Introduction

]]
M I g ratl n g The Botland® JBuildet™ development environment is equipped
with very powerful project import capabilities that make it easy

n
P rOj e Cts to th e to import most standard Java™ code and render it in the form of
® n a JBuilder project, complete with EJB™ modules and JBuilder
B o rI a n d J B u I I d e rTM Web applications. In addition to these fundamental capabilities,
JBuilder now also provides the ability to automatically migrate

D eve I o p m e nt WebGain VisualCafé™ projects into the JBuilder environment.

. This paper shows you how to take advantage of this new
E n VI ro n m e nt functionality as well as the existing import capabilities already
available in JBuilder.
By Axel Kratel, JBuilder Product Manager
) If you are reading this paper, then you most likely have some
Borland Software Corporation . . .
code you would like to bring into JBuilder, and you are eager to

September 2002 get productive. Thankfully, JBuilder makes that process relatively

simple by providing a VisualCafé import project wizard that can

chew through just about any code and spit out a nice JBuilder

Contents project. This paper shows you where to download and how to
Introduction 1 install and use the JBuilder open tool that extends JBuilder to
Basic preparations 2 provide the VisualCafé import capabilities.

Importing WebGain VisualCafe™ projects
into JBuilder™

Some things you should know
Importing general projects into JBuilder
The basics

What you should know about directories

When to divide into subprojects

©w o N4 o A~ A~ A

Additional configuations

Of course, under the hood, this open tool actually takes
advantage of an already existing infrastructure for importing just
about any code into JBuilder even if there is no VisualCafé
project file to parse. So we’ll also show you how to import

your favorite open-source project or sample application right

into JBuilder.

Of course, it helps to have a few hints and tips on how to take
best advantage of these powerful features, so this paper walks
you through some basic concepts you need to know before you
get started. We'll then tackle a few specific examples, including
importing a simple SWING-based application, the Stylepad from
the Java JDK,® importing JPetStote, an open soutce, servlet and
JSP™based version of the Sun® Microsystems Java Pet Store
sample application. Finally, we’ll tackle importing an EJB

application sample from the WebLogic application server.

Basic preparations

To take advantage of the VisualCafé import capabilities, you
need to download and install the VisualCafé import open tool
update. The update includes both the latest JBuilder update and
the actual VisualCafé import open tool. The update can be
downloaded from the JBuilder downloads page at
http://www.botland.com/products/downloads/download jbuil
der.html. Follow the instructions in each respective download in

order to update your JBuilder 7 installation.

Make sute you close JBuilder before doing any installations.

After the installations are complete, restart JBuilder. You can see
whether the VisualCafé import open tool is installed by opening
the object gallery (File | New) and clicking the Project tab. You
should see “Import VisualCafé Projects” as one of the objects in

the gallery.

JBuilder™

€D Object Gallery x|

Gensral | Fioietl| web | x| corsa | Butg| Enterprise | Test] micro| web Serices|

E— = T =l =
& 2]
Project Projectfor Pull Project from Pull Projectfrom Pull Project from

Existing CVS.. WES... ClearCase..
Code

=

Import YisualCafe
Froject

Ok I Cancel | Help |

You should now be ready to import VisualCafé projects.

Importing VisualCafé™ projects
into JBuilder™

The whole process of importing a VisualCafé project is relatively
seamless. Select the VisualCafé import wizard from the object
gallery: File | New menu path, select the Project tab, and select

the Import VisualCafé Project icon.

€D Object Gallery x|
Gensral | Fioietl| web | x| corsa | Butg| Enterprise | Test] micro| web Serices|
E— = T =l =
GE 2]
Project Projectfor Pull Project from Pull Projectfrom Pull Project from
Existing CVS.. WES... ClearCase..
Code
E—
HE1
Import YisualCafe
Froject

Ok I Cancel | Help |

This will bring up the VisualCafé import wizard.

(D) visualCafe Import Wizard - Step 1 of 2 x|

Select the VisualCafe project to be imported

Selectthe VisualCafe home directory. If you choose to import the subprojects, the files in the
subproject will be copied to the JBuilder project directory. Check"Use existing directony if you do
notwant to copy the files into the JBuilder project directory. The nextwizard step will getthe
JBuilder project information.

WisualCafe Project. (Sl [Eib11/stateful.vep

VisualCafe Directony. [:pebGaintCafaloin _I

[Import subprojects

[~ Use existing directory [for advanced users only]

Bk | et =

Einist I Cancel | Help |

Note that the wizard will recall the last entries you have entered.
You now need to enter the VisualCafé project file you want to
import. Look for any *.vep files. It is recommended that you
also enter the directory where VisualCafé is installed, because
VisualCafé stores some global path settings in the vc.ini file
found in the VisualCafé bin directory. But this step is not
mandatory. Thus if you have a VisualCafé project without
having a VisualCaf¢ installation on your workstation, you can
still import the project, assuming, of course, that you copied

all the necessary source code associated with the project to

your workstation.

JBuilder optionally will also import any subprojects associated
with your project. You can select the import subproject button
to do this. Often, subprojects might contain a client part of a
J2EE™ application. In JBuildet, you can put both the client and

the server code into one single directory.

You also have the option to have JBuilder create the JBuilder
project right in the existing directory, but this option is only
recommended for advanced users. The default action is to copy
all the necessary source files from the VisualCafé project
directory to your new JBuilder project directory. This is the
recommended approach because it will copy all the source and
related files into a directory structure that is compatible with
JBuilder. However, it is possible to leave the source code where
it is; JBuilder is flexible enough to work with source code no

matter where it is stored on your hard drive. However, if you

JBuilder™

choose the latter option, be prepared to make some manual

modifications.

Once you have selected the appropriate VisualCafé project to
import, click Next to bring up the second and final step in

the wizard.

@ visualCafe Import Wizard (Beta) - Step 2 of 2 x|

Select source directory and name for your new JBuilder project

Select the directary which is o be the root of your new project. Also enter @ name for your praject
and optianally chaose an existing project as a template for the initial default settings within this
wizard

Directory: [SiMyF rojects/iEJB11

Name: [stateless

<Batk | Hleyt>

Finish Cancel | Help |

Simply enter the location of the new JBuilder project you want

to create; give the project a name and click Finish.

JBuilder will now create the entire project for you. The project at
this point is completely imported into JBuilder. In the process,
JBuilder will have created an import log in the form of an
HTML file and included that file in the project. JBuilder also
automatically creates an EJB module and a Web application
node in the project if either one of these were patt of the original
source code. A runtime is also added so that you can easily run
the project. Note that both the Web application and the EJB
module are named untitled1. You will need to rename them to

whatever you like. The name has no bearing on the source code.

(D IBuilder 7 - C:/MyProjects/EJBL1/stateless.html Py (=3
Flle Edit Search View Project Run Team Wizards Tools Window Help

DEE-BREFGS| @ [

b h[B-Er -F-te-ld-«-[&

B9 (2 2 2]) statelessjpx - | X statetess |
] stateless jpx il &= I f ile:1C:MyProjects/E.JB1 1 stateless himi
<Project Source>
T examples.gjb hasic. stateful Session - s
ittt VisualCafe Project Import Log
stateless himi
examples.ehbasic statefulSession package created
Info 5 on fava capied from C./Wet
Info efb-jaraanl copied from C/WebGainiprajects/Ejbl1
Info i A fromC 1
Info : TraderBean java copie fom C:/WWel
dfromC:
Info : weblogic-efhjar xml copied from C:#VehGain/projects/Eibi
Info: T java copied from C 1
IMPORT SUCCESSFUL
[vts: e 1ty prejects e istateess biml
View [Souree | istory

Your project is ready to use. It’s a good idea to verify that the
project compiles and runs. If it compiled and ran in VisualCafé,

then it should compile and run in JBuilder.

Some things you should know

Generally, the biggest challenge in importing any project into
JBuilder is to make sure the classpaths are configured propetly.
In VisualCafé, developers define classpaths that include the
necessary jars that contain libraries to build and to deploy. In
JBuilder, the proper JARs are included in libraries defined in the
IDE. In most cases, if a project won’t compile or run, it’s

because a library is not set up correctly.

The import wizard creates the necessaty libraries based on the
information it obtains from parsing the VisualCafé project file.
In addition, the vc.ini file in the VisualCafé bin directory also
contains global classpath settings that might be needed for your
project. If you defined the VisualCafé directory during the
import process, JBuilder will then also extract any necessary jar
from the global classpath settings. After importing your project,
you will need to verify that the libraries are indeed set up
properly and that there are no redundant libraries. Redundant
libraries can get defined if your VisualCafé project had specific
classpath settings that also included common build and runtime

libraries already set up by default in JBuilder.

JBuilder™

Also, if you copied the VisualCafé project from another system,
some of the original jars needed for the project may no longer be
in the locations described in the original VisualCafé project file.
JBuilder will still create the libraries that correspond to those
jars, but you will need to manually copy them into the right

location or edit the libraries to point to the appropriate jars.

JBuilder also assumes that you are working with BEA WebLogic
Server,™ as that is the only application setver supported by
VisualCafé. After importing your project, you will also need to
verify that the application server configuration is set up propetly
for your new JBuilder project. You will also need to bring up the
WebLogic console and propetly configure the database
connection pool and other runtime parameters that your project
will use. Please consult the JBuilder documentation for more

details on how to work with the WebLogic Server.

Importing general projects
into JBuilder™

The VisualCafé import utility actually makes use of a
fundamental layer of import functionality already available in
JBuilder. This functionality can actually be employed to import
just about any source code into JBuilder regardless of what IDE
was originally used to create the source code. This functionality
is available via the project from existing code wizard, also known

as the project import wizard.

The project import wizard was designed to make the whole
process of importing a project as easy as possible with the least
amount of work. Unlike the project import features found in
other IDEs, the project import wizard in JBuilder will actually
auto-discover any source code, libraries, Web applications, and
EJB applications buried in a subdirectory. All you have to do is
to point the wizard to the actual directory of your choice that
contains the relevant files and subdirectories, and let JBuilder do

the rest.

To get to the project import wizard, just open the object gallery,
(File | New ...) select the Project tab and double-click the

Project for Existing Code icon.

bject Gallery

General Project | web | x| coreal euid] Enterprise | Test| web senices | wicro]

iE]

Project

Pull Project from Full Project from Full Project from
CW5.. WSS, Clearcase...

Ok I Cancel | Help |

The first step of the wizard asks you to enter a directory. This is
the directory that contains all the files and subdirectories of your
project. You don’t want to select just the directory that contains
the source. Rather, select the directory that contains every
subdirectory and file relevant to the project you want to import.
Keep in mind that in some cases, you might have something
slightly too big for JBuilder so swallow, and you will need to
break up your project into more manageable morsels. It’s not the
amount of code that’s at issue. Rather, if your directory contains
shared code, an E]JB JAR, and a mobile application, then you will
need to create two separate projects—one for your EJB tier and
one for the mobile application (this topic is discussed in greater
detail in the following section). Let’s assume that you have a
manageable project in the directory you select. On the same
dialog, don’t forget to name your project as well. It can be any
name of your choice. This will be the name of the .jpx file that

JBuilder will create. When you’re done, click Next.

JBuilder™

@ Project for Existing Code Wizard - Step 1 of 3 m

Select source directory and name for your new JBuilder project

Selectthe directary which is to be root of vour new project. The nexd wizard step will
scan itto provide mare intelligent default chaices for path and library assignments.
Also enter a name foryour project and optionally choose an existing project as a

~ template for the initial default settings within this wizard.

Directory: |C fdemosistylepad
Name |MvSMepan Type m
Template: |(Defau\t praject) j

u Generate project notes file

= Hath | et =

Eimigh | Cancel | Help |

Next, JBuilder will ask you to verify the project data it auto-
discovered. Make sure that the information is correct. Note that
this dialog doesn’t show the actual EJB and Web applications it
discovered. These get set up automatically in the project. Also
note that JBuilder automatically adds a library entry for your
project. This entry will contain any jars found in lib directories.

Once you've verified the information, click Next.

@ Project for Existing Code Wizard - Step 2 of 3 m

F=—] Specify project paths

Editthe paths and settings here to help define your new project These and other properties can be changed
after the praject is created

JDK: fiava 1.2.1-024
Output path: |C Idemos/stylepadiclasses
Backup path IC Jdemos/stylepadibak
Wiorking directany: |C fdemos/stylepad
Source | Dncumentatmnl Required Libraries
Default | Test Path Add.
[| Ciudemasistylepadisre
s @& | cudemosistylepaditest Edli...

Rermove

ez

RS

Loy d= B

= Back | MNext = Finish | Cancel | Help |

Finally, set up any additional project settings you wish on the last

dialog of the wizard, and click Finish.

@ Project for Existing Code Wizard - Step 3 of 3 m

=] Specify general project settings

Enter settings here to help define your new project. These and other properies can he changed after the
project is created

Encoding: |Defau\l LI

[Enable assert keyword

rAutomatic source

| Enahle source package discovery and compilation

Deepest package exposed: |3

Class Javadaoc fields:

Label Text

Description:
Copyright: Copyright (c) 2002
Campany:

|i@author
iE@version 1.0

L

[~ Include references from project library class files

= Back | e = | Finish I Cancel | Help |

Once JBuilder is done setting up the project, you need to look
through the project and make sure everything imported the way
it was supposed to. You may need to do some additional
configuration such as selecting the appropriate application server
and adding specific runtime configurations to run different parts
of the project (such as a runner to launch the setver) or to run a
SWING client application. If your project does include a
SWING application, then you may also need to make some basic
changes to any SWING code so that you can pull the application
into the JBuilder GUI designer (this topic is not covered in this
paper; for more information, visit the Borland Developer

Network Web site at http://bdn.borland.com). The next

sections walk through the technical details on what to do to
prepare the project for import, and they give some detailed
examples, including applications that use servlets, JSP, and

EJB components.

The basics

Before you get started and launch the project import wizard,
there are a few things you need to know so you can properly
prepate your project for import. The basic two areas you need to
pay attention to are the directory structure of the project and the
libraries it uses. Once you understand what JBuilder expects to
see, it will become relatively straightforward to import many
projects by making some simple directory structure changes

before running the project import wizard.

JBuilder™

Let’s consider the most complex scenario and assume that we
have a project with an EJB tier, a Web-based client, and a
SWING-based client to access the EJB tier. So let’s take a look
at all the files and directories that should floating around to

make up the project.

Source files: The first order of business is to propetly import
the actual source files. JBuilder essentially looks for any
subdirectory named “src” under the main project directory and
assumes that each of these “src” directories are the top node of
individual packages. If you have multiple “src” directories, and
these do not all correspond to packages—or, in the unusual
instance that one of your packages is actually called “sr¢”—you
will be given a chance to eliminate individual package nodes
during the import process. If no “src” subdirectory is present,
then JBuilder will simply import all the code that is in the main
project directory and put it in an unnamed package. In general,
though, the cleanest approach is to place all the source code in a
directory called “src.” Be careful to make sure the package
structure matches what is in any deployment descriptors or Web

XML configuration files.

E]JB deployment descriptors: In order for JBuilder to be able
to incorporate your EJB code as part of an EJB module, it will
need to be able to find the actual deployment descriptors.
JBuilder doesn’t care where those files are stored, as long as they
are somewhere underneath the actual project root directory. Of
course, we recommend a clean and elegant approach to place all
the EJB deployment files into a folder called META-INF under
the main project root directory. Once the project is done
importing, you can actually modify the properties of the newly
created EJB module and make sure the EJB designer synchs up
with the deployment descriptors in the META-INF directory.
More on how to do this is outlined in a later section of

this paper.

Web application files and directories: Each Web application
is typically associated with a Web application context root

directory. This directory maps to a URL context defined for the

Web application. Thus, if the URL context is localhost/myapp
and the directoty is c:\myprojects, then an index.jsp file placed
in the locahost/myapp directory will become accessible under
the URL http://localhost/myapp/index.jsp. In the context root
directory, there needs to be a WEB-INF directory that contains
all the files that describe how the Web application behaves. The
servlet container will make this directory invisible so that it
cannot be accessed via a URL. The main configuration file in
that directory is Web.xml, but there may be other files depending
on the servlet container and frameworks you are using. This
directory is often also where source, tag libraries, and general
libraries can optionally be placed. All other files and directories
under the context root directory should be HTML or JSP files
that make up the Web application.

Ant build files: If your project includes an external build file,
then JBuilder will pull it in automatically. It does not matter
where it is located in the directory structure. However, note that
if you are copying any files, you may need to edit the build.xml
file to update any absolute paths. Otherwise, your build.xml file

might be broken.

Javadoc: Your project might include Javadoc. JBuilder can
import the Javadoc files, but do note that JBuilder expects to see
the Javadoc in a separate directory that has the same package

structure as the source.

Other files: JBuilder will ignore any other files, such as database
SQL scripts, outside notes, and non-Javadoc documentation—
basically any files not directly associated with the Java platform.
But note that any file can simply be added to the JBuilder project
manually on an individual basis. The advantage of adding non-
Java source files to the project is that they can then readily

be edited from within JBuilder, provided they are ASCII

format files.

To add any non-Java source ASCII file, right-click the main
project node, and select Add Files/Packages.

JBuilder™

D JBuilder 7 - C:/demos/bands2isrc

File Edit Search ‘iew Project Run Team
DEE DEIS|o~n@
i = 3 bands jpx -

IS— Add Files [Pack S.. ps_hand

B RErmmyE ErjEct
Rename "bands jpx"...

|_] Menw Falder...

% Close Project"bands. jpx"

% Clean

Ch Make

et

S Rebuild

et

Fropeties...

In the resulting file dialog, make sure to set the file type to

All files; otherwise, the non-Java files will be hidden from

the dialog.
@ Add Files or Packages to Project E
EXP‘DfEfl Pankagasl C\assasl
Directory: | [bandsz =] o led G- X
- | [hands_LoGA_noooooooo N
F X [£] bands_LOGA_ANCHOR
LA bands.jds
Deskop bands jpx
[£] bands jpxlocal
3 - bands jpxlocal~
[Z1 jPetstore [£] hands jpx~
| Home] master_WeSamples B punasem
@I [Z1 stylepad ndi-definitiong xml
-] wWesamples Semvetlibrary |
Project [0 demos_used src_examples_gjb20_relationships] _
+.[_] DISCOVER = ”;“l ““““““““ | _’l_l
== -
Samples File name: |
- File type: [NAEES [~]
Cancel Help

Select the file you want to add, and click OK. The file will then
be accessible from within JBuilder so that you can make changes

to it.

What you should know
about directories

JBuilder is actually quite flexible, and there are very few
restrictions on what you can do. One restriction is that if your
project includes a Web application, then the WEB-INF/lib and
WEB-INF/classes directories should not contain any files that
cannot be regenerated during the build process. Another

restriction is that all files and directories related to the project

need to be under the project root directory. Of course, any jar
files that need to be included need not be stored under the
project root directory as long as they get set up as a library in

JBuilder and added to the project.

However, if you take the time to make some simple preparations
in order to provide JBuilder with a clean project ditectory
hierarchy, the import process will work a lot smoother. Assume
our project directory is called myproject, and let’s walk through
some best practices to provide optimal results. All the source
code should be best placed in myproject/stc. You will need to
make sure that you preserve the full package hierarchy under src.
Next, if you have any Javadoc, place it in a directory called
myproject/doc. Any jars that are needed as libraries for the
project should be placed in a directoty called myproject/lib. If
you have any EJB deployment descriptors, place them in a
directory called myproject/ META-INF. Finally, if you have a
Web application, make sure you have a WEB-INF directory
under the root context directory with all the appropriate
descriptors and tag libraties. The root context directory can be
any name as long as it is somewhere under the myproject

directory.

You should now be able to seamlessly import the project into
JBuilder and be up and running in a matter of minutes. Of
course, you don’t have to follow the directory structure outlined
above. During the import process, JBuilder will give you the
opportunity to custom-define the source and documentation
directory. So for example, if you have a Web application, and
you distribute the source in an src directory under the WEB-INF
directory, you can simply point JBuilder to that src directory

location during the import process.

JBuilder™

When to divide into subprojects

If you have a very large application with multiple tiers, the next
obvious question you may ask is when to subdivide the project
into distinct JBuilder projects. The constraint to keep in mind is
that JBuilder expects you to use a single application server
configuration per project and a single JDK per project. Thus, if
you have a mobile tier and a Web tier in your project, you will
need to create two distinct projects in JBuilder (since the mobile
tier must be based on the Sun J2ME™ SDK, and the Web tier
will be based on a standard JDK).

However, you can still use only a single project if you have
multiple tiers that include Web or EJB components, as long as
the components use the same application server configuration.
The application server configuration for a single project can be
set so that you use one server type for EJB tiers and another
server type for Web tiers. But each EJB tier in that project will
then need to use the same EJB container, and each Web tier will
need to use the same servlet container. Therefore, if your
application for example includes a Web tier that runs on
Tomcat, and another Web tier that runs on WebLogic, you

will need to set up two distinct projects for each Web tier.

Additional configurations

Once you have imported your project, you will need to take
three more steps to complete the configuration for the project:
set up any libraries that are not under the project root directory,
set up the application server configuration, and set up any

runtime configurations.

Since JBuilder has no way of knowing about any dependencies
on external libraries that are not included under the project root
directory, you will need to tell JBuilder about these libraries.
You can do that by selecting the project properties under the
project menu. In the resulting dialog box, select the required

libraries tab.

@ Project Properties

Paths | ceneral| Run| Build| code Sty | import styte | Editor| umL] server]

JDK [iava1.3.1 0200z [=]
Dutput path: |C:rdemosrmvprujectfc\asses _I
Backup path: |C.J’dem051’mypmjecﬁbak _I
Working directory: |C:rdemosimypmject _l

Sourcel Documentation Required Libraries

Edit

T
[ez |
e |
[meton |

RErmoye

fol e U

Il T

Reset | oK | Cancel | Help |

Then, click Add... and select the right library.

@ Select Gne or More Libraries E

1 Project Ll
[serviet
| UserHome
-{fh Borland Erterprise Server 5.0.2+ Client
{5 Borland Enterprise Server 5.0 2+ Senlet
[y SonichG Braker 5.0.2+
B Tomcat 3.2 Serdet
[y Tomcat 4.0 Servlet
- [fh visualGare
- [fy WebLogic B+ Client
--[fy WiehLogic 6.3+ Deploy
71 JBuilder
R Ant
--{fh Apache SOAP
R Ads
--[f BorlandxmL
& castor
=

Ao -

Mew... | oK I Cancel | Help |

-

Most likely, your project will require some special jar files not
distributed with JBuilder. In this case, you will need to create a
new library for your project. Just click New... and create a
new library for your project. This will trigger the New

Library Wizard.

JBuilder™

@ New Library Wizard m

Define the new library

Selecta name and location for the new library, and add one or
maore paths containing classes, source, or documentation.
JBuilder will autornatically determine the correct path types.

Mame: mylibrary

Location:

Library paths:

Add.

RErmve |

Ok I Cancel | Help |

In the wizard, select the name you wish to give to your library.
It can be anything that will help you remember what is in that
library. Your code won’t cate about the library name; only the
library paths matter. Also select the location in JBuilder. If you
select Project, the library will be available only for that specific
project. User Home will make sure it is available for you to use
with other projects. JBuilder means it will be available for all

users of JBuilder on that particular machine.

Click Add... to add each directory, jar, or class file, and select
OK. In the following dialog, simply select the library you just
created and click OK to add it to the product.

Next, you will need to configure your project to use your chosen
application server. The assumption here is that you have already
set up JBuilder (Tools | Configure Servers...) to work with your
application server. The only thing left to do is to configure the
application server setup for your project by selecting the menu

path Project | Project Properties and selecting the Server tab.

@ Project Properties

Paths | General| Run| Build] Code Shyte| import ahte | Egitor| umL Samer |
Relationship between server and services

% Single server for all sewvices in project

Barland Entery

" Modular sewvices provided by different servers

Sarvices: Saewvice properies for project
Client JAR Creation Semer | Shenm m
o prise Server AppServer Edition 5.0.2+
g Connector . F —I
Deployment
ElB
[1[53 JDataStore

i3 SP/Serdet
MarmingiDirectory
@ Session

bl (2] Trangaction

Select semvice 1o view

Resat 0K I Cancel | Help |

You can use a single server for all services in the project, or you
can choose modular setvices. The latter is useful, for example, if
you use one application server as an EJB container and a

separate application server as a servlet containet.

Finally, we need to create the appropriate run configurations to

run the various tiers in our application. Select the Run tab,

@ Project Properties x|

Paths | General Run | Build| code style] import siyie] Editor | UL Server|

Runtime configurations:

Default| contextmenu | Type | Marne |

SO

Edit..

1

Eenaie

e W

|

I avE D

oK I cancel | Help |

Reset

and click New... to create a runtime configuration.

10

JBuilder™

@ Runtime Properties x|
Configuration name IUﬂmIed Runtime Configuration
Run | Debugl Optlm\zel
Application | Applet b Server'Test| MiDlet|
Server: |Elor|and Enterprise Server AppServer Edition 5.0.2+
Category: Launch URI
Sewer lr
- CGommand line Q bring:
~-Libraries uery sting:
- Archives |
Senices
Hostnarne
[% EJB =
it Jlacalhost
Maming/Directory | | Port nurmber
Session Im
= IEUEU
(& Transaction
Build Target: [ake =l
Reset oK I Cancel | Help |

For tiers that use the server, select the Server tab. Click on the
JSP/Servlet service in the category window, then, click
Command line under Server in the Category window. On the
right-hand side, you will then be able to select the URI to launch
at runtime. Then, click Archives in the Category window and
make sure the proper JARs and WARs are selected to be
deployed to the server. Give the runtime configuration a name

and click OK.

For SWING-based applications, select the Application tab and
enter the class to run. If you have JUnit-based test suites
included in the project, use the Test tab and configure the
appropriate fields. All of the runtimes you have configured are
now available in the project to run, debug, and optimize your

code base.

If you want to take full advantage of the Borland platform, use
JDataStore™ as the database to power your development
process. Why install a full instance of a large database such as
Oracle® or Microsoft® SQL Setver™ on your development

workstation if you can use a high-performance, database—

written entirely in Java—with a tiny footprint? To migrate your

application to the JDataStore database, consult the appendix.

Of course, an excellent way to learn how to truly leverage the
flexibility of JBuilder is to do some hands-on examples. The next
sections describe in greater detail how to import projects by
looking at specific examples of various flavors, starting from a
simple SWING application all the way to a multi-tier J2EE

application.

Example: importing Stylepad

In this example, we take the Stylepad application from the Sun
JDK and readily import it into JBuilder. We start by copying all
the content of <jdk1.3.1>\demo\jfc\Stylepadtoa
directory called myproject. We then start the import wizard from
the object gallery (File | New, sclect the Project tab on the
object gallery, and double-click the Import From Existing

Code icon).

@ Project for Existing Code Wizard - Step 1 of 3

Select source directony and name for your new JBuilder project

Selectthe directory which is to be root of your new project. The nest wizard step will
scan it to provide maore intelligent default choices for path and library assignments.
Also enter a name for your project and optionally choose an existing project as a

~ termplate for the initial default setings within this wizard

Directory, |C fdemosimyProject
Name: [styepad Tupe: [ipx =
Template: I(Defau\tprule:l) ll

[~ Generate project notes file

\Zlrlizi I Cancel | Help |

= BApk | Next =

Point the wizard to the myProject directory in which you put
the stylepad files, and name the project Stylepad. Click Next.
Verify that the project paths are correct: the source should point
to the directory myProject/src> Then, click the required
Libraries tab to edit the library that JBuilder added for just

this project.

11

JBuilder™

@ Project for Existing Code Yizard - Step 2 of 3 E

F=" Specify project paths

Editthe paths and settings here to help define your new project. These and other properties can be changed
after the projectis created

JDK: [iava 1.3.0-n24

Output path |C JdemosimyProjecticlasses

Backup path: IC fdemosimyProject/bak

Warking directary. |C fdermosimyProject

oLl

Snumel Documentation Required Libraries

Add
Edit..

Remove

fiiye U

s

[aise [y

= Back | Mext = Finish | Cancel | Help |

Highlight the Stylepad library and click the Edit button. The
library JBuilder created is initially blank, but we know that the
resources directory that came with the Stylepad contains files
that the Stylepad application needs to be able to access, so you
will need to add the project root directory to the library. Add the

myProject directory and click OK to save.

@ Configure Libraries B
o[rLibrary Setting
et Name: [Stylepad Rename
21 userHome
[Borland Enterprise Server 5.0.2+ C Class | Source | Documentation | Required Libraries |
&4 Borland Enterprise Server 5.0.2+ 91 .
@ Sonickia Broker 5.02+ CidemosimyProject

| Add.
[Tameat 3.2 Senviet
&5 Tomeat 4.0 Servist Edit;
Ith tomcatdn
T visualCafe Rerove
I WebLogic 6+ Client
15 WebLogic 6+ Deploy

(21 JBwilder

@ Ant

It Anache 504P

& ads

- Borland:ML hd e U

4| | >

I e O
e Add folder. | Delete |
cancel | b

On the project import, click Finish to finish the import. You
now should be able to build and run the application. Select
the Build dropdown above the content pane and click
Rebuild Project.

. 9
EiE s

fl-e=|®

E;l, Make Project "Stylepad.jpx™ Ctrl+F3

£ Rebuild Project S

You are now ready to run the Stylepad application. Open the
source code tree, right-click the Stylepad class and select Run

using defaults. The Stylepad should come up.

B Siylepad jox

3 stlepad.jpx

=@ <Project Source>
&, ElementTresPanel java
& Helloworld java
& Notepad java
& wong Open
Open in New Browser
(22 AddFles s Packages,
{85 Rernaye (o Frest

Renarme "Stlepad java'
] New Falder

B9 Close Project "Stlepad jpx'
Delete "Stylepad java"

65 Dabug using dsfauts
Y Optimize sing defauts

Propstiies
Export Class as a Web Sanice

DlaE|cmia(b]ilu|sl==] _
ALICE'S ADVENTURES IN H
WONDERLAND 4

Lewis Carroli

Note that you can also run the application by setting up a
runtime configuration. Select the menu item

Run | Configurations, and click New.

@ Runtime Properties E
Configuration name: [Untitied Runtime Configuration
Run | pebug| optimze|
b Apliation | appist| Server| Test] mioiet]
Main class: [Bilepad 1
WM parameters:
Application parameters:
Build Target: |<Nnne= =
Reset oK cantel Help

12

JBuilder™

Select the Application tab and set the main class to Stylepad.
Set the Build target to none if you do not want JBuilder to
rebuild the project each time you run the application. Give the
runtime configuration a name, run Stylepad, for example, and
click OK. Click OK on the subsequent dialog. You should now

be able to access the runtime configuration from the dropdown

above the content pane.

B
ERAE- AT

Run Stylepad

|?Nlﬁ %}'

il -« = |&

Note that if you want to be able to edit the code visually in the
SWING designer of JBuilder, you will need to make a few
changes to the code itself. The JBuilder designer assumes that all
object initializations are placed in a method called JBinit. How to

do this is described in more details in the appendix.

Example: importing JPetStore
Let’s consider another example that uses a Web application and
requires additional libraries to support the Struts framework it

uses. We will show how easy it is to import JPetStore into

JBuilder.

First, download the actual source code from

http://www.ibatis.com/. At the time of this writing, the
download was called jpetstore-1.0.zip. Unzip the contents of the

zip file into a directory called myProject.

The beauty of this example is that the directory structure of this
project is slightly confusing because the author did a couple of
things in a way that would puzzle JBuilder. This is a perfect
example of an instance where it would be best to intervene and
rearrange a few directories before beginning the import process.
There are three basic issues with the directory structure of

this project:

1) The directory “src” is actually the Web application root
context directory.

2) The Java source files are stored in a directory under
WEB-INF called classes: this is a mistake, as the classes
directory would usually contain compiled classes.

3) The WEB-INF directory contains a directory called lib.
JBuilder requires jars to be stored outside of the WEB-
INF directory. Since JBuilder dynamically re-builds
both the classes directory and the lib directory as a
function of the Web application dependencies, the jars

in the lib directory would then be deleted.

The first problem is readily solved by renaming the src directory
something else, such as Web_root, public_html, or JPetStore.
We choose JPetStore. The second issue is easily resolved by
renaming the classes directory to src. Finally, the third challenge
is solved by moving the lib directory from the WEB-INF

directory to the project root directory, myProject.

One more item to note is that we do not need the servlet.jar
library in devlib, since JBuilder provides all the necessary servlet
jars along with Tomcat. Thus, delete the myProject/devlib

directory. Now, we ate ready to run the project import wizard.

Select the project import wizard; point it to the myProject
directory (File | New..., select the Project tab, and double click

the Project for Existing Code icon).

D Project for Existing Code Wizard - Step 1 of 3 B

Select source directory and name for your new JBuilder project
Selectthe ditectory which is to b root of your new project. The nextwizard step will
scan itto provide mare intelligent default choices for path and library assignments
Alg0 enter a name for your project and optionally choose an existing projectas a

_ temnplate for the initial default settings within this wizard

Direstory: [CfdemosimyProject
Name: [IPetstore Type: |jpx [~
Template. |(Delau\tpmjact) ;I

[Generats project nates file

Rl I Cancel | Help |

= Ban | MNest =

13

JBuilder™

Name the project JPetStore and click Next.

@ Project for Existing Code Wizard - Step 2 of 3

F==] Swecifyproject paths
(le= |

Editthe paths and settings here to help define your new project. These and other properies can be changed
after the project is created.

JDK: [iava 1.3.1-n24

Output path [c:wemasimyPrajecticiasses

Backup path; [cdemosimyProjectibak

working directory: |C fdemogimyProject

Source | Dncumentatinnl Required Libraries

Default| Test Path Add.
& | € | CJdemosimyProjectdPetStorenER-INFiarc
o] @ | CidemosimyProjectitest i

BEmue

e W

LY i

lexid=A Bl

= Back | Mext = | Finish I Cancel | Help |

On the next screen, notice that JBuilder automatically recognized
that the source is located in the myProject/JPetStore/ WEB-
INF/stc directory. Click Finish. The project should readily

be imported.

Note in the project that JBuilder automatically set up a Web
application called JPetStore and added the build.xml file. If you
want to use the build.xml file, you need to update the build.xml

file to reflect the changes you made to the directory structure.

Before trying to build the project, make sure that the Tomcat
servlet library is set above the JPetStore library that JBuilder
added to the project. Select the menu item Project | Project
Properties, click the Required Libraries tab, highlight the
Servlet libraty, and click Move Up until the Servlet library is at
the top. The Servlet library contains the Tomcat 4.0 servlet
libraries which need to supersede anything that might be in the
project. Click OK.

Backup path |C:JdemosrmmeJchbak

@ Project Properties x|
Paihs | Gensral| Run| Build] Code Styis| Import Stia | Editr| umL] Server|
JDK: fiava 1.3.1-b24
Output path: |C:1demosrmmeJchc\asses

Working directony: |C:1demosrmmeJect

Bnurcel Documentation Reguired Libraries

i

: Add
JPetStore

Edit...

Remove

flove Wh

il

Iiove Down

QK I Cancel | Help |

Reset |

Next, because the project source includes .properties and .xml
files, we need to make sure these files get included with the
compiled classes during the build process. To make that happen,
click the Build tab and select the Resources tab. Make sure that

xml and properties files are set to copy.

@ Project Properties B
Paths | General| Run {BUIE]| code stle | import Styte | Editor] UML] server|
Java| L] JsP Resource | ant| saLi| wenu tems | soap)
Project-wide defaults by extension
propeties copy [&] © Comy
ram Do not Cory | € [cany
rar Do not copy
[rmf Capy
[5) schema Do not copy
shtml Do not copy
@L =q/ Lo not copy
?;%L sql] Do not copy
BRG] Do not copy
t Do not copy
war Do not copy
[F) weav Copy
E Wil Do not copy
wgdd Lo not copy
B sl Do not copy
B i Do not copy —
mel Copy |«

Reset | oK I Cancel | Help |

Finally, you need to create the database that will provide the
persistence for the application. You can readily use JDataStore

the high performance, compact Java database that comes with

14

JBuilder™

JBuilder. Before you do this, we recommend you download the
latest available version of JDataStore available from the Borland
Web site at:
http://www.borland.com/products/downloads/download jdat
astore.html. At the time of this writing, JDataStore 6 was the
most recent release, so the following steps will be based on
JDataStore 6. The download should include instructions on how
to install JDataStore and update the version of JDataStore

available in JBuilder.

Once you have the latest version of JDataStore installed, first
add the JDataStore library to the project so that the JDBC®
driver for JDataStore is available to the classes of the application.
You can do this by editing the project properties

(Project | Project Properties menu path) and selecting the
Required Libraries tab. Click Add and add the JDataStore
library entry available under the JBuilder folder. Click OK.

Next, we need to create the database and load the schema and
data. To create the database, all we have to do is bring up the
JDataStore explorer (Tools | JDataStore Explorer menu path),
select File | New and create a new database. Create the database
in a subdirectoty of the project called DB (myProject/DB).

£} JDataStore Explorer
File Edit View TiManager Tools Help

g3 = B ¥ \

& JDataStore Files
=]

Info | Status \ogsl

File name IC \demosimyProjectDBEWP etStare jds

Tahles
“Warsion: 10,0
Block size: 4 kilobytes

T Manager: Installed
Access level Read-vwrite
License:

W Blocks inuse 46
I Deleted blocks 0

Reserved blacks 0

To load the schema, select the menu path Tools | SQL, and then
click the Load SQL button. In the resulting file dialog, you can
load the Oracle SQL sctipt myProject/other-

ddl/oracle/ JPetShop Schema.sql that came with
the JPetStore project. Note that you will need to make some
minor modifications to the script to make it work with
JDataStore. You will need to replace all occurrences of the
keyword number with the keyword numeric, and all occurrences
of varchar2 with varchar. Finally, you will need to replace the
column name time of the table OrderStatus with the word

TIME in double quotes. So for that table, you should have

CREATE TABLE OrderStatus
(

orderid numeric (10, 0)
NOT NULL,

linenum numeric (10, 0)
NOT NULL,

"TIME" date
NOT NULL,

status varchar (2)
NOT NULL

) i

You will also need to comment out or delete all the drop

table statements.

(You might want to use JBuilder to make the edits to the file first

using the replace functions of JBuilder.)

0L statement:

CREATE TABLE Supplier ﬂ —
{
suppid numeric(10,0) Previous
name warchar (80) b
status varchar(2) Mext
addrl warchar(80) w
addrz varchar(80) w
city warchar (80) m
srate warchar (80) m
zin varchariS) _lll
4 ;
M o4 o M o+ = v ox un A

Close

When your SQL script is ready, just click the Execute button.

This should create the table. Repeat the above steps with the

15

JBuilder™

sctipt myProject/other-ddl/oracle/ JPetShop_DataLoad.sql.

You will not need to make edits to this script.

You should now have a database that is ready to be used. The
only remaining step is to edit the application properties file to
point the application to the new JDataStore database. Just edit
the file myProject/JPetStore/WEB-
INF/src/properties/SimpleDataSource.proper

ties and add the following:

#JDataStore
JDBC.Driver=com.borland.datastore.jdbc.Dat
aStoreDriver

JDBC. ConnectionURL=jdbc:borland:dslocal:C:
/demos/myProject/DB/JPetStore.jds
JDBC.Username=user

JDBC.Password=
Make sure the other database entries are all commented out.

Now we are ready to build the project. Select the Rebuild

option from the Build dropdown.

® Rebuild Project "JPetStore jpx'

This will build the project. You should see no errors during the
build process. Next, we run the project. To run the project, we
need to set up a runtime configuration. This can be done by
selecting the menu path run | configurations and clicking the
New tab. Select the Setver tab, and click the JSP/Servlet entry.
Then, set the launch URI to jpetstore/index.html and set the
configuration name to Run JPetStore. Set the Build target to
none. This will ensute that the project doesn’t rebuild each time

you try to run the project. Click OK.

@ Runtime Properties El

Configuration name: |Run JPetstore

RUﬂl Debug' Optlm\zel

Application| Appiet b Server | Test| mioiet]

Server: I'I'nmcaH 1]
Category: Launch LIRI:

Server lfjpetstoreﬂndex.html

+-Command line .
Guery string

Host hame
flacatast

Part numbet:

3080 | [Search for unused port

Build Target; [<Mone= =l

Reset | QI I Cancel | Help |

Now we can run the project. Click the green arrow above the
content pane to run. You should now see the main index.html

Web page come up. Click the Enter the Store link. You should

now see the Petstore home page.

- e

[S o v [V S i)

Bl

32) Tomeat 4.0 htg8080

Sever aunihed

So far, we have managed to pull in an entire Web application
into JBuilder. The import process is smooth and easy once some

simple adjustments to the directory structures are made. Most of

JBuilder™

the work actually turns out to involve configuring the database
to run with the application. The value of this example is in
illustrating how some minor directory rearranging can ensure a

smooth import of even the most complex application.

Example: importing an EJB™ 2.0 project
. ™
from WebLogic
Next, we tackle a simple EJB 2.0 sample from WebLogic Server

7.0. We choose the EJB 2.0 cascadeDelete one2many
application that is available in the WebLogic 7.0 samples. So we
first copy the files from
WebLogic700\samples\server\src\examples\ej
b20\multitable to a new project ditectory myProject. This
code also requires the examples.utils package, so make sure to

copy the code in the examples/utils directory as well.

Upon closer inspection of the deployment descriptors, we can
see that the descriptors actually expect the source to be in a
package examples.ejb20.multitable. When we copied over the
files, we lost that package structures. So we move all the Java
source files into a directory
myProject/src/examples/ejb20/multitable,
and we move all the HTML Javadoc files into a directory
myProject/doc/examples/ejb20/multitable.
Don’t forget the utils package as well, which should be copied to
the examples/utils ditectory. Finally, to keep things clean, we
move all deployment descriptors into the directory
myProject/META-INF. This last step is not required; the

program will load the desctiptors from a subdirectory.

Now, we are ready to import the project into JBuilder. We start
the import wizard and walk through the same steps as in prior

examples to import the project.

Start the Project from the Existing Code wizard, and point the
wizard to your new myProject directory that contains the
WebLogic project files (File | New menu path, select the

Project tab, and click the Project From Existing Source icon).

@ Project for Existing Code Wizard - Step 1 of 3 |

Select source directory and name for your new JBuilder project

Select the directory which is to be root of your new project. The next wizard
step will scan itto provide more intelligent default choices for path and
library assignments. Also enter a name for your project and optionally
chooge an existing project as a template for the initial default settings
within this wizard.

Directary: |C'1myFm]ect
kame: |mu\tilab\e Type: [jpx =
Template: I(Defauhprujecl) LI

il Generate project notes file

= Hack: | Mext = | Finizh | Cancel | Help |

Point the wizard to the myProject directory and give the project

a name. Click Next.

€D Project for Existing Code Wizard - Step 2 of 3 x|

] Specify project paths

Editthe paths and settings here to help define your new project. These and other properties can
be changed after the projectis created

JOK: [fava 131024 =1
Output path: |C irmyProjecticlasses _I
Backup path: |C fryProjectbak _I
Working directary: |C fmwProject _I

Snurcﬁl Documentation| Reguired Libraties

Default | Test Fath Add...
[| CiryProjectisre
(o @& | CirmyProjectitest Edit

Remove

e L

Il [T

Finigh I Cancel | Help |

L L

- | Nex‘h -

Make sure the project parameters are as expected, (the source
directory should point to myProject/stc) and click Finish. At
this point, JBuilder will create a project, complete with an EJB

2.0 module.

Note that the EJB module has the name Untitled1. You can
change the name to anything you like by right-clicking the
module and selecting the rename option. Also, don’t forget to
rename the JAR name by right-clicking the EJB module and

selecting the properties option.

17

@ Properties For "Untitled1®
Build | Contentl Dependenciesl Manifestl

EJB | Resuurcel

JBuilder™

Output JAR file

MNarme: |multitable.jar1

Path: |C:Imvaject

~Descriptors in module

META-INF/gjb-jar.xm
META-INFigjb-harland xml

¥ Include deployment descriptors in output JAR file

Copy

B

Delete

—Additional files for META-INF directory in JAR

Add..

Rermoye

FAutomatic copy of descriptors on save

[Copy descriptors

Diresiony; |

¥ Remove stub files on application server change

[v Ahways create JAR when building the project

Reset | (o]’ I Ccancel | Help |

You can readily open the EJB 2.0 module any time and see the

EJB represented in the EJB designer. Before you open the

module, however, make sure that the application server selected

for this application is WebLogic 6.x. Do this by selecting the

menu path Project | Project Properties, select the Server tab,

and make sure WebLogic 6.x is selected as a single server for all

services in the project.

(._I'-) Project Properties

Paths | General| Run| Build| code Stle | Import tyle | Egitor| Um

~Relationship between server and service

' Single server for all services in project

IWebLugic Application Server 6.+ LI |

la Modular services provided by different servers

Services: Service properties for projec

% Serer [0 i icati
T logic Application Server 6.+
Oed Connector - —I

[l 8m Deplayment
% ElB
]

E

JSPIServiet

Select service to view

Reset | [0]34 I Cancel | Help |

Click OK. You are now ready to open the EJB 2.0 module. You

can do that by double-clicking the EJB module node in the

project pane.

(@ JBuider 7 - C;/myProject/multitable.ciborpx (o x|
Flle Edi Search View Project Run Team Wzards Tools Window Help
DEES-AH@S|- -mm s dnwhlm-zr -E-le-d-«- [0
B2 3@ G muttablejox - | 221 muntasie |
3 mulitale jox Al b-o%® a.ug‘g.&‘g
= @ <Project Source»
=@ eamples |
=@ eb20
U o
= @ multitable I Egister]
& Clientjava ®cix ®cx
g Registerjava |4 ® usemame ® userHome
RegisterBean java P
& e Qe ==
& Userjava addUsers
& UserBeanjava iy i@ removeUser
& UserHome java ® state @ remaveUser
§ s oz e
UserPKjava
& B examples. h20 multable © setEntityContext g removeUsersThatExist
& | ® unsetEntityContext @@ removeUsersByPK.
st ‘ |- 7Y fnaByPrimankey © setsessionContext
ind-defintions =
e ejbCreate ejbCreate
@[user_profile
I
Defautt
E£J8 Designer [EJB DD Editor| EJB DD Source | History| WebLogic 6.x+ Properties | Praperties
myProjectUntitied ejhgrax > *Cimyt Joarpe

Note that when you first open the module, no data source is
indicated. This is a known issue and can be fixed by right-
clicking the Datasource node and selecting “import from
database.” In the subsequent dialog, select cancel. The
datasource that was defined in the deployment descriptors
should now be visible. In order to make sure this datasource
doesn’t conflict with any other datasource defined on the server

side, we rename the datasource to a unique name associated with

18

JBuilder™

our project. For this example, right-click the Datasource,

rename the datasource multi-tableDB, and hit return.

Next, we just add two run configurations, one for the server and
one for the client. Select the menu path Run | Configurations,

and in the resulting dialog box, select New.

(3) Project Propetties x|

| Buitd| coda Stve | Import Stre | Edior| umL| Server|

Runiime configurations

Default| Contextenu| Type | Name |

oy
Edit...

Remoye

M

Iove W

b

Il ove o

Reset | ok I Cancel | Help |

In the next screen, set run configuration to Run Server and

select the Setrver tab. Then click OK.

1) Runtime Properties x|

)
Zonfiguration name |Run Server

Runl Debugl Opt\mizel

#pplication | applet b Server | Test| miDiet|

Senver: IWebLogic Application Server Gx+

Categony: W parameters:
I-msﬁdm -rmxfidm -Djava library path=Coibintheateblogic7 008

Server parameters:

Server instance name:
|myserver

[Make project autput path available on run
[Make project libraties available on run

u Disahle fracing into server classes

Build Target:

Reset | Ok I Cancel | Help |

Next, we add a run configuration for the client. Select New
again. This time, name the run configuration Run Client, select
the Application tab (this is the default), and click the ... button
to the right of the Main Class field. Select the class

examples.ejb20.multitable.client.

@ Runtime Properties x|

Configuration name: |Run Client

Run | Debug | Optimize |

b Application |App|et| Server| Test| MiDist]|

T
@ Select Main Class for Project

Browse | Search |

Main class: |

WM parameters

A Class name: |e><amp|e9.eibQD.mu\titab\e.Client
Application parameters: =

| =g eRaTTpTES
B ejb0

=@ multitable
& J
& Register
¥y RegisterBean
& RegisterBean_acgd71_EQImpl
-y RegisterBean_aca471_Hamelmpl

& RepisterBean_acgdT1_lmpl

& RegisterHome

User

- UserBean
-2 |gsetBean_1 kpn__wWebLogic_CMP_RDE
- UserBean_1kphv_EOImpl

& UserBean_1kpny_Haomelmpl

-y UserHome
- Userinfa
-y UserPK
4 | [~
Build Target: |Make oK I Cancal | Help |
Reset | 0K | Cancel | Help |

Click OK, then click OK again to save the new Run Client

runner. Finally, click OK to close the run configurations dialog.

Before we run the project, we still need to create a database for
the project and to configure WebLogic to run the application.
To cteate the database, we use the JDataStore™ Explorer. Select
the menu path Tools | JDataStore Explorer, and then select
New. This will prompt you to enter a file name for the new
database. For this project, we call the database multitable.jds, and

we create this file in the directory myProject/database.

19

JBuilder™

;‘\, JDataStore Explorer
Ele £t Mow Tekanaser Too 20l

B = B ¥

File name
|CumyProjectidatabas eimuttitable

File version
" JDE 3.51 and IAS 4.1x compatible

© JDS 4 and BAS 4.5% compatible

™ JDS 5.0 improved crash recovery

= D& E.0 new time/date formats and improved XA support

Block size in kilohytes

I [

~T Managet
Propetties...
oK I Cancel | Help |

[Install

Leave the other fields with their defaults and click OK. This will
create the database. At this point, just load the database script
that came with the WebLogic example. Select the Tools | SQL
menu path, and in the resulting dialog, click the Load SQL

button to load the database creation script table.ddl.

S0L statement:

DROP TAELE user_profile: -
DROF TABLE user:

Execute

Bresious

x|
A e |
EE

CREATE TAELE user |
username VARCHAR (S50,
password VARCHAR (S50, —
CONSTRAINT user_pk PRIMARY EEY

[username)) ;

CREATE TAELE uszer profile |
userhamne VARCHAR (600

Clase |

Delete the DROP TABLE statements and replace the word user
in the line CREATE TABLE user with “USER” (this is

necessary because the word user is a reserved SQL word).
OThen click the Execute button to create the tables in the
database. Verify that the tables have been created and exit

JDataStore Explorer.

The last step is to configure the database pools in WebLogic.
First, build the entire project and run the application server.
When running a WebLogic runtime for the first time, the jar is
actually not deployed. That way, you can run the WebLogic

console and configure the proper database pools.

In the WebLogic console, first create a connection pool called
multitableDBPool with the following parameters:
url:
jdbc:borland:dslocal:C:\myProject\database
\multitable.jds
driver:
com.borland.datastore.jdbc.DataStoreDriver
Properties:

user=user

password=pass
Connection initial capacity: 10

Connection maximum capacity: 100

B I d®

100 Enterprise Way
Scotts Valley, CA 95066-3249
www.borland.com | 831-431-1000

20

JBuilder™

Then, add a Tx Datasource called multitableDB with the
following parameters:

JNDI Name: multitableDB (this must map the
deployment descriptor datasource name)

Datasource Name: multitableDBPool (Same name

as above)

Add neither the pool nor the actual datasource to the server

targets until you have restarted the server.

At this point, you should be ready to run both the application

server and the client.

Made in Borland® Copyright © 2002 Borland Software Corporation. All rights reserved.
All Borland brand and product names are trademarks or registered trademarks of Borland
Software Corporation in the United States and other countries. Java and all Java-based
marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries. BEA is a registered trademark of BEA Systems, Inc. WebLogic Platform
is a trademark of BEA Systems, Inc. All other marks are the property of their respective
owners. Corporate Headquarters: 100 Enterprise Way, Scotts Valley, CA 95066-3249 «
831-431-1000 * www.borland.com * Offices in: Australia, Brazil, Canada, China, Czech
Republic, France, Germany, Hong Kong, Hungary, India, Ireland, Italy, Japan, Korea, the
Netherlands, New Zealand, Russia, Singapore, Spain, Sweden, Taiwan, the United
Kingdom, and the United States. * 13525

