
Migrating
Projects to the
Borland® JBuilder™

Development
Environment
By Axel Kratel, JBuilder Product Manager

Borland Software Corporation

September 2002

Introduction
The Borland® JBuilder™ development environment is equipped

with very powerful project import capabilities that make it easy

to import most standard Java™ code and render it in the form of

a JBuilder project, complete with EJB™ modules and JBuilder

Web applications. In addition to these fundamental capabilities,

JBuilder now also provides the ability to automatically migrate

WebGain VisualCafé™ projects into the JBuilder environment.

This paper shows you how to take advantage of this new

functionality as well as the existing import capabilities already

available in JBuilder.

If you are reading this paper, then you most likely have some

code you would like to bring into JBuilder, and you are eager to

get productive. Thankfully, JBuilder makes that process relatively

simple by providing a VisualCafé import project wizard that can

chew through just about any code and spit out a nice JBuilder

project. This paper shows you where to download and how to

install and use the JBuilder open tool that extends JBuilder to

provide the VisualCafé import capabilities.

Contents
Introduction 1

Basic preparations 2

Importing WebGain VisualCafe™ projects
into JBuilder™ 4

Some things you should know 4

Importing general projects into JBuilder 4

The basics 6

What you should know about directories 7

When to divide into subprojects 8

Additional configuations 8

JBuilder™

2

Of course, under the hood, this open tool actually takes

advantage of an already existing infrastructure for importing just

about any code into JBuilder even if there is no VisualCafé

project file to parse. So we’ll also show you how to import

your favorite open-source project or sample application right

into JBuilder.

Of course, it helps to have a few hints and tips on how to take

best advantage of these powerful features, so this paper walks

you through some basic concepts you need to know before you

get started. We’ll then tackle a few specific examples, including

importing a simple SWING-based application, the Stylepad from

the Java JDK,® importing JPetStore, an open source, servlet and

JSP™-based version of the Sun® Microsystems Java Pet Store

sample application. Finally, we’ll tackle importing an EJB

application sample from the WebLogic application server.

Basic preparations
To take advantage of the VisualCafé import capabilities, you

need to download and install the VisualCafé import open tool

update. The update includes both the latest JBuilder update and

the actual VisualCafé import open tool. The update can be

downloaded from the JBuilder downloads page at

http://www.borland.com/products/downloads/download_jbuil

der.html. Follow the instructions in each respective download in

order to update your JBuilder 7 installation.

Make sure you close JBuilder before doing any installations.

After the installations are complete, restart JBuilder. You can see

whether the VisualCafé import open tool is installed by opening

the object gallery (File|New) and clicking the Project tab. You

should see “Import VisualCafé Projects” as one of the objects in

the gallery.

You should now be ready to import VisualCafé projects.

Importing VisualCafé™ projects
into JBuilder™
The whole process of importing a VisualCafé project is relatively

seamless. Select the VisualCafé import wizard from the object

gallery: File|New menu path, select the Project tab, and select

the Import VisualCafé Project icon.

This will bring up the VisualCafé import wizard.

JBuilder™

3

Note that the wizard will recall the last entries you have entered.

You now need to enter the VisualCafé project file you want to

import. Look for any *.vep files. It is recommended that you

also enter the directory where VisualCafé is installed, because

VisualCafé stores some global path settings in the vc.ini file

found in the VisualCafé bin directory. But this step is not

mandatory. Thus if you have a VisualCafé project without

having a VisualCafé installation on your workstation, you can

still import the project, assuming, of course, that you copied

all the necessary source code associated with the project to

your workstation.

JBuilder optionally will also import any subprojects associated

with your project. You can select the import subproject button

to do this. Often, subprojects might contain a client part of a

J2EE™ application. In JBuilder, you can put both the client and

the server code into one single directory.

You also have the option to have JBuilder create the JBuilder

project right in the existing directory, but this option is only

recommended for advanced users. The default action is to copy

all the necessary source files from the VisualCafé project

directory to your new JBuilder project directory. This is the

recommended approach because it will copy all the source and

related files into a directory structure that is compatible with

JBuilder. However, it is possible to leave the source code where

it is; JBuilder is flexible enough to work with source code no

matter where it is stored on your hard drive. However, if you

choose the latter option, be prepared to make some manual

modifications.

Once you have selected the appropriate VisualCafé project to

import, click Next to bring up the second and final step in

the wizard.

Simply enter the location of the new JBuilder project you want

to create; give the project a name and click Finish.

JBuilder will now create the entire project for you. The project at

this point is completely imported into JBuilder. In the process,

JBuilder will have created an import log in the form of an

HTML file and included that file in the project. JBuilder also

automatically creates an EJB module and a Web application

node in the project if either one of these were part of the original

source code. A runtime is also added so that you can easily run

the project. Note that both the Web application and the EJB

module are named untitled1. You will need to rename them to

whatever you like. The name has no bearing on the source code.

JBuilder™

4

Your project is ready to use. It’s a good idea to verify that the

project compiles and runs. If it compiled and ran in VisualCafé,

then it should compile and run in JBuilder.

Some things you should know
Generally, the biggest challenge in importing any project into

JBuilder is to make sure the classpaths are configured properly.

In VisualCafé, developers define classpaths that include the

necessary jars that contain libraries to build and to deploy. In

JBuilder, the proper JARs are included in libraries defined in the

IDE. In most cases, if a project won’t compile or run, it’s

because a library is not set up correctly.

The import wizard creates the necessary libraries based on the

information it obtains from parsing the VisualCafé project file.

In addition, the vc.ini file in the VisualCafé bin directory also

contains global classpath settings that might be needed for your

project. If you defined the VisualCafé directory during the

import process, JBuilder will then also extract any necessary jar

from the global classpath settings. After importing your project,

you will need to verify that the libraries are indeed set up

properly and that there are no redundant libraries. Redundant

libraries can get defined if your VisualCafé project had specific

classpath settings that also included common build and runtime

libraries already set up by default in JBuilder.

Also, if you copied the VisualCafé project from another system,

some of the original jars needed for the project may no longer be

in the locations described in the original VisualCafé project file.

JBuilder will still create the libraries that correspond to those

jars, but you will need to manually copy them into the right

location or edit the libraries to point to the appropriate jars.

JBuilder also assumes that you are working with BEA WebLogic

Server,™ as that is the only application server supported by

VisualCafé. After importing your project, you will also need to

verify that the application server configuration is set up properly

for your new JBuilder project. You will also need to bring up the

WebLogic console and properly configure the database

connection pool and other runtime parameters that your project

will use. Please consult the JBuilder documentation for more

details on how to work with the WebLogic Server.

Importing general projects
into JBuilder™
The VisualCafé import utility actually makes use of a

fundamental layer of import functionality already available in

JBuilder. This functionality can actually be employed to import

just about any source code into JBuilder regardless of what IDE

was originally used to create the source code. This functionality

is available via the project from existing code wizard, also known

as the project import wizard.

The project import wizard was designed to make the whole

process of importing a project as easy as possible with the least

amount of work. Unlike the project import features found in

other IDEs, the project import wizard in JBuilder will actually

auto-discover any source code, libraries, Web applications, and

EJB applications buried in a subdirectory. All you have to do is

to point the wizard to the actual directory of your choice that

contains the relevant files and subdirectories, and let JBuilder do

the rest.

JBuilder™

5

To get to the project import wizard, just open the object gallery,

(File|New …) select the Project tab and double-click the

Project for Existing Code icon.

The first step of the wizard asks you to enter a directory. This is

the directory that contains all the files and subdirectories of your

project. You don’t want to select just the directory that contains

the source. Rather, select the directory that contains every

subdirectory and file relevant to the project you want to import.

Keep in mind that in some cases, you might have something

slightly too big for JBuilder so swallow, and you will need to

break up your project into more manageable morsels. It’s not the

amount of code that’s at issue. Rather, if your directory contains

shared code, an EJB JAR, and a mobile application, then you will

need to create two separate projects—one for your EJB tier and

one for the mobile application (this topic is discussed in greater

detail in the following section). Let’s assume that you have a

manageable project in the directory you select. On the same

dialog, don’t forget to name your project as well. It can be any

name of your choice. This will be the name of the .jpx file that

JBuilder will create. When you’re done, click Next.

Next, JBuilder will ask you to verify the project data it auto-

discovered. Make sure that the information is correct. Note that

this dialog doesn’t show the actual EJB and Web applications it

discovered. These get set up automatically in the project. Also

note that JBuilder automatically adds a library entry for your

project. This entry will contain any jars found in lib directories.

Once you’ve verified the information, click Next.

Finally, set up any additional project settings you wish on the last

dialog of the wizard, and click Finish.

JBuilder™

6

Once JBuilder is done setting up the project, you need to look

through the project and make sure everything imported the way

it was supposed to. You may need to do some additional

configuration such as selecting the appropriate application server

and adding specific runtime configurations to run different parts

of the project (such as a runner to launch the server) or to run a

SWING client application. If your project does include a

SWING application, then you may also need to make some basic

changes to any SWING code so that you can pull the application

into the JBuilder GUI designer (this topic is not covered in this

paper; for more information, visit the Borland Developer

Network Web site at http://bdn.borland.com). The next

sections walk through the technical details on what to do to

prepare the project for import, and they give some detailed

examples, including applications that use servlets, JSP, and

EJB components.

The basics
Before you get started and launch the project import wizard,

there are a few things you need to know so you can properly

prepare your project for import. The basic two areas you need to

pay attention to are the directory structure of the project and the

libraries it uses. Once you understand what JBuilder expects to

see, it will become relatively straightforward to import many

projects by making some simple directory structure changes

before running the project import wizard.

Let’s consider the most complex scenario and assume that we

have a project with an EJB tier, a Web-based client, and a

SWING-based client to access the EJB tier. So let’s take a look

at all the files and directories that should floating around to

make up the project.

Source files: The first order of business is to properly import

the actual source files. JBuilder essentially looks for any

subdirectory named “src” under the main project directory and

assumes that each of these “src” directories are the top node of

individual packages. If you have multiple “src” directories, and

these do not all correspond to packages—or, in the unusual

instance that one of your packages is actually called “src”—you

will be given a chance to eliminate individual package nodes

during the import process. If no “src” subdirectory is present,

then JBuilder will simply import all the code that is in the main

project directory and put it in an unnamed package. In general,

though, the cleanest approach is to place all the source code in a

directory called “src.” Be careful to make sure the package

structure matches what is in any deployment descriptors or Web

XML configuration files.

EJB deployment descriptors: In order for JBuilder to be able

to incorporate your EJB code as part of an EJB module, it will

need to be able to find the actual deployment descriptors.

JBuilder doesn’t care where those files are stored, as long as they

are somewhere underneath the actual project root directory. Of

course, we recommend a clean and elegant approach to place all

the EJB deployment files into a folder called META-INF under

the main project root directory. Once the project is done

importing, you can actually modify the properties of the newly

created EJB module and make sure the EJB designer synchs up

with the deployment descriptors in the META-INF directory.

More on how to do this is outlined in a later section of

this paper.

Web application files and directories: Each Web application

is typically associated with a Web application context root

directory. This directory maps to a URL context defined for the

JBuilder™

7

Web application. Thus, if the URL context is localhost/myapp

and the directory is c:\myprojects, then an index.jsp file placed

in the locahost/myapp directory will become accessible under

the URL http://localhost/myapp/index.jsp. In the context root

directory, there needs to be a WEB-INF directory that contains

all the files that describe how the Web application behaves. The

servlet container will make this directory invisible so that it

cannot be accessed via a URL. The main configuration file in

that directory is Web.xml, but there may be other files depending

on the servlet container and frameworks you are using. This

directory is often also where source, tag libraries, and general

libraries can optionally be placed. All other files and directories

under the context root directory should be HTML or JSP files

that make up the Web application.

Ant build files: If your project includes an external build file,

then JBuilder will pull it in automatically. It does not matter

where it is located in the directory structure. However, note that

if you are copying any files, you may need to edit the build.xml

file to update any absolute paths. Otherwise, your build.xml file

might be broken.

Javadoc: Your project might include Javadoc. JBuilder can

import the Javadoc files, but do note that JBuilder expects to see

the Javadoc in a separate directory that has the same package

structure as the source.

Other files: JBuilder will ignore any other files, such as database

SQL scripts, outside notes, and non-Javadoc documentation—

basically any files not directly associated with the Java platform.

But note that any file can simply be added to the JBuilder project

manually on an individual basis. The advantage of adding non-

Java source files to the project is that they can then readily

be edited from within JBuilder, provided they are ASCII

format files.

To add any non-Java source ASCII file, right-click the main

project node, and select Add Files/Packages.

In the resulting file dialog, make sure to set the file type to

All files; otherwise, the non-Java files will be hidden from

the dialog.

Select the file you want to add, and click OK. The file will then

be accessible from within JBuilder so that you can make changes

to it.

What you should know
about directories
JBuilder is actually quite flexible, and there are very few

restrictions on what you can do. One restriction is that if your

project includes a Web application, then the WEB-INF/lib and

WEB-INF/classes directories should not contain any files that

cannot be regenerated during the build process. Another

restriction is that all files and directories related to the project

JBuilder™

8

need to be under the project root directory. Of course, any jar

files that need to be included need not be stored under the

project root directory as long as they get set up as a library in

JBuilder and added to the project.

However, if you take the time to make some simple preparations

in order to provide JBuilder with a clean project directory

hierarchy, the import process will work a lot smoother. Assume

our project directory is called myproject, and let’s walk through

some best practices to provide optimal results. All the source

code should be best placed in myproject/src. You will need to

make sure that you preserve the full package hierarchy under src.

Next, if you have any Javadoc, place it in a directory called

myproject/doc. Any jars that are needed as libraries for the

project should be placed in a directory called myproject/lib. If

you have any EJB deployment descriptors, place them in a

directory called myproject/META-INF. Finally, if you have a

Web application, make sure you have a WEB-INF directory

under the root context directory with all the appropriate

descriptors and tag libraries. The root context directory can be

any name as long as it is somewhere under the myproject

directory.

You should now be able to seamlessly import the project into

JBuilder and be up and running in a matter of minutes. Of

course, you don’t have to follow the directory structure outlined

above. During the import process, JBuilder will give you the

opportunity to custom-define the source and documentation

directory. So for example, if you have a Web application, and

you distribute the source in an src directory under the WEB-INF

directory, you can simply point JBuilder to that src directory

location during the import process.

When to divide into subprojects
If you have a very large application with multiple tiers, the next

obvious question you may ask is when to subdivide the project

into distinct JBuilder projects. The constraint to keep in mind is

that JBuilder expects you to use a single application server

configuration per project and a single JDK per project. Thus, if

you have a mobile tier and a Web tier in your project, you will

need to create two distinct projects in JBuilder (since the mobile

tier must be based on the Sun J2ME™ SDK, and the Web tier

will be based on a standard JDK).

However, you can still use only a single project if you have

multiple tiers that include Web or EJB components, as long as

the components use the same application server configuration.

The application server configuration for a single project can be

set so that you use one server type for EJB tiers and another

server type for Web tiers. But each EJB tier in that project will

then need to use the same EJB container, and each Web tier will

need to use the same servlet container. Therefore, if your

application for example includes a Web tier that runs on

Tomcat, and another Web tier that runs on WebLogic, you

will need to set up two distinct projects for each Web tier.

Additional configurations
Once you have imported your project, you will need to take

three more steps to complete the configuration for the project:

set up any libraries that are not under the project root directory,

set up the application server configuration, and set up any

runtime configurations.

Since JBuilder has no way of knowing about any dependencies

on external libraries that are not included under the project root

directory, you will need to tell JBuilder about these libraries.

You can do that by selecting the project properties under the

project menu. In the resulting dialog box, select the required

libraries tab.

JBuilder™

9

Then, click Add… and select the right library.

Most likely, your project will require some special jar files not

distributed with JBuilder. In this case, you will need to create a

new library for your project. Just click New… and create a

new library for your project. This will trigger the New

Library Wizard.

In the wizard, select the name you wish to give to your library.

It can be anything that will help you remember what is in that

library. Your code won’t care about the library name; only the

library paths matter. Also select the location in JBuilder. If you

select Project, the library will be available only for that specific

project. User Home will make sure it is available for you to use

with other projects. JBuilder means it will be available for all

users of JBuilder on that particular machine.

Click Add… to add each directory, jar, or class file, and select

OK. In the following dialog, simply select the library you just

created and click OK to add it to the product.

Next, you will need to configure your project to use your chosen

application server. The assumption here is that you have already

set up JBuilder (Tools|Configure Servers…) to work with your

application server. The only thing left to do is to configure the

application server setup for your project by selecting the menu

path Project|Project Properties and selecting the Server tab.

JBuilder™

10

You can use a single server for all services in the project, or you

can choose modular services. The latter is useful, for example, if

you use one application server as an EJB container and a

separate application server as a servlet container.

Finally, we need to create the appropriate run configurations to

run the various tiers in our application. Select the Run tab,

and click New… to create a runtime configuration.

For tiers that use the server, select the Server tab. Click on the

JSP/Servlet service in the category window, then, click

Command line under Server in the Category window. On the

right-hand side, you will then be able to select the URI to launch

at runtime. Then, click Archives in the Category window and

make sure the proper JARs and WARs are selected to be

deployed to the server. Give the runtime configuration a name

and click OK.

For SWING-based applications, select the Application tab and

enter the class to run. If you have JUnit-based test suites

included in the project, use the Test tab and configure the

appropriate fields. All of the runtimes you have configured are

now available in the project to run, debug, and optimize your

code base.

If you want to take full advantage of the Borland platform, use

JDataStore™ as the database to power your development

process. Why install a full instance of a large database such as

Oracle® or Microsoft® SQL Server™ on your development

workstation if you can use a high-performance, database—

JBuilder™

11

written entirely in Java—with a tiny footprint? To migrate your

application to the JDataStore database, consult the appendix.

Of course, an excellent way to learn how to truly leverage the

flexibility of JBuilder is to do some hands-on examples. The next

sections describe in greater detail how to import projects by

looking at specific examples of various flavors, starting from a

simple SWING application all the way to a multi-tier J2EE

application.

Example: importing Stylepad

In this example, we take the Stylepad application from the Sun

JDK and readily import it into JBuilder. We start by copying all

the content of <jdk1.3.1>\demo\jfc\Stylepad to a

directory called myproject. We then start the import wizard from

the object gallery (File|New, select the Project tab on the

object gallery, and double-click the Import From Existing

Code icon).

Point the wizard to the myProject directory in which you put

the stylepad files, and name the project Stylepad. Click Next.

Verify that the project paths are correct: the source should point

to the directory myProject/src> Then, click the required

Libraries tab to edit the library that JBuilder added for just

this project.

Highlight the Stylepad library and click the Edit button. The

library JBuilder created is initially blank, but we know that the

resources directory that came with the Stylepad contains files

that the Stylepad application needs to be able to access, so you

will need to add the project root directory to the library. Add the

myProject directory and click OK to save.

On the project import, click Finish to finish the import. You

now should be able to build and run the application. Select

the Build dropdown above the content pane and click

Rebuild Project.

JBuilder™

12

You are now ready to run the Stylepad application. Open the

source code tree, right-click the Stylepad class and select Run

using defaults. The Stylepad should come up.

Note that you can also run the application by setting up a

runtime configuration. Select the menu item

Run|Configurations, and click New.

Select the Application tab and set the main class to Stylepad.

Set the Build target to none if you do not want JBuilder to

rebuild the project each time you run the application. Give the

runtime configuration a name, run Stylepad, for example, and

click OK. Click OK on the subsequent dialog. You should now

be able to access the runtime configuration from the dropdown

above the content pane.

Note that if you want to be able to edit the code visually in the

SWING designer of JBuilder, you will need to make a few

changes to the code itself. The JBuilder designer assumes that all

object initializations are placed in a method called JBinit. How to

do this is described in more details in the appendix.

Example: importing JPetStore

Let’s consider another example that uses a Web application and

requires additional libraries to support the Struts framework it

uses. We will show how easy it is to import JPetStore into

JBuilder.

First, download the actual source code from

http://www.ibatis.com/. At the time of this writing, the

download was called jpetstore-1.0.zip. Unzip the contents of the

zip file into a directory called myProject.

The beauty of this example is that the directory structure of this

project is slightly confusing because the author did a couple of

things in a way that would puzzle JBuilder. This is a perfect

example of an instance where it would be best to intervene and

rearrange a few directories before beginning the import process.

There are three basic issues with the directory structure of

this project:

JBuilder™

13

1) The directory “src” is actually the Web application root

context directory.

2) The Java source files are stored in a directory under

WEB-INF called classes: this is a mistake, as the classes

directory would usually contain compiled classes.

3) The WEB-INF directory contains a directory called lib.

JBuilder requires jars to be stored outside of the WEB-

INF directory. Since JBuilder dynamically re-builds

both the classes directory and the lib directory as a

function of the Web application dependencies, the jars

in the lib directory would then be deleted.

The first problem is readily solved by renaming the src directory

something else, such as Web_root, public_html, or JPetStore.

We choose JPetStore. The second issue is easily resolved by

renaming the classes directory to src. Finally, the third challenge

is solved by moving the lib directory from the WEB-INF

directory to the project root directory, myProject.

One more item to note is that we do not need the servlet.jar

library in devlib, since JBuilder provides all the necessary servlet

jars along with Tomcat. Thus, delete the myProject/devlib

directory. Now, we are ready to run the project import wizard.

Select the project import wizard; point it to the myProject

directory (File|New…, select the Project tab, and double click

the Project for Existing Code icon).

Name the project JPetStore and click Next.

On the next screen, notice that JBuilder automatically recognized

that the source is located in the myProject/JPetStore/WEB-

INF/src directory. Click Finish. The project should readily

be imported.

Note in the project that JBuilder automatically set up a Web

application called JPetStore and added the build.xml file. If you

want to use the build.xml file, you need to update the build.xml

file to reflect the changes you made to the directory structure.

Before trying to build the project, make sure that the Tomcat

servlet library is set above the JPetStore library that JBuilder

added to the project. Select the menu item Project|Project

Properties, click the Required Libraries tab, highlight the

Servlet library, and click Move Up until the Servlet library is at

the top. The Servlet library contains the Tomcat 4.0 servlet

libraries which need to supersede anything that might be in the

project. Click OK.

JBuilder™

14

Next, because the project source includes .properties and .xml

files, we need to make sure these files get included with the

compiled classes during the build process. To make that happen,

click the Build tab and select the Resources tab. Make sure that

xml and properties files are set to copy.

Finally, you need to create the database that will provide the

persistence for the application. You can readily use JDataStore

the high performance, compact Java database that comes with

JBuilder. Before you do this, we recommend you download the

latest available version of JDataStore available from the Borland

Web site at:

http://www.borland.com/products/downloads/download_jdat

astore.html. At the time of this writing, JDataStore 6 was the

most recent release, so the following steps will be based on

JDataStore 6. The download should include instructions on how

to install JDataStore and update the version of JDataStore

available in JBuilder.

Once you have the latest version of JDataStore installed, first

add the JDataStore library to the project so that the JDBC®

driver for JDataStore is available to the classes of the application.

You can do this by editing the project properties

(Project|Project Properties menu path) and selecting the

Required Libraries tab. Click Add and add the JDataStore

library entry available under the JBuilder folder. Click OK.

Next, we need to create the database and load the schema and

data. To create the database, all we have to do is bring up the

JDataStore explorer (Tools|JDataStore Explorer menu path),

select File|New and create a new database. Create the database

in a subdirectory of the project called DB (myProject/DB).

To load the schema, select the menu path Tools|SQL, and then

click the Load SQL button. In the resulting file dialog, you can

load the Oracle SQL script myProject/other-

JBuilder™

15

ddl/oracle/ JPetShop_Schema.sql that came with

the JPetStore project. Note that you will need to make some

minor modifications to the script to make it work with

JDataStore. You will need to replace all occurrences of the

keyword number with the keyword numeric, and all occurrences

of varchar2 with varchar. Finally, you will need to replace the

column name time of the table OrderStatus with the word

TIME in double quotes. So for that table, you should have

CREATE TABLE OrderStatus
(
 orderid numeric(10,0)
NOT NULL,
 linenum numeric(10,0)
NOT NULL,
 "TIME" date
NOT NULL,
 status varchar(2)
NOT NULL
);

You will also need to comment out or delete all the drop

table statements.

(You might want to use JBuilder to make the edits to the file first

using the replace functions of JBuilder.)

When your SQL script is ready, just click the Execute button.

This should create the table. Repeat the above steps with the

script myProject/other-ddl/oracle/ JPetShop_DataLoad.sql.

You will not need to make edits to this script.

You should now have a database that is ready to be used. The

only remaining step is to edit the application properties file to

point the application to the new JDataStore database. Just edit

the file myProject/JPetStore/WEB-

INF/src/properties/SimpleDataSource.proper

ties and add the following:

#JDataStore

JDBC.Driver=com.borland.datastore.jdbc.Dat

aStoreDriver

JDBC.ConnectionURL=jdbc:borland:dslocal:C:

/demos/myProject/DB/JPetStore.jds

JDBC.Username=user

JDBC.Password=

Make sure the other database entries are all commented out.

Now we are ready to build the project. Select the Rebuild

option from the Build dropdown.

This will build the project. You should see no errors during the

build process. Next, we run the project. To run the project, we

need to set up a runtime configuration. This can be done by

selecting the menu path run|configurations and clicking the

New tab. Select the Server tab, and click the JSP/Servlet entry.

Then, set the launch URI to jpetstore/index.html and set the

configuration name to Run JPetStore. Set the Build target to

none. This will ensure that the project doesn’t rebuild each time

you try to run the project. Click OK.

JBuilder™

16

Now we can run the project. Click the green arrow above the

content pane to run. You should now see the main index.html

Web page come up. Click the Enter the Store link. You should

now see the Petstore home page.

So far, we have managed to pull in an entire Web application

into JBuilder. The import process is smooth and easy once some

simple adjustments to the directory structures are made. Most of

the work actually turns out to involve configuring the database

to run with the application. The value of this example is in

illustrating how some minor directory rearranging can ensure a

smooth import of even the most complex application.

Example: importing an EJB™ 2.0 project
from WebLogic™

Next, we tackle a simple EJB 2.0 sample from WebLogic Server

7.0. We choose the EJB 2.0 cascadeDelete one2many

application that is available in the WebLogic 7.0 samples. So we

first copy the files from

WebLogic700\samples\server\src\examples\ej

b20\multitable to a new project directory myProject. This

code also requires the examples.utils package, so make sure to

copy the code in the examples/utils directory as well.

Upon closer inspection of the deployment descriptors, we can

see that the descriptors actually expect the source to be in a

package examples.ejb20.multitable. When we copied over the

files, we lost that package structures. So we move all the Java

source files into a directory

myProject/src/examples/ejb20/multitable,

and we move all the HTML Javadoc files into a directory

myProject/doc/examples/ejb20/multitable.

Don’t forget the utils package as well, which should be copied to

the examples/utils directory. Finally, to keep things clean, we

move all deployment descriptors into the directory

myProject/META-INF. This last step is not required; the

program will load the descriptors from a subdirectory.

Now, we are ready to import the project into JBuilder. We start

the import wizard and walk through the same steps as in prior

examples to import the project.

Start the Project from the Existing Code wizard, and point the

wizard to your new myProject directory that contains the

WebLogic project files (File|New menu path, select the

Project tab, and click the Project From Existing Source icon).

JBuilder™

17

Point the wizard to the myProject directory and give the project

a name. Click Next.

Make sure the project parameters are as expected, (the source

directory should point to myProject/src) and click Finish. At

this point, JBuilder will create a project, complete with an EJB

2.0 module.

Note that the EJB module has the name Untitled1. You can

change the name to anything you like by right-clicking the

module and selecting the rename option. Also, don’t forget to

rename the JAR name by right-clicking the EJB module and

selecting the properties option.

You can readily open the EJB 2.0 module any time and see the

EJB represented in the EJB designer. Before you open the

module, however, make sure that the application server selected

for this application is WebLogic 6.x. Do this by selecting the

menu path Project|Project Properties, select the Server tab,

and make sure WebLogic 6.x is selected as a single server for all

services in the project.

JBuilder™

18

Click OK. You are now ready to open the EJB 2.0 module. You

can do that by double-clicking the EJB module node in the

project pane.

Note that when you first open the module, no data source is

indicated. This is a known issue and can be fixed by right-

clicking the Datasource node and selecting “import from

database.” In the subsequent dialog, select cancel. The

datasource that was defined in the deployment descriptors

should now be visible. In order to make sure this datasource

doesn’t conflict with any other datasource defined on the server

side, we rename the datasource to a unique name associated with

our project. For this example, right-click the Datasource,

rename the datasource multi-tableDB, and hit return.

Next, we just add two run configurations, one for the server and

one for the client. Select the menu path Run|Configurations,

and in the resulting dialog box, select New.

In the next screen, set run configuration to Run Server and

select the Server tab. Then click OK.

JBuilder™

19

Next, we add a run configuration for the client. Select New

again. This time, name the run configuration Run Client, select

the Application tab (this is the default), and click the … button

to the right of the Main Class field. Select the class

examples.ejb20.multitable.client.

Click OK, then click OK again to save the new Run Client

runner. Finally, click OK to close the run configurations dialog.

Before we run the project, we still need to create a database for

the project and to configure WebLogic to run the application.

To create the database, we use the JDataStore™ Explorer. Select

the menu path Tools|JDataStore Explorer, and then select

New. This will prompt you to enter a file name for the new

database. For this project, we call the database multitable.jds, and

we create this file in the directory myProject/database.

.

Leave the other fields with their defaults and click OK. This will

create the database. At this point, just load the database script

that came with the WebLogic example. Select the Tools|SQL

menu path, and in the resulting dialog, click the Load SQL

button to load the database creation script table.ddl.

Delete the DROP TABLE statements and replace the word user

in the line CREATE TABLE user with “USER” (this is

necessary because the word user is a reserved SQL word).

0Then click the Execute button to create the tables in the

database. Verify that the tables have been created and exit

JDataStore Explorer.

JBuilder™

20

The last step is to configure the database pools in WebLogic.

First, build the entire project and run the application server.

When running a WebLogic runtime for the first time, the jar is

actually not deployed. That way, you can run the WebLogic

console and configure the proper database pools.

In the WebLogic console, first create a connection pool called

multitableDBPool with the following parameters:

url:

jdbc:borland:dslocal:C:\myProject\database

\multitable.jds

driver:

com.borland.datastore.jdbc.DataStoreDriver

Properties:

 user=user

 password=pass

Connection initial capacity: 10

Connection maximum capacity: 100

Then, add a Tx Datasource called multitableDB with the

following parameters:

JNDI Name: multitableDB (this must map the

deployment descriptor datasource name)

Datasource Name: multitableDBPool (Same name

as above)

Add neither the pool nor the actual datasource to the server

targets until you have restarted the server.

At this point, you should be ready to run both the application

server and the client.

100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

Made in Borland® Copyright © 2002 Borland Software Corporation. All rights reserved.
All Borland brand and product names are trademarks or registered trademarks of Borland
Software Corporation in the United States and other countries. Java and all Java-based
marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries. BEA is a registered trademark of BEA Systems, Inc. WebLogic Platform
is a trademark of BEA Systems, Inc. All other marks are the property of their respective
owners. Corporate Headquarters: 100 Enterprise Way, Scotts Valley, CA 95066-3249 •
831-431-1000 • www.borland.com • Offices in: Australia, Brazil, Canada, China, Czech
Republic, France, Germany, Hong Kong, Hungary, India, Ireland, Italy, Japan, Korea, the
Netherlands, New Zealand, Russia, Singapore, Spain, Sweden, Taiwan, the United
Kingdom, and the United States. • 13525

