the button
manipulates that image to indicate whether the button is pressed, unpressed,
selected, or disabled. You can also supply separate, specific images for each state if
you prefer.

You normally assign glyphs to speed buttons at design time, although you can assign
different glyphs at runtime.

To assign a glyph to a speed button at design time,
1 Select the speed button.
2 In the Object Inspector, select the Glyph property.

3 Double-click the Value column beside Glyph to open the Picture Editor and select
the desired bitmap.

Developing the application user interface 9-43

Designing toolbars

Setting the initial condition of a speed button

Speed buttons use their appearance to give the user clues as to their state and
purpose. Because they have no caption, it’s important that you use the right visual
cues to assist users.

Table 9.5 lists some actions you can set to change a speed button’s appearance:

Table 9.5 Setting speed buttons’ appearance

To make a speed button: Set the toolbar’s:

Appear pressed GrouplIndex property to a value other than zero and its
Down property to true.

Appear disabled Enabled property to false.

Have a left margin Indent property to a value greater than 0.

If your application has a default drawing tool, ensure that its button on the toolbar is
pressed when the application starts. To do so, set its Grouplndex property to a value
other than zero and its Down property to true.

Creating a group of speed buttons

A series of speed buttons often represents a set of mutually exclusive choices. In that
case, you need to associate the buttons into a group, so that clicking any button in the
group causes the others in the group to pop up.

To associate any number of speed buttons into a group, assign the same number to
each speed button’s Grouplndex property.

The easiest way to do this is to select all the buttons you want in the group, and, with
the whole group selected, set Grouplndex to a unique value.

Allowing toggle buttons

Sometimes you want to be able to click a button in a group that’s already pressed and
have it pop up, leaving no button in the group pressed. Such a button is called a
toggle. Use AllowAllUp to create a grouped button that acts as a toggle: click it once,
it’s down; click it again, it pops up.

To make a grouped speed button a toggle, set its AllowAllUp property to true.

Setting AllowAllUp to true for any speed button in a group automatically sets the
same property value for all buttons in the group. This enables the group to act as a
normal group, with only one button pressed at a time, but also allows every button to
be up at the same time.

Adding a toolbar using the toolbar component

The toolbar component (TToolBar) offers button management and display features
that panel components do not. To add a toolbar to a form using the toolbar
component,

9-44 Developer’s Guide

Designingtoolbars

1 Add a toolbar component to the form (from the Common Controls page of the
Component palette). The toolbar automatically aligns to the top of the form.

2 Add tool buttons or other controls to the bar.

Tool buttons are designed to work on toolbar components. Like speed buttons, tool
buttons can:

* Act like regular pushbuttons.
¢ Toggle on and off when clicked.
* Actlike a set of radio buttons.

To implement tool buttons on a toolbar, do the following:

Add a tool button

Assign images to tool buttons
Set the tool buttons” appearance
Create a group of tool buttons
Allow toggled tool buttons

Adding a tool button

To add a tool button to a toolbar, right-click on the toolbar and choose New Button.

The toolbar “owns” the tool button, so moving or hiding the toolbar also moves or
hides the button. In addition, all tool buttons on the toolbar automatically maintain
the same height and width. You can drop other controls from the Component palette
onto the toolbar, and they will automatically maintain a uniform height. Controls
will also wrap around and start a new row when they do not fit horizontally on the
toolbar.

For example, the following code shows how to add tool buttons in a loop, adding
them in the order 10-1 from left to right.

Delphi example

Toolbarl:= TToolbar.create(self);
Toolbarl.Parent := Forml;
Toolbarl.ShowCaptions := True;
for i := 0 to 10 do
begin

Toolbutton := TToolbutton.Create(Self);
{SIFDEF LINUX}
ToolButton.Toolbar := Toolbarl;
{SENDIF}
{SIFDEF WINDOWS}
ToolButton.Parent := Toolbarl;
{SENDIF}
ToolButton.Caption := '#' + inttostr(i);
end;
end;

Developing the application user interface 9-45

Designing toolbars

F-- C++example

Assigning images to tool buttons

Each tool button has an Imagelndex property that determines what image appears on
it at runtime. If you supply the tool button only one image, the button manipulates
that image to indicate whether the button is disabled. To assign images to tool
buttons at design time,

1 Select the toolbar on which the buttons appear.

2 In the Object Inspector, assign a TImageList object to the toolbar’s Images property.
An image list is a collection of same-sized icons or bitmaps.

3 Select a tool button.

In the Object Inspector, assign an integer to the tool button’s Imagelndex property
that corresponds to the image in the image list that you want to assign to the
button.

You can also specify separate images to appear on the tool buttons when they are
disabled and when they are under the mouse pointer. To do so, assign separate
image lists to the toolbar’s DisabledImages and Hotlmages properties.

Setting tool button appearance and initial conditions
Table 9.6 lists some actions you can set to change a tool button’s appearance:

Table 9.6 Setting tool buttons’ appearance

To make a tool button: Set the toolbar’s:

Appear pressed (on tool button) Style property to tbsCheck and Down
property to true.

Appear disabled Enabled property to false.

Have a left margin Indent property to a value greater than 0.

Appear to have “pop-up” borders, Flat property to true.
thus making the toolbar appear
transparent

To force a new row of controls after a specific tool button, Select the tool button that
you want to appear last in the row and set its Wrap property to true.

To turn off the auto-wrap feature of the toolbar, set the toolbar’s Wrapable property to
false.

Creating groups of tool buttons

To create a group of tool buttons, select the buttons you want to associate and set
their Style property to tbsCheck; then set their Grouped property to true. Selecting a
grouped tool button causes other buttons in the group to pop up, which is helpful to
represent a set of mutually exclusive choices.

9-46 Developer’s Guide

Designingtoolbars

Any unbroken sequence of adjacent tool buttons with Style set to tbsCheck and
Grouped set to true forms a single group. To break up a group of tool buttons,
separate the buttons with any of the following;:

* A tool button whose Grouped property is false.

* A tool button whose Style property is not set to tbsCheck. To create spaces or
dividers on the toolbar, add a tool button whose Style is tbsSeparator or tbsDivider.

¢ Another control besides a tool button.

Allowing toggled tool buttons

Use AllowAllUp to create a grouped tool button that acts as a toggle: click it once, it is
down,; click it again, it pops up. To make a grouped tool button a toggle, set its
AllowAllUp property to true.

As with speed buttons, setting AllowAllUp to true for any tool button in a group
automatically sets the same property value for all buttons in the group.

Responding to clicks

When the user clicks a control, such as a button on a toolbar, the application
generates an OnClick event which you can respond to with an event handler. Since
OnClick is the default event for buttons, you can generate a skeleton handler for the
event by double-clicking the button at design time. For more information, see
“Working with events and event handlers” on page 6-5 and “Generating a handler
for a component’s default event” on page 6-6.

Assigning a menu to a tool button

If you are using a toolbar (TToolBar) with tool buttons (TToolButton), you can
associate menu with a specific button:

1 Select the tool button.

2 In the Object Inspector, assign a pop-up menu (TPopupMenu) to the tool button’s
DropDownMenu property.

If the menu’s AutoPopup property is set to true, it will appear automatically when the
button is pressed.

Adding hidden toolbars

Toolbars do not have to be visible all the time. In fact, it is often convenient to have a
number of toolbars available, but show them only when the user wants to use them.
Often you create a form that has several toolbars, but hide some or all of them.

To create a hidden toolbar:

1 Add a toolbar or panel component to the form.
2 Set the component’s Visible property to false.

Developing the application user interface 9-47

Designing toolbars

Although the toolbar remains visible at design time so you can modify it, it remains
hidden at runtime until the application specifically makes it visible.

Hiding and showing toolbars

Often, you want an application to have multiple toolbars, but you do not want to
clutter the form with them all at once. Or you may want to let users decide whether
to display toolbars. As with all components, toolbars can be shown or hidden at
runtime as needed.

To show or hide a toolbar at runtime, set its Visible property to true or false,
respectively. Usually you do this in response to particular user events or changes in
the operating mode of the application. To do this, you typically have a close button
on each toolbar. When the user clicks that button, the application hides the
corresponding toolbar.

You can also provide a means of toggling the toolbar. In the following example, a
toolbar of pens is toggled from a button on the main toolbar. Since each click presses
or releases the button, an OnClick event handler can show or hide the Pen toolbar
depending on whether the button is up or down.

B Delphi example

procedure TForml.PenButtonClick(Sender: TObject);
begin

PenBar.Visible := PenButton.Down;
end;

[w]

C++ example

void __fastcall TForml::PenButtonClick(TObject *Sender)
{

PenBar->Visible = PenButton->Down;

}

Sample programs

For examples of applications that use actions, action lists, menus, and toolbars, refer
to ...\kylix\samples.

9-48 Developer’s Guide

Designingtoolbars

Developing the application user interface 9-49

9-50 Developer’s Guide

Types of controls

Controls are visual components that help you design your user interface.

This chapter describes the different controls you can use, including text controls,
input controls, buttons, list controls, grouping controls, display controls, grids, value
list editors, and graphics controls.

To create a graphic control, see Chapter 44, “Creating a graphic control.” To learn
how to implement drag and drop in these controls, see Chapter 7, “Working with
controls.”

Text controls

Many applications use text controls to display text to the user. You can use:
e Edit controls, which allow the user to add text.

* Text viewing controls and labels, which do not allow user to add text.

Edit controls

Edit controls display text to the user and allow the user to enter text. The type of
control used for this purpose depends on the size and format of the information.

Use this component: ~ When you want users to do this:

TEdit Edit a single line of text.
TMemo Edit multiple lines of text.
TMaskEdit Adbhere to a particular format, such as a postal code or phone number.

TEdit and TMaskEdit are simple edit controls that include a single line text edit box in
which you can type information. When the edit box has focus, a blinking insertion
point appears.

Types of controls 10-1

Text controls

You can include text in the edit box by assigning a string value to its Text property.
You control the appearance of the text in the edit box by assigning values to its Font
property. You can specify the typeface, size, color, and attributes of the font. The
attributes affect all of the text in the edit box and cannot be applied to individual
characters.

An edit box can be designed to change its size depending on the size of the font it
contains. You do this by setting the AutoSize property to true. You can limit the
number of characters an edit box can contain by assigning a value to the MaxLength
property.

TMaskEdit is a special edit control that validates the text entered against a mask that
encodes the valid forms the text can take. The mask can also format the text that is
displayed to the user.

TMemo allow the user to add several lines of text.

Edit control properties

Following are some of the important properties of edit controls:

Table 10.1 Edit control properties

Property Description

Text Determines the text that appears in the edit box or memo control.

Font Controls the attributes of text written in the edit box or memo control.

AutoSize Enables the edit box to dynamically change its height depending on the
currently selected font.

ReadOnly Specifies whether the user is allowed to change the text.

MaxLength Limits the number of characters in simple edit controls.

SelText Contains the currently selected (highlighted) part of the text.

SelStart, Indicate the position and length of the selected part of the text.

SelLength

Memo controls

The TMemo control handles multiple lines of text.

TMemo is another type of edit box that handles multiple lines of text. The lines in a
memo control can extend beyond the right boundary of the edit box, or they can
wrap onto the next line. You control whether the lines wrap using the Word Wrap

property.
In addition to the properties that all edit controls have, memo controls include other
properties, such as the following:

o Alignment specifies how text is aligned (left, right, or center) in the component.

* The Text property contains the text in the control. Your application can tell if the
text changes by checking the Modified property.

e Lines contains the text as a list of strings.

¢ WordWrap determines whether the text will wrap at the right margin.

10-2 Developer’s Guide

Textcontrols

e WantReturns determines whether the user can insert hard returns in the text.

e WantTabs determines whether the user can insert tabs in the text.

¢ AutoSelect determines whether the text is automatically selected (highlighted)
when the control becomes active.

At runtime, you can select all the text in the memo with the SelectAll method.

Text viewing controls

The text viewing controls display text but are read-only.

Use this component: ~ When you want users to do this:
TTextBrowser Display a text file or simple HTML page that users can scroll through.

TTextViewer Display a text file or simple HTML pa