
201 West 103rd Street, Indianapolis, Indiana 46290

Borland
C++Builder 6
Developer’s

Guide

Bob Swart, Mark Cashman,
Paul Gustavson, and
Jarrod Hollingworth

00 0672324806 FM 12/12/02 2:40 PM Page i

Borland C++Builder 6 Developer’s Guide
Copyright © 2003 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no responsibil-
ity for errors or omissions. Nor is any liability assumed for damages
resulting from the use of the information contained herein.

International Standard Book Number: 0-672-32480-6

Library of Congress Catalog Card Number: 2002109779

Printed in the United States of America

First Printing: December 2002

05 04 03 02 4 3 2 1

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of
a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The authors and the
publisher shall have neither liability nor responsibility to any
person or entity with respect to any loss or damages arising from
the information contained in this book or from the use of the CD
or programs accompanying it.

Associate Publisher

Michael Stephens

Acquisitions Editor

Carol Ackerman

Development Editor

Songlin Qiu

Managing Editor

Charlotte Clapp

Project Editor

Matthew Purcell

Copy Editor

Chip Gardner

Indexer

Erika Millen

Proofreaders

Leslie Joseph

Suzanne Thomas

Technical Editor

Paul Qualls

Team Coordinator

Lynne Williams

Multimedia Developer

Dan Scherf

Interior Designer

Gary Adair

Cover Designer

Alan Clements

Page Layout

Juli Cook

Graphics

Steve Adams

Tammy Graham

Oliver Jackson

Laura Robbins

00 0672324806 FM 12/12/02 2:40 PM Page ii

Contents at a Glance

Introduction . 1

Part I C++Builder Essentials 5

1 Introduction to C++Builder . 7

2 C++Builder Projects and More on the IDE . 33

3 Programming in C++Builder. 81

4 Creating Custom Components . 185

5 Creating Property and Component Editors . 291

Part II Database Programming 373

6 Borland Database Component Architecture. 375

7 Database Programming. 383

8 The Borland Database Engine . 397

9 Client Datasets and Client Dataset Enhancements . 409

10 Interbase Express Component Overview. 417

11 ADO Express Components for C++Builder . 435

12 Data Access with dbExpress . 453

13 XML Document Programming and XML Mapper . 467

Part III Windows Programming 489

14 Win 32 API Functional Areas . 491

15 Graphics and Multimedia Techniques . 579

16 DLLs . 627

17 COM Programming . 667

Part IV Distributed Computing 713

18 DCOM: Going Distributed . 715

19 SOAP and Web Services with BizSnap. 749

20 Distributed Applications with DataSnap . 775

21 DataSnap Multitier Connections . 811

22 Web Server Programming with WebSnap . 835

00 0672324806 FM 12/12/02 2:40 PM Page iii

Part V Open Tools API 875

23 The Tools API: Extending the Borland IDE . 877

Part VI Appendixes 929

A C++Builder Example Applications. 931

B C++ Mobile Application Development . 945

C Information Resources. 973

D Enabling TXMLDocument for C++Builder Professional . 993

Index. 1009

00 0672324806 FM 12/12/02 2:40 PM Page iv

Table of Contents

Introduction 1

Who Should Read This Book? . 1
How This Book Is Organized . 2
The Companion CD-ROM . 3
C++Builder System Requirements . 3
Conventions Used in This Book . 3

Part I C++Builder Essentials 5

1 Introduction to C++Builder 7

C++ Language . 8
ANSI Compliance . 8
Microsoft Compatibility . 10
Recommended Language References . 11
Borland Language Extensions and Standard Objects 11
try/finally . 14

The VCL, Forms, and Components . 14
The Form . 15
The Component Palette . 15
Events and Event Handlers . 15
Testing the Program . 18

Creating Your First Real Program . 18
Commonly Asked Questions . 24
What’s New in C++Builder 6? . 25

Compatibility with Previous Releases—Projects . 26
Compatibility with Previous Releases—Standard C++ Library 26
Compatibility with Previous Releases—Database Program

Changes . 27
Compatibility with Previous Releases—DsgnIntf Renamed

and Split Up . 27
Other New Features . 27

Linux, Kylix, CLX, EJB, and C++Builder . 28
CLX Overview . 28
Cross-Platform Help System Integration . 29
Simplified IDL, IIOP, and EJB . 29

00 0672324806 FM 12/12/02 2:40 PM Page v

The C++ Standard Library . 30
Containers . 30
Memory Management . 32

Summary . 32

2 C++Builder Projects and More on the IDE 33

C++Builder IDE Features . 33
Main Window and Toolbars . 33
Project Manager . 34
Arranging Windows in the IDE . 34
Object Inspector . 36
Property Categories in the Object Inspector . 37
The Object Tree View . 39
Source Code Editor . 39
Forms—Save As Text . 43

Understanding C++Builder Projects . 44
Files Used in C++Builder Projects . 45
Project Manager . 48
Different Builds for Different Files . 49
Custom Build Tools . 50
Drag and Drop within Tree to Reorder Compilation 52

Understanding and Using Packages . 53
Considerations When Using Packages . 57

Using the C++Builder Interactive Debugger . 58
Multithreaded Application Debugging . 58
Advanced Breakpoints . 60
Advanced Breakpoint Features . 63
C++Builder Debugging Views . 63
Watches, Evaluating, and Modifying . 68
The Debug Inspector . 69

Advanced Debugging . 70
Locating the Source of Access Violations . 71
Attaching to a Running Process . 72
Using Just-In-Time Debugging . 73
Remote Debugging . 73
Debugging DLLs . 75

Speeding Up Compile Times . 76
Precompiled Headers . 76
Other Techniques for Speeding Up Compile Times . 78

Summary . 79

Borland C++Builder 6 Developer’s Guidevi

00 0672324806 FM 12/12/02 2:40 PM Page vi

3 Programming in C++Builder 81

Better Programming Practices in C++Builder . 82
Use a String Class Instead of char* . 82
Understand References and Use Them Where Appropriate 83
Avoid Using Global Variables . 86
Understand and Use const in Your Code . 92
Be Familiar with the Principles of Exceptions . 95
Use new and delete to Manage Memory . 100
Understand and Use C++-Style Casts . 105
Know When to Use the Preprocessor . 106
Learn About and Use the C++ Standard Library . 110

VCL Overview . 110
It All Starts at TObject . 111
Building on Existing Objects . 112
Using the VCL . 113
The C++ Extensions . 116
VCL and CLX . 123

Review of the Component Palette . 123
Creating User Interfaces . 126

Component Templates and Frames . 126
Frames . 128
Coping with Different Screen Conditions . 137
Coping with Complexity in the Implementation of the

User Interface . 141
Enhancing Usability by Allowing Customization of the

User Interface . 147
Working with Drag and Drop . 154
The Solution . 154
The Code . 154
How Does It Work? . 157
Wrapping Up Drag and Drop . 158

Nonvisual Components and Programming . 159
Creating Multithreaded Applications . 159

Understanding Multitasking . 159
Understanding Multithreading . 160
Creating a Thread Using API Calls . 160
Understanding the TThread Object . 164

Contents vii

00 0672324806 FM 12/12/02 2:40 PM Page vii

Borland C++Builder 6 Developer’s Guideviii

Understanding the Main VCL Thread . 170
Establishing Priorities . 173
Timing Threads . 175
Synchronizing Threads . 178

Summary . 183

4 Creating Custom Components 185

Creating, Compiling, and Installing Packages . 185
Packaging Components . 186
Compiling and Installing Packages . 190

Creating Custom Components . 191
Understanding Component Writing . 191
Writing Nonvisual Components . 195
Writing Visual Components . 224
Creating Custom Data-Aware Components . 255
Registering Components . 266

The Streaming Mechanism . 269
Advanced Streaming Requirements . 270
Streaming Unpublished Properties . 271

Distributing Components . 276
Where Distributed Files Should Be Placed . 276
Naming Packages and Package Units . 279
Naming Components . 280
Distributing Only a Design Time-Only Package . 281
Distributing Components for Different Versions of C++Builder . . 283
Creating Component Palette Bitmaps . 287
Using Guidelines in the Design of Components for

Distribution . 288
Taking a Look at Other Distribution Issues . 288

Summary . 289

5 Creating Property and Component Editors 291

Creating Custom Property Editors . 294
The GetAttributes() Method . 306
The GetValue() Method . 306
The SetValue() Method . 308
The Edit() Method . 309
The GetValues() Method . 313
Using the TPropertyEditor Properties . 314

00 0672324806 FM 12/12/02 2:40 PM Page viii

Contents ix

Considerations When Choosing a Suitable Property Editor 314
Properties and Exceptions . 316
Registering Custom Property Editors . 317

Obtaining a TTypeInfo* (PTypeInfo) from an Existing
Property and Class for a Non-VCL Type . 319

Obtaining a TTypeInfo* (PTypeInfo) for a Non-VCL Type
by Manual Creation . 328

How to Obtain a TTypeInfo* for a Non-VCL Type 330
Rules for Overriding Property Editors . 330

Using Images in Property Editors . 331
The ListMeasureWidth() Method . 336
The ListMeasureHeight() Method . 337
The ListDrawValue() Method . 338
The PropDrawValue() Method . 344
The PropDrawName() Method . 345

Creating Custom Component Editors . 348
The Edit() Method . 354
The EditProperty() Method . 358
The GetVerbCount() Method . 360
The GetVerb() Method . 360
The PrepareItem() Method . 361
The ExecuteVerb() Method . 368
The Copy() Method . 369

Registering Component Editors . 371
Summary . 372

Part II Database Programming 373

6 Borland Database Component Architecture 375

Borland Database Component Types Overview . 375
Component Sets . 375

The Borland Database Engine . 377
BDE Single-Tier and dbGo . 379
BDE/SQL Links, IBExpress, dbExpress, and dbGo

(Two-Tier) . 379
DataSnap Distributed Databases (Multitier) . 379
Summary . 381

00 0672324806 FM 12/12/02 2:40 PM Page ix

Borland C++Builder 6 Developer’s Guidex

7 Database Programming 383

What Are Data Modules? . 383
Why Use a Data Module? . 384
How to Use a Data Module in Applications, DLLs, and

Distributed Objects . 385
What Goes in a Data Module? . 387
How to Add Properties to a Data Module? . 387
How to Use the Data Module Designer . 388

The Object Tree View and the Data Module Designer 388
The Data Diagram Editor . 389
Advanced Concepts in Data Module Usage . 391

Form Inheritance with Data Modules . 391
Handling Uneven Form Inheritance with Data Modules 392
How to Avoid Dependence on Specific User Interfaces 393
How to Work with Application-Specific and Framework

Components in Data Modules . 393
Data Modules in Packages . 396

Summary . 396

8 The Borland Database Engine 397

Introduction to the Borland Database Engine (BDE) . 397
Single-Tier . 398
BDE/SQL Links (Client/Server) . 399
ODBC Using the BDE . 399

Component Overview . 400
Component Architecture . 401
Connection Components . 401
TTable—Non-SQL Dataset . 402
TQuery—SQL Dataset . 403

Summary . 407

9 Client Datasets and Client Dataset Enhancements 409

Introduction to Client Dataset Concepts . 409
Using Basic Client Datasets in the Client/Server Environment 411
Improving Performance with Client Datasets . 412
Using Client Datasets in a Multitier Environment . 413
Specialized Types of Client Datasets . 414
Summary . 415

00 0672324806 FM 12/12/02 2:40 PM Page x

Contents xi

10 Interbase Express 417

Introduction to IBExpress Components . 417
Setting Up a Schema . 418
Database Rules . 420
Generators, Triggers, and Stored Procedures . 421

Generators . 421
Triggers . 421
Stored Procedures . 423

Debugging an InterBase Application . 424
Database Creation and Connection . 424
Using Transactions . 427
Accessing Interbase . 427

TIBUpdateSQL . 427
TIBTable . 428
TIBQuery . 429
TIBDataSet . 429
TIBSQL and TIBStoredProc . 429
TIBEvents . 429

Setting Up Bug Tracker . 430
update, delete, insert, refresh . 430
Fields . 432
Cached Updates . 432
Transactions and Data-Aware Components . 432

Bug Tracker Wrap Up . 434
Summary . 434

11 ADO Express Components for C++Builder 435

ADO Versus BDE . 436
Hedging Your Bets . 437
Copying Records and Datasets . 437

Component Overview . 437
How Do They Fit into the VCL? . 438

Database Connections . 439
The TADOConnection Class . 439
The Provider . 439
The Connection String . 440
The Home of Transactions . 440
Accepting the Defaults . 441

Accessing Datasets . 441

00 0672324806 FM 12/12/02 2:40 PM Page xi

Borland C++Builder 6 Developer’s Guidexii

Accessing a Dataset with TADOTable . 441
Setting the Connection for TADOTable . 441
Setting the Table Name for TADOTable . 441
Opening TADOTable . 442
Using a Data-Source and Data-Aware Controls with TADOTable . . 442
Iterating Through the TADOTable . 442
Adding or Editing Records Through TADOTable . 442
Locating Specific Records in TADOTable . 442
Using Filters with TADOTable . 442
Accessing a Dataset with TADOQuery . 443
Running a Stored Procedure with TADOStoredProc 443
Setting Up TADOStoredProc . 443
Executing TADOStoredProc . 444
Getting Results from TADOStoredProc . 444
Executing an Update with TADOCommand . 444
Setting Up TADOCommand . 444
Executing TADOCommand . 444
Using TADOCommand for Dataset Access . 445
Using TADODataset for Dataset Access . 445

Managing Transactions . 445
Using Component Events . 445

TADOConnection Events . 445
TADOCommand Events . 446
TADOCustomDataSet Descendant Events . 446

Creating Generic Database Applications . 447
Getting a Connection String from the User . 447
Getting Table Names . 448
Getting Field Names . 448
Getting Stored Procedure Names . 448

Performance Optimizations . 448
Query or Table . 448
Cursor Location . 449
Cursor Types . 449
Buffering . 449

Error Handling Issues . 450
Multitier Applications and ADO . 450
Summary . 451

00 0672324806 FM 12/12/02 2:40 PM Page xii

Contents xiii

12 Data Access with dbExpress 453

dbExpress . 453
Custom dbExpress . 454

dbExpress Components . 454
TSQLConnection . 455
TSQLDataSet . 456
Data-Aware Controls . 457
Why Unidirectional . 458
TSQLClientDataSet . 459
TSQLMonitor . 460

Migrating from Borland Database Engine (BDE) . 463
Migration Example . 465

Summary . 466

13 XML Document Programming and XML Mapper 467

XML Document Programming . 467
XML Document Properties . 468
XML Document Interfaces . 469
Reading XML Documents . 470
Writing XML Documents . 471

XML Data Binding . 473
XML Mapping Tool . 482

Transforming . 485
Transformation Demonstration . 486

Summary . 488

Part III Windows Programming 489

14 Win32 API Functional Areas 491

Win32 API Background . 492
Windows Management . 494

Windows Management Example . 496
Window Animation Effects . 512
Message Identifiers . 513
Responding to Windows Messages . 514

System Services . 515
System Services Example . 519
Spawning Applications and Discovering Window Handles 538

00 0672324806 FM 12/12/02 2:40 PM Page xiii

Borland C++Builder 6 Developer’s Guidexiv

Graphical Device Interface . 542
Shaping Your Applications . 543

Multimedia Services . 548
Multimedia File Playback . 549
Improved Accuracy with the Multimedia Timer . 551

Common Controls and Dialogs . 555
Common Controls . 555
Common Dialogs . 558

Shell Features . 562
Using ShellExecute() to Open a Browser . 563
Using ShellExecuteEx() to Spawn an Application . 564
Backing-Up Directories and Files . 565
Sending Files to the Recycle Bin . 570

International Features . 572
Network Services . 572

Getting Network Info . 573
Adding System Support . 576

Summary . 578

15 Graphics and Multimedia Techniques 579

The Graphical Device Interface (GDI) . 580
The Windows API and the Device Context . 580
Using TCanvas . 581
Using TPen . 586
Using TBrush . 588
Using TFont . 590
Using TColor . 591
An Analog Clock Example . 592

Working with Images . 593
The Windows Bitmap Object . 594
Understanding and Using TBitmap . 594
JPEG Images . 601
GIF Images . 605
PNG Images . 606

Working with Multimedia . 609
The Media Control Interface (MCI) . 609
The Waveform Audio Interface . 617
Concluding Remarks on the Waveform Audio Interface 625

Summary . 626

00 0672324806 FM 12/12/02 2:40 PM Page xiv

Contents xv

16 DLLs 627

Creating a DLL Using C++Builder . 628
Using the DLL Wizard . 629
Filling in DLL Code . 630
Adding a DLL Header File . 632
Building a DLL . 633

Loading a DLL . 634
Linking DLLs Statically . 634
Loading DLLs Dynamically . 636

Exporting and Using DLL Classes . 641
Packages Versus DLLs . 647

Steps for Creating a Package . 647
Using Forms in a DLL . 649

Modal SDI Windows . 652
MDI Child Windows . 653

Shared Memory Support in a DLL . 655
Using Microsoft Visual C++ DLLs with C++Builder . 661
Using C++Builder DLLs with Microsoft Visual C++ . 662
Summary . 664

17 COM Programming 667

COM Fundamentals . 667
COM Architectural Elements . 668
COM Technologies . 669

Creating and Using COM Interfaces . 671
IUnknown . 671
Interface ID . 673
Type Libraries . 674
Creating an Interface in C++Builder . 676
Implementing an Interface in C++Builder . 678
Accessing a COM Object . 682
Importing a Type Library . 685

Adding Automation . 686
Adding Automation to an Existing Application . 687
Creating an Automation Controller . 691

Adding Event Sinks . 695
Writing the COM Server . 696

Implementing Event Sinks within a Client . 702
ActiveX Controls . 709

00 0672324806 FM 12/12/02 2:40 PM Page xv

Borland C++Builder 6 Developer’s Guidexvi

Recommended Resources . 711
Summary . 712

Part IV Distributed Computing 713

18 DCOM: Going Distributed 715

What Is DCOM? . 715
Windows OS Family and DCOM . 716

The DCOMCnfg Utility Tool . 717
Global Security Settings . 717
Per-Server Security Settings . 720

Field Testing DCOM . 723
Creating the Server Application . 723
Creating the Client Application . 725
Configuring Launch and Access Permissions . 728
Configuring Identity . 729
Running the Example . 730

Programming Security . 730
CoInitializeSecurity Function Parameters . 730
Using CoInitializeSecurity . 732
Understanding DLL Clients and Security . 734
Implementing Programmatic Access Control . 735
Implementing Interface-Wide Security . 737
Using the Blanket . 739

Summary . 747

19 SOAP and Web Services with BizSnap 749

Building Web Services . 749
SOAP Server Application . 750
SOAP Server Web Module . 751
Web Service Interface . 754
Deploying the SOAP Server . 755

Consuming Web Services . 757
WSDL Importer . 758
Using ICmInch . 763

Using Other Web Services . 765
Google Web APIs . 766
Google Search Key . 766
Google Search . 766

Summary . 773

00 0672324806 FM 12/12/02 2:40 PM Page xvi

20 Distributed Applications with DataSnap 775

Introduction to DataSnap . 775
DataSnap Clients and Servers . 777

Creating a Simple DataSnap Server . 777
DataSnap Server Registration . 781
Creating a DataSnap Client . 782
Using the Briefcase Model . 785
Using ApplyUpdates . 789
Implementing Error Handling . 790
Demonstrating Reconcile Errors . 793
Creating a DataSnap Master-Detail Server . 794
Exporting Master-Detail DataSets . 796
Creating a DataSnap Master-Detail Client . 797
Using Nested Tables . 798
Understanding DataSnap Bandwidth Bottlenecks . 800

Stateless DataSnap . 803
Stateful Versus Stateless DataSnap Servers . 803

Deployment . 808
Summary . 809

21 DataSnap Multitier Connections 811

Accessing the Server Remotely Using DCOM . 811
HTTP WebConnection . 812

Object Pooling . 814
TCP/IP SocketConnection . 816

Registered Servers . 818
Object Broker . 819

New DataSnap Connections . 820
TLocalConnection . 820
TConnectionBroker . 825

TSOAPConnection . 829
C++Builder 6 Enterprise Soap Server . 830
C++Builder 6 Enterprise SOAP Client . 832

Summary . 834

22 Web Server Programming with WebSnap 835

WebAppDebugger . 835
Default Web Action Item . 836
Debugging . 836

Contents xvii

00 0672324806 FM 12/12/02 2:40 PM Page xvii

Borland C++Builder 6 Developer’s Guidexviii

Debug Web Server Application . 838
WebSnap Demo . 839

WebSnap Components . 839
WebSnap Web Module . 840
WebSnap Data Module . 841
DataSetAdapter . 841
WebSnap Page Module . 842
Deployment . 843
Tweaking . 845

WebSnap Architecture . 846
Actions Versus Pages . 847
WebSnap Web Modules . 847
WebSnap Page Modules . 847
WebSnap Data Modules . 848
WebSnap Versus WebBroker . 848
Server Side Scripting . 848
WebSnap Adapters . 849
WebSnap Producers . 852

WebSnap Login . 852
WebSnap Application . 853
WebSnap Page Module . 854
WebUserList . 854
Login Page Module . 855
LoginFormAdapter . 856
Login Form . 856
Incorrect Login . 857
EndUserSessionAdapter . 858

WebSnap Sessions . 858
TSessionsService . 859

WebSnap Master-Detail Example . 864
Primary Key . 864
DataSetAdapter . 864
WebSnap Page Module . 865
Linking Pages by Name . 868
Tweaking and Turning . 872
Final Deployment . 872

Summary . 873

00 0672324806 FM 12/12/02 2:40 PM Page xviii

Part V Open Tools API 875

23 The Tools API: Extending the Borland IDE 877

Tools API Fundamentals . 877
Open Tools API (OTA) . 878
Native Tools API (NTA) . 878
Tools API Capabilities . 878

Creating a Wizard . 880
Selecting a Wizard Interface . 881
Reconstructing TNotifierObject for C++Builder . 881
Defining a Custom Wizard Class . 886
Registering a Wizard Class . 889
The End Result . 890

Creating and Using Services . 890
Selecting a Service Interface . 891
Accessing a Service . 892
Utilizing a Service . 893

Creating and Using Notifiers . 903
Defining a Custom Debugger Notifier Class . 904
Utilizing Our Debugger Notifier . 910

Creating and Using Creators . 915
Defining a Custom Creator Class . 916
Utilizing Our Creator . 919

Using Editors . 922
Debugging Your IDE Extensions . 922
Building and Deploying DLLs . 923
Recommended Readings . 926
Summary . 927

Part VI Appendices 929

A C++Builder Example Applications 931

Overview of C++Builder Example Applications . 931
”Apps” Example Applications . 934
”DBTask” Example Applications . 937
”Doc” Example Applications . 940
”WebSnap” Example Applications . 941
Summary . 944

Contents xix

00 0672324806 FM 12/12/02 2:40 PM Page xix

Borland C++Builder 6 Developer’s Guidexx

B C++ Mobile Application Development 945

C++ Mobile Edition Overview . 946
Symbian SDK . 947
C++ Mobile Edition Plug-In . 948
Emulator Versus Simulator . 949

Creating a Mobile Application . 950
Loading the Hello World Example . 952
Building a Mobile Application . 952
Testing the Application . 953

Mobile Project Composition . 954
MMP Files . 956
BLD.INF File . 957
Source Code Files . 958

Deploying a Mobile Application . 966
PKG and SIS Files . 966
Tools and Methods . 967

Symbian OS . 967
Future Borland C++ Mobile Products . 970

Borland ARM C++ Compiler . 970
Mobile CLX Framework . 970

Additional Resources . 971
Summary . 971

C Information Resources 973

Borland-Sponsored Web Sites . 973
Borland Home Page . 973
Borland Developer Network . 974
CodeCentral . 976
QualityCentral . 977

Useful Developer Web Sites . 978
C++Builder Sites . 979
C++ Resources . 980
Components and Tools . 980
Web Services . 981
Windows Technologies . 982

Newsgroups . 985
Books and Magazines . 986

C++Builder Books . 987

00 0672324806 FM 12/12/02 2:40 PM Page xx

General C++ Books. 988
Magazines . 989

The Borland Developers Conference (BorCon) . 989
Summary . 990

D Enabling TXMLDocument for C++Builder Professional 993

TXMLDocument VCL Registration Support . 994
TXMLDocument VCL Package Assembly . 1005
Using TXMLDocument . 1006
Summary . 1007

Contents xxi

00 0672324806 FM 12/12/02 2:40 PM Page xxi

00 0672324806 FM 12/12/02 2:40 PM Page xxii

About the Author

Jarrod Hollingworth
Jarrod has been professionally programming since 1993. He is now running his own
business, Backslash (http://www.backslash.com.au), developing software applications
for the Internet and key business sectors and working as a software development
consultant. He has a solid background in C/C++ programming in the telecommuni-
cations industry and assisted in the development of the world’s first live
operator–answered GSM (digital mobile) short-messaging system.

Starting in 1985 as a self-taught hobbyist programmer in BASIC and Assembly, he
moved to Pascal and C/C++ through completion of a bachelor of science degree in
computing at Deakin University in Australia. His professional roles in software devel-
opment have ranged from programmer to software department manager.

With several years of experience in C++Builder and Delphi and having worked on
project teams using Microsoft Visual C++, he believes that with few exceptions
C++Builder is the best tool for developing Windows applications.

Jarrod lives in Melbourne, Australia, with his wife, Linda. His other major interests
include traveling and cycling. Jarrod can be contacted at jarrod@backslash.com.au.

Bob Swart
Bob Swart (also known as “Dr.Bob”—http://www.drbob42.com) is author, trainer,
consultant, and webmaster for his own company Bob Swart Training & Consultancy
(eBob42) in Helmond, The Netherlands. Bob is a technical author for The Delphi
Magazine, Harcore Delphi, C++Builder Developer’s Journal, Der Entwickler, SDGN
Magazine, UK-BUG Developer’s Magazine, has written for the Web sites of DevX,
TechRepublic/CNET, the IBM and Borland protal, and has spoken at (Borland)
conferences all over the world since 1994. Bob is coauthor of The Revolutionary Guide
to Delphi 2, Delphi 4 Unleashed, C++Builder 4 Unleashed, C++Builder 5 Developer’s Guide,
Kylix Developer’s Guide, and Delphi 6 Developer’s Guide.

Bob is married to Yvonne and they have two internet-aware children: Erik Mark
Pascal (8.5 years) and Natasha Louise Delphine (6 years).

Mark Cashman
Mark Cashman is a Senior Architect for Hartford Technology Services Company,
from which he provides consulting on strategic and tactical architecture for a variety
of application and technical areas at The Hartford. He has previously served in a

00 0672324806 FM 12/12/02 2:40 PM Page xxiii

variety of roles, including Manager of Information Systems, and Director of Software
Development, and has worked for firms in manufacturing, software development,
distribution, and financial services. He is also a long-standing member of Borland’s
TeamB for C++Builder, and has written extensively on C++ and C++ Builder. He
maintains a Web site at http://www.temporaldoorway.com for his efforts in digital art,
writing, music and programming advice (including C++ Builder), and a second Web
site at http://www.newenglandtrailreview.com to indulge his love of the outdoors.

Paul Gustavson
Paul has over 14 years of computer engineering experience supporting a wide variety
of modeling and simulation, software development, and Web technology efforts.
Paul is a co-founder of SimVentions, Inc, a software development company that
develops and leverages existing technologies and techniques to create innovative
applications and solutions. He has written and presented numerous publications on
simulation interoperability, is a contributing author of the “C++Builder 5 Developer’s
Guide,” and the technical editor for “SAMS Teach Yourself UML (2nd Edition).” Paul
is also the chief architect for PhotoVisor, a multimedia slide show creation tool, and
XML SkinGen, a developer’s tool for creating skin-able Delphi and C++Builder apps.
Paul lives in Virginia with his wife and two boys.

00 0672324806 FM 12/12/02 2:40 PM Page xxiv

Dedication

Jarrod Hollingworth
I dedicate this book to my wife, Linda.

Bob Swart
For Yvonne, Erik, and Natasha.

Mark Cashman
My efforts in this book are dedicated to my friends on TeamB and
around the world in the Borland newsgroups, who have helped me
learn enough to be ready to contribute to books like this. And, of
course, to my wife, daughter, and other friends, who have put up

with the nights taken from them to work on it.

Paul Gustavson
I’d like to dedicate this book to those that have shown their dedi-
cation and commitment to me while I’ve squirreled away on this
book. To my wife Barbara, my two boys Michael and Ryan, my
Mom and Dad, and to the God of all creation whose mercies are

never ending.

00 0672324806 FM 12/12/02 2:40 PM Page xxv

00 0672324806 FM 12/12/02 2:40 PM Page xxvi

Acknowledgments

Jarrod Hollingworth
This book has opened my eyes to the fact that the publishing process is very
involved indeed. As the acquisitions editor, Carol Ackerman took the book onboard
and managed the manuscript submissions and the overall schedule. Songlin Qiu was
the development editor for this book. Her eagle eye for quality and content-related
issues ensured that the book as a whole is more than the sum of its parts. It was a
pleasure working with both Carol and Songlin. I’d also like to thank technical editor
Paul Qualls for his attention to detail, copy editor Chip Gardner (who, with his supe-
rior knowledge of English, improved the grammar in just about every paragraph),
project editor Matt Purcell, and all other staff at Sams.

Finally I’d like to thank each and every author in this book, but in particular Bob
Swart and Paul Gustavson, who showed exceptional commitment and enthusiasm.
With such a large breadth of experience, each author has donated a piece of his
knowledge to make this book an invaluable resource for C++Builder developers.

Bob Swart
I need to thank Yvonne for putting up with me writing yet another set of chapters.
The phrase “almost done” has lost all meaning to her.

Mark Cashman
My thanks go to my editors, my technical editor, and my copy editor at Sams, all of
whom have worked hard to make this an excellent book and who have been very
kind to me during the process.

Paul Gustavson
There are so many people to thank for their efforts in helping make this book possi-
ble. Let me start off on the home front. If it was not for the love and encouragement
demonstrated by my wife, Barbara, this past year through my knee surgery, various
work efforts, and the book writing, I’d be limping through life. As proud as you are
of me for what I’ve done Barb, it is nothing compared to what you’ve done for me
and the boys. I cherish you! To my two boys Michael and Ryan who give me such
joy and pleasure. Whether it’s playing PlayStation, throwing a baseball, or wrestling
on the floor with the dog, you guys know how to keep me real. To my Mom and
Dad and everyone else in my family (Don, Peggie, Kurt, Kathy, Angi, Jim) who have
prayed for me while I’ve burned the candle at both ends. It’s your prayers that have

00 0672324806 FM 12/12/02 2:40 PM Page xxvii

sustained me. To my business partners Larry and Steve, who have never let our
dreams die. Thanks for keeping it alive guys, here’s to 2003! To those I work with at
ACS Defense (formerly known as Synetics) who have encouraged and backed me on
this project. That includes you George, Nick, Buddy, Mike, Brian, Jane, Steve, and
Neal (and anyone else I missed). You guys are a joy to work with. Special thanks to
my co-authors: Dr. Bob, Mark, and Jarrod. It’s been a real privilege to have worked
with you guys in putting together such a great book. Let’s hook up at the next
BorCon. To the folks at Borland who have provided me their guidance: Mark
Edington, Trevor Strudley, Rebecca Martinez, “JT” Thomas, and John Kaster. It’s you
guys that have created something that we enjoy writing about. Special big thanks to
the crew at SAMs who made all this possible: Carol Ackerman, Songlin Qiu, Matt
Purcell, Chip Gardner, Paul Qualls. Without you guys, where would we be? Finally,
I’d like to give my thanks to God who never gives up on me and gives me strength.
Despite my busyness and forgetfulness, Lord, thank you for never being too busy or
forgetting me!

00 0672324806 FM 12/12/02 2:40 PM Page xxviii

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We
value your opinion and want to know what we’re doing right, what we could do
better, what areas you’d like to see us publish in, and any other words of wisdom
you’re willing to pass our way.

As an associate publisher for Sams, I welcome your comments. You can email or
write me directly to let me know what you did or didn’t like about this book—as
well as what we can do to make our books better.

Please note that I cannot help you with technical problems related to the topic of
this book. We do have a User Services group, however, where I will forward specific
technical questions related to the book.

When you write, please be sure to include this book’s title and author as well as your
name, email address, and phone number. I will carefully review your comments and
share them with the author and editors who worked on the book.

Email: feedback@samspublishing.com

Mail: Michael Stephens
Sams Publishing
201 West 103rd Street
Indianapolis, IN 46290 USA

For more information about this book or another Sams title, visit our Web site at
www.samspublishing.com. Type the ISBN (excluding hyphens) or the title of a book
in the Search field to find the page you’re looking for.

00 0672324806 FM 12/12/02 2:40 PM Page xxix

00 0672324806 FM 12/12/02 2:40 PM Page xxx

Introduction

Welcome to Borland C++Builder 6 Developer’s Guide. Our goal for this book was to
put forth the most informative and practical reference on C++Builder to date.
Building on the success of C++Builder 5 Developer’s Guide, we have concentrated on
the essential elements and capabilities of C++Builder, including the very latest
features provided by C++Builder 6.

Topics in this edition include fresh material on XML, SOAP, the Windows API, COM,
DLLs, VCL, CLX component development, database development, plus much more
including a look at mobile application development. We’ve gone to great lengths to
provide practical examples and discussions to common issues, and explore topics
not previously covered. As you read through this book, we encourage you to lever-
age the concepts and techniques that are presented. Our hope is that you’ll find the
material to be an invaluable guide in helping you build and deploy cutting-edge
C++Builder applications.

Who Should Read This Book?
This book is intended for current and potential users of C++Builder. What you hold
in your hand is designed to help expand your current C++Builder skills. It is not a
C++ primer, nor a tutorial in helping you navigate within the C++Builder environ-
ment. Rather, it’s a guide to help developers in the following ways:

• Maximize use and knowledge of C++Builder and related technologies.

• Examine the latest features provided in C++Builder 6.

• Facilitate the development of efficient and robust software such as compo-
nents, cross-platform applications, and distributed client/server environments.

If you already have experience developing applications with C++Builder, are looking
to upgrade to version 6, or simply want to build on your current knowledge, this
book will provide an excellent reference. Although this book will largely draw the
interest of intermediate and advanced users, the organization is laid out so there is a
natural progression through most of the chapters and through the book as a whole
allowing it to be also useful to C++Builder neophytes.

01 0672324806 INTRO 12/12/02 2:37 PM Page 1

How This Book Is Organized
This book is organized into several parts and is arranged to accommodate the wide
breadth of topics that are considered essential for mastering C++Builder develop-
ment:

• Part I: “C++Builder Essentials”—This part, consisting of Chapters 1–5,
contains everything you need to know to make the best use of C++Builder
when developing applications. It starts with an introduction to C++Builder,
and its Integrated Development Environment (IDE). It then covers best prac-
tices in programming with C++Builder. Finally, it moves on to the advanced
topics of creating custom components, their editors and their property editors.

• Part II: “Database Programming”—Chapters 6–13 cover this key topic in
C++Builder programming. These chapters include information on the use of
Borland’s database engine (the BDE); the important topic of client datasets,
which are used for multitier and client/server programming; and a variety of
specialized component sets including dbGo (formerly known as ADOExpress)
and dbExpress (a new component set newly offered in C++Builder 6, which is
specifically designed as a lightweight replacement for the BDE in client/server
scenarios). This part of the book closes with coverage of XML and the
XMLMapper, which can be used to make your applications work with XML.

• Part III: “Windows Programming”—A frequent topic of discussion
among C++Builder programmers is the use of the Windows API. Part III covers
this in detail within Chapters 14–17. This includes a breakdown of the API’s
functional areas, techniques for graphics and multimedia programming, how
to program and utilize DLLs, and how to create and use COM objects.

• Part IV: “Distributed Computing”—Chapters 18–22 cover the important
topic of distributed computing. C++Builder offers many tools to help program-
mers devise systems whose components are distributed across multiple comput-
ers and networks. These chapters cover standards such as DCOM and SOAP,
Borland tools such as DataSnap (formerly known as Midas), WebSnap, and how
to create Web Services using XML and Borland’s BizSnap.

• Part V: “Open Tools API”—Chapter 23 covers the Tools API, which consists
of Borland’s Open Tools API and the Native Tools API, for extending the capa-
bilities of the C++Builder and Delphi IDEs. As an example, this chapter
progresses through the development of a practical wizard that can be added to
the environment for supporting performance assessments of applications you
develop using C++Builder.

• Part VI: “Appendixes”—The appendixes offer a variety of extras, including
a look at the Borland examples provided by the C++Builder installation CD,

Borland C++Builder 6 Developer’s Guide2

01 0672324806 INTRO 12/12/02 2:37 PM Page 2

developing mobile applications using the C++ Mobile Edition, some important
information resources for C++Builder, and how to enable Borland’s
TXMLDocument control for Professional users.

The Companion CD-ROM
A companion CD-ROM has been provided that contains the example code and
C++Builder projects highlighted within this book. The code is organized by chapter
and can be accessed from the start-up application provided on the CD-ROM. Also
provided on the CD-ROM as an added reference, is the full electronic version of the
C++Builder 5 Developer’s Guide.

C++Builder System Requirements
Several segments of the Borland C++Builder 6 Developer’s Guide are intended for users
of C++Builder 6 Professional and Enterprise; nevertheless, the majority of text and
example code is applicable to previous versions of C++Builder. We anticipate the
material provided in the book and on the companion CD-ROM will be applicable to
future versions of C++Builder as well.

However, the project files found on the CD-ROM strictly adhere to the C++Builder
version 6 format. This format is incompatible with previous versions of C++Builder.
Therefore, it will be necessary for users of older versions of C++Builder to create new
projects consisting of the code and forms provided on the companion CD-ROM.

NOTE

Despite our best efforts, it is inevitable that there will be the occasional error in the text and
accompanying program code. In light of this, a list of errata will be provided on the Sam
Publishing Web site at http://www.samspublishing.com.

Conventions Used in This Book
This section describes the important typographic conventions and terminology used
in this book. Features in this book include the following:

NOTE

Notes give you comments and asides about the topic at hand, as well as full explanations of
certain topics.

Introduction 3

01 0672324806 INTRO 12/12/02 2:37 PM Page 3

TIP

Tips identify shortcuts and hints on how to use C++Builder more effectively.

CAUTION

These warn you of pitfalls that might be encountered during programming.

Also look for the occasional side notes within several chapters of this book which
provide greater insight into specific sub-topics.

In addition, you’ll find various typeface conventions throughout this book:

• Code lines, commands, variables, directories, and files appear in text in a
monospaced font.

• Placeholders in syntax descriptions appear in a monospaced italic typeface.
Replace the placeholder with the actual filename, parameter, or other element
that it represents.

• New terms and keywords are typically identified using an italic typeface.

• Functions are indicated by open and close parenthesis after the function name.
This helps to differentiate functions from properties, variables, and types.

Borland C++Builder 6 Developer’s Guide4

01 0672324806 INTRO 12/12/02 2:37 PM Page 4

PART I

C++Builder Essentials

IN THIS PART

1 Introduction to C++Builder

2 C++Builder Projects and More on the IDE

3 Programming in C++Builder

4 Creating Custom Components

5 Creating Property and Component Editors

02 0672324806 PTI 12/12/02 2:42 PM Page 5

02 0672324806 PTI 12/12/02 2:42 PM Page 6

IN THIS CHAPTER

• C++ Language

• The VCL, Forms, and
Components

• Creating Your First Real
Program

• Commonly Asked Questions

• What’s New in C++Builder 6

• Linux, Kylix, CLX, EJB, and
C++Builder

• The C++ Standard Library

1

Introduction to
C++Builder

This chapter will introduce you to Borland C++Builder,
one of the leading development environments for creating
Internet, desktop, client/server, and distributed applica-
tions. C++Builder combines the ease of a RAD environ-
ment with the power and performance of ANSI C++.

The C++Builder Integrated Development Environment
(IDE) is where most of your work is done. Have a look at
Figure 1.1 to see the user interface of the C++Builder IDE.

C++ remains the most widely used language for developing
applications, which range from sophisticated multitier
business systems to high performance data visualization
and hard, real-time systems. C++Builder is an excellent
choice for implementing any application.

NOTE

For more information on the features and benefits of
C++Builder, see the Features & Benefits and New C++Builder
Users links on the C++Builder Web site at
http://www.borland.com/bcppbuilder/.

03 0672324806 CH01 12/12/02 2:37 PM Page 7

FIGURE 1.1 The C++Builder IDE.

C++ Language
The C++ language is at the core of C++Builder. C++Builder offers a high level of
support for this standardized programming language.

ANSI Compliance
The C++ language was the next step in the development of the Bell Labs C language.
And, like C, C++ gained widespread acceptance.

Widespread acceptance is a good thing because it leads to competition among
vendors of compilers and development environments. But, as those vendors struggle
for technological dominance, they often produce unique language features, which,
although useful, mean that programs written for one compiler might not be able to
be compiled by another.

The American National Standards Institute (ANSI) was founded in 1918, and is a
private, nonprofit organization that coordinates the definition and publication of
voluntary industry standards in a variety of fields. As such, they are the perfect orga-
nization to take on the problem of standardizing both the C and C++ languages.

CHAPTER 1 Introduction to C++Builder8

03 0672324806 CH01 12/12/02 2:37 PM Page 8

NOTE

The document available at their Web site (http://webstore.ansi.org/ansidocstore/
product.asp?sku=ISO%2FIEC+14882%3A1998) is the result of this effort, which was completed in
1998.

In the 21st century, “ANSI compliance” is a critical factor sought by developers who
want to have the freedom to develop and compile using several different develop-
ment systems, or who need to target more than one operating system or CPU
instruction set.

Borland offers a powerful set of proprietary extensions to C++ so that they can
provide the component-oriented features of the Visual Component Library class
framework. But, they also provide what might be the highest level of ANSI compli-
ance in the industry. You can force the compiler to only accept ANSI-compliant
programs by clicking a check box in the development environment (pick the menu
entry Project, Options; in the dialog box, click the Advanced Compiler tab; and
under Language compliance, choose ANSI), as shown in Figure 1.2.

C++ Language 9

FIGURE 1.2 Project Options showing the ANSI Compliance option set.

To be safe, under Source, make sure to leave Nested comments and MFC compatibil-
ity unchecked.

Keep in mind that choosing ANSI compliance means that you cannot develop
Windows programs because there are many features of the Windows operating
system that cannot compile under ANSI compliance. You also cannot use Borland’s
Visual Component Library (VCL). You can, however, create programs that use
streams for input and output, which are usually referred to as console programs.

03 0672324806 CH01 12/12/02 2:37 PM Page 9

Microsoft Compatibility
When a program is compiled without ANSI compatibility (for instance, with the
Borland compatibility option selected), it will compile programs using Windows
features. This is the basic level of Microsoft compatibility.

But, some programs won’t compile.

For instance, programs that use the older Microsoft Foundation Classes (MFC) will
not compile without using the MFC compatibility check box on the Advanced
Compiler page.

This relaxes numerous rules in the compiler, including

• Not allowing spurious semicolons in a class scope

• Not allowing anonymous structs

• Not using the old-style scoping resolution for loops

• Not allowing methods to be declared with a calling convention, where the
declaration leaves off the calling convention in the definition

• Not trying the operator new if it cannot resolve a call to the operator new

• Not letting you omit the operator and on member functions

• Not allowing a const class that is passed by value to be treated as a trivial
conversion, not as a user conversion

• Not allowing you to use a cast to a member pointer as a selector for overload
resolution when the qualifying type of the member pointer is not derived from
the class in which the member function is declared

• Not accepting declarations with duplicate storage in a class

• Not accepting and ignoring #pragma comment(linker, “,”) directives

In addition to this, you need to link your program with the nafxcw.lib MFC compat-
ibility library that comes with C++Builder. This occurs automatically as a result of
selecting MFC compatibility when compiling with the C++Builder-development
environment, but requires a special flag if compiling and linking from the command
line (the VF option).

Using MFC with the VCL has proven to be somewhat more difficult, in that specific
header file changes have typically needed to be made to avoid conflicts between the
names used by the MFC and by the VCL. These are documented at http://www.
temporaldoorway.com/programming/cbuilder/otherlibrary/usingvclandmfc.htm for
C++Builder versions through 4.

CHAPTER 1 Introduction to C++Builder10

03 0672324806 CH01 12/12/02 2:37 PM Page 10

Another level of Microsoft compatibility lies in the capability to import a Microsoft
Visual C++ project directly into the C++Builder development environment. Just open
it and compile it.

To permanently convert the project, you can use the VCTOBPR utility, which will
turn Visual C++ project and workspace files into their C++Builder equivalents.

Recommended Language References
Learning about C++ can be difficult, but the right books and online materials can
make things easier.

• For reference, of course, the ANSI standard document is the definitive source of
“language law,” along with the documents available via the Web site
(http://www.research.att.com/~bs/C++.html) of C++ originator Bjarne Stroustrup
(though Stroustrup is a more enjoyable writer than the boards who compose
standards).

• You can also get his newly revised book at sites such as Amazon.com
(http://www.amazon.com/exec/obidos/ASIN/0201700735/104-5455331-5996736).

For less formal material, Sams publishes several excellent language instruction books,
including

• Sams Teach Yourself C++ in 10 Minutes (recently revised), which breaks up C++
into manageable, easily understood lessons; great for getting a rapid, yet
comprehensive exposure to the C++ language.

• Sams Teach Yourself C++ in 21 Days (recently revised), which gives three weeks
of detailed instructional material on every aspect of C++.

Borland Language Extensions and Standard Objects
Borland’s C++Builder integrates the Delphi Visual Component Library into its use of
the C++ language. The problem is that Delphi is a Pascal-based language, whereas
C++ is a C-based language. So, Borland used the ANSI-approved method of creating
vendor-specific extensions, and added features to C++.

Properties
Object-oriented languages provide member variables to retain the state of the object
during its lifetime. But when those member variables are directly exposed beyond
the object, other parts of the program can disrupt the object by setting values that
are inconsistent.

To overcome this problem, many object-oriented developers create member func-
tions, called getter and setter functions, and hide access to the member variables
within these member functions. This enables the programmer to be able to edit

C++ Language 11

03 0672324806 CH01 12/12/02 2:37 PM Page 11

values that will be assigned to the member variable and generate an exception or
other error condition when an incorrect value is provided. It also enables the
programmer to hide the type of the internal variable, and even to provide a variety
of hidden implementations for the member variable’s storage (such as a file, a data-
base, or even a complex computation).

A variety of problems exist with getters and setters, one of which is that they look a
lot different from member variables in calculations.

For instance

int Something =

SomeObject.GetMember() +

SomeOtherObject.GetMember();

Another is that you don’t really assign to a getter function—you pass a variable or
expression as an argument to the function, which is equivalent to assignment.

SomeObject.SetSomeMember

(

SomeObject.GetMember() +

SomeOtherObject.GetMember()

);

When Borland created the Delphi language, they provided properties as a way to
offer getters and setters as an implicit part of a class—giving the advantages of getters
and setters combined with the expressiveness of member variable use.

In a C++Builder class, a property usually consists of a member variable declaration
(private), a getter and setter function (protected), and a property declaration (public).

class aClassWithAProperty

{

private:

int myMemberVariable;

protected:

int __fastcall GetMemberVariable(void)

{

return myMemberVariable;

};

void __fastcall SetMemberVariable(int theMemberVariable)

{

myMemberVariable = theMemberVariable;

};

public:

CHAPTER 1 Introduction to C++Builder12

03 0672324806 CH01 12/12/02 2:37 PM Page 12

__property int MemberVariable =

{

read=GetMemberVariable,

write=SetMemberVariable

};

Of course, you can use an instance of this class and its property as shown below:

AClassWithAProperty ClassWithAProperty;

ClassWithAProperty.MemberVariable = 2;

int Something = ClassWithAProperty.MemberVariable;

Any code is allowed in the getter and setter.

Properties are most often used in C++Builder components. To help support the visual
environment provided by C++Builder, Borland has created a special section for the
class (identified by __published), just like public and private. If a property is in the
__published section, it will appear in the C++Builder object inspector where it can be
modified. In addition, when a project is saved, the values of component properties
that are in the __published section of the component class are also saved for every
instance of the component class.

The following is the earlier class, changed into a component (note the __published
section, which now contains the __property declaration):

class aClassWithAProperty: public TComponent

{

private:

int myMemberVariable;

protected:

int __fastcall GetMemberVariable(void)

{

return myMemberVariable;

};

void __fastcall SetMemberVariable(int theMemberVariable)

{

myMemberVariable = theMemberVariable;

};

__published:

__property int MemberVariable =

{

read=GetMemberVariable,

write=SetMemberVariable

};

};

C++ Language 13

03 0672324806 CH01 12/12/02 2:37 PM Page 13

Delphi-Style Default Properties
The Delphi language supports a property that is the default property for the class
when you use the subscript operator. In earlier versions of C++Builder, you needed to
use awkward constructs like

StringListVariable->Strings[Index]

Now you can simply use

(*StringListVariable)[Index]

try/finally

The Delphi language introduced a feature to exception handling that was later
adopted in Java. The C++Builder extensions to C++ include this extension.

Called __finally (the two leading underscores are required by the ANSI standard to
indicate an extension), this extension marks the part of an exception-handling block
that will be executed regardless of whether an exception occurs. It is particularly
useful for cleaning up dynamically allocated storage.

TStringList *List = new TStringList;

try

{

// Do something

}

__finally

{

delete List;

};

The code in the __finally block is executed when the try block is completed, or
when an exception occurs.

This sort of statement can be inside or outside of exception handling code, but is
usually inside so that resources can be released before an exception is handled.

The VCL, Forms, and Components
The Visual Component Library (VCL) is the source of many of the components used
to create C++Builder applications (there are cross-platform components in a similar
library called CLX). A component is an object, often visual, such as a check box, a
drive combo box, or a graphical image. Components can also be nonvisual, such as
database connections or sockets for distributed system communication.

CHAPTER 1 Introduction to C++Builder14

03 0672324806 CH01 12/12/02 2:37 PM Page 14

Components are chosen from the component palette of the IDE by left-clicking and
placing them in your work area. See the section “The Component Palette,” later in
this chapter, and Figure 1.1, which shows the windows of the IDE.

You can also add or write your own components, as discussed in upcoming chapters.
Whether you are creating new components or using existing ones, the components
that make up the VCL remove most of the hard work for you.

All components have properties, whose values can be modified at design time in the
development environment. You can modify the properties of a component with the
Object Inspector (refer to Figure 1.1 to see the window). You can also change prop-
erty settings in code, but this should be avoided wherever possible.

The Object Inspector has an Events tab, where you can attach code to events that
occur during user interaction with the component. These event handlers make up
the bulk of the code in a C++Builder program.

The Form
A form is a visible window that is part of the user interface of your application.
When you create a new application in C++Builder, a blank main form is created
automatically. To build your user interface, simply add visual components to the
form, then position and size them accordingly. You can also add nonvisual compo-
nents to a form, such as timers. These appear as a simple component icon at design
time, but are not visible at runtime. You can create specialized forms for tool
windows or dialogs.

By default, when a user runs your application the main form will be displayed where
you placed it on the screen in the IDE. You can alter the initial position of the form
and other settings by changing the form properties in the Object Inspector.

The Component Palette
The Component Palette, located under the main menu, is an inventory of all the
components in the VCL. These components are grouped by categories named on the
tabs above the components. To pick a component, click it with your left mouse
button, then click again on the form to place the component where you want it. As
indicated previously, you can modify the component’s properties with the Object
Inspector. You can also change visual components by dragging their edges to resize
them, or dragging the component to reposition it.

Events and Event Handlers
As a first lesson on using C++Builder, you can place a simple button on the form, set
an event for the button, and run the program.

The VCL, Forms, and Components 15

03 0672324806 CH01 12/12/02 2:37 PM Page 15

You see buttons on almost every Windows application. It is a simple object that
enables a user to trigger an event handler in the program.

The Button component is located under the Standard tab of the Component Palette.
Its icon looks like a standard button with OK in the middle. To place a Button
component on the form, left-click the icon one time, then left-click again on the
center of the form. Figure 1.3 shows the form with the button.

CHAPTER 1 Introduction to C++Builder16

FIGURE 1.3 A Button component added to the form.

C++Builder has now created an instance of a button as part of your program. At the
moment the button isn’t very useful because it doesn’t do anything. If you were to
compile and run the application, nothing would happen as a result of a click of the
button. Typically though, the event handler will perform some action, such as saving
information the user has entered, displaying a message, or any one of thousands of
other possibilities.

When the button is clicked at runtime, an event is generated. For your application to
respond to this event you need to have coded an event handler. An event handler is
a function that is automatically called when its event occurs. C++Builder creates the
outline for the OnClick event handler, the event that occurs when the user clicks the
button, when you double-click the Button component at design time. You can do the
same thing by selecting the Button, and then double-clicking in the OnClick field on
the Events tab in the Object Inspector. After the outline for the event handler is
created, you can then add code to perform the necessary action that should occur
when the button is clicked.

The outline for an OnClick event handler is shown in the following code.

void __fastcall TForm1::Button1Click(TObject *Sender)

{

}

03 0672324806 CH01 12/12/02 2:37 PM Page 16

If you right-click with the mouse in the Code Editor and choose Open Source/Header
File, you will see the following code:

//---

#ifndef Unit1

#define Unit1

//---

#include <Classes.hpp>

#include <Controls.hpp>

#include <StdCtrls.hpp>

#include <Forms.hpp>

//---

class TForm1 : public TForm

{

__published: // IDE-managed Components

TButton *Button1;

void __fastcall Button1Click(TObject *Sender);

private: // User declarations

public: // User declarations

__fastcall TForm1(TComponent* Owner);

};

//---

extern PACKAGE TForm1 *Form1;

//---

#endif

This code is generated automatically within C++Builder. I put it here to show you
what C++Builder can do for you automatically.

Now, we’ll add code to display a message when the button is clicked, that the
program is going to end, and then we’ll terminate the program. In the code editor,
click Unit1.cpp to move back to the Button component’s event. Type the following
code inside the event that you just created:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

ShowMessage(“Hello world! This is a test application! Press OK”);

Close();

}

Even a beginner can probably understand this code. When the program runs, the
user clicks the button and an event is triggered. Your OnClick event handler will
display a dialog box with your friendly message. When the user closes the dialog box
our program then terminates because of the Close() call made to the form.

The VCL, Forms, and Components 17

03 0672324806 CH01 12/12/02 2:37 PM Page 17

Testing the Program
From the IDE toolbar, click the green arrow that looks like the Play button of a tape
player—this is the Run button. When you press this button, C++Builder will start to
compile and execute the program. It then waits until you press the button. When
you do so, the dialog box appears revealing the message. The program exits when
you press OK.

After viewing your program, from the main menu, choose File, New Application.
C++Builder will ask if you want to save the application project you were working on;
answer No. Next will be your chance to write a real program that can do something.

Creating Your First Real Program
Here’s the chance to create a program with a purpose. It will let you load and display
an image from disk.

Choose File, New Application from the main menu. C++Builder will create a new
project and generate code to create an empty form. Now the VCL will help you
create an application with only a tiny amount of code.

On the Component Palette, select the Additional tab, and then click the Image
component. If you aren’t sure, its icon has the sky, a hill, and water at the foot of the
hill. If you hold your mouse pointer over each icon, a ToolTip will display to tell you
what it is.

After selecting the Image component by clicking it, move your mouse to the form
and click time to place the component on the form. You will not see much, but a
square outline will appear. This component displays graphical images.

Under the Properties tab in the Object Inspector, go to the stretch attribute and
select True.

From the Component Palette, go to the Dialogs tab and choose the OpenDialog
component. If necessary, scroll through the Component Palette with the left and
right arrows. The OpenDialog component looks like an open yellow folder. Select it
with your left mouse button and place it anywhere in the top right corner of the
form. The component now is part of your form and is used for displaying a dialog
box in which you can choose files.

Now we want to set an attribute to this component. Go to the Object Inspector and
look for the attribute named Filter, located under the Properties tab. Enter the
following text into the edit box for that attribute:

BMP files|*.bmp

CHAPTER 1 Introduction to C++Builder18

03 0672324806 CH01 12/12/02 2:37 PM Page 18

From the Standard tab of the Component Palette, select two Button components.
Instead of placing one Button component at a time, you can place multiple Button
components by holding down the Shift key and pressing the Button icon from the
Component Palette.

Click the form and a Button component appears. Click the form again and another
Button component appears.

Click one time on the Button1 component on the form. This selects the button. Now
you can change the properties of the button. In the Object Inspector, click inside the
Caption property value (currently reading Button1) and replace the existing text with
the words Get Picture. This will change the label on the button.

Go to the Win32 tab in the Component Palette and select the status bar. It looks like
a gray bar with a grip. Hold your mouse over each component a couple of seconds to
see the hint; it will read StatusBar. A status bar is often located at the bottom of most
Windows applications to display the status of an application.

Place this on the form. You will see that the component automatically repositions to
the bottom of the form.

Now double-click the Button component on the form (Object Inspector will display
Button1) to set its OnClick event. Enter the code inside the braces:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

if(OpenDialog1->Execute())

Image1->Picture->LoadFromFile(OpenDialog1->FileName);

StatusBar1->SimpleText = OpenDialog1->FileName;

}

The window into which you just entered your code is called the Source Code Editor.

Now go back to the form. You can use the Speedbar tool button that shows the hint
Toggle Form/Unit. It looks like a form and a piece of paper with arrows pointing
toward the form on both sides. If you hold your cursor over this button, it will
display Toggle Form/Unit (F12). This tells you that another way to toggle between
forms and code is with the F12 key. Press F12 now to set focus on the form.

Click one time on Button2 (Object Inspector will display Button2) on the form and set
the caption to Close. Double-click that button and enter the code between the
braces:

void __fastcall TForm1::Button2Click(TObject *Sender)

{

Close();

}

Creating Your First Real Program 19

03 0672324806 CH01 12/12/02 2:37 PM Page 19

Now focus on your form again by moving the source code editor out of the way and
clicking your form. Doesn’t look like much, does it? Soon you will see how much
C++Builder has done for you with just a little bit of code!

NOTE

Before running this application, it is a good idea to arrange your buttons and other compo-
nents nicely to give a clean look. Use the white arrow selector on the left side of the
Component Palette or the Object Tree View Window to select any component. You will not be
able to move the StatusBar component at the bottom of the form, so leave it alone.

Press the green Run arrow or choose Run from the Project menu. C++Builder should
compile the program successfully if you do not have any errors (otherwise, you’ll
have to fix anything you typed wrong). Your program should appear with the form
displaying the two buttons with the captions Get Picture and Close. Choose the Get
Picture button.

An Open dialog box will appear asking for a file with the .BMP extension. Go to your
Windows directory under your C: drive and select SETUP.BMP or another file that has a
.BMP extension.

After selecting the file, press OK. You should see a picture of the Windows Setup
bitmap. At the bottom of the form, the name of the file will be in the status bar.
You have written your first application that really works, and with as little code as
possible!

First you placed a TImage component on the form. This component enables you to
display .BMP files within your program, requiring no programming on your part.

If you want to change the filter settings at design time, on Form1 click on the
TOpenDialog component to select it. Then, press F11 to go to the Object Inspector. In
the Filter property, double-click within the text area and a table will come up that
lets you change the filter.

Now you can write a completely different program using different components. This
will give you a second example of RAD technology within C++Builder.

NOTE

Go ahead and close the project. You do not have to save it. Choose File, Close All from the
main menu and answer No.

However, if you choose to save the project, you will be prompted to save the main form
(Unit1.cpp) and the project (Project1.bpr) in separate dialogs.

You might want to save the project and main form for each project together, using a separate
directory for each project. This can be easily done using the standard Windows dialogs; simply

CHAPTER 1 Introduction to C++Builder20

03 0672324806 CH01 12/12/02 2:37 PM Page 20

navigate to where you want the new project’s directory to be located; on the dialog toolbar
click the new directory button and give the directory a name. Then double-click into the
directory and save the main form, and then when the next dialog (for the project) appears, if
it is not already positioned on the new directory, navigate there and save the project file.

From the main menu, select File, New Application. A new project will be created.
Let’s save this project by selecting File, Save Project As from the main menu.

Give the form’s source code a name. Change the default Unit1.cpp to Mainform.cpp.

After saving the form’s source code, the project source code will appear. By default, it
is Project1.bpr; name it Project2.bpr.

Place two ListBox components on the form. The list boxes are in the Standard tab in
the Component Palette. Don’t worry about placing them in a specified location, but
do align them next to each other. C++Builder creates them as ListBox1 and ListBox2.

Drop an EditBox and two Buttons below the list boxes. They are also located in the
Standard tab in the Component Palette. Align them any way you want. C++Builder
creates the buttons as Button1 and Button2. It also creates an Editbox named Edit1.

Select Button1. In the Object Inspector, select the Caption property. Change the
caption to ADD.

Select Button2. In the Object Inspector, select the Caption property. Change the
caption to REMOVE.

Select Edit1. In the Object Inspector, select the Text property. Remove the string
within the Text property.

Drop a Label component under the Edit1 edit box. In the Object Inspector, select the
Caption property. Enter Friends’ Names.

To select the form itself, click anywhere on the form, but not on any component.
You can also do this inside the Object Inspector by selecting Form1 in the drop-down
box. Next, select the Events tab in the Object Inspector and look for the OnShow
event. Double-click inside the property setting for this event. C++Builder will now
create the following code for the event handler:

void __fastcall TForm1::FormShow(TObject *Sender)

{

}

This event is triggered when the form is shown at runtime. This means that when
you run this program, Windows will create the form and execute any code within
the event. Type the code in the braces inside the event handler:

Creating Your First Real Program 21

03 0672324806 CH01 12/12/02 2:37 PM Page 21

void __fastcall TForm1::FormShow(TObject *Sender)

{

ListBox1->Items->Add(“David Sexton”);

ListBox1->Items->Add(“Randy Kelly”);

ListBox1->Items->Add(“John Kirksey”);

ListBox1->Items->Add(“Bob Martling”);

}

Switch back to the form and double-click Button1. This is the button with the Add
caption. An OnClick event will be created. Type the code in the braces into the event
handler:

void __fastcall TForm1::Button1Click(TObject *Sender)

{

String GetListItem = ListBox1->Items->Strings[ListBox1->ItemIndex];

ListBox2->Items->Add(GetListItem);

}

Switch back to the form, and double-click Button2. This is the button with the Remove
caption. C++Builder will create an event handler. Type the code in the braces into
the event handler:

void __fastcall TForm1::Button2Click(TObject *Sender)

{

ListBox2->Items->Delete(ListBox2->ItemIndex);

}

Switch back to the form and select the Edit1 edit box. From the Object Inspector,
choose the Events tab. Find the OnKeyPress event. Double-click in the empty area for
this event, and C++Builder will create the event handler. Type the code in the braces
into the event handler:

void __fastcall TForm1::Edit1KeyPress(TObject *Sender, char &Key)

{

if (Key==13)

{

ListBox2->Items->Add(Edit1->Text);

ListBox1->Items->Add(Edit1->Text);

}

}

Now save the project. Remember to always save your work! Select File, Save All from
the main menu. After saving the project, make the project. Press Ctrl+F9 or choose
Project, Make. This will create the executable. If there are any errors, check for typos.

CHAPTER 1 Introduction to C++Builder22

03 0672324806 CH01 12/12/02 2:37 PM Page 22

Press the green arrow to run it and see what happens. You can also choose Run from
the Project menu as well. I will explain how the code works in a minute.

The application will appear as a regular window with two list boxes displaying
names. There should also be two buttons on the form.

The edit box (which is our Edit1 component) will have the cursor in it ready for us
to type. Enter your friends’ names.

As soon as you press Enter, each name will be added not only to the first list box but
also to the second list box.

Select one of the names and press the Add button. The name you selected will
appear in the next list box beside it. If you press Remove, the name will disappear
only from the second list box. Select the names and add them to the other list box;
then remove the names.

You added an event handler for FormShow. This executes after the form’s creation, but
before it is shown. In that event handler you will see that there are some strings to
be added inside ListBox1. The strings are added to the Items property of the list box.

The next event is under Button1. You created a string from the String class named
GetListItem, which equals the item that was selected by the user. How did this event
know that the item was selected? It didn’t. It read the item’s index. If there was no
selection, it would be null. The next line adds the string from the index of ListBox1.

Button2’s event is smaller than the first. It gets the index of the item inside ListBox2
and deletes it.

For our third event, you used an OnKeyPress for the Edit1 edit box. When someone
enters data and presses a key, the event is triggered, executing the code inside it. This
particular event scans for the Enter key, which is equal to 13. You could also have
used the VK_ENTER value that C++Builder defines as the Enter key. In any case, the if
statement checks the passed parameter of Key to see if this is true. If it is, the code
inside the if statement executes and adds the string within the edit box to both list
boxes.

You created three event handlers, and the code is pretty small. You also put several
components on the form without any code at all. Thus, you have a working program
with minimal code.

This took just a few minutes of effort. After you get used to the Component Palette,
the Object Inspector, and the IDE, you’ll be able to do this with much larger and
more complex programs. If you compare the time required to develop applications
using other environments, such as Visual C++ or Microsoft Foundation Classes
(MFC), you will see that C++Builder is far superior to the others.

Creating Your First Real Program 23

03 0672324806 CH01 12/12/02 2:37 PM Page 23

Explore the menu items under C++Builder. The online help can also guide you
through the menu items, Object Inspector, and some of the other important options
within the IDE.

Commonly Asked Questions
This section gives the answers to some commonly asked questions about the
C++Builder compiler.

• How do I look at a project’s source code and other source code for each form?

You can do this by using the Project Manager or the Project menu item in the
main menu. Project, View Source will display the main entry source for the
starting application. If you want to view source files from other forms,
includes, or resource files, use the Project Manager. To open the Project
Manager, select View, Project Manager or press Ctrl+Alt+F11.

• How do I change properties on a component?

You can do this with the Object Inspector. To bring it up, press F11 or choose
View, Object Inspector. In the Object Inspector, select your component and the
properties will be loaded within the Object Inspector. From there you can set
events and change properties.

• I am trying to arrange my components precisely, but I am having difficulty.
Can I have more control over the alignment?

To move a component to the exact location you want, press Control and use
the arrow keys to move it. This will give you the exact pixel alignment you
need within C++Builder. However, it is better to use the Align and Anchor
properties to produce user interfaces that are independent of window size.

• I just compiled and ran my application, but now it seems to be locked up. A
bunch of weird windows popped up and I don’t know what to do. How can I
stop this madness?

You can get C++Builder to reset the program. Press Ctrl+F2 or select Run,
Program Reset. This will kill your program completely and take away those
nasty whatever-they-are-windows, and you’ll be back to your code.

• I compiled my first program, but I want to create my own icon and include it
in my program. How do I do this?

First, use the Image Editor. Open it by selecting Tools, Image Editor in the main
menu. Simply create a new icon from there and save it. Then, select Project,
Options. The Project Options dialog will appear. Select the Application tab and
press the Load Icon button. Locate your icon and press OK. Then, you will

CHAPTER 1 Introduction to C++Builder24

03 0672324806 CH01 12/12/02 2:37 PM Page 24

have to rebuild your project; simply compiling or making your project will not
do it. You will have to rebuild all by choosing Project, Build All Projects from
the main menu. After that, your application will contain your new icon.

• Every time I compile an application, my form has the name Form1. How do I
change this?

Remember the Object Inspector? We talked about this for setting properties for
components. You can also use it to set properties for your forms. Use the
Caption property attribute to change a form’s title. Try experimenting with the
Object Inspector for different results!

• I am tired of choosing the menu items for something simple. Isn’t there an
easier way?

Yes—it’s called the Speedbar, and it is located right above the Object Inspector
(by default). If you want, for example, to create a new application object, press
the button with the image of a white piece of paper. If you do not know what
those buttons are, hold your cursor over one for a couple of seconds and a
helper will appear to tell you what the button is.

• I have all my components in place and do not want to move them. But, some-
times I accidentally move them by mistake. Is there a way I can keep these
components still?

Yes, you can do this by choosing Edit, Lock Controls from the main menu.
This will lock all controls on the form.

What’s New in C++Builder 6?
As with the staggered releases of new versions of Borland C++Builder and Borland
Delphi in the past, C++Builder 6 introduces new features first seen in Delphi 6 and
then adds some more. There are many new features and enhancements in the areas
of Web programming, distributed application development, database application
development, and developer productivity, among others. Most of the new features
and enhancements are covered in more detail throughout this book.

C++Builder 6 is available in three versions: Standard (Std), Professional (Pro), and
Enterprise (Ent). Standard has the fewest features, but is still a powerful development
environment for Windows programming and includes more than 85 components for
RAD programming, the award-winning compiler, advanced debugger, and more. The
Professional version has more than 150 components and adds features including the
CodeGuard™ tool, multiprocess debugging, and standard database functionality.
The Enterprise version has more than 200 components, including Internet Express,

What’s New in C++Builder 6 25

03 0672324806 CH01 12/12/02 2:37 PM Page 25

CORBA development, Microsoft SQL Server and Oracle support, distributed develop-
ment, a full suite of internationalization tools, TeamSource version control manager,
and more.

Missing from C++Builder 6 is Merant (formerly Intersolv) PVCS Version Control.

NOTE

The full-feature matrix, which highlights all the new features in each version (Standard,
Professional, Enterprise) of C++Builder 6, is available from the Feature List link on the
C++Builder Web site at http://www.borland.com/cbuilder/.

You can also see information on the new features in the “What’s New” section of the
C++Builder online help.

The features listed in the following sections are available in the Professional and
Enterprise versions of C++Builder and not in the Standard version, except where
noted. In the remainder of the book, we will not designate which versions of
C++Builder the new features apply to. Consult the full-feature matrix if necessary.

Compatibility with Previous Releases—Projects
When you load a package from an earlier version of C++ Builder, if possible, it will
be converted to the C++Builder current version format. Because of the many changes
in a typical major release, this doesn’t always work for complex projects, so, in the
event you have problems compiling, running, or debugging your prior version
project, be prepared to create a new project to incorporate your code. It is recom-
mended that you create a backup of your project and its directories before convert-
ing it to the current version.

Also note that prior version symbol files are generally not compatible with the
current version—thus, you should rebuild your project immediately after converting.

In an effort to simplify future project conversions, it looks like Borland has decided
to remove version numbers from their package names, so vcl50.bpi will for release 6
and the future be just plain vcl.bpi; however, runtime packages still have version
numbers to enforce compatibility.

Compatibility with Previous Releases—Standard C++ Library
Prior versions of C++ used the Rogue Wave implementation of the C++ standard
template library (STL). In version 6, Borland has switched to the STLport implemen-
tation. This implementation is an open-source product produced by a company that
is also called STLport. Borland suggests that there might be some changes in the way
code using this library operates, but that you can expect your STL code to compile
without difficulty.

CHAPTER 1 Introduction to C++Builder26

03 0672324806 CH01 12/12/02 2:37 PM Page 26

Compatibility with Previous Releases—Database Program
Changes
Some changes in the new version affect your database programs (this does not, of
course, affect owners of the Standard Edition, but only the Professional and
Enterprise Edition).

One of the most important changes is that Borland has changed the way LoginPrompt
works with your Tdatabase- or Tconnection-based component. There is now no default
login dialog box: you need to #include DBLogDlg.hpp or your program will not
prompt for the username.

Compatibility with Previous Releases—DsgnIntf Renamed and
Split Up
Some advanced packages contain references to dsgnintf.hpp, which is the header file
needed for creating property and component editors.

For whatever reason, Borland has now renamed that package, adding a few vowels:
now you must reference designintf.hpp. You might also need the new packages
DesignEditors.hpp, VCLEditors.hpp, and RTLConsts.hpp.

Other New Features
• Support for WebServices (Professional and Enterprise Editions only)

• Improved Web page generation from Web modules (Professional and Enterprise
Editions only)—for more information, see Chapter 22, “Web Server
Programming with WebSnap.”

• SOAP support for multitier database applications (Enterprise Edition only)—for
more information, see Chapter 19, “SOAP and Web Services with BizSnap,” and
Chapter 20, “Distributed Applications with DataSnap.”

• A non-BDE database component set called dbExpress, which allows for easy
deployment of client server database applications (Interbase, DB2, Oracle,
MySQL, Informix)—for more information, see Chapter 12, “Data Access with
dbExpress.”

• Enhancements to Actions—for more information, see Chapter 3,
“Programming with C++Builder.”

• Enhancements to the IDE—for more information, see Chapter 2, “C++Builder
Projects and More on the IDE.”

What’s New in C++Builder 6? 27

03 0672324806 CH01 12/12/02 2:37 PM Page 27

Linux, Kylix, CLX, EJB, and C++Builder
C++Builder now offers several features to support cross-platform development activi-
ties—you can develop on Windows and deploy to Linux (a variant of the popular
Unix operating system) or develop on Linux and deploy to Windows.

C++Builder is primarily focused on Windows development. But any program you
produce in C++Builder, so long as it only uses the CLX components, can be
compiled on Linux using Borland’s Kylix (currently at version 3). So, your company
can have copies of C++Builder on Windows, use those for creating and testing
programs, and then recompile those programs on one or more Linux computers,
using Kylix, for deployment.

What’s the catch? You need to limit your use of the rapid application development
features of C++Builder to controls that are part of the Borland CLX cross-platform
component set. Fortunately, this isn’t much of a burden because most of the stan-
dard UI, data, and Web components are part of CLX.

CLX Overview
Deep details about CLX can be found in Sams Kylix Developer’s Guide, but here are the
highlights:

• CLX is not VCL and VCL is not CLX, but both are rooted at TComponent.

• CLX wraps the Qt class library, a cross-platform library from TrollTech, which
works on both Windows and Linux.

• Why not do this with the VCL? Simply because the VCL exposes certain
Windows-based data structures that need to be hidden for cross-platform appli-
cations.

• Unlike VCL, CLX completely hides the idea of user interface messages. Instead,
it provides a comprehensive set of event handlers for anything you might have
used messages for. There is no message loop, no message dispatcher, and no
capability to redirect messages with BEGIN_MESSAGE_MAP / END_MESSAGE_MAP.

• Qt is a least common denominator class library—it surfaces the features
common to Windows and Linux. It is up to Borland and third-party developers
to reimplement those features that might be specific to each platform, or even
beyond the platforms.

• There’s no CLX tab on the component palette. How do you know which
components are CLX? Well, first of all, all the dbExpress components are,
whereas the ADO and BDE components aren’t. So, if you want to access data-
bases on both platforms, dbExpress is the way to go. As for user interfaces, data
aware user interfaces are done with conventional TDB controls such as TDBGrid

CHAPTER 1 Introduction to C++Builder28

03 0672324806 CH01 12/12/02 2:37 PM Page 28

and TDBEdit. Dialogs such as TOpenDialog are part of CLX. None of the ActiveX
or OLE controls are usable within CLX. The FastNet controls are also not usable
for cross-platform Internet work: the Internet components you can use in CLX
are those on the WebSnap, Internet, and Indy tabs.

Your ultimate resource for cross-platform components is the help file that comes
with C++Builder—look at the section “CLX Component Reference” for a complete
and up-to-date list.

Cross-Platform Help System Integration
Cross-platform systems need to be able to provide cross-platform help. CLX (and
VCL) both provide access to help viewers without locking you into a platform—help
viewers are provided by classes that implement the ICustomHelpViewer interface; for
Windows, this is TWinHelpViewer. On Linux, it might well be another class provided
by your help viewer vendor or implemented by you to provided that capability.

An application must register itself with the global HelpManager so that its help
requests can be passed to the correct viewer; this is done automatically by
TApplication. And, of course, the help viewers/help systems must register themselves
and the help they provide with the Help Manager so they can get and handle the
requests.

The biggest problem is the help context, which the help viewer uses to determine
what help the user wants displayed. Most Linux help viewers will not understand the
numeric help contexts that are common in WinHelp files. This implies that you will
need to hide the nature of your help contexts and use numeric contexts under
Windows, and non-numeric contexts under Linux (using a conditional compilation
to control what is generated).

Simplified IDL, IIOP, and EJB
The Borland Enterprise Server (and its ancestor, Borland Application Server), imple-
mented communication between Java programs and Enterprise Java Beans (EJB)
using IIOP (Internet Inter-ORB Protocol), a standard devised for communication
between CORBA (Common Object Request Broker Architecture) objects.

Why does this matter to a C++ programmer? Well, there are more and more EJB-style
interfaces being made available by various software package vendors, and, perhaps,
even by a programmer down the hall from you. It would be nice if you could easily
leverage their facilities from your C++Builder programs, and you might even be able
to avoid bringing yet another language (Java) into your shop.

The process is conceptually simple: If you use JBuilder, create the IDL for your EJB
through the IDE for JBuilder (right-click the project, pick Options, then from the

Linux, Kylix, CLX, EJB, and C++Builder 29

03 0672324806 CH01 12/12/02 2:37 PM Page 29

dialog pick Build, and click Generate IDL in the Java2IDL Settings; the next compile
will generate the IDL you need).

If you are not using JBuilder, or don’t have the Java source, create the IDL with the
Borland Enterprise Server Visibroker java2idl command-line utility.

Either method produces a file that describes the interface to the EJB in language-
independent terms.

In C++Builder, use File, New, CORBA Client and provide the name of the IDL file as
requested by the wizard.

At this point you now have a client that can call the EJB. All you need to do is to
have the EJB in an appropriate application server (one which, like Borland Enterprise
Server, implements EJB and application server communication with IIOP).

The C++ Standard Library
In addition to the VCL and CLX, C++Builder offers one other important library: The
C++ Standard Library (formerly known as the Standard Template Library [STL]). Like
CLX, in C++Builder 6, this is a cross-platform library with the capability to be used
both in Windows and Linux programs.

This is a complex and powerful library, and not all its features can be covered in this
short presentation. Instead, here is a look at some of its most important capabilities.

Containers
The template in STL refers to its use of C++ templates to help make sure the classes
in the library can create typesafe instances. Nowhere is this more important than
when considering container classes.

Containers include

• vector—a list of items kept in the sequence in which they were added. This is
most efficient for adding to the end of the container.

• list—A list of items kept in the sequence in which they were added, but
equally efficient inserting items anywhere.

• deque—A list of items that can be used as a double-ended stack.

• set—An ordered collection, with no duplicates allowed.

• multiset—An ordered collection that allows duplicates.

• bitset—Contains a set of unique bits.

• map—Contains unique keys associated with values, providing access to values
by keys.

CHAPTER 1 Introduction to C++Builder30

03 0672324806 CH01 12/12/02 2:37 PM Page 30

• multimap—A map where there can be multiple keys with the same value.

• string—A special character container with string-oriented functions.

The library also includes adaptors that force certain access patterns on the contain-
ers: stack (insert and remove only from the top); queue (insert from one end, remove
from the other); and priority queue (same as a queue, but each entry has a priority,
and items are ordered by sequence within priority).

Selecting a container can be more complex than you might expect, but you can also
use the containers intuitively and attain good results. The help file offers guidance
on the more complex aspects of selecting a container.

Using containers is fairly simple as you can see in this example. It uses a vector to
store two integers and then copies those integers out to the lines of a VCL memo:

1: vector<int> IntegerVector;

2:

3: IntegerVector.push_back(1);

4: IntegerVector.push_back(2);

5:

6: vector<int>::iterator First = IntegerVector.begin();

7: vector<int>::iterator Last = IntegerVector.end();

8:

9: CollectionMemo->Lines->Clear();

10:

11: while (First != Last)

12: {

13: CollectionMemo->Lines->Add(String(*First));

14: ++First;

15: };

Line 1 declares the vector as storing integers. Lines 3 and 4 add elements to the
vector. Lines 6 and 7 create and initialize iterators that can be used to go from the
beginning to the end of the vector. Line 9 clears a TMemo object that is used to display
the content of the vector. Line 11 tests the iterators for equality. When they are
equal, the iterator has gone past the end of the vector. Line 13 dereferences the itera-
tor, which, thanks to C++ operator overloading, returns the content the iterator has
reached; it then converts the integer to a string and puts it in the memo. Line 14
completes the loop by advancing the iterator to the next element of the vector.

Note that this example requires you to #include <vector> and <iterator>.

There are many more features of containers, which can be found in any one of the
various books on the STL.

The C++ Standard Library 31

03 0672324806 CH01 12/12/02 2:37 PM Page 31

Memory Management
One of the most powerful aspects of using the container classes lies in the memory
management they provide for the objects they contain.

When you add an object (rather than a primitive type) to a container, the container
uses the copy constructor to create a copy of the object. However, if what is being
added is a pointer, it is assumed that the instance is shared with something else, and
it is left to the programmer to manage the memory.

The library offers yet another tool for managing memory, and this is a tool that can
be especially useful: smart pointers.

Smart pointers are objects that live on the stack, and which will be deallocated when
the object passes out of scope. When you allocate an object with new, of course, it
lives beyond the scope in which it was allocated. To constrain the scope of memory
allocations usually requires the use of a delete that follows the new. For instance, the
try/__finally, extension of C++Builder’s C++ language is often used to ensure
resources allocated from the heap are released.

auto_ptr is the class used for this purpose.

Here’s the example:

auto_ptr<TStringList> ListHolder(new TStringList);

ListHolder->Add(“String”);

Note that if you have added objects to the Objects property of a TStringList, you will
still be responsible for releasing the memory for those objects manually.

When the ListHolder goes out of scope, whether through normal completion of the
function, or through an exception being thrown, the TStringList instance is also
destroyed.

Summary
This chapter has discussed C++Builder and some of its important features, with a
particular focus on those features new in C++Builder 6.

The basic features of language-standard compliance, capability to use Microsoft
projects and code styles, cross-platform capabilities, and a simple C++Builder project
have all been examined. In upcoming chapters, these features, core and new, will be
examined in depth.

CHAPTER 1 Introduction to C++Builder32

03 0672324806 CH01 12/12/02 2:37 PM Page 32

IN THIS CHAPTER

• C++Builder IDE Features

• Understanding C++Builder
Projects

• Understanding and Using
Packages

• Using the C++Builder
Interactive Debugger

• Advanced Debugging

• Speeding Up Compile Times

2

C++Builder Projects and
More on the IDE

In Chapter 1, “Introduction to C++Builder,” you were
exposed to the C++ Builder implementation of the C++
language, the VCL and CLX class libraries, the IDE, and
projects—all integral parts of C++Builder. This chapter
builds on that experience to take you through the
advanced features of the IDE, how to use projects and
packages, how to debug, and how to speed up compila-
tion.

C++Builder IDE Features
C++Builder offers a powerful environment with many
options. This section covers its core features and some of
the newest, most advanced features.

Main Window and Toolbars
The main window of the IDE fits to the upper section of
your desktop. It contains various toolbars, including the
menu bar, all of which can be moved. You can add or
remove buttons by picking Customize from the pop-up
menu on any of the toolbars. You can drag and drop from
any of the commands listed under the dialog Commmands
tab onto any of the toolbars. Unfortunately, you have to
piggyback on the existing toolbars—you cannot create
your own.

You can also remove buttons while customizing by drag-
ging them off the toolbar that holds them.

04 0672324806 CH02 12/12/02 2:42 PM Page 33

Project Manager
The Project Manager is not displayed in the default window configuration, but is
usually important to have available. Pick Project Manager from the View menu to
show the manager for the current project.

As you’ve seen, the project manager displays the current project files. You can
control the build order for those files by rearranging them in the Project Manager
window. You can also set local options and perform a variety of other tasks by using
the pop-up menu available for each file or project.

The Project Manager will be covered in more detail later in this chapter.

Arranging Windows in the IDE
Many of the IDE windows can be docked to each other. This enables you to
customize the user interface layout to your own needs.

If it weren’t for the need to have separate form windows, you might dock all the
windows into a tiled user interface. However, some experimentation will show you
what works best docked while still allowing access to the form.

As you drag windows onto each other for docking, you will see the outline that tells
where the docked window will go. Figure 2.1 shows an example of the Object Tree
View at the bottom of the Object Inspector Window, before starting docking. Figure
2.2 shows the outline that indicates where the dragged window will fall, and Figure
2.3 shows the window after.

CHAPTER 2 C++Builder Projects and More on the IDE34

FIGURE 2.1 The two windows to participate in the drag and drop.

04 0672324806 CH02 12/12/02 2:42 PM Page 34

FIGURE 2.2 The drop outline on the Object Inspector window shows where the
dropped window will go.

C++Builder IDE Features 35

FIGURE 2.3 The window after the drop has occurred.

There are several places you can dock a window (called dock sites), though not every
window supports every dock site possibility.

• Bottom, Top, Left, Right—Fills the bottom, top, left, or right of the destination
window with the dropped window.

04 0672324806 CH02 12/12/02 2:42 PM Page 35

• Center—Adds the newly dropped window as a tabbed page to the drop-site
window.

One of the most useful arrangements is to dock the Project Manager, the Object
Inspector, and the Object Tree View window into a single window.

After windows are docked, you can resize the proportion of each using the flat part
of the bar that separates them. Look for the cursor to turn into a double-headed
arrow when it’s over the splitter bar.

Object Inspector
As you’ve seen, the Object Inspector displays the properties for the currently selected
component or form. You can also use the instance drop-down list at the top of the
Object Inspector to pick a specific component.

Figure 2.4 shows the Object Inspector window.

CHAPTER 2 C++Builder Projects and More on the IDE36

FIGURE 2.4 Object Inspector.

This view of the Object Inspector shows its features. In this case, the properties are
for a TclientDataSet component, but similar properties exist for every class of
component.

You can see that some properties have a plus sign (+) next to them. Some of those
are enumerated properties with true/false flags next to each enumeration, such as
FilterOptions. Others, such as MasterSource, are references to another component on
the form, and the Object Inspector displays the properties of that component when
the + has been clicked.

04 0672324806 CH02 12/12/02 2:42 PM Page 36

In addition to the plus sign, the Object Inspector uses color to show the nature of
the property. Red property names indicate references to other components. Green
property names indicate the properties of those referenced components brought over
into the current object’s inspector for convenience (making it easy to change related
components’ properties).

Finally, the plus sign can also be used for instances that are contained within the
current instance being examined. Font is an example of this type of property.

The colors for various elements of the Object Inspector can be set from the Object
Inspector tab of the IDE Tools, Environment dialog.

Property Categories in the Object Inspector
In Chapter 1 we described how the IDE’s Object Inspector can be used to display and
edit component properties and event handler functions. C++Builder 5 introduced the
idea of property categories. All properties (including events that are also properties)
can be arranged by category in the Object Inspector, as well as the normal alphabeti-
cal listing. The purpose of categories is to allow the logical grouping of related prop-
erties. A property might belong to more than one category, if appropriate.
Additionally, it is possible to hide a property from the Object Inspector by hiding its
category. This is referred to as filtering.

Filtering works on properties in the Object Inspector window, and also applies to the
entries on the Events tab.

Using Property Categories
By default the Object Inspector displays properties alphabetically. To view by cate-
gory, right-click the working area of the Object Inspector and select Arrange, By
Category from the pop-up menu. The property categories will now be displayed in
the Object Inspector. These can be expanded or collapsed by clicking the + (expand)
or – (collapse) icon (by default they are initially collapsed). If a category is expanded
and the properties are viewed by name before viewing them again by category, the
category remains expanded. If another component is selected and it has properties in
the same category, those will also be shown expanded.

To filter which property categories are displayed in the Object Inspector, right-click
again and select View. A category is checked or unchecked: Unchecked categories are
hidden.

Selecting View, All automatically checks all categories, selecting View, None unchecks
all categories (and therefore hides them), and selecting View, Toggle toggles the state
of the categories. That is, checked categories become unchecked and vice versa. It
doesn’t matter which category is visible when you change a property that is a
member of multiple categories—you are changing the underlying value, not a sepa-
rate entry in each category.

C++Builder IDE Features 37

04 0672324806 CH02 12/12/02 2:42 PM Page 37

Using the Predefined Property Categories
There are 13 predefined property (and event) categories, 12 of which are used by the
VCL in C++Builder. These are described in Table 2.1, with the kind of property
contained in each category and example properties.

TABLE 2.1 Property Categories in C++Builder

Category Name Category Specification

Action Contains properties that are managed by actions and whose behavior is

related to runtime functionality. The Hint and Checked properties of

TMenuItem are in this category.

Data Contains properties that manage the data shown by a component. This cate-

gory is not currently used by the VCL. It was originally used for the Text,

EditMask, and Tag properties, but these can now be found in the

Localizable, and Miscellaneous categories, respectively.

Database Contains properties whose behavior is related to database operations. The

DatabaseName, MasterSource, and OnCalcFields properties of TTable are in

this category.

Drag, Drop, and Contains properties that arerelated to drag and drop or docking operations.

Docking The OnDragOver and DockSite properties of TForm are in this category.

Help and Hints Contains properties (and events) that are related to help, hint, or assistance

operations. The OnHint and HelpContext properties of TStatusBar are in

this category.

Input Contains properties that are related to controlling input to the component.

The OnKeyPress, OnClick, and Enabled properties of TForm are in this

category.

Layout Contains properties that are related to the layout and visual display of a

control at design time. The OnResize and Width properties of TForm are in

this category.

Legacy Contains properties that are now obsolete. The Ctl3D and OldCreateOrder

properties of TForm are in this category.

Linkage Contains properties that are related to the linking of one component to

another. The PopupMenu property of TForm and the DataSource property of

TDBGrid are in this category.

Locale Contains properties that are related to international locales or compliance

with international locale operating systems. The BiDiMode and

ParentBiDiMode properties of TForm are in this category.

Localizable Contains properties that are subject to possible change, depending on where

the application is deployed. The BiDiMode, Hint, and Font properties of

TForm are in this category.

Miscellaneous Contains properties that have not been categorized, do not fit into any cate-

gory, or do not require categorization. The Tag and Name properties of TForm

are in this category.

CHAPTER 2 C++Builder Projects and More on the IDE38

04 0672324806 CH02 12/12/02 2:42 PM Page 38

Visual Contains properties that are related to the layout and visual display of the

control at runtime. The BorderStyle, Color, and Width properties of TForm

are in this category.

The Object Tree View
The Object Tree View is an important adjunct to the Object Inspector. For one thing,
the Object Inspector drop-down list can become unwieldy when there are more than
ten or twenty items. The Object Tree View window, shown in Figure 2.5, shows the
objects in their parent/child relationships, and, of course, is scrollable. This is espe-
cially valuable in situations where a child component completely fills or covers its
parent, and thus cannot be clicked with the mouse on the form.

C++Builder IDE Features 39

TABLE 2.1 Continued

Category Name Category Specification

FIGURE 2.5 Object Tree View.

Entries in the Object Tree View have a pop-up menu. The most important feature of
this menu is its capability to Edit (Copy, Cut, Paste), which enables you to create
copies of the selected item.

Source Code Editor
The source code editor window is a window with tabs for each file currently opened.
Figure 2.6 shows the Source Code Editor and the docked Class Explorer.

This is used to show and edit a variety of file types, including

• C++ header and implementation files (.cpp, .h, and .hpp, which are Delphi
interface sections translated into C++)

• Delphi files (.pas)

• Text files (.txt or any other extension)

04 0672324806 CH02 12/12/02 2:42 PM Page 39

FIGURE 2.6 Source Code Editor.

• Text format of a form, data module, project makefile, and so on

• SQL statements from the Tquery, and other similar database components

The tabs across the top of the source code editor show the name of the file; these
tabs can be reordered by drag and drop. The title bar shows the path to the file being
edited, unless it is in the current directory. If it is in the current directory, only the
name will be shown.

Each file has at least one tab at the bottom. A .cpp file has a tab for the .cpp file and
the .h file, as well as a diagram.

The editor also allows for custom surface designers, which are used to provide the
diagram editor and the special editors for Professional and Enterprise Edition
WebSnap applications.

The Diagram Tab
This tab reveals a diagram editor you can use to help document the component.

Figure 2.7 shows the diagram editor in use.

The Diagram tab is only present for top-level components such as forms and data
modules. When you click the tab, the Object Tree View switches to show the correct
top-level component and its children. You can then drag components from the
Object Tree View to the diagram editor. The diagram editor will automatically
connect the components if they have a relationship such as parent/child.

You can also add notes to the diagram to indicate the function of specific compo-
nents or design rationales, or other similar information.

CHAPTER 2 C++Builder Projects and More on the IDE40

04 0672324806 CH02 12/12/02 2:42 PM Page 40

FIGURE 2.7 Source Code Diagram Editor.

The components in the diagram are live in the sense that deleting them from the
form or Object Tree View will delete them from the diagram. The reverse, however, is
not true—the component can be deleted from the diagram without affecting the
actual instance of that component in your project.

On the other hand, if you click the component in the diagram you select the compo-
nent on the form and the Object Tree View. This suggests the most important use of
diagrams—clustering components into meaningful groups that are separate from the
parent/child or positioning relationships. This is helped by the ability to have multi-
ple diagrams for each top-level component.

The toolbar allows, from left to right:

• Selection of the diagram to edit

• Creation of a new diagram, deletion of the current diagram

• Selection of a diagram element

• Adding a sticky note

• Drawing a relationship line between two components

• Drawing a property navigation line between two components (though this is
performed automatically for most components that refer to each other)

• Drawing a master detail relationship between two data sets

• Drawing a lookup relationship between two data sets

Each diagram must have a name and can have a description.

C++Builder IDE Features 41

04 0672324806 CH02 12/12/02 2:42 PM Page 41

When the project is saved, the diagram is saved with it, apparently in the .bpr
(project) file.

Code Insight
The Code Insight feature of the IDE is an important one. A difficult challenge for a
developer is getting to know all the many functions of class libraries and their para-
meters. Code Insight enables you to see these methods and parameters as you type
in the Source Code Editor. Figure 2.8 shows Code Insight offering a set of possible
methods for the object to the left of the pointer to member operator. As you type a
possible method name, the number of entries shown shrinks to those whose initial
characters match what you’ve typed so far. Functions with void return are displayed
in teal (bluish green) and functions with return values are dark blue.

CHAPTER 2 C++Builder Projects and More on the IDE42

FIGURE 2.8 Code Insight offers a function definition.

Figure 2.9 shows Code Insight offering two possible argument lists because there are
two separate overloaded functions for the PaintTo capability.

FIGURE 2.9 Code Insight offers an argument list.

The OpenTools API enables you to create custom code completion managers. See
Chapter 23, “Open Tools API,” for more information.

If you Ctrl-click any entry in the list, the Source Code Editor retrieves the header file
that contains the declaration of the function, positioned right on the function.

You can also resize the code completion pop-up window, and that size is remem-
bered across sessions.

If you have the Professional or Enterprise Edition, you also get code completion for
HTML documents.

04 0672324806 CH02 12/12/02 2:42 PM Page 42

Forms—Save As Text
This feature saves forms as text rather than in binary form and is the default.

Right-click any project form to get the context menu. The Text DFM option is
checked by default.

When the form unit or project is saved, the form will be stored as plain text in its
DFM file. An example text DFM file is shown in Listing 2.1.

LISTING 2.1 An Example DFM File Saved as Text

object Form1: TForm1

Left = 192

Top = 107

Width = 311

Height = 158

Caption = ‘Text Form’

Color = clBtnFace

Font.Charset = DEFAULT_CHARSET

Font.Color = clWindowText

Font.Height = -11

Font.Name = ‘MS Sans Serif’

Font.Style = []

OldCreateOrder = False

PixelsPerInch = 96

TextHeight = 13

object Label1: TLabel

Left = 13

Top = 24

Width = 277

Height = 20

Caption = ‘This form is saved as text (default)’

Font.Charset = DEFAULT_CHARSET

Font.Color = clWindowText

Font.Height = -16

Font.Name = ‘MS Sans Serif’

Font.Style = [fsBold]

ParentFont = False

end

object Button1: TButton

Left = 114

Top = 72

Width = 75

Height = 25

C++Builder IDE Features 43

04 0672324806 CH02 12/12/02 2:42 PM Page 43

Caption = ‘OK’

TabOrder = 0

OnClick = Button1Click

end

end

Unchecking the Text DFM option of a form will cause the form to be saved as binary.
You can make this the default for all new forms by unchecking the New Forms as
Text option on the Preferences tab of the Environment Options dialog box, shown in
Figure 2.10. This is reached by selecting Tools, Environment Options from the main
C++Builder menu.

Note, however, that the text version of a form is much less likely to be incompatible
with prior or following versions than the binary version.

CHAPTER 2 C++Builder Projects and More on the IDE44

LISTING 2.1 Continued

FIGURE 2.10 The Preferences tab of the Environment Options dialog box.

Understanding C++Builder Projects
The IDE provides two-way development by integrating a graphical Form Designer
and a text-oriented Source Code Editor, enabling you to develop applications from
two angles. Using the ClassExplorer, Code Insight, and standard features of the Form
Designer, C++Builder can even generate quite a bit of code!

You can use C++Builder to develop applications of many types, including those in
the following list:

• Windows or console applications

04 0672324806 CH02 12/12/02 2:42 PM Page 44

• Client/server applications

• Dynamic link libraries (DLLs)

• Custom components and Packages

• Component Object Model (COM) and ActiveX controls

All these applications are created using projects. A project is a collection of C++
source files, form files, and other file types that together define the application.
C++Builder uses a special project file to store the structure of the project and to
remember various project options that change the way the application is built.

Files Used in C++Builder Projects
C++Builder projects consist of many different types of files. C++Builder creates some
files automatically; when a new project is started or when new items are added to an
existing project, for instance. The developer creates other files, and there are still
other files that are created when the application is compiled. Project files, no matter
how they are created, can be categorized as follows:

• Main project files

• Form files

• Package files

• The desktop layout file

• Backup files

Main Project Files
When you create most projects, three main files are automatically created. They are
shown in the following list:

• C++Builder project file ProjectName.bpr

• Main project source file ProjectName.cpp

• Main project resource file ProjectName.res

The files are initially created internally for you to start using. The files will not be
created on disk until you save the project.

By default your project is named Project1. You can change the name of the project
when you first save it by renaming the Project1.bpr file in the Save Project As dialog
that appears. You should be careful naming the various files in your project. It’s a
good idea to name each form file the name of the form followed by Unit or Module
(for instance, Form1Unit.cpp).

Understanding C++Builder Projects 45

04 0672324806 CH02 12/12/02 2:42 PM Page 45

The C++Builder Project File The project file is a text file that contains the project
options settings and the rules to build the project. This file has changed somewhat
through the different versions of C++Builder. In C++Builder 1 through 4, the file was
in a Makefile format. In C++Builder 1 the project file actually had the extension .mak
to signify this. In C++Builder 5 the file changed to the Extensible Markup Language
(XML) format.

The Main Project Source File This file contains the application entry (startup) code,
and little else. C++Builder automatically maintains the file throughout development.

In a standard Windows application, the main project source file contains the
WinMain() function as the application entry point. In other types of applications, this
function might be named DllEntryPoint() or simply main(). Unlike most other auto-
generated source files, this file has no corresponding header (.h) file. You’ll seldom
need to change the main project source file except to execute a function as the appli-
cation starts, such as displaying a splash screen while the application is initializing.

NOTE

The IDE will regenerate this function when you add, remove, or reorder the forms in your
project. Any code you change within the WinMain function will be removed, so be prepared
to replace it.

In a VCL or non-VCL console application, this function is the standard main() func-
tion, and it will not be changed by C++Builder, so you can add your own code as
needed.

The Project Resource File This file contains the application’s icon, the application
version number, and other information. Not all application types have a project
resource file.

Resource files in general store images, icons, and cursors for your project. To create
these items, you typically use a tool such as the Image Editor provided by
C++Builder. Resource files can also contain strings and other objects. For a more in-
depth look at storing images in a resource file, see “Using Predefined Images in
Custom Property and Component Editors” in Chapter 5, “Creating Property and
Component Editors.”

Form Files
For each Form you create, C++Builder generates the following files:

• The Form layout file UnitName.dfm

• The Form source file UnitName.cpp

• The Form header file UnitName.h

CHAPTER 2 C++Builder Projects and More on the IDE46

04 0672324806 CH02 12/12/02 2:42 PM Page 46

By default the unit name is Unit1 for the first Form created, Unit2 for the second, and
so on. You can rename the Form files when saving the project. The extension .dfm
stands for Delphi Form, a reminder that C++Builder is based partially on Borland’s
Delphi product. The .dfm file contains values that represent the graphical part of the
Form, such as component locations, font styles, and so on.

In C++Builder versions 1 through 4, the .dfm file is saved in a binary format. It can
be viewed as text in these versions by right-clicking the Form, and then selecting
View As Text. In C++Builder 5, the .dfm file is saved in a text format by default, but it
can be saved in binary format if required. For more information see the “Forms—
Save as Text” section in this chapter. You can edit the .dfm Form files if you want,
but you rarely need to do so.

The .cpp file and its associated .h header file are created with the .dfm file each time
you create a new Form. The .h file contains the C++ class definition for the Form.
The .cpp file contains the event handler functions for the Form and for the compo-
nents that you add to the Form. In simple applications, most of the code that you
write will be placed in the Form’s .cpp file.

To view the .cpp and .h files, do the following:

1. If your project is not open, select File, Open.

2. Select View, Units, and then choose the unit file of your Form and click OK or
press Enter. The .cpp file for the Form will be displayed in the Code Editor.

3. To view the header file, right-click in the Form’s .cpp file displayed in the Code
Editor and choose Open Source/Header File, or click the tab for the .h file at
the bottom of the editor window.

NOTE

Everything mentioned previously for Form files is also true for the DataModule forms that are
used to contain nonvisual components. Those are discussed in Chapter 7, “ Database
Programming.”

The Package Project Files
Packages are simply dynamic link libraries (DLLs) that can be shared among many
C++Builder applications. They enable you to share classes, components, and data
between applications. For example, the most frequently used C++Builder compo-
nents reside in a Package called VCL. Most applications created in C++Builder share
some common code from this package, provided in the Package file vcl60.bpl.

When you create your own components or libraries, you will need to create a
package project.

Understanding C++Builder Projects 47

04 0672324806 CH02 12/12/02 2:42 PM Page 47

The following are specific Package files:

• The Package Project Options (.bpk) file.

Consider this file to be like a .bpr project file, but applicable only for packages.
This file is created if you choose File | New | Package from the IDE menu.

• The Borland Package Library (.bpl) file.

This is the runtime library generated by C++Builder for the package. It is like a
DLL, except that it contains C++Builder-specific features. Its base name
matches the Package source base name.

• The Borland Package Import Library (.bpi) file.

Each time you compile the package source file, a .bpi file will be created.
Again, its base name matches the package source base name.

The Desktop Layout
The window layout for a project stores the arrangement of the various windows
open in the IDE and the files open in the Source Code Editor. The next time the
project is opened, these settings will be restored.

The Desktop options used to be stored in a file whose name had the format
ProjectName.dsk and in the same folder as the project. As of C++Builder 6, these
values are stored in the project file.

The IDE can be set to save the layout automatically when you close the project.
From the menu, select Tools, Environment Options. This will take you to the
Environment Options dialog. Select the Preferences tab and check AutoSave Options,
Project Desktop.

Backup Files
C++Builder will create a backup file for each of your project’s .bpr, .dfm, .cpp, and .h
files each time you save your project, except for the first save. All backup file exten-
sions are prefixed with the ~ symbol; thus, the .bpr file extension will become .~bp,
.cpp will become .~cp, and so on.

Project Manager
The Project Manager displays the file structure of a project or project group. The
Project Manager can be viewed by selecting View, Project Manager from the
C++Builder menu. Figure 2.11 shows an example of the Project Manager window.

CHAPTER 2 C++Builder Projects and More on the IDE48

04 0672324806 CH02 12/12/02 2:42 PM Page 48

FIGURE 2.11 The Project Manager window for C++Builder.

A project group is a collection of projects. Sometimes you need to create more than
one project for an application. For example, an application could have a VCL
project, a DLL project, and a console project. The information about the project
group is stored in a project group file in the same folder as the project. It has the file-
name ProjectName.bpg.

The following are many of the things you can do in the project Manager:

• Create a project group to hold one or more projects.

• Add or remove projects in a project group.

• Add or remove units from a project.

• Reorder projects within a project group or units within a project using drag
and drop.

• Select a project for further operations.

• Compile or build one or more of your projects.

Most of the operations (except for those using drag and drop) can be done using
pop-up menus associated with the project group, project, or unit.

Different Builds for Different Files
C++Builder offers a wide variety of options for you to use in controlling the build of
your application. Those options generally apply to the project as a whole and are set
at that level using the Project, Options menu entry, or Options from the project
manager window pop-up for each project in a project group.

These options include a variety of important elements such as the interpretation of
C++ language statements as pure ANSI or allowing VCL or MFC extensions; control-
ling the default data structure element alignment (default is quad word, but a partic-
ular program might require byte or word alignment); or what will happen to stack
data when an exception is thrown.

Understanding C++Builder Projects 49

04 0672324806 CH02 12/12/02 2:42 PM Page 49

You might want to have these settings be different in some compilation units. For
instance, you might want some platform independent sections of the code to be
compiled as pure ANSI, whereas a user interface should be able to use the VCL.

In many cases, you can and should deal with these option differences by creating
and linking separate packages, each with their own options.

But in other cases, you might be able to restrict these option changes to a single or
small number of compilation units, with the rest of the project using a standard set
of options. This can be done fairly easily by clicking the compilation unit and
picking Local Options from its pop-up menu. The resulting dialog offers a variety of
options that are generally a subset of the options available for the project (for
instance, linker options are not available for compilation units, but are available for
the entire project).

Options for C++ units include language options, compiler options, directory search
paths for include files, output paths for object files, and many others.

Not all units have local options. Delphi units, for example, do not enable you to
override the Pascal options set for the project.

Custom Build Tools
You might not only want to set specific project options for a compilation unit, but
you might want a specific build tool as well (for instance, another compiler) for a
specific compilation unit. C++ Builder allows this for some types of compilation
units.

Tools, Build Tools enables you to create a new entry in the list of build tools and to
associate that tool with one or more file extensions. Figure 2.12 shows the dialog to
edit or add a tool.

CHAPTER 2 C++Builder Projects and More on the IDE50

FIGURE 2.12 Dialog to pick or add a Build Tool.

04 0672324806 CH02 12/12/02 2:42 PM Page 50

Editing an existing tool such as the CCompiler or Preprocessor produces the dialog
in Figure 2.13:

Understanding C++Builder Projects 51

FIGURE 2.13 Build Tool configuration dialog.

This dialog enables you to identify a variety of important elements that control the
use of your build tool.

For instance, you can specify the file extensions this tool should automatically be
applied to at build or make time (Default Extensions). You can specify the file exten-
sions for which the tool will be available in the Program Manager pop-up menu.
The final extension you can specify is the extension of the output from the tool.
Although the documentation is silent on this, it is possible that a match of target
extension to default extension is used to help order the sequence of executing
the tools.

Command Line specifies the command line that will be executed when the time
comes to use the tool in the build sequence. A variety of build macros can be
supplied to the command line, which expands as follows:

• $DEFINE—any Project Options level #defines in effect.

• $EXT—The extension of the current file.

• $INCLUDEPATH—The directory path for #include files, drawn from the project or
local options.

• $NAME—The name and extension of the current file.

• $PATH—The directory where the file exists.

• $TARGETNAME—The name of the target to be produced (usually the same as $NAME
without the extension; can be used by the tool to help produce target files).

You can create your own command-line tool quite easily. For instance, the simple
program (a VCL console application) in Listing 2.2 is the one shown running in

04 0672324806 CH02 12/12/02 2:42 PM Page 51

Figure 2.14. It displays its command line (captured by the IDE and displayed in the
message window), which includes expanded versions of the previous macros. Here is
the command line from the Build Tool dialog:

F:\Mark\Development\CBuilder6\CommandLineTool\MacroLineTool $NAME $EXT $PATH

$INCLUDEPATH $DEFINE $SAVE $TARGETNAME $LOCALCOMMAND

LISTING 2.2 A Sample Build Tool

//—————————————————————————————————————-

#include <vcl.h>

#pragma hdrstop

#include <iostream>

//—————————————————————————————————————-

#pragma argsused

int main(int argc, char* argv[])

{

for (int Index = 0; Index < argc; Index++)

{

std::cout << argv[Index] << “\n”;

};

return 0;

}

//—————————————————————————————————————-

Obviously, you might get such a tool from a tool vendor, as well as writing one your-
self. What kind of things could these tools do? Well, they could produce documenta-
tion, generate code, update program information databases, upload the latest build
to the deployment machine, anything you can imagine. Build tools are not limited
to processing source code—they can process .obj files, or .res files, or anything else
you need.

Drag and Drop within Tree to Reorder Compilation
The make process uses the interdependencies between compilation units to decide
what to compile first, what to compile next and what to compile last.

CHAPTER 2 C++Builder Projects and More on the IDE52

04 0672324806 CH02 12/12/02 2:42 PM Page 52

In the normal course of events, you don’t really care how the make process decides to
compile a project, as long as it makes sense. When you have a problem with a
specific unit, you can simply compile it by itself.

Understanding and Using Packages 53

FIGURE 2.14 A build tool run on itself, displaying all the macros allowed on the
command line, expanded, one on each output line.

But sometimes it makes sense to have infrequently changing modules compile
following those that change frequently, which can shorten make times.

Understanding and Using Packages
This section discusses packages and how they are used both in applications and by
the IDE. The term package refers specifically to a source module with the .bpk exten-
sion (Borland Package) and more generally to a Borland Package Library (BPL) file
(.bpl extension) that is created when the Package is built. A BPL file is very similar to
a dynamic link library (DLL) and is used for the same purpose, to dynamically link
executable code to an application.

A package can be one of three types: design time-only, runtime-only, or dual design
time/runtime. Essentially, the only difference between these packages is that a design
time package can be installed into the IDE, whereas a runtime package cannot.
Runtime packages can be used only at runtime. The dual package can be used in
either situation and is often used for convenience when initially developing
components.

04 0672324806 CH02 12/12/02 2:42 PM Page 53

A package consists of two sections: a Contains section and a Requires section. Files
that appear in the Contains section are those that the package contains and are
compiled and linked when the package itself is compiled and linked. These files are
part of the package.

Import files appearing in the Requires section are references to runtime packages that
this package must access to function correctly. This mechanism will be explained
more clearly later in this section. When a package is built, all the files in the Contains
section, where appropriate, are compiled and linked, and object files for each are
created.

In addition, a BPL file is generated, as are a Borland Package Import (BPI) file (.bpi
extension) and a static library (LIB) file (.lib extension). To not generate a BPI file,
select the Linker tab in the Project, Options dialog, and uncheck the Generate
Import Library option in the Linking group. To not generate a LIB file, uncheck the
Generate .lib File option.

You always need to generate a BPI file, which is used by the IDE during linking, so
that the executable can use the respective BPL file at runtime. This is true except in a
design time–only Package. Therefore, the same types of files are produced for all
Package types. The difference is only apparent in their use. Figure 2.15 shows the
structure of a Package in the Project Manager.

CHAPTER 2 C++Builder Projects and More on the IDE54

FIGURE 2.15 The structure and output of a package.

Note that in Figure 2.15, the contained units are implied to be C++ translation units.
Hence, for each translation unit, an object file is produced when the package is
compiled and linked successfully. Other files can also be added to a package’s
Contains section, most notably resource files and object files. These files are
commonly needed when a Package is used to Package components.

The Requires section in Figure 2.15 includes the import file rtl.bpi. This indicates
that the Package requires executable code contained in rtl.bpl (the runtime library
BPL). Placing the .bpi file in the package’s Requires section enables the linker to
resolve any external references to the runtime library.

04 0672324806 CH02 12/12/02 2:42 PM Page 54

Three files are produced when a package is built. One is the BPL file. The nature of
the BPL file depends on whether the package is a design time package or a runtime
package. If it is a dual package, the functionality of both package types is available.
With design time packages, the BPL file is used to install the package into the IDE.
You do this by selecting Install Packages from the Components menu and browsing
for the design time package .bpl file. With runtime packages, the BPL file is used
specifically to allow applications to link dynamically to the functions and data that
the package contains at runtime.

For an application to link dynamically to a .bpl file, the linker must be able to
resolve references to the functions and data contained by the .bpl file during
linking. Such a reference is referred to as an external reference because it refers to
something external to the current application. To resolve an external reference, the
linker searches for an import record for the function called by the application. The
import record is contained in the corresponding Borland Package Import (BPI) file
(.bpi extension) for the package.

For every function that is exported from the package (basically any function that is
declared in a unit contained by the package), there is an entry that states the inter-
nal name of the function and the name of the module that contains the function. In
this case, that is the name of the package’s BPL file (more information than this is
presented, but it is not relevant to this discussion). The linker to the application’s
executable file copies this information. This creates a dynamic link to the function
that will be resolved by Windows each time the application is executed. It does this
by searching all the files on the system path (for example, files in the Windows
system directory) for the file named by the import record when the application is
loaded into memory. If it finds the required BPL file, that also is loaded into
memory. The external reference is then referenced to the correct location within the
BPL file. If the required BPL is already loaded into memory, all the better. The over-
head for this operation is not incurred, and the BPL is shared by the applications
using it. The function or data can then be used by the application.

It should be clear that the BPL and BPI files produced by a runtime package are used
to support dynamic linking of the code that the package exports. The LIB file is used
to support static linking of the code that the package exports. Essentially, the LIB file
contains the OBJ files of the units contained by the package itself and is in fact an
object library. When a function is required from the package, the appropriate OBJ
from the LIB file is copied to the target executable. Each such executable, therefore,
has its own copy.

Table 2.2 summarizes the purpose of the files produced by a package when it is
successfully built.

Understanding and Using Packages 55

04 0672324806 CH02 12/12/02 2:42 PM Page 55

TABLE 2.2 Package Files Created on a Successful Build

Extension Description Type Purpose

.bpl Borland Dynamically Contains executable

Package linkable code of the package

Library library and exports the

(BPL) functions and data

of the package.

A runtime library accessed by

applications that are dynamically

linked to it.

A design time library that can be

installed into the IDE to make

new components or editors avail-

able at design time.

.bpi Borland Import Contains import

Import library records for the

Library functions and data

(BPI) exported by the

corresponding BPL

file required for

dynamic linking to

the BPL file.

.lib Static Object A static library

Library library containing the

File (LIB) object files of the

units contained by

the package. Used to

statically link

exported functions

and data to a target

application.

Table 2.2 shows that, in order to use a runtime BPL, the corresponding BPI file must
be available at link time for the external references to the BPL to be resolved.

When you compile and link a project, you can choose whether the project is dynam-
ically linked or statically linked to the packages it requires. By default, dynamic
linking is used. To change this setting for the project, uncheck the Build with
Runtime Packages option on the Project, Options, Packages page.

It is also possible to choose units from a package that you want to be statically
linked to a given unit within a project. To do this, add the #pragma link “unitname”
directive, generally near the top of the unit, where unitname is the name of the unit

CHAPTER 2 C++Builder Projects and More on the IDE56

04 0672324806 CH02 12/12/02 2:42 PM Page 56

that you want to be statically linked to the unit within your project. This results in
the linker copying the required object file from the package’s .lib file.

Considerations When Using Packages
For a class to be properly imported and exported from a package, the PACKAGE macro
must be used after the class keyword in the class definition, as shown in the follow-
ing code:

class PACKAGE TMyComponent : public TComponent

{

// Component class definition here.

};

The PACKAGE macro must also be given in the declaration of the Register() function
for the component. This is shown in the following code:

namespace Newcomponent

{

void __fastcall PACKAGE Register()

{

TComponentClass classes[1] = {__classid(TMyComponent)};

RegisterComponents(“Samples”, classes, 0);

}

}

Of course, this applies to component class definitions. If you use the Component
Wizard (Component, New Component) to create the component, C++Builder will
insert the PACKAGE macro for you.

To ensure that functions and data are properly imported and exported from a unit
contained in a package, the #pragma package(smart_init) directive should be placed in
the unit’s source file, typically after any #include statements, but before any source
code. Failing to do so will not prevent the unit from compiling, but it will prevent
the package from statically linking. The purpose of the directive is to ensure that the
packaged units are initialized in the order determined by their dependencies.

The #pragma package(smart_init,weak) directive is also available. This is used when
you do not want a particular unit to be contained in the BPL file. Instead, the unit is
placed in the BPI file. When the unit is required, it is copied from the BPI file and
statically linked to the target application. Such a unit is said to be weakly packaged
and is used to eliminate conflicts among packages that might depend on the same
external library.

Understanding and Using Packages 57

04 0672324806 CH02 12/12/02 2:42 PM Page 57

Using the C++Builder Interactive Debugger
C++Builder’s interactive debugger contains many advanced features, including
expression evaluation, data setting, object inspection, complex breakpoints, a
machine code disassembly view, an FPU and MMX register view, cross-process debug-
ging, remote debugging, attaching to a running process, watching expression results,
call stack viewing, the capability to single-step through code, and more. During
development you will spend a lot of time using it, or at least you probably will
need to!

The debugger is not just for finding bugs; it is also a general development tool that
can give you great insight into how your application works at a low level.

To use the debugger effectively, you must first disable compiler optimizations. When
compiler optimizations are enabled, the optimizer will do everything in its power to
speed up or reduce the size of your code, including removing, rearranging, and
grouping sections of machine code generated from your source. This makes it very
difficult to step through your code and to match up source code with machine code
in the CPU view. If you set a breakpoint on a line, and it is not hit when you are
confident that the line was executed, it is probably because you have optimizations
enabled.

Screen real estate becomes a problem with the many debug views that you’re likely
to need during a debugging session. You can make use of the desktop settings to
create a layout appropriate for programming and a separate layout for debugging.

A typical desktop layout for debugging is shown in Figure 2.16. You can see at the
bottom the docked windows, now tabbed pages, for the call stack and the watch list.
To the right is the Debug Inspector, which is much like the Object Inspector, except
it shows runtime values (this window is not dockable). Docked to the right of the
Source Code Editor are the Breakpoint List Window and the Local Variable Window
(which shows the current values of the local variables for the current breakpoint
function).

For the remainder of this section, it is assumed that you understand the basics of
debuggers. Such basics include using source breakpoints with expression and pass-
count conditions, stepping over and into code, and using ToolTip expression evalua-
tion (holding the mouse pointer over an expression while the application is paused
in the debugger).

Multithreaded Application Debugging
If you are writing multithreaded applications, you can name your thread. Simply
select File, New, and pick Thread Object from the Dialog. This creates a compilation
unit whose class is based on TThread. The dialog shown in Figure 2.17 enables you to
specify a name for the thread. Why does this matter? Well, the debug window for

CHAPTER 2 C++Builder Projects and More on the IDE58

04 0672324806 CH02 12/12/02 2:42 PM Page 58

threads will use that name and make it much easier for you to see what’s happening
in your multithreaded application.

Using the C++Builder Interactive Debugger 59

FIGURE 2.16 An example debugging window layout.

FIGURE 2.17 Task Object dialog.

After you have created your thread object and set up your program to run it, you can
open the thread debugging window (which is done by picking View|Debug
Windows|Thread). Figure 2.18 shows this dialog:

FIGURE 2.18 The Thread debug window shows the name of the named thread.

04 0672324806 CH02 12/12/02 2:42 PM Page 59

Advanced Breakpoints
Apart from the standard source breakpoints that simply halt execution when the
selected source or assembly line is reached, there are more advanced breakpoints that
can be used in particular debugging cases.

Module load breakpoints are particularly useful when debugging DLLs and packages.
You can pause execution when a specified module is loaded, providing a perfect
entry point into the DLL or package for debugging. To set a module load breakpoint,
you have two options.

The first option applies when the application is already running within the IDE.
First, display the Modules window by selecting View, Debug Windows, Modules.
Next, in the modules list in the upper-left pane of the Modules window, locate the
module for which you want to set the module load breakpoint. If the module is not
in the modules list, it has not yet been loaded by the application. In that case, you
will need to add the module to the modules list by selecting Add Module from the
context menu, then name or browse to the module, and select OK. Finally, select the
module in the modules list, and then select Break On Load from the context menu.
This is shown in Figure 2.19. If the module has already been loaded by the applica-
tion, the breakpoint will work only when the module is loaded again, either after
being dynamically unloaded or when the system is restarted.

CHAPTER 2 C++Builder Projects and More on the IDE60

FIGURE 2.19 Setting a module load breakpoint from the Modules view.

The second option applies when the application is not yet running within the IDE.
Select Run, Add Breakpoint, Module Load Breakpoint, then enter the module name
or browse to it and select OK. Finally, run the application.

Address breakpoints and Data breakpoints provide a way to pause the application
when a particular code address is reached or data at a particular address is modified.
They can only be added when the application is running or paused.

04 0672324806 CH02 12/12/02 2:42 PM Page 60

Address breakpoints work in the same manner as source breakpoints, but instead of
adding the breakpoint to a particular line of source code, you add the breakpoint to
the memory address for a particular machine code instruction. When the machine
code is executed, the breakpoint action is taken. If you set an address breakpoint for
a machine code instruction that is related to a line of source code, the breakpoint is
set as a normal source breakpoint on that line of source code. Address breakpoints
are typically used when debugging external modules on a low level using the CPU
view. The CPU view is explained in the section “The CPU View,” later in this chapter.

You can also set an address breakpoint. In the Breakpoints folder on the CD-ROM
that accompanies this book, you will find the BreakpointProj.bpr project file. Load it
with C++Builder, and then compile and run the application by selecting Run, Run.
When the form is displayed, pause the application by selecting Run, Program Pause
from the C++Builder main menu. The CPU view, which we will use in a moment,
will be displayed.

Next, select View, Units, then select BreakpointForm from the units list and select OK.
The unit will be displayed in the Code Editor. Scroll down to the AddressBreakpoint
ButtonClick() function. Right-click the Label2->Caption = “New Caption” statement in
the function and select Debug, View CPU from the context menu. The CPU view is
again displayed, this time at the memory address where the machine code for the
C++ statement is located.

In the upper-left pane in the CPU view, note the hexadecimal number on the far left
of the line containing the machine code statement lea eax,[ebp-0x04]. On my
system at present, this number is 004016ED, but it is likely to be different on yours.
This is the address at which we will set the address breakpoint.

To add an address breakpoint for this address, select Run, Add Breakpoint, Address
Breakpoint. Then, in the Address field, enter the address that you previously noted.
Hexadecimal numbers, such as the address displayed in the CPU view that you
noted, must be entered with a leading 0x; in my case I would specify the address as
0x004016ED.

To test the address breakpoint, continue the program by selecting Run, Run. Select
the application from the Windows taskbar and click the Address Breakpoint button.
The address breakpoint that was previously set will cause the application to pause.
The CPU view will be displayed with the current execution point, marked by a green
arrow, set on the address breakpoint line of machine code. You can continue the
application by selecting Run, Run.

If, in the CPU view, you display the line of machine code at the address you want
to place an address breakpoint, you can set an address breakpoint simply by clicking
in the gutter of the machine code line, as you would in source code for a source
breakpoint.

Using the C++Builder Interactive Debugger 61

04 0672324806 CH02 12/12/02 2:42 PM Page 61

Data breakpoints can be invaluable in helping to track bugs, by locating where in the
code a particular variable or memory location is being set. As an example, load the
BreakpointProj.bpr project file from the previous demonstration. Run and then pause
the application. Select Run, Add Breakpoint, Data Breakpoint. In the Address field,
enter Form1->FClickCount and click OK. This private data member of the form counts
the number of times that the form’s DataBreakpointButton button is clicked. Setting
this data breakpoint will cause the application to break whenever the count is modi-
fied.

As you can see, any valid data address expression can be entered, not just a memory
address. Alternatively, to obtain the address, we can select Run, Inspect, enter
Form1->FClickCount in the expression, and obtain the address from the top of the
Debug Inspector window. This hexadecimal address could then be entered (with a
leading 0x) in the data breakpoint Address field.

To test the data breakpoint, continue the program by selecting Run, Run. Select the
application from the Windows taskbar and click the Data Breakpoint button. The
previously set data breakpoint will cause the application to pause at the location
where the data was modified. If this is on a source line, the Code Editor will be
displayed; otherwise the CPU view will be displayed. You can continue the applica-
tion by selecting Run, Run.

TIP

Adding a data breakpoint is much trickier for a property such as the Caption of a label or the
Text of an edit box. These properties are not direct memory locations that are written to
when the property is modified. Instead, the properties use Set functions to change their
values. To break when the property is changed, it is easiest to add an address breakpoint for
the Set function of the property, rather than finding the memory address where the data is
actually stored and adding a data breakpoint. I’ll explain this method using the Caption prop-
erty of ClickCountLabel on the form of the previous demonstration project.

With the application paused, select Run, Inspect. In the Expression field enter Form1->Click
CountLabel. Select the Properties tab in the Debug Inspector window and scroll down to the
Caption property. The write method for this property is specified as SetText. Click the
Methods tab and scroll down to the SetText method. The address of this method will be
displayed on the right. Select Run, Add Breakpoint, Address Breakpoint and enter the address
of the SetText method, prefixing it with 0x and leaving out the colon; then click OK.
Continue the application by selecting Run, Run. Now, whenever the label caption is modified,
the breakpoint will pause the application.

For a standard AnsiString variable without a Set method to control its modification, such as
the FSomeString private data member of the form in the demonstration project, you can
set a data breakpoint on the .Data variable of the AnsiString class that contains the
underlying string data. For the demonstration project, the data breakpoint would be set
on Form1->FSomeString.Data.

CHAPTER 2 C++Builder Projects and More on the IDE62

04 0672324806 CH02 12/12/02 2:42 PM Page 62

When adding a data breakpoint, the Length field in the Add Data Breakpoint
window should be specified for nonsingular data types such as structures or arrays.
The breakpoint will pause the application when any memory location within this
length from the data address is modified. Data breakpoints can also be added by
selecting Break when Changed from the context menu in the View, Debug Windows,
Watches view.

NOTE

Address and data breakpoints are valid only for the current application being run. You must
set them for each new run because the machine code instruction and data addresses can
change each time.

Advanced Breakpoint Features
Breakpoints can be organized into groups and have actions. With breakpoint actions,
you can enable and disable groups of actions, enable and disable exception handling,
log a message to the event log, and log the evaluation of an expression to the
event log.

Using these features, you can set up complex breakpoint interaction to break only in
specific program circumstances. For example, you can cause a set of breakpoints to
be enabled only when a specific section of code is executed.

By disabling and enabling exceptions, you can control error handling in known
problem areas of code. Message logging helps automate variable inspection and
execution tracing.

Breakpoint action and group information are available in the breakpoint ToolTip in
the Code Editor and in the Breakpoint List Window.

C++Builder Debugging Views
The debugger can be used to display many types of information that are helpful with
debugging an application, such as local variables, a list of all breakpoints, the call
stack, a list of the loaded modules, thread status, machine code, data and register
status, an application event log, and more.

The Floating-Point Unit (FPU) view shows the current state of the floating point and
MMX registers. All debugging views are accessible from the View, Debug Windows
menu option, or by pressing the appropriate shortcut key. In the following sections
we’ll look at some of the advanced views, and how you can use them in debugging
your application.

Using the C++Builder Interactive Debugger 63

04 0672324806 CH02 12/12/02 2:42 PM Page 63

The CPU View
The CPU View displays your application at the machine code level. The machine
code and disassembled assembly code that make up your application are displayed
along with the CPU registers and flags, the machine stack, and a memory dump. The
CPU view has five panes, as depicted in Figure 2.20.

CHAPTER 2 C++Builder Projects and More on the IDE64

FIGURE 2.20 The CPU view in action.

The large pane on the left is the disassembly pane. It displays the disassembled
machine code instructions, also known as assembly code, that make up your applica-
tion. The instruction address is in the left column, followed by the machine code
data and the equivalent assembly code. Displayed above the disassembly pane are
the effective address of the expression in the currently selected line of machine code,
the value stored at that address, and the thread ID.

If you enabled the Debug Information option on the Compiler tab of the project
options before compiling your application, the disassembly pane shows your C++
source code lines above the corresponding assembly code instructions. Some C++
source code lines can be seen in Figure 2.20.

In the disassembly pane, you can step through the machine code one instruction at
a time, much like you step through one source code line at a time in the source code
editor. The green arrow shows the current instruction that is about to be executed.
You can set breakpoints and use other features similar to debugging in the source
code editor. Several options, such as changing threads, searching through memory
for data, and changing the current execution point are available in the context
menu.

The CPU registers pane is to the right of the disassembly pane. It shows the current
value of each of the CPU registers. When a register changes, it is shown in red. You
can modify the value of the registers via the context menu.

04 0672324806 CH02 12/12/02 2:42 PM Page 64

On the far right is the CPU flags pane. This is an expanded view of the EFL (32-bit
flags) register in the CPU register pane. You can toggle the value of a flag through
the context menu. Consult the online help for a description of each of the flags.

Below the disassembly pane is the memory dump pane. It can be used to display the
content of any memory location in your application’s address space. On the left is
the memory address, followed by a hexadecimal dump of the memory at that
address and an ASCII view of the memory. You can change how this data is
displayed from the context menu, and also go to a specified address or search for
particular data.

The final pane is the machine stack pane, located at the bottom right of the CPU
window. It displays the content of the application’s current stack, pointed to by the
ESP (stack pointer) CPU register. It is similar to the memory dump pane and offers
similar context menu options.

The CPU view is a good tool for getting to know how your application works at a
very low level. If you come to understand your application at this level, you will
have a better understanding of pointers and arrays; you’ll know more about execu-
tion speed (helpful when optimizing your application); and you’ll find it easier to
debug your application because you will know what’s going on in the background.

The best reference for the x86 machine code instruction set and detailed information
on the Pentium processor range is the Intel Architecture Software Developer’s
Manual. This three-volume set tells you just about everything you want to know
about the Pentium processors. It is available for download on Intel’s Web site
(http://developer.intel.com/design/processor) from the appropriate processor’s
Manuals section.

Assembly language programming is a black art these days. It is extremely complex
and is usually reserved only for writing small sections of very efficient, speed-critical
code.

The Call Stack View
A call stack is the path of functions that lead directly to the current point of execu-
tion. Only functions that have been previously called and have not yet returned are
in the call stack.

The Call Stack view displays the call stack with the most recently entered function at
the top of the list. Used in conjunction with conditional breakpoints, the Call Stack
view provides useful information as to how the function containing the breakpoint
was reached. This is particularly useful if the function is called from many places
throughout the application.

You can double-click a function listed in the Call Stack view to display it in the Code
Editor. If there is no source code for the function—for example, if the function is

Using the C++Builder Interactive Debugger 65

04 0672324806 CH02 12/12/02 2:42 PM Page 65

located in an external module—the disassembled machine code of the function is
displayed in the CPU view. In either case, the next statement or instruction to be
executed at that level in the call stack is selected.

You can display the Local Variables view for a particular function on the call stack by
selecting View Locals from the context menu.

The Threads View
Debugging multiprocess and multithreaded applications can be very difficult.
Threads, in particular, usually execute asynchronously. Often the threads in the
application communicate with each other using the Win32 API PostThreadMessage()
function or use a mutex object to gain access to a shared resource.

When debugging a multithreaded application, you can pause an individual thread.
One thread might hit a breakpoint and another might not. The problems occur
when another thread is still running and is relying on interthread communication,
or the stopped thread has an open mutex for which another thread is waiting.

Even the fact that the application runs more slowly under the debugger can cause
timing problems if the application is multithreaded. In general, it is bad program-
ming practice not to allow for reasonable timing fluctuations because you cannot
control the environment in which the application is run.

The Threads view helps to alleviate some of these difficulties by giving you a snap-
shot of the current status of all processes and threads in the application. Each
process has a main thread, and might have additional threads. The Threads view
displays the threads in a hierarchical way, such that all threads of a process are
grouped together. The first process and the main thread are listed first. The process
name and process ID are shown for each process, and the thread ID, state, status,
and location are shown for each thread. Figure 2.18 shows an example of the
Threads view.

For secondary processes the process state is Spawned, Attached, or Cross-Process
Attach. The process state is Runnable, Stopped, Blocked, or None. The thread loca-
tion is the current source position for the thread. If the source is not available, the
current execution address is shown.

When debugging multiprocess or multithreaded applications, there is always a
single-current thread. The process that the thread belongs to is the current process.
The current process and current thread are denoted in the Threads view by a green
arrow, which can be seen in Figure 2.18. Most debugger views and actions relate to
the current thread. The current process and current thread can be changed by select-
ing a process or thread in the Threads view and selecting Make Current from the
context menu, from which you can also terminate a process. For information on
additional settings and commands in the Threads view, see “Thread status box” in
the Index of the C++Builder online help.

CHAPTER 2 C++Builder Projects and More on the IDE66

04 0672324806 CH02 12/12/02 2:42 PM Page 66

The Modules View
The Modules view lists all DLLs and packages that have been loaded with the
currently running application or modules that have a module load breakpoint set
when the application is not running. It is very useful when debugging DLLs and
packages, as discussed in the “Advanced Breakpoints” section earlier in this chapter.
Figure 2.19 shows a typical Modules view.

The Modules view has three panes. The upper-left pane contains the list of modules,
their base addresses, and the full paths to their locations. Note that the base address
is the address at which the module was actually loaded, not necessarily the base
address specified on the Linker tab of the project options when developing the
module. By selecting a module, you can set a module load breakpoint from the
context menu.

The lower-left pane contains a tree view of the source files that were used to build
the module. You can select a source file and view it in the Code Editor by selecting
View Source from the context menu.

The right pane lists the entry points for the module and the addresses of the entry
points. From the context menu, you can go to the entry point. If there is source
available for the entry point, it will be displayed in the Code Editor. If there is no
source, the entry point will be displayed in the CPU view.

The FPU View
The Floating-Point Unit (FPU) view enables you to view the state of the floating-
point unit or MMX information when debugging your application.

The FPU view has three panes. The left pane displays the floating-point register stack
(ST0 to ST7 registers), the control word, status word, and tag words of the FPU. For
the floating-point register stack, the register status and value are shown. The status is
either Empty, Zero, Valid, or Spec (special), depending on the register stack’s
contents.

When a stack register’s status is not Empty, its value is also displayed. You can toggle
the formatting of the value from long double to words by selecting the appropriate
option under Display As in the context menu. You can also zero, empty, or set a
value for a particular stack register, and zero or set a value for the control word,
status word, and tag word from the context menu.

The middle pane contains the FPU single and multibit control flags, which change as
floating-point instructions are executed. Their values can be toggled or cycled via the
context menu.

The right pane contains the FPU status flags. It is an expanded view of the status
word in the FPU registers pane, listing each status flag individually. Their values can
be toggled or cycled via the context menu.

Using the C++Builder Interactive Debugger 67

04 0672324806 CH02 12/12/02 2:42 PM Page 67

When a value changes, it is displayed in red in all panes. You can see this effect best
by performing single steps through floating-point instructions in the CPU view.

Watches, Evaluating, and Modifying
A watch is simply a means of viewing the contents of an expression throughout the
debugging process. An expression can be a simple variable name or a complex
expression involving pointers, arrays, functions, values, and variables. The Watches
view displays the expressions and their results in the watch list. You can display the
Watches view by selecting View, Debug Windows, Watches. The Watches view is
automatically displayed when a new watch expression is added.

You can add expressions to the watch list using one of three methods. The first
method is from the Add Watch item of the context menu in the Watches view. The
second method is by selecting Run, Add Watch. The third method is by right-click-
ing the appropriate expression in the Code Editor and selecting Debug, Add Watch at
Cursor from the context menu. This last method automatically enters the expression
for you.

Watches can be edited, disabled, or enabled via the context menu. Watches can be
deleted by selecting the appropriate expression and pressing the Delete key or by
selecting Delete Watch from the context menu. If the expression cannot be evaluated
because one or more of the parts of the expression is not in scope, an undefined
symbol message appears instead of the evaluated result.

On the other hand, evaluating and modifying expressions enables you to more
readily change the expression, view the subsequent result, and modify variables at
runtime. With Evaluate/Modify, you can perform detailed live testing that is difficult
to perform by other means.

To use Evaluate/Modify, your application must be paused. There are two ways to use
it. One is to simply select Run, Evaluate/Modify, and enter the expression to evalu-
ate. Perhaps the easiest method is to invoke Evaluate/Modify from the Code Editor.

When the application is paused in the debugger, you can evaluate expressions in the
source code simply by placing the mouse pointer over them. Evaluate/Modify
enables you to change the expression at will. You can invoke it by right-clicking the
expression and selecting Debug, Evaluate/Modify. In the Evaluate/Modify window,
you will see the expression and its result. The Modify field enables you to change the
expression value if it is a simple data type. If you need to modify a structure or an
array, you will have to modify each field or item individually.

Function calls can be included in the expression. Be aware, though, that evaluating
an expression produces the same result as if your application executed that expres-
sion. If the expression contains side effects, they will be reflected in the running
state of your application when you continue to step through or run.

CHAPTER 2 C++Builder Projects and More on the IDE68

04 0672324806 CH02 12/12/02 2:42 PM Page 68

Unlike the Watches view, the Evaluate/Modify dialog box doesn’t update the result
of the expression automatically when you step through your code. You must click
the Evaluate button to see the current result. The expression result can also be
formatted using a format modifier at the end of the expression. See the online help
for more information.

Typical uses for Evaluate/Modify include testing error conditions and tracking down
bugs. To test an error condition, simply set a breakpoint at or just before the error
check or step through the code to reach it, and then force an error by setting the
appropriate error value using Modify. Use Single Step or Run to verify that the error
is handled correctly.

If you suspect that a certain section of code contains a bug and sets incorrect data,
set a breakpoint just after the suspected code, fix the data manually, and then
continue execution to verify that the bad data is producing the bug’s symptoms.
Trace backward through code until you locate the bug, or use a data breakpoint to
find out when the data is modified.

The Debug Inspector
The Debug Inspector is like a runtime object inspector. It can be used to display the
data, methods, and properties of classes, structures, arrays, functions, and simple
data types at runtime, thus providing a convenient all-in-one watch/modifier.

With the application paused in the debugger, you can start the Debug Inspector by
selecting Run, Inspect, and entering the element to inspect as an expression, or by
right-clicking an element expression in the Code Editor and selecting Debug, Inspect
from the context menu. The element expression in the second method is automati-
cally entered into the inspector.

The title of the Debug Inspector window contains the thread ID. In the top of the
window are the name, type, and memory address of the element. There are up to
three tabs, depending on the element type, that display the name and contents or
address of each data member, method, or property. The Property tab is shown only
for classes derived from the VCL. At the bottom of the window, the type of the
currently selected item is shown.

The values of simple types can be modified. If the item can be modified, an ellipsis
will be shown in the value cell. Click the ellipsis and enter the new value.

The Debug Inspector can be used to walk down and back up the class and data hier-
archy. To inspect one of the data members, methods, or properties in the current
inspector window simply select it, and then choose Inspect from the context menu.
You can also hide or show inherited items.

There are four Debug Inspector options that can be set from Tools, Debugger
Options: Inspectors Stay On Top, Show Inherited, Sort By Name, and Show Fully

Using the C++Builder Interactive Debugger 69

04 0672324806 CH02 12/12/02 2:42 PM Page 69

Qualified Names. Show Inherited switches the view in the Data, Methods, and
Properties tabs between two modes, one that shows all intrinsic and inherited data
members or properties of a class and one that shows only those declared in the class.
Sort By Name switches between sorting the items listed by name or by declaration
order. Show Fully Qualified Names shows inherited members using their fully quali-
fied names and is displayed only if Show Inherited is also enabled. All three new
options can be set via the context menu in the Debug Inspector.

The Debug Inspector is a commonly used tool during a debugging session because it
displays so many items at once. It also enables you to walk up and down the class
and data hierarchy.

Advanced Debugging
As mentioned previously, debugging is an advanced topic in itself. However, there
are several specific issues and cases that are beyond the basic debugging techniques
presented in the first section of this chapter.

For any serious application development and debugging, I thoroughly recommend
that you use the Windows NT (WinNT), Windows 2000 (Win2K, which is based on
Windows NT), or Windows XP Professional operating systems, and not the Windows
95 or Windows 98 (Win9x) operating systems. The newer versions provide a much
more stable environment, particularly with buggy applications.

WinNT-based operating systems handle application stopping and crashes much
better than Win9x. On a Win9x system, it is much easier to crash C++Builder or
even the whole system when debugging or stopping an application midstream. Use
Run, Program Reset sparingly, and stop the application through normal user means
if possible.

Note that on any system it might be possible for database applications to hang the
BDE as a result of a Program Reset.

When your application performs an illegal operation or access violation while
running within the C++Builder IDE, an error occurs, and you are presented with an
error dialog box. On a Win9x system you should reset your application using Run,
Program Reset before closing the dialog box. This usually recovers more reliably than
when closing the dialog box first.

For really serious debugging, particularly of Windows system applications, you can
obtain a debug version of the Windows operating system, called a debug binary for
Win9x and checked/debug build for WinNT/2K/XP. The checked build provides error
checking, argument verification, and system debugging code for the Windows oper-
ating system code and Win32 API functions, mostly in the form of assertions that
are not present in the retail version. This checking imposes a performance penalty.

CHAPTER 2 C++Builder Projects and More on the IDE70

04 0672324806 CH02 12/12/02 2:42 PM Page 70

These special builds of Windows operating systems are provided with some Microsoft
Developer Network (MSDN) subscriptions (see http://msdn.microsoft.com for more
information).

Sometimes it is useful to know if your application is running in the context of the
debugger. The Win32 API function IsDebuggerPresent() returns true if it is. You can
use this fact to alter the behavior of the application at runtime; for example,
outputting additional debug information to make the application easier to debug.

Now let’s look at several more advanced debugging tasks.

Locating the Source of Access Violations
Earlier in this chapter we examined some basic techniques for locating bugs. Access
violations (AVs) are sometimes more difficult to locate than general program bugs.
Other application errors are similar to AVs, and the techniques described here apply
to those also.

Access violations can be caused by access to memory that is not within the applica-
tion’s memory space. If at all possible, you should use CodeGuard to check your
application at runtime. CodeGuard can detect many errors that would normally
result in an AV and pinpoint the exact line of source code that produced the error. If
you can’t use CodeGuard for your application, or CodeGuard does not detect the
error that caused the AV, there are other things you can do to track down the error.

When an AV occurs, a dialog box is presented with the message Access violation at
address YYYYYYYY. Read of address ZZZZZZZZ. Application errors can present a differ-
ent message, such as The instruction at 0xYYYYYYYY referenced memory at 0xZZZZZZZZ.
In these cases, the YYYYYYYY address is the machine code that caused the error, and
address ZZZZZZZZ is the invalid memory address that it attempted to access.

It is possible to locate where some access violations occurred by implementing a
global exception handler. Alternatively, you can run your application within
C++Builder and wait for the AV to occur.

If you can’t reproduce the AV when running within C++Builder, simply pause your
application using Run, Pause or by setting and hitting a breakpoint, open the CPU
view and select Goto Address from the context menu. This is not foolproof, but it
often works. Enter the code address given in the AV dialog box in hexadecimal as
0xYYYYYYYY. The code around this address might give you some clue as to where in
your source code the AV occurred, particularly if the application was compiled with
debug information.

When the memory address ZZZZZZZZ is close to zero, for instance 00000089, the cause
is often an uninitialized pointer that has been accessed. The following code would
produce an AV with this memory address because the MyButton object was never
created with new.

Advanced Debugging 71

04 0672324806 CH02 12/12/02 2:42 PM Page 71

TButton *MyButton;

MyButton->Height = 10;

What is actually happening is that when MyButton is declared it is initialized with a
value of zero. The address 00000089 is actually the address of the Height property
within the TButton object if it were located at address zero.

As a general rule, you should explicitly initialize pointers to some recognizable value
before the memory or object is allocated, and back to that value once it has been
freed. If you get an AV that lists this value, you know an uninitialized pointer
caused it.

Sometimes an AV can occur in a multithreaded application in which concurrent
access to objects and data is not controlled. These can be very difficult to find. Use
data breakpoints and the outputting debug information techniques described earlier
in this chapter if you suspect concurrency problems.

Attaching to a Running Process
When a process is running outside the C++Builder IDE, you can still debug it using
the integrated debugger by attaching to it while it is running. This feature can be
handy during testing. When you detect the occurrence of a bug in the application,
you can attach to the application process and track down the bug. The only draw-
back is that Windows does not provide a method for detaching from the process
without terminating it.

To attach to a running process, select Run, Attach to Process. The Attach To Process
window is displayed with a list of running processes on the local machine. Select the
appropriate process from the list and click the Attach button. The C++Builder debug-
ger will then attach to the process. The process will be paused, and the CPU view
will be displayed at the current execution point. You can step through the code, set
breakpoints, load the source code, if available, using View Source from the context
menu, inspect values, and so on.

Attach To Process is even more useful for remote debugging. In the Attach To Process
window, you can view and attach to processes on another machine that is running
the remote debug server. This is covered in the “Using Remote Debugging” section,
later in this chapter.

In the window you can also view system processes by checking Show System
Processes.

You should be very careful about attaching to any old process; you can cause
Windows to crash or hang by attaching to system processes. Stick to attaching to
your own processes.

CHAPTER 2 C++Builder Projects and More on the IDE72

04 0672324806 CH02 12/12/02 2:42 PM Page 72

Using Just-In-Time Debugging
Just-in-time (JIT) debugging is a feature of the Windows NT and higher operating
systems that enables you to debug a process at the time that it fails; for instance,
when an access violation is caused. JIT debugging might not be available on
Windows 9x machines.

If you’ve used Windows NT or Windows 2000 before, you’ve no doubt heard of Dr.
Watson. This is a JIT debugging tool provided with Windows to help identify the
cause of a program failure. The selected JIT debugging tool can be changed. The
current JIT debugging tool is usually set via a Registry entry; however, the Borland
debugger launcher, BORDBG*.EXE (the * refers to the current version number), can be
called instead of Dr. Watson. Then, with each JIT debugging instance, you can select
which debugger to use from the debugger launcher, such as the C++Builder debugger,
Delphi debugger, Dr. Watson, or even the Borland Turbo Debugger.

Prior to C++Builder 5, the call to Dr. Watson could be replaced with a call directly to
the C++Builder debugger; no debugger selection was available. If only one debugger
is configured in the list, it is automatically launched. See “Just in time debuggers,” in
the C++Builder online help for instructions on how to configure the JIT debuggers to
list in the debugger launcher.

After configured, JIT debugging is easy to use. When the application crashes,
Windows will run the debugger launcher. Select the appropriate debugger from the
list, BCB (C++Builder) in this case, and click OK. At this point, C++Builder will start
if it is not already running, and the application will be paused as if it were attached
while running. You can then use any of the techniques described earlier in this
chapter to locate the source of the bug.

Remote Debugging
Remote debugging is the capability to debug an application running on another
machine using the C++Builder interactive debugger running on your local machine.
It is beneficial for applications running on remote machines that would be inconve-
nient to access physically, and it does not require C++Builder to be installed on the
remote machine.

Remote debugging is very useful for debugging distributed applications, such as
those that use DCOM or CORBA. Debugging should be performed locally whenever
possible because of the reduced performance when debugging across a network.

Remote debugging is supported for executables, DLLs, and packages. The application
must have been compiled with debugging information, and the debugging symbol’s
.tds file must be available with the application on the remote machine. The easiest
way to achieve this is to load the application’s project into C++Builder on the local
machine. Then, specify the Final output path in the Directories/Conditionals tab

Advanced Debugging 73

04 0672324806 CH02 12/12/02 2:42 PM Page 73

of the project options to be the shared network folder on the remote machine
where the application will run. And, finally, compile the application with debug
information.

Remotely debugging an application is virtually seamless. After the remote
debug session is connected, you work just as you would when debugging a local
application.

Configuring Remote Debugging
Remote debugging works by running the Borland debug server on the remote
machine. You might notice that the Borland debug server is the same program as the
Borland debug launcher, described previously in the “Using Remote Debugging”
section. It can perform either of these functions depending on the command-line
options used to start it. The debug server requires additional DLLs to be installed.
The local C++Builder debugger communicates with the debug server.

On remote Windows NT and higher machines, the debug server is usually installed
as a service. It will show as Borland Remote Debugging Service in the Services applet
of the Control Panel. The debug server service can be started or stopped from the
applet and can be set to start automatically when the system boots. Use the -install
and -remove command-line options to install and remove the service.

On remote Windows 9x machines, the debug server is a standalone process. This is
also an option for WinNT and up machines. In any case, the remote debug server
must be running before remote debugging can commence.

You can install the debug server with associated DLLs required from the C++Builder
installation CD using the standard install dialog or by running SETUP.EXE in the
RDEBUG folder of the CD. Remote debugging uses TCP/IP for communication between
the local C++Builder IDE and the remote debug server. You must have TCP/IP
networking configured correctly on both machines.

To start the debug server manually, run BORDBG*.EXE -listen. You will need adminis-
tration or debugging rights to run the debug server.

Using Remote Debugging
When the debug server has been installed on the remote machine and it is already
running, you can start debugging remotely. From the local C++Builder IDE, open the
project for the remote application that you will be debugging. Select Run,
Parameters, click the Remote tab, and set Remote Path to the remote application’s
full path and application filename as you would use locally on that machine, such as
C:\Temp\MyProj.exe. If you are debugging a DLL on the remote machine, enter the
path and name of the remote application that will host the DLL. Enter any
command-line parameters for the application in the Parameters field. Set Remote
Host to the hostname or IP address of the remote machine.

CHAPTER 2 C++Builder Projects and More on the IDE74

04 0672324806 CH02 12/12/02 2:42 PM Page 74

To start debugging immediately, or when you don’t have the application project
loaded in C++Builder, just click the Load button. If you have the application project
loaded, you can check Debug Project On Remote Machine and click OK. When you
perform any debug command on the application within C++Builder, the debugging
connection to the remote application will be established. You can then debug the
application just as if it were running on the local machine.

If you get the error Unable to connect to remote host, check that the debug server
service or process is running, Remote Host is set correctly, and that you have connec-
tivity to the remote host using ping.exe or another network tool. If you get the error
Could not find program ‘program’, check that Remote Path is correct and that the
application is actually located there.

Another feature of remote debugging is an extension of Attach To Running Process.
Select Run, Attach To Process, enter the name of the remote machine in the Remote
Machine field, and press Enter. The processes on the remote machine are listed;
select one and click Attach to debug it. To use remote process attachment, the
remote machine must be running the debug server. Remember that when attaching
to a running process, there is no way to detach without terminating it.

Debugging DLLs
Debugging a DLL is very similar to debugging any normal executable application
except that a host application is required to load it. You can create the host applica-
tion that uses the DLL, but in most cases you will be using an existing host, such as
an application written in another language that uses the DLL that you have devel-
oped.

Load the DLL project into C++Builder and set any breakpoints in the DLL source
code as necessary. Specify the host application that will load the DLL by entering the
full path and name of the host application in the Host Application field on the Local
tab from the Run, Parameters dialog. Enter any command-line parameters for the
application in the Parameters field if necessary.

When the host application is specified, either select Load to run the host application
and begin debugging, or simply press OK and run the host application at a later time
with Run, Run. You might do this after setting additional breakpoints or setting up
watches, for example.

That’s all there is to it. When the breakpoint in the DLL code is hit, you can step
through the source code and use the Debug Inspector, watches, or any other tech-
nique during the debug process. You can use this technique for debugging COM
objects and ActiveX components, but for separate processes you can do this only on
Windows NT and Windows 2000 systems that allow cross-process debugging.

Advanced Debugging 75

04 0672324806 CH02 12/12/02 2:42 PM Page 75

Speeding Up Compile Times
The C++Builder compiler is fast! It compiles C++ code almost twice as fast as the
GNU C++ compiler and is comparable in speed to the Microsoft Visual C++ compiler.
If you’ve used Delphi before, and you think that the C++Builder compiler takes
much longer to compile a similar size application, you’re right. The relatively slow
compilation speed of C++ when compared to Delphi’s Object Pascal is because of
several reasons:

• C++ allows for header (include) files, whereas Object Pascal does not. Header
files can be nested, and this can set up a lot of complex code to be processed. A
simple 10-line program can be several hundred thousand lines long because of
header file nesting, which takes up most of the compile time.

• C++ has macros, whereas Object Pascal does not. Macros require a preprocessor
to parse and expand them.

• C++ has templates, whereas Object Pascal does not. Templates are very complex
to analyze.

• C++ semantics must conform to the ANSI standard. The “grammar” of C++ is
somewhat more complex than that of Delphi, which is based on Pascal, but
developed to Borland’s standard.

In general, C++ provides more flexibility in program design than Delphi’s Object
Pascal. However, this comes at the expense of compile time and in some cases code
readability. There are several simple methods you can employ to speed up your
C++Builder compile times. The most dramatic improvement can be achieved by
using precompiled headers. This and other methods are described in the following
sections.

Precompiled Headers
Precompiled headers are presented as a set of options on the Compiler tab of the
Project Options dialog. When enabled by checking either Use Precompiled Headers
or Cache Precompiled Headers, the compiler stores a compiled binary image of
header files included in the various units in a disk-based file (vcl50.csm in the
C++Builder lib directory by default). Subsequent use of the same sequence of header
files in another unit dramatically speeds up that unit’s compile time by using the
header files previously compiled. Selecting Cache Pre-Compiled Headers causes the
compiler to load the precompiled headers in memory to further speed up the
compile process.

The #pragma hdrstop directive in a unit causes the compiler to stop generating
precompiled headers at that point. It is important to note that the order of the

CHAPTER 2 C++Builder Projects and More on the IDE76

04 0672324806 CH02 12/12/02 2:42 PM Page 76

header files before the #pragma hdrstop directive in each unit is significant. Changing
the order of the header files in two separate units can change the code resulting from
those header files in each unit. Therefore, this requires both lists of header files to be
compiled and stored separately as precompiled header groups.

Header files after the #pragma hdrstop directive are processed each time the unit is
compiled. Typically, you should include header files common to two or more units
before this directive so that they are compiled once only. Include all header files
specific to each unit after the directive. By doing this, we are trying to get the most
common match between header file lists in each unit to obtain the maximum
benefit from this option.

The IDE automatically inserts the #pragma hdrstop directive in new units and places
VCL header files included before the directive and unit-specific header files after the
directive. A good example of header file grouping and order is shown in the top
section of the fictional units LoadPage.cpp and ViewOptions.cpp in Listings 2.3 and 2.4.

LISTING 2.3 Precompiled Header File
Group in LoadPage.cpp

//———————————————————

// LoadPage.cpp

#include <vcl.h>

#include <System.hpp>

#include <Windows.hpp>

#include “SearchMain.h”

#pragma hdrstop

#include “LoadPage.h”

#include “CacheClass.h”

//———————————————————

// Code here...

Speeding Up Compile Times 77

LISTING 2.4 Precompiled Header File
Group in ViewOptions.cpplisting

//———————————————————

// ViewOptions.cpp

#include <vcl.h>

#include <System.hpp>

#include <Windows.hpp>

#include “SearchMain.h”

#pragma hdrstop

#include <Graphics.hpp>

#include “ViewOptions.h”

//———————————————————

// Code here...

By effectively grouping header files included in each unit and using precompiled
headers, you can often see compile speeds increase up to 10 times!

NOTE

For information on speeding up compile times even further using precompiled headers, there
is an excellent article on the BCBDEV Web site at http://www.bcbdev.com/ under the Articles
link.

04 0672324806 CH02 12/12/02 2:42 PM Page 77

Other Techniques for Speeding Up Compile Times
Other techniques can be used to speed up compile times. They aren’t as effective as
using correctly grouped precompiled headers, but they are worth considering if
compile speed is very important, particularly on large projects.

You should be careful about which header files are included in your units. Compiling
unnecessary code is a waste of precious compile time, so in general you should not
include unused header files. However, if you have included an unused header file in
a unit to preserve header grouping when using precompiled headers, leave it in.
Also, avoid changing header files too often. Each time you change a header file, the
precompiled header groups that use this header file must be regenerated.

Use Make instead of Build. When Make is selected, the compiler attempts to detect and
compile only the source files that have been modified since they were last compiled.
Build, on the other hand, will recompile every source file in the project. Obviously,
Build will take more time than Make, but there are times where Build is required.

Build is recommended after changing project options and when files are checked out
or updated from a version control system. You should also use Build when compiling
a release version of your application. This could be a debug or beta build going to
testers or the final version to ship.

You should uncheck the Don’t Generate State Files option on the Linker tab of
Project Options. This will speed up subsequent compiles (particularly the first
compile when reopening the project and when working with multiple projects in the
IDE) as the linker saves state information in a file.

If you are not in a debugging phase for the project, disable all debugging options by
selecting the Release button on the Compiler tab of Project Options and uncheck
Use Debug Libraries on the Linker tab. If you do not yet need to compile a release
version of the application, set Code Optimization on the Compiler tab of Project
Options to None and uncheck Optimization in the Code Generation section on the
Pascal tab.

It is important to look at the application structure and consider using packages or
DLLs for modular parts, particularly in large projects. Both Make and Build will be
considerably faster.

If you are not using floating-point math in your applications, checking None in the
Floating Point group of the Advanced Compiler tab will speed up the link time
slightly because the floating-point libraries will not be linked with your application.

These are things you can do within C++Builder and your code to minimize compile
times. However, an important consideration is the computer hardware you are using.
A software development system such as C++Builder requires higher-than-average
system specs for CPU speed, RAM, and disk speed. Increasing these will yield a faster

CHAPTER 2 C++Builder Projects and More on the IDE78

04 0672324806 CH02 12/12/02 2:42 PM Page 78

compile. In general, you should place slower IDE peripherals (such as an older CD-
ROM drive) on a separate IDE controller from the hard drive. Defragmenting your
hard drive might also slightly improve the compile time.

On multiprocessor (SMP) machines you can take advantage of all processors by
invoking compilation of several modules simultaneously. The Borland MAKE utility
provided does not support this directly, but you can write a script to run individual
MAKEs of separate modules simultaneously. Alternatively, you can use the free GNU
Make with the -j [jobs] command-line switch for parallel execution. You can get
GNU Make for Windows from http://sourceware.cygnus.com/cygwin/.

Download the full Cygwin distribution, or at least the cygwin1.dll and make.exe files.
For documentation, see http://www.gnu.org/software/make. To use GNU Make in
C++Builder 5 and above, you’ll need to export a makefile, either from the Project
menu in the IDE or using the BPR2MAK.EXE command-line utility, because the project
file is now stored in XML format. See BPR2MAK.EXE in the online help index for more
information.

Finally, it probably doesn’t need to be said that you should close other applications
when working with C++Builder, particularly those that are memory or CPU inten-
sive. If you’re getting low on memory, things will certainly slow down considerably.
I’ve also found that development on Windows NT and above is more responsive
than Windows 95/98 (and provides a better debugging environment).

Summary
In this chapter you have looked at C++Builder projects in detail, learned how to
reuse projects and other program elements using the Object Repository, and gained
an understanding of what packages are and how they can be used. You also saw
several of the new IDE features in C++Builder’s current release.

Summary 79

04 0672324806 CH02 12/12/02 2:42 PM Page 79

04 0672324806 CH02 12/12/02 2:42 PM Page 80

IN THIS CHAPTER

• Better Programming Practices
in C++Builder

• VCL Overview

• Review of the Component
Palette

• Creating User Interfaces

• Nonvisual Components and
Programming

• Creating Multithreaded
Applications

3

Programming in
C++Builder

by Mark Cashman

C++Builder influences programming on many levels, and
this chapter helps you to see how. This chapter assumes
your basic understanding of the C++ language and the
C++Builder IDE as described in previous chapters.

This chapter begins with the programming practices that
form the basis of C++ Builder programming. Some of these
differ from those used in pure C++ programming, but they
add to your productivity by leveraging the key advantages
of the C++Builder environment.

This is followed by an overview of the VCL (Visual
Component Library) that provides the rapid application
development capability unique to C++Builder among C++
development environments.

Next comes a quick trip through the most useful compo-
nents on the component palette.

One of the core advantages of C++Builder is the visual
development environment that you can use to build user
interfaces. You will get a trip through all the important
features, including screen layout techniques to create inter-
faces that work well as the user changes the window’s size,
and how to use Actions to simplify user interface imple-
mentation.

Then, a brief discussion of the use of nonvisual compo-
nents in C++Builder leads to an in-depth discussion of
multithreading to wrap up this trip through key
C++Builder programming practices.

05 0672324806 CH03 12/12/02 2:40 PM Page 81

Better Programming Practices in C++Builder
This section looks at some ways to improve how you write C++ code in C++Builder.
Entire books are devoted to better C++ programming, and you are encouraged to
read such texts to deepen your understanding of C++. The topics discussed here are
those that have particular relevance to C++Builder, and those that are often misun-
derstood or misused by those new to C++Builder.

Use a String Class Instead of char*
Say goodbye to char* for string manipulation. Use either the string class provided by
the C++ Standard Library or the VCL’s native string class AnsiString (which has been
conveniently typedefed to String). You can even use both. Access the C++ Standard
Library’s string class by including the statement

#include <string>

at the top of your code. If portability across operating systems is a goal, you cannot
use the VCL, so this is the string class to use. Otherwise, use AnsiString, which has
the advantage that it is the string representation used throughout the VCL and,
thus, allows your code to work seamlessly with the VCL. For circumstances in which
an old-style char* string is required, such as to pass a parameter to a Win32 API call,
both string classes offer the c_str() member function, which returns such a string.
In addition, the AnsiString class also offers the popular old-style sprintf() and
printf() functions (for concatenating strings) as member functions. It offers two
varieties of each: a standard version and a cat_ version. The versions differ in that
the cat_ version adds the concatenated string to the existing AnsiString, and the
standard version replaces any existing contents of the AnsiString. The difference
between the sprintf() and printf() member functions is that sprintf() returns a
reference to the AnsiString, and printf() returns the length of the final formatted
string (or the length of the appended string, in the case of cat_printf). The function
declarations are

int __cdecl printf(const char* format, ...);

int __cdecl cat_printf(const char* format, ...);

AnsiString& __cdecl sprintf(const char* format, ...);

AnsiString& __cdecl cat_sprintf(const char* format, ...);

These member functions ultimately call vprintf() and cat_vprintf() in their imple-
mentation. These member functions take a va_list as their second parameter as
opposed to a variable argument list. This requires the addition of the #include
<stdarg.h> statement in your code. The function declarations are

int __cdecl vprintf(const char* format, va_list paramList);

int __cdecl cat_vprintf(const char* format, va_list paramList);

CHAPTER 3 Programming in C++Builder82

05 0672324806 CH03 12/12/02 2:40 PM Page 82

The respective printf() and sprintf() functions perform the same task, differing only
in their return types. As a result, this is the only criterion that is required when
deciding which of the two to use.

WARNING

Note that the printf() and sprintf() AnsiString member functions in C++Builder version
4 are the same as the cat_printf() and cat_sprintf() functions in version 5, not the
printf() and sprintf() AnsiString member functions. Care should be taken when convert-
ing code between those two versions.

Understand References and Use Them Where Appropriate
References are often misunderstood and, therefore, are not used as often as they
should be. Often, it is possible to replace pointers with references, making the code
more intuitive and easier to maintain. This section looks at some of the features of
references and when they are most appropriately used.

The reason for the abundance of pointer parameters in the VCL in C++Builder is
often a key point of controversy among C++ programmers moving to C++Builder.

A reference always refers to only one object, its referent, and it cannot be rebound to
refer to a different object (object in this context includes all types). A reference must
be initialized on creation; a reference cannot refer to nothing (NULL). Pointers, on the
other hand, can point to nothing (NULL), can be re-bound, and do not require initial-
ization on creation. A reference should be considered an alternative name for an
object, whereas a pointer should be considered an object in itself. Anything that is
done to a reference is also done to its referent and vice versa. This is because a refer-
ence is just an alternative name for the referent; they are the same. You can see,
therefore, that references, unlike pointers, are implicitly dereferenced.

The following code shows how a reference can be declared:

int X = 12; // Declare and initialize int X to 12

int& Y = X; // Declare a reference to an int, i.e. Y, and

// initialize it to refer to X

If you change the value of Y or X, you also change the value of X or Y, respectively,
because X and Y are two names for the same thing. Another example of declaring a
reference to a dynamically allocated variable is

TBook* Book1 = new TBook(); // Declare and create a TBook object

TBook& Book2 = *Book1; // Declare a TBook reference,

Better Programming Practices in C++Builder 83

05 0672324806 CH03 12/12/02 2:40 PM Page 83

// i.e. Book2, and initialize it

// to refer to the object pointed

// by Book1

The object pointed to by Book1 is the referent of the reference Book2.

One of the most important uses for references is the passing of user-defined types as
parameters to functions. A parameter to a function can be passed by reference by
making the parameter a reference and calling the function as if it were passed by
value. For example, the following function is the typical swap function for two ints:

void swap(int& X, int& Y)

{

int temp;

temp = X;

X = Y;

Y = temp;

}

This function would be called as follows:

int Number1 = 12;

int Number2 = 68;

Swap(Number1, Number2);

// Number1 == 68 and Number2 == 12

Number1 and Number2 are passed by reference to swap, and, therefore, X and Y become
alternative names for Number1 and Number2, respectively, within the function. What
happens to X also happens to Number1 and what happens to Y also happens to Number2.
A predefined type such as an int should be passed by reference only when the
purpose is to change its value; otherwise, it is generally more efficient to pass by
value. The same cannot be said for user-defined types (classes, structs, and so on).
Rather than pass such types to functions by value, it is more efficient to pass such
types by const reference or, if the type is to be changed, by non-const reference or
pointer. However,

void DisplayMessage(const AnsiString& message)

{

//Display message.

// message is an alias for the AnsiString argument passed

// to the function. No copy is made and the const qualifier

// states that the function will not (cannot) modify message

}

CHAPTER 3 Programming in C++Builder84

05 0672324806 CH03 12/12/02 2:40 PM Page 84

is not really better than:

void DisplayMessage(AnsiString message)

{

//Display message.

// message is a copy of the AnsiString argument passed

}

This is because AnsiString itself implements a copy-on-write, shared string model,
and thus only a very small object is passed from caller to function.

But for non-VCL classes (because VCL classes other than AnsiString are usually
passed as const pointers) the first format is better for two reasons. First, the parame-
ter is passed by reference. This means that when the function is called, the object
used as the calling argument is used directly, rather than being copied. The copy
constructor of AnsiString does not need to be invoked (as it would be on entering
the second function), and neither does the destructor, as it would be at the end of
the second function when message goes out of scope. Second, the const keyword is
used in the first function to signify that the function will not modify message
through message. Both functions are called in the same way:

AnsiString Message = “Hello!”;

DisplayMessage(Message);

Functions can also return references, which has the side effect of the function
becoming an lvalue (a value that can appear on the left side of an expression) for the
referent. This also enables operators to be written that appear on the left side of an
expression, such as the subscript operator. For example, given the Book class, an
ArrayOfBooks class can be defined as follows:

class Book

{

public:

Book();

int NumberOfPages;

};

class ArrayOfBooks

{

private:

static const unsigned NumberOfBooks = 100;

public:

Book& operator[] (unsigned i);

};

Better Programming Practices in C++Builder 85

05 0672324806 CH03 12/12/02 2:40 PM Page 85

In this case, an instance of ArrayOfBooks can be used just like a normal array.
Elements accessed using the subscript operator can be assigned to and read from,
similar in the following:

ArrayOfBooks ShelfOfBooks;

unsigned PageCount = 0;

ShelfOfBooks[0].NumberOfPages = 45; // A short book!

PageCount += ShelfOfBooks[0].NumberOfPages; //PageCount = 45

This is possible because the value returned by the operator is the actual referent, not
a copy of the referent.

Generally, you can say that references are preferred to pointers because they are safer
(they can’t be re-bound and don’t require testing for NULL because they must refer to
something). Also, they don’t require explicit dereferencing, making code more intu-
itive.

But what about the pointers used in C++Builder’s VCL?

The extensive use of pointers in the VCL is caused by the fact that the VCL is written
in, and must remain compatible with Delphi (Delphi), which uses Delphi-style refer-
ences. A Delphi-style reference is closer to a C++ pointer than a C++ reference. This
has the side effect that, when the VCL is used with C++, pointers have to be used as
replacements for Delphi references. This is because a Delphi reference (unlike a C++
reference) can be set to NULL and can be re-bound. In some cases it is possible to use
reference parameters instead of pointer parameters, but because all VCL-based objects
are dynamically allocated on free store and, therefore, are referred to through point-
ers, the pointers must be dereferenced first. Because the VCL relies on some of the
features of Delphi references, pointers are used for object parameter passing and
returning. Remember that a pointer parameter is passed by value, so the passed
pointer will not be affected by the function. You can prevent modification of the
object pointed to by using the const modifier.

Avoid Using Global Variables
Unless it is absolutely necessary, don’t use global variables in your code. Apart from
polluting the global namespace (and increasing the chance of a name collision), it
increases the dependencies between translation units that use the variables. This
makes code difficult to maintain and minimizes the ease with which translation
units can be used in other programs. The fact that variables are declared elsewhere
also makes code difficult to understand.

One of the first things any astute C++Builder programmer will notice is the global
form pointers present in every form unit. This might give the impression that using

CHAPTER 3 Programming in C++Builder86

05 0672324806 CH03 12/12/02 2:40 PM Page 86

global variables is OK; after all, C++Builder does it. However, C++Builder does this for
a reason, which we will discuss at the end of this section. For now, we will examine
some of the alternatives to declaring global variables.

Let’s assume that global variables are a must. How can we use global variables
without incurring some of the side effects that they produce? The answer is that we
use something that acts like a global variable, but is not one. We use a class with a
member function that returns a value of, or reference to (whichever is appropriate), a
static variable that represents our global variable. Depending on the purpose of our
global variables (for example, global to a program or global to a library), we may or
may not need access to the variables through static member functions. In other
words, it might be possible to instantiate an object of the class that contains the
static variables when they are required. We consider first the case where we do
require access to the static variables (representing our global variables) through
static member functions. We commonly refer to this kind of class as a module.

With a module of global variables, you improve your representation of the variables
by placing them into a class, making them private static variables, and using static
getters and setters to access them (for more information, see Large-Scale C++ Software
Design by Lakos, 1996, p. 69). This prevents pollution of the global namespace and
gives a certain degree of control over how the global variables are accessed. Typically,
the class would be named Global. Hence, two global variables declared as

int Number;

double Average;

could be replaced by

class Global

{

private:

static int Number;

static double Average;

//PRIVATE CONSTRUCTOR

Global(); //not implemented, instantiation not possible

public:

// SETTERS

static void setNumber(int NewNumber) { Number = NewNumber; }

static void setAverage(double NewAverage) { Average = NewAverage; }

// GETTERS

static int getNumber() { return Number; }

Better Programming Practices in C++Builder 87

05 0672324806 CH03 12/12/02 2:40 PM Page 87

static double getAverage() { return Average; }

};

Accessing Number is now done through Global::getNumber() and Global::setNumber().
Average is accessed similarly. The class Global is effectively a module that can be
accessed throughout the program and does not need to be instantiated (because the
member data and functions are static).

Often such an implementation is not required, and it is possible to create a class
with a global point of access that is constructed only when first accessed. This has
the benefit of allowing control over the order of initialization of the variables
(objects must be constructed before first use). The method used is to place the
required variables inside a class that cannot be directly instantiated, but accessed
only through a static member function that returns a reference to the class. This
ensures that the class containing the variables is constructed on first use and is
constructed only once.

This approach is often referred to as the Singleton pattern (for more information, see
Design Patterns: Elements of Reusable Object-Oriented Software by Gamma et al., 1995, p.
127). Patterns are a way of representing recurring problems and their solutions in
object-based programs. For more on patterns, see Chapter 4, “ Creating Custom
Components.”

The basic code required to create a Singleton (as such a class is commonly referred
to) is as follows:

class Singleton

{

public:

static Singleton& Instance();

protected:

Singleton(); // Not Implemented, Instantiation not possible

};

An implementation of Instance is

Singleton& Singleton::Instance()

{

static Singleton* NewSingleton = new Singleton();

return *NewSingleton;

}

CHAPTER 3 Programming in C++Builder88

05 0672324806 CH03 12/12/02 2:40 PM Page 88

The initial call to Instance will create a new Singleton and return a reference to it.
Subsequent calls will simply return a reference. However, the destructor of the
Singleton will not be called; the object is simply abandoned on free store. If there is
important processing that must be executed in the destructor, the following imple-
mentation will ensure that the Singleton is destructed:

Singleton& Singleton::Instance()

{

static Singleton NewSingleton;

return NewSingleton;

}

This implementation causes its own problem. It is possible for another static object
to access the Singleton after it has been destroyed. One solution to this problem is
the nifty counter technique (for more information, see C++ FAQs Second Edition, Cline
et al., 1999, p. 235, and Large-Scale C++ Software Design, Lakos, 1996, p. 537), in
which a static counter is used to control when each object is created and destroyed.
If you find the need for this technique, perhaps a rethink of the code would also be
helpful. It might be that a slight redesign could remove the dependency.

It should now be clear that static variables are like global variables and can almost
always be used in place of global variables. Remember, though, that ultimately global
variables should be avoided.

Understand How C++Builder Uses Global Variables
What then of the global form pointer variables in C++Builder? Essentially, global
form pointer variables are present to enable the use of nonmodal forms. Nonmodal
forms are conventional windows that last for long periods of time and enable you to
work with the rest of the application, even while they are open. Modal forms are
dialogs, which block interaction with the rest of the application.

Nonmodal forms require a global point of access for as long as the form exists, and it
is convenient for the IDE to automatically create one when the form is made. The
default operation of the IDE is to add newly created forms to the autocreate list,
which adds the line

Application->CreateForm(__classid(TFormX), &FormX);

(where X is a number) to the WinMain function in the project .cpp file. Modal forms
do not require this because the ShowModal() method returns after the forms are closed,
making it possible to delete them in the same scope as they were created. General
guidelines on the use of forms can, therefore, be given.

Better Programming Practices in C++Builder 89

05 0672324806 CH03 12/12/02 2:40 PM Page 89

TIP

You can uncheck the Auto Create Forms option on the forms property page in the Tools,
Environment Options menu to change the behavior of the IDE so that forms are not automati-
cally added to the autocreate list. When this is done, forms are instead added to the available
list.

First, determine if a form is to be a modal form or a nonmodal form.

If the form is modal, it is possible to create and destroy the form in the same scope.
This being the case, the global form pointer variable is not required, and the form
should not be autocreated. Remove the Application->CreateForm entry from WinMain
either by deleting it or by removing it from the autocreate list on the forms page in
the Project, Options menu. Next, either delete or comment out the form pointer
variable from the .h and .cpp files, and state explicitly in the header file that the
form is modal and should be used only with the ShowModal() method. That is, in the
.cpp file remove

TFormX* FormX;

and from the .h file, remove

extern PACKAGE TFormX* FormX;

Add a comment such as the following:

// This form is MODAL and should only called with the ShowModal() method.

To use the form, simply write

TFormX* FormX = new TFormX(0);

try

{

FormX->ShowModal();

}

__finally

{

delete FormX;

}

Because you most likely do not want the form pointer to point elsewhere, you could
declare the pointer as const:

TFormX* const FormX = new TFormX(0);

try

CHAPTER 3 Programming in C++Builder90

05 0672324806 CH03 12/12/02 2:40 PM Page 90

{

FormX->ShowModal();

}

__finally

{

delete FormX;

}

TFormX(this);

FormX->ShowModal();

delete FormX;

The use of a try/__finally block ensures that the code is exception-safe. An alterna-
tive to these examples is to use the Standard Library’s auto_ptr class template:

auto_ptr<TFormX> FormX(new TFormX(0));

FormX->ShowModal();

NOTE

You might need to reference the std namespace to create an auto_ptr; this is done either by
using a namespace std or by prefixing auto_ptr with std::.

Whichever technique you use, you are guaranteed that if the code terminates prema-
turely because an exception is thrown, FormX will be automatically destroyed. With
the first technique this happens in the __finally block; with the second it occurs
when auto_ptr goes out of scope. The second technique can be further enhanced by
making the auto_ptr const because generally it is not required that the auto_ptr lose
ownership of the pointer, as in the following code. (For more information, see
Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions by Sutter,
2000, p. 158.)

const auto_ptr<TFormX> FormX(new TFormX(0));

FormX->ShowModal();

Of particular note in the code snippets is that 0 (NULL) is passed as the argument to
the AOwner parameter of FormX. This is because we handle the destruction of the form
ourselves.

TIP

Using auto_ptr is an effective way of managing the memory of VCL-based objects. It is
exception-safe and easy to use. For a VCL object that takes an owner parameter in its
constructor, you can simply pass 0 because you know that the object will be deleted when the
auto_ptr goes out of scope.

Better Programming Practices in C++Builder 91

05 0672324806 CH03 12/12/02 2:40 PM Page 91

If the form is non-modal, you must only decide whether you want it autocreated. If
you don’t, you must ensure that it is removed from WinMain. When you want it
created later, you can use the form’s global pointer and the new operator. Show the
form using the Show() method. Remember that you cannot delete modal forms
because Show() returns when the form is shown, not when it is closed. Therefore, it
might still be in use. For example, if the form is autocreated, write

FormX->Show();

Otherwise, create and show it this way:

FormX = new TFormX(this);

FormX->Show();

As an aside to this topic, the practice of declaring variables or functions as static so
that they have scope only within the translation unit in which they are declared is
deprecated. Instead, such variables and functions should be placed in an unnamed
namespace. (For more information, see ANSI/ISO C++ Professional Programmer’s
Handbook: The Complete Language by Kalev, 1999, p. 157.)

Understand and Use const in Your Code
The const keyword should be used as a matter of course, not as an optional extra.
Declaring a variable const enables attempted changes to the variable to be detected at
compile time (resulting in an error) and also indicates the programmer’s intention
not to modify the given variable. Moreover, not using the const keyword indicates
the programmer’s intention to modify a given variable. The const keyword can be
used in a variety of ways.

First, it can be used to declare a variable as a constant:

const double PI = 3.141592654;

This is the C++ way to declare constant variables. Do not use #define statements.
Note that const variables must be initialized. The following shows the possible
permutations for declaring const variables. Pointer and reference declarations are
read from right to left, as the following examples show:

int Y = 12;

const int X = Y; // X equals Y which equals 12, therefore X = 12

// X cannot be changed, but Y can

// In the next declaration the pointer itself is constant

int* const P = &Y; // The int pointed to by P, i.e. Y can be

// changed through P but P itself cannot change

CHAPTER 3 Programming in C++Builder92

05 0672324806 CH03 12/12/02 2:40 PM Page 92

// The next two declarations are the same:

const int* P = &Y; // The int pointed to by P, i.e.

int const* P = &Y; // Y cannot be changed through P

// The next two declarations are the same:

const int* const P = &Y; // Neither P, nor what it points to, P

int const* const P = &Y; // i.e. Y can be changed through P

// The next two declarations are the same:

const int& R = Y // The int referred to by R, i.e. R

int const& R = Y // Y cannot be changed through R

After reviewing the previous examples, it is helpful to reiterate how const is used
with pointer declarations. As stated previously, a pointer declaration is read from
right to left so that in int * const the const refers to the *. Hence, the pointer is
constant, but the int it points to can be changed. With int const * the const refers
to the int. In this case, the int itself is constant, though the pointer to it is not.
Finally, with int const * const, both the int and the * are constant. Also remember
that int const and const int are the same, so const int * const is the same as int
cosnt * const.

If you want to declare a literal string of chars, declare it as one of the following:

const char* const LiteralString = “Hello World”;

char const * const LiteralString = “Hello World”;

Both of the previous strings and the pointers to them are constant.

Function parameters should be declared as const in this fashion when it is appropri-
ate, such as when the intention of the function is not to modify the argument that
is passed to the function. For example, the following function states that it will not
modify the arguments passed to it:

double GetAverage(const double* ArrayOfDouble, int LengthOfArray)

{

double Sum = 0;

for(int i=0; i<LengthOfArray; ++i)

{

Better Programming Practices in C++Builder 93

05 0672324806 CH03 12/12/02 2:40 PM Page 93

Sum += ArrayOfDouble[i];

}

double Average = Sum/LengthOfArray;

return Average;

}

Another way of thinking about this is to assume that if the const keyword is not
used for a parameter, it must be the intention of the function to modify that para-
meter’s argument, unless the parameter is pass-by-value (a copy of the parameter is
used, not the parameter itself). Notice that declaring int LengthOfArray as a const is
inappropriate because this is pass-by-value. LengthOfArray is a copy, and declaring it
as a const has no effect on the argument passed to the function. Similarly,
ArrayOfDouble is declared as follows:

const double* ArrayOfDouble

not

const double* const ArrayOfDouble

Because the pointer itself is a copy, only the data that it points to needs to be made
const.

The return type of a function can also be const. Generally, it is not appropriate to
declare types returned by value as const, except in the case of requiring the call of a
const-overloaded member function. Reference and pointer return types are suitable
for returning as consts.

Member functions can be declared const. A const member function is one that does
not modify the this object (*this). Hence, it can call other member functions inside
its function body only if they are also const. To declare a member function const,
place the const keyword at the end of the function declaration and in the function
definition at the same place. Generally, all getter member functions should be const
because they do not modify *this. For example

class Book

{

private:

int NumberOfPages;

public:

Book();

int GetNumberOfPages() const;

};

CHAPTER 3 Programming in C++Builder94

05 0672324806 CH03 12/12/02 2:40 PM Page 94

The definition of GetNumberOfPages() could be

int Book::GetNumberOfPages() const

{

return NumberOfPages;

}

The final area in which const is commonly encountered is when operators are over-
loaded by a class and access to both const and non-const variables is required. For
example, if a class ArrayOfBooks is created to contain Book objects, it is sensible to
assume that the [] operator will be overloaded (so that the class acts like an array).
However, the question of whether the [] operator will be used with const or non-
const objects must be considered. The solution is to const-overload the operator, as
the following code indicates:

class ArrayOfBooks

{

public:

Book& operator[] (unsigned i);

const Book& operator[] (unsigned i) const;

};

The ArrayOfBooks class can use the [] operator on both const and non-const Books. For
example, if an ArrayOfBooks object is passed to a function by reference to const, it
would be illegal for the array to be assigned to using the [] operator. This is because
the value indexed by i would be a const reference, and the const state of the passed
array would be preserved.

Remember, know what const is and use it whenever you can.

Be Familiar with the Principles of Exceptions
Exceptions offer a mechanism for handling runtime errors in a program. Several
approaches can be taken to handling runtime errors, such as returning error codes,
setting global error flags, and exiting the program. But, in most circumstances, an
exception is the only appropriate method. (For more information, see ANSI/ISO C++
Professional Programmer’s Handbook: The Complete Language by Kalev, 1999, p. 113.)

Exceptions will commonly be encountered in two forms in C++Builder programs:
C++ exceptions and VCL exceptions. Generally, the principles involved with both are
the same, but there are some differences.

C++ uses three keywords to support exceptions: try, catch, and throw. C++Builder
extends its exception support to include the __finally keyword.

Better Programming Practices in C++Builder 95

05 0672324806 CH03 12/12/02 2:40 PM Page 95

The try, catch, and __finally keywords are used as headers to blocks of code (that is,
code that is enclosed between braces). Also, for every try block there must always be
one or more catch blocks or a single __finally block.

The try Keyword
The try keyword is used in one of two possible ways. The first and simplest is as a
simple block header, to create a try block within a function. The second is as a func-
tion block header, to create a function try block, either by placing the try keyword in
front of the function’s first opening brace or, in the case of constructors, in front of
the colon that signifies the start of the initializer list.

NOTE

C++Builder does not currently support function try blocks. However, because it makes a real
difference only with constructors, and even then has little impact on their use, it is unlikely
that its omission will have any effect. For those who are interested, it will be supported in
version 6 of the compiler.

The catch Keyword
Normally, at least one catch block will immediately follow any try block (or function
try block). A catch block will always appear as the catch keyword followed by paren-
theses containing a single exception type specification with an optional variable
name. Such a catch block (commonly referred to as an exception handler) can catch
only an exception whose type exactly matches the exception type specified by the
catch block. However, a catch block can be specified to catch all exceptions by using
the catch all ellipses exception type specifier, catch(...).

A typical try/catch scenario is as follows:

try

{

// Code that may throw an exception

}

catch(exception1& e)

{

// Handler code for exception1 type exceptions

}

catch(exception2& e)

{

// Handler code for exception2 type exceptions

}

catch(...)

{

CHAPTER 3 Programming in C++Builder96

05 0672324806 CH03 12/12/02 2:40 PM Page 96

// Handler code for any exception not already caught

}

The __finally Keyword
The last of these, __finally, has been added to allow the possibility of performing
cleanup operations or ensuring certain code is executed regardless of whether an
exception is thrown. This works because code placed inside a __finally block will
always execute, even when an exception is thrown in the corresponding try block.
This allows code to be written that is exception-safe and will work properly in the
presence of exceptions. A typical try/__finally scenario is

try

{

// Code that may throw an exception

}

__finally

{

// Code here is always executed, even if

// an exception is thrown in the preceding

// try block

}

It should be noted that try/catch and try/__finally constructs can be nested inside
other try/catch and try/__finally constructs.

The throw Keyword
The throw keyword is used in one of two ways. The first is to throw (or rethrow) an
exception, and the second is to allow the specification of the type of exceptions that
a function might throw. In the first case (to throw or rethrow an exception), the
throw keyword is followed optionally by parentheses containing a single exception
variable (often an object) or simply the single exception variable after a space,
similar to a return statement. When no such exception variable is used, the throw
keyword stands on its own. Then, its behavior depends on its placement. When
placed inside a catch block, the throw statement rethrows the exception currently
being handled. When placed elsewhere, such as when there is no exception to
rethrow, it causes terminate() to be called, ultimately ending the program. It is not
possible to use throw to rethrow an exception in VCL code. The second use of the
throw keyword is to allow the specification of the exceptions that a function might
throw. The syntax for the keyword is

throw(<exception_type_list>)

Better Programming Practices in C++Builder 97

05 0672324806 CH03 12/12/02 2:40 PM Page 97

The exception_type_list is optional and, when excluded, indicates that the function
will not throw any exceptions. When included, it takes the form of one or more
exception types separated by commas. The exception types listed are the only excep-
tions the function can throw.

Unhandled and Unexpected Exceptions
In addition to the three keywords described, C++ offers mechanisms to deal with
thrown exceptions that are not handled by the program and exceptions that are
thrown, but are not expected. This might include an exception that is thrown inside
a function with an incompatible exception specification.

When an exception is thrown, but not handled, terminate() is called. This calls the
default terminate handler function, which by default calls abort(). This default
behavior should be avoided because abort() does not ensure that local object
destructors are called. To prevent terminate() being called as a result of an uncaught
exception, the entire program can be wrapped inside a try/catch(...) block in
WinMain() (or main() for command-line programs). This ensures that any exception
will eventually be caught. If terminate() is called, you can modify its default behav-
ior by specifying your own terminate handler function. Simply pass the name of
your terminate handler function as an argument to the std::set_terminate() func-
tion. The <stdexcept> header file must be included. For example, given a function
declared as

void TerminateHandler();

The code required to ensure that this handler is called in place of the basic
terminate() handler is

#include <stdexcept>

std::set_terminate(TerminateHandler);

When an exception is thrown that is not expected, unexpected() is called. Its default
behavior is to call terminate(). Again, the opportunity exists to define your own
function to handle this occurrence. To do so, call std::set_unexpected(), passing the
function handler name as an argument. The <stdexcept> header file must be
included.

Using Exceptions
This brings the discussion to consideration of the exceptions that can and should be
thrown by a function and where such exceptions should be caught. This should be
decided when you are designing your code, not after it has already been written. To
this end, you must consider several things when you write a piece of code. Some of
the topics are very complex, and it is beyond the scope of this book to cover all the
issues involved.

CHAPTER 3 Programming in C++Builder98

05 0672324806 CH03 12/12/02 2:40 PM Page 98

You must consider if the code you have written could throw one or more exceptions.
If so, you must then consider if it is appropriate to catch one or more of the excep-
tions in the current scope or let one or more of them propagate to an exception
handler outside the current scope. If you do not want one or more of the exceptions
to propagate outside the current scope, you must place the code in a try block and
follow it with the one or more appropriate catch blocks to catch any desired excep-
tions (or all exceptions, using a catch-all block). To this end, you should be aware of
the exceptions built into the language itself, the C++ Standard Library, and the VCL,
and be aware of when they can be thrown. For example, if new fails to allocate
enough memory, std::bad_alloc is thrown.

Throw an exception in a function only when it is appropriate to do so, when the
function cannot meet its promise. (For more information, see C++ FAQs, Second
Edition, Cline et al., 1999, p. 137.)

You should catch an exception only when you know what to do with it, and you
should always catch an exception by reference. (For more information, see More
Effective C++: 35 New Ways to Improve Your Programs and Designs by Meyers, 1996, p.
68.) VCL exceptions cannot be caught by value. Also, it might not be possible to fully
recover from an exception, in which case, the handler should perform any possible
cleanup, and then rethrow the exception.

You should understand when and how to use exception specifications for functions
and be wary of the possibility of writing an incorrect specification. This will result in
unexpected() being called if an unspecified exception is thrown inside a function and
it is not handled within that function.

You should ensure that you write exception-safe code that works properly in the
presence of exceptions. For example, simple code such as this is not exception safe:

TFormX* const FormX = new TFormX(0);

FormX->ShowModal();

delete FormX;

If an exception is thrown between the creation and deletion of the form, it will
never be deleted, so the code does not work properly in the presence of exceptions.
For an exception-safe alternative, see the section “Avoid Using Global Variables,”
earlier in this chapter.

If you are writing library or container classes, endeavor to write code that is excep-
tion-neutral—code that propagates all exceptions to the caller of the function that
contains the code. (For more information, see Exceptional C++: 47 Engineering Puzzles,
Programming Problems, and Solutions by Sutter, 2000, p. 25.)

Never throw an exception from a destructor because the destructor might have been
called as a result of stack unwinding after a previous exception was called. This calls
terminate(). Destructors should have an exception specification of throw().

Better Programming Practices in C++Builder 99

05 0672324806 CH03 12/12/02 2:40 PM Page 99

A Final Note on Exceptions
Finally, you should appreciate the differences between VCL and C++ exceptions. VCL
exceptions allow operating system exceptions to be handled as well as exceptions
generated from within the program. Such exceptions must be caught by reference.
VCL exceptions generated from within the program cannot be caught by value. An
advantage of VCL exceptions is that they can be thrown and caught within the IDE.

Use new and delete to Manage Memory
The VCL requires that all classes that inherit from TObject be created dynamically
from free store. Free store is often referred to as the heap, but free store is the correct
term when applied to memory allocated and deallocated by new and delete. The term
heap should be reserved for the memory allocated and deallocated by malloc() and
free(). (For more information, see Exceptional C++: 47 Engineering Puzzles,
Programming Problems, and Solutions by Sutter, 2000, p. 142.) This means a lot of calls
to new and delete in C++Builder programs, so it is important to understand a few
things about how new and delete work.

WARNING

A Non-Plain Old Data (Non-POD) object is essentially all but the most trivial of classes. Such
objects must have their memory allocated by using new; the C equivalent malloc() will not
suffice (its behavior is undefined) and be subsequently deallocated with delete, not free().
The new and delete operators ensure that, in addition to the allocation/deallocation of
memory, the object’s constructor and destructor, respectively, are called.

The new operator also returns a pointer that is suitable to the object created; not merely a
void pointer that must be cast to the required type. new and delete call operator
new/operator delete, respectively, to allocate/deallocate memory, and these can be over-
loaded for specific classes. This enables the customization of memory allocation/deallocation
behavior. This is not possible with malloc() and free().

(For more information, see ANSI/ISO C++ Professional Programmer’s Handbook: The Complete
Language by Kalev, 1999, p. 221.)

A successful call to new allocates sufficient memory in free store (using operator new)
calls the object’s constructor and returns a pointer of the type pointer-to-the-object-
type-created. A correctly initialized object is the result. Subsequently, calling delete
calls the object’s destructor and deallocates the memory obtained previously by
calling new.

WARNING

Never call a VCL object’s Free() method to destroy a VCL object. Always use delete. This
ensures that the object’s destructor is called and that the memory allocated previously with
new is freed. Free() does not guarantee this, and it is bad practice to use it.

CHAPTER 3 Programming in C++Builder100

05 0672324806 CH03 12/12/02 2:40 PM Page 100

If the call to new is unsuccessful, a std::bad_alloc exception is thrown. Note that the
bad_alloc exception is defined in the standard library file <new>. Hence, you must
include #include <new> in your program, and it is in the std namespace. It does not
return NULL. Therefore, you should not check the return pointer for equality with
NULL. The program should be prepared to catch the std::bad_alloc exception and, if
the function that calls new does not catch the exception, it should pass the exception
outside the function so that calling code has the opportunity to catch it. Either of
the following would be appropriate:

void CreateObject(TMyObject* MyObject) throw()

{

try

{

MyObject = new TMyObject();

}

catch(std::bad_alloc)

{

//Print a message “Not enough memory for MyObject”;

// Deal with the problem

// or exit gracefully

}

}

or

void CreateObject(TMyObject* MyObject) throw(std::bad_alloc)

{

MyObject = new TMyObject();

}

The use of exceptions enables the code that handles the error to be centralized,
which leads to safer code that is more intuitive. The throw keyword added to the
function header is called an exception specification. The effect of its inclusion in the
function header is to specify which exceptions the function can throw. For more
explanation refer to the section “Be Familiar with the Principles of Exceptions,”
earlier in this chapter. In the case of the first CreateObject() function, a throw()
exception specifier is used to indicate that no exception will be thrown by the func-
tion. This is acceptable because the only exception that can be thrown,
std::bad_alloc, is caught and dealt with by the function itself. In the case of the
second implementation of CreateObject(), the exception specifier
throw(std::bad_alloc) is used to indicate that the only exception that the function
can throw is std::bad_alloc. This should be caught and handled by one of the calling
routines.

Better Programming Practices in C++Builder 101

05 0672324806 CH03 12/12/02 2:40 PM Page 101

There is also the possibility of writing your own out-of-memory function handler to
deal with failed memory allocation. To set a function as a handler for out-of-memory
conditions when using new, call the set_new_handler() function (also defined in
<new>), passing as a parameter the name of the function you will use as the out-of-
memory handler. For example, if you write a function (nonmember or static
member) called OutOfMemory to handle such occurrences, the necessary code is

#include <new>

void OutOfMemory()

{

// Try to free some memory

// if there is now enough memory then this

// function will NOT be called next time

// else either install a new handler or throw an exception

}

// Somewhere in the main code, near the start write:

std::set_new_handler(OutOfMemory);

This code requires some explanation, because the sequence of events that occurs
when new fails dictates how the OutOfMemory function should be written. If new fails to
allocate enough memory, OutOfMemory is called. OutOfMemory tries to free some memory
(how this is done will be discussed later); new will then try again to allocate the
required memory. If it is successful, you are finished. If it is unsuccessful, the process
just described will be repeated. In fact, it will repeat infinitely until either enough
memory is allocated or the OutOfMemory function terminates the process.

To terminate the process, the OutOfMemory function can do several things. It can
throw an exception (such as std::bad_alloc()), it can install a different memory
handler that can then try to make more memory available, it can assign NULL to
set_new_handler (std::set_new_handler(0)), or it can exit the program (not recom-
mended). If a new handler is installed, then this series of events will occur for the
new handler (which is called on the subsequent failed attempt). If the handler is set
to NULL (0), then no handler will be called, and the exception std::bad_alloc() will be
thrown.

Making more memory available is dependent on the design of the program and
where the memory shortage arises. If the program keeps a lot of memory tied up for
performance reasons but does not always require it to be available at all times, then
such memory can be freed if a shortage occurs. Identifying such memory is the diffi-
cult part. If there is no such memory usage in the program, the shortage will be a
result of factors external to the program such as other memory-intensive software or
physical limitations. There is nothing that can be done about physical limitations,

CHAPTER 3 Programming in C++Builder102

05 0672324806 CH03 12/12/02 2:40 PM Page 102

but it is possible to warn the user of a memory shortage so that memory-intensive
software can be shut down, thereby freeing additional memory.

The trick is to give an advance warning before all the memory is used. One approach
is to preallocate a quantity of memory at the beginning of the program. If new fails to
allocate enough memory, the memory successfully allocated can be freed. The user is
warned that memory is low and told to try to free more memory for the application.
Assuming that the preallocated block was large enough, the program should be able
to continue operating as normal if the user has freed additional memory. This
preemptive approach is simple to implement and reasonably effective.

It is important to note that if you want to allocate raw memory only, operator new
and operator delete should be used instead of the new and delete operators. (For
more information, see More Effective C++: 35 New Ways to Improve Your Programs and
Designs by Meyers, 1996, p. 38.) This is useful for situations in which, for example, a
structure needs to be allocated dynamically, and the size of the structure is deter-
mined through a function call before the dynamic allocation. This is a common
occurrence in Win32 API programming:

DWORD StructureSize = APIFunctionToGetSize(SomeParameter);

WIN32STRUCTURE* PointerToStructure;

PointerToStructure = static_cast<WIN32STRUCTURE*>(operator new(StructureSize));

// Do something with the structure

operator delete(PointerToStructure);

It is clear that the use of malloc() and free() should not be required.

Finally, we will discuss the use of new and delete in dynamically allocating and deal-
locating arrays. Arrays are allocated and deallocated using operator new[] and
operator delete[], respectively. They are separate operators from operator new and
operator delete. When new is used to create an array of objects, it first allocates the
memory for the objects (using operator new[]), and then calls its default constructor
to initialize each object. Deleting an array with delete performs the opposite task: It
calls the destructor for each object, and then deallocates the memory (using operator
delete[]) for the array. So delete knows to call operator delete[] instead of operator
delete, a [] is placed between the delete keyword and the pointer to the array to be
deleted:

delete [] SomeArray;

Allocating a single-dimensional array is straightforward. The following format is
used:

TBook* ArrayOfBooks = new TBook[NumberOfBooks];

Better Programming Practices in C++Builder 103

05 0672324806 CH03 12/12/02 2:40 PM Page 103

Deleting such an array is also straightforward. However, remember that the correct
form of delete must be used—delete []. For example

delete [] ArrayOfBooks;

Remember that [] tells the compiler that the pointer is to an array, as opposed to
simply a pointer to a single element of a given type. If an array is to be deleted, it is
essential that delete [] be used, not delete. If delete is used erroneously, at best only
the first element of the array will be deleted. You know that when an array of objects
is created, the default constructor is used. This means that you will want to ensure
that you have defined the default constructor to suit your needs. Remember that a
compiler-generated default constructor does not initialize the classes’s data members.
Also, you will probably want to overload the assignment operator (=) so that you can
safely assign object values to the array objects. A two-dimensional array can be
created using code such as the following:

TBook** ShelvesOfBooks = new TBook*[NumberOfShelves];

for(int i=0; i<NumberOfShelves; ++i)

{

ShelvesOfBooks[i] = new TBook[NumberOfBooks];

}

To delete such an array use the following:

for(int i=0; i<NumberofShelves; ++i)

{

delete [] ShelvesOfBooks[i];

}

delete [] ShelvesOfBooks;

One thing remains unsaid: If you want to have an array of objects, a better approach
is to create a vector of objects using the vector template from the STL. It enables any
constructor to be used and also handles memory allocation and deallocation auto-
matically. It will also reallocate memory if there is a memory shortage. This means
that the use of the C library function realloc() is no longer required.

Placement new (allocation at a predetermined memory location) and nothrow new
(does not throw an exception on failure, it returns NULL instead) have not been
discussed because they are beyond the scope of this section.

CHAPTER 3 Programming in C++Builder104

05 0672324806 CH03 12/12/02 2:40 PM Page 104

Understand and Use C++-Style Casts
The four C++ casts are outlined in Table 3.1.

TABLE 3.1 C++-Style Casts

Cast General Purpose

static_cast<T>(exp) Used to perform casts such as an int to a double.

T and exp can be pointers, references, arithmetic types (such as

int), or enum types. You cannot cast from one type to another; for

example, from a pointer to an arithmetic.

dynamic_cast<T>(exp) Used to perform casting down or across an inheritance hierarchy.

For example, if class X inherits from class O, a pointer to class O can

be cast to a pointer to class X, provided the conversion is valid.

T can be a pointer or a reference to a defined class type or void*.

exp can be a pointer or a reference. For a conversion from a base

class to a derived class to be possible, the base class must contain at

least one virtual function; in other words, it must be polymorphic.

One important feature of dynamic_cast is that if a conversion

between pointers is not possible, a NULL pointer is returned; if a

conversion between references is not possible, a std::bad_cast

exception is thrown (include the header file <typeinfo>). As a

result, the conversion can be checked for success.

const_cast<T>(exp) This is the only cast that can affect the const or volatile nature of

an expression. It can be either cast off or cast on. This is the only

thing const_cast is used for.

For example, if you want to pass a pointer to const data to a func-

tion that only takes a pointer to non-const data, and you know the

data will not be modified, you could pass the pointer by

const_casting it.

T and exp must be of the same type except for their const or

volatile factors.

reinterpret_cast<T>(exp) Used to perform unsafe or implementation-dependent casts. This

cast should be used only when nothing else will do. This is because

it enables you to reinterpret the expression as a completely different

type, such as to cast a float* to an int*. It is commonly used to

cast between function pointers. If you find yourself needing to use

reinterpret_cast, decide carefully if the approach you are taking

is the right one, and remember to document clearly your intention

(and possibly your reasons for this approach).

T must be a pointer, a reference, an arithmetic type, a pointer to a

function, or a pointer to a member function. A pointer can be cast

to an integral type and vice versa.

Better Programming Practices in C++Builder 105

05 0672324806 CH03 12/12/02 2:40 PM Page 105

The casts most likely to be of use are static_cast (for trivial type conversions such as
int to double) and dynamic_cast.

An example of using static_cast can be found in the last line of the following code:

int Sum = 0;

int* Numbers = new int[20];

for(int i=0; i<20; ++i)

{

Numbers[i] = i*i;

Sum += Numbers[i];

}

double Average = static_cast<double>(Sum)/20;

One of the times when dynamic_cast is commonly used in C++Builder is to
dynamic_cast TObject* Sender or TComponent* Owner, to ensure that Sender or Owner is of
a desired class, such as TForm. For example, if a component is placed on a form, it can
be necessary to distinguish if it was placed directly or was perhaps placed on a Panel
component. To carry out such a test, the following code is required:

TForm* OwnerForm = dynamic_cast<TForm*>(Owner);

if(OwnerForm)

{

//Perform processing since OwnerForm != NULL, i.e. 0

}

First a pointer of the required type is declared, and then it is set equal to the result of
the dynamic_cast. If the cast is unsuccessful, the pointer will point to the required
type and can be used for accessing that type. If it fails, it will point to NULL and,
hence, can be used to evaluate a Boolean expression. Sender can be similarly used.
The situations that require such casting are many and varied. What is important is to
understand what it is that you want to achieve and make your intention and reason-
ing clear.

Each of the C++ casts performs a specific task and should be restricted for use only
where appropriate. The C++ casts are also easily seen in code, making it more read-
able.

Know When to Use the Preprocessor
It is not appropriate to use the preprocessor for defining constants or for creating
function macros. Instead, you should use const variables or enum types for constants

CHAPTER 3 Programming in C++Builder106

05 0672324806 CH03 12/12/02 2:40 PM Page 106

and use an inline function (or inline template function) to replace a function
macro. Consider also that a function macro might not be appropriate anyway (in
which case the inline equivalent would not be required).

For example, the constant π can be defined as

const double PI = 3.141592654;

If you wanted to place this inside a class definition, you would write

class Circle

{

public:

static const double PI; // This is only a declaration

};

In the implementation (*.cpp) file, you would define and initialize the constant by
writing

const double Circle::PI = 3.141592654;

// This is the constant definition

// and initialization

Note that the class constant is made static so that only one copy of the constant
exists for the class. Also notice that the constant is initialized in the implementation
file (typically after the include directive for the header file that contains the class
definition). The exception to this is the initialization of integral types, char, short,
long, unsigned, and int. These can be initialized directly in the class definition. When
a group of related constants is required, an enum is a sensible choice:

enum LanguagesSupported { English, Chinese, Japanese, French };

Sometimes an enum is used to declare an integer constant on its own:

enum { LENGTH = 255 };

Such declarations are sometimes seen inside class definitions. A static const variable
declaration (like that for PI) is a more correct approach.

Replacing a function macro is also easily achieved. Given the macro

#define cubeX(x) ((x)*(x)*(x))

the following inline function equivalent can be written:

inline double cubeX(double x) { return x*x*x; }

Better Programming Practices in C++Builder 107

05 0672324806 CH03 12/12/02 2:40 PM Page 107

Notice that this function takes a double as an argument. If an int were passed as a
parameter, it would have to be cast to a double. Because you want the behavior of the
function to be similar to that of the macro, you should avoid this necessity. This can
be achieved in one of two ways: Either overload the function or make it a function
template. In this case, overloading the function is the better of the two choices
because a function template would imply that the function could be used for classes
as well, which would most likely be inappropriate. Therefore, an int version of the
inline function could be written as

inline int cubeX(int x) { return x*x*x; }

Generally, you want to avoid using #define for constants and function macros.
#define should be used when writing include guards. Remember that include guards
are written in the header file to ensure that a header already included is not included
again. For example, a typical header file in C++Builder will look like this:

#ifndef Unit1H // Is Unit1H not already defined?

#define Unit1H // If not then you reach this line and define it

// Header file code placed here...

#endif // End of if Unit1H not defined

This code ensures that the code between #ifndef and #endif will be included only
once. It is a good idea to follow some convention when choosing suitable defines for
header files. C++Builder uses an uppercase H after the header filename. If you write
your own translation units, you should follow this convention. Of course, you can
use a different naming convention, such as prepending INCLUDED_ to the header file-
name, but you should be consistent throughout a project. Using include guards
prevents a header file from being included more than once, but it must still be
processed to see if it is to be included.

TIP

When you follow the IDE naming convention for include guards (appending an ‘H’ to the end
of the header filename), the IDE treats the translation unit as a set, and it will appear as such
in the Project Manager. If you do not want your .cpp and .h files to be treated in this way, do
not use IDE-style include guards.

It has been shown that for very large projects (or more generally, projects with large,
dense include graphs), this can have a significant effect on compile times. (For more
information, see Large-Scale C++ Software Design by Lakos, 1996, p. 82.) Therefore, it
is worth wrapping all include statements in an include guard to prevent the unneces-
sary inclusion of a file that has been defined already. For example, if Unit1 from the

CHAPTER 3 Programming in C++Builder108

05 0672324806 CH03 12/12/02 2:40 PM Page 108

previous code snippet also included ModalUnit1, ModalUnit2, and ModalUnit3, which are
dialog forms used by other parts of the program, their include statements could be
wrapped inside an include guard as follows:

#ifndef Unit1H // Is Unit1H not already defined?

#define Unit1H // If not then you reach this line and define it

#ifndef ModalUnit1H // Is ModalUnit1H not already defined?

#include “ModalUnit1.h” // No then include it

#endif // End of if Unit1H not defined

#ifndef ModalUnit2H

#include “ModalUnit2.h”

#endif

#ifndef ModalUnit3H

#include “ModalUnit3.h”

#endif

// Header file code placed here...

#endif // End of if Unit1H not defined

This is not pretty, but it is effective. Remember that you must ensure that the names
you define for include guards must not match any name that appears elsewhere in
your program. The define statement will ensure that it is replaced with nothing,
which could cause havoc. That is why a naming convention must be agreed on and
adhered to.

TIP

Note that the Project Manager in C++Builder 5 was improved to include an expandable list of
header file dependencies for each source file included in a project. Simply click the node
beside the source filename to either expand or collapse the list. Note that the header file
dependency lists are based on the source file’s .obj file, hence the file must be compiled at
least once to use this feature. Also note that the list could be out of date if changes are made
without recompilation.

In C++Builder 6, the relationship between .h and .cpp is extended to automatically loading
both into the Source Code Editor and providing tabs at the bottom of the editor window, so
you can easily switch from header to implementation and back.

Know when using the preprocessor will benefit the program, and when it won’t. Use
it carefully and only when necessary.

Better Programming Practices in C++Builder 109

05 0672324806 CH03 12/12/02 2:40 PM Page 109

Learn About and Use the C++ Standard Library
The C++ Standard Library, including the Standard Template Library (STL), is a
constituent part of ANSI/ISO C++, just as the definition for bool is. You can save a lot
of unnecessary coding by learning to use its features in your programs. The Standard
Library has an advantage over homegrown code in that it has been thoroughly
tested and is fast, and it is the standard, so portability is a big bonus. Standard
Library features are summarized in the following list:

• Exceptions, such as bad_alloc, bad_cast, bad_typeid, and bad_exception

• Utilities, such as min(), max(), auto_ptr<T>, and numeric_limits<T>

• Input and output streams, such as istream and ostream

• Containers, such as vector<T>

• Algorithms, such as sort()

• Function objects (functors), such as equal_to<T>()

• Iterators

• Strings, such as string

• Numerics, such as complex<T>

• Special containers, such as queue<T> and stack<T>

• Internationalization support

Nearly everything in the Standard Library is a template, and most of the library
consists of the STL, so it is very flexible. For example, the vector template class can
be used to store any kind of data of the same type. As a result, it is a direct replace-
ment for arrays in C++ and should be used in preference to arrays whenever possible.

In C++Builder 6, Borland introduced the STLPort open source C++ Standard Library,
which should compile and operate in the same fashion as the old Rogue Wave
implementation. STLPort will run both under Windows and Linux, so it is compati-
ble with CLX programs.

VCL Overview
Supplied with C++Builder is a chart that schematically represents the Visual
Component Library (VCL) object hierarchy. Not surprisingly, this chart has expanded
with each new version of C++Builder. What you can’t see, however, is the true
complexity of the VCL. The explanation is simple: The VCL is much more than
objects descending from other objects.

CHAPTER 3 Programming in C++Builder110

05 0672324806 CH03 12/12/02 2:40 PM Page 110

The VCL is based on what is known as the PME model, including properties,
methods, and events. This architecture is joined with the Component Palette, Object
Inspector, and IDE, giving developers a rapid approach to building applications
known as Rapid Application Development (RAD). A developer can drop components
onto a form and have a working Windows application almost without writing a
single line of code. Obviously, writing code is required to make the application fully
functional, but the VCL handles most of the work for you, making application devel-
opment very expedient and more enjoyable. You can spend more time building the
working blocks of your application rather than having to spend repetitive time with
the framework of each Windows application you develop.

The remainder of this topic will take a very brief look at the hierarchy of VCL objects
in general.

It All Starts at TObject
The VCL is fundamentally a group of objects that descend from the abstract class
TObject. This class provides the capability to respond to the creation and destruction
of objects, supports message handling, and contains class type and Runtime Type
Information (RTTI) of its published properties.

RTTI enables you to determine the type of an object at runtime even when the code
uses a pointer or reference to that object. As an example, C++Builder passes a TObject
pointer to each of its events. This might be a mouse-click event or an object obtain-
ing focus. Through the use of RTTI it is possible to perform a cast (dynamic_cast) to
either use the object or determine the object type. The RTTI mechanism also enables
testing an object type by using the typeid operator. The dynamic_cast operator is
demonstrated later in this chapter. The C++Builder Language Guide online help
provides additional information on this topic.

Descending from TObject are many simple nonpersistent data classes, wrappers, and
streams, such as TList, TStack, TPrinter, TRegistry, and TStream, to name a few.

Persistent data, in terms of the VCL, refers to the mechanism of storing property
values. The simplest example is the caption of a button or label. At design time you
enter the caption in the Object Inspector. This caption is maintained between
programming sessions and is available at runtime. The data is persistent.
Nonpersistent classes, therefore, refers to simple classes designed to perform particular
functions, but unable to save their state between sessions.

A wrapper can be described as a means of placing an envelope around the more
complex Windows API. Wrappers allow for the creation of objects or components
that are easier to use and can be used across multiple projects. Components, and
other objects to some extent, shield you from the API and at the same time provide
the convenience of using its powerful features in an easy-to-use fashion. Later chap-
ters will provide additional information on these topics.

VCL Overview 111

05 0672324806 CH03 12/12/02 2:40 PM Page 111

Another commonly used descendant of TObject is the Exception class, which provides
many built-in exception classes for handling conditions such as, divide-by-zero and
stream errors. With very minimal work this class can also be used to create custom
classes for use in your own applications.

The other major branches of TObject include TPersistent, TComponent, TControl,
TGraphicControl, and TWinControl.

TPersistent adds methods to TObject that enable the object to save its state prior to
destruction, and reload that state when it is created again. This class is important in
the creation of components that contain custom classes as properties. If the property
needs to be streamed, it must descend from TPersistent rather than TObject. This
branch includes many types of classes with the most common being TCanvas,
TClipboard, TGraphic, TGraphicsObject, and TStrings. TPersistent descends to provide
TComponent, the common base for all VCL components.

Property streaming refers to the mechanism by which the object’s property values are
written to the form’s file. When the project is reopened, the property values are
streamed (or read) back, thereby restoring their previous values.

TComponent objects provide the foundation for building C++Builder applications.
Components have the capability to appear on the Component Palette, become
parents for other components, control other components, and perform streaming
operations.

There are two types of components—visual and nonvisual. Nonvisual components
require no visual interface and are, therefore, derived directly from TComponent. Visual
components are required to have the capability to been seen and interact with the
user at runtime. TControl adds the drawing routines and window events required for
defining a visual component. These visual components are divided into two groups:
windowed (TWinControl) and nonwindowed (TGraphicControl).

TGraphicControl components are responsible for drawing themselves, but never
receive focus. Examples include TImage, TLabel, TBevel, and TShape.

TWinControl components are similar to TGraphicControl except that they can receive
focus, allowing for user interaction. These components are known as windowed
controls, have a window handle, and can contain (or be the parent of) other controls.

Building on Existing Objects
The C++Builder object-oriented architecture means faster application development
through reuse of existing objects and supporting classes. Giving the component
objects the capability to present their published properties to the developer via the
Object Inspector provides the extra dimension that further improves the develop-
ment cycle.

CHAPTER 3 Programming in C++Builder112

05 0672324806 CH03 12/12/02 2:40 PM Page 112

But, the Object Inspector does more than simply present the component’s published
properties for review or editing. In Figure 3.1 you can see the Object Inspector
showing the common properties of TLabel, TEdit, TButton, and TCheckBox controls.
Looking at the hierarchy of these controls, you can see that TLabel descends from
TGraphicControl, and the remainder descend from TWinControl. The common ancestor
for all four controls is therefore TControl (because TGraphicControl and TWinControl

descend from TControl).

VCL Overview 113

FIGURE 3.1 Common properties of multiple selected components.

Figure 3.1 is, therefore, displaying all the common properties the components have
inherited from TControl. If you change one of these properties while they are all
selected, this change will be reflected in all the controls simultaneously.

Building objects from existing classes or objects enables you to develop additional
functionality into the descendants while at the same time enabling the base classes
to remain available for new descendants that require a common base with some
additional unique features. Some developers might argue that this additional class
and the associated RTTI contained within the hierarchy are only adding to the over-
head of the application. This overhead is well worth the benefits this object model
provides. Each of the objects and components provided with C++Builder can appear
quite differently, but share common features that are inherited from ancestor objects,
making the development process more streamlined.

Using the VCL
It is important to understand how the VCL differs from regular classes and objects.
The VCL originates from Delphi. As a result, all VCL objects are created on the free

05 0672324806 CH03 12/12/02 2:40 PM Page 113

store and referenced as pointers rather than static objects. Only VCL objects need to
be created and used in this fashion. All standard C/C++ objects can be used in either
fashion.

An example will illustrate this. The following code first shows how a standard C++
class can be created on the stack, and then on the heap. Then, it shows how VCL
objects must be created.

The C++ class code is as follows:

class MyClass

{

private:

int MyVar;

public:

MyClass(void);

};

Creating an instance of this class on the stack is shown next. When the class goes
out of scope, the memory allocated for the object is released automatically.

MyClass Tmp;

Tmp.MyVar = 10;

// do something

Next, you look at creating an instance of this class on the heap. It is the responsibil-
ity of the creator to destroy the object before it goes out of scope. Otherwise, the
memory is not released, resulting in a memory leak.

MyClass *Tmp;

Tmp = new MyClass;

Tmp->MyVar = 10;

// do something

delete Tmp;

VCL objects are like the second example, created on the heap. If you attempt to
create a VCL object on the stack, the compiler will complain with the error message,
VCL style classes must be constructed using operator new.

C++Builder has also made provisions for automatic destruction of objects that have
owners. Let’s assume you create a TLabel object dynamically and pass this as the
owner:

TLabel *MyLabel = new TLabel(this);

CHAPTER 3 Programming in C++Builder114

05 0672324806 CH03 12/12/02 2:40 PM Page 114

When MyLabel goes out of scope, you at first assume a memory leak has occurred.
Objects of this nature don’t have to worry about freeing themselves explicitly
because the VCL has a built-in mechanism to free all child objects before an owner
object is destroyed. The term parent object was carefully avoided. This will be
explained further.

Nonvisual components have owners, whereas visual components have owners and
parents. The easiest way to distinguish the two terms is to think of the owner as the
creator and the parent as the container allowing the component to exist. Suppose
you have a TPanel component on a form, and on this component are three label
components. There are two possible scenarios, depending on who created the labels.

In the first scenario, you have the labels being dropped onto the panel at design
time. In this case, the panel is the parent for each of the labels, but the application is
the owner. When the application is closed, the VCL ensures that each of the child
objects (the panel and the three labels) are all destroyed before the application itself
is destroyed.

In another case, you might drop an aggregate component (a component made up of
many components) onto a form. For this example you assume it is a panel with
three labels on it. The component creates the panel, and then creates three labels to
sit on that panel. The panel is still the parent of the labels, but now the owner of the
panel and the three labels is the component that was dropped onto the form. If the
component is destroyed, the panel and labels also will be automatically destroyed.

This is a great feature for design time objects, but if you create objects at runtime,
you should delete them explicitly. You won’t have any memory leaks if you don’t,
but it makes the code more readable and documents the intention of the code. The
following code demonstrates creating these objects at runtime.

TPanel *Panel1;

TLabel *Label1, *Label2, *Label3;

Panel1 = new TPanel(this);

Panel1->Parent = Form1;

Label1 = new TLabel(this);

Label1->Parent = Panel1;

Label2 = new TLabel(this);

Label2->Parent = Panel1;

Label3 = new TLabel(this);

Label3->Parent = Panel1;

// set other properties such as caption, position, etc

// do something

delete Label1;

delete Label2;

delete Label3;

delete Panel1;

VCL Overview 115

05 0672324806 CH03 12/12/02 2:40 PM Page 115

The panel is created with the application as the owner and the form as the parent.
The labels are then created similarly, with the difference being that the panel is made
the parent of the labels. You could move the labels to another panel just by chang-
ing the Parent property. It is possible to delete the panel so that the labels would be
deleted automatically, but I prefer to delete everything explicitly. This becomes more
important when dealing with real-world applications in which global pointers are
shared. It is also good practice to set the pointers to NULL (or zero) after they have
been deleted (unless they are about to go out of scope). If another part of your appli-
cation tries to delete the object after it has been destroyed, and you haven’t nulled
the pointer, an access violation is certain.

As mentioned earlier, the use of std::auto_ptr offers a mechanism for exception safe,
class, and function local allocation of VCL objects.

The C++ Extensions
C++Builder has added extensions to the C++ language to make it a powerful product
capable of utilizing the VCL and fitting seamlessly into the PME model. Some
programmers consider the issue of C++ extensions controversial, but they can be
useful, so long as they make the product powerful, maintain compatibility with ANSI
standards, and provide for a shorter development cycle. In all cases, C++Builder
manages this very well.

The extensions are listed next with a brief description. Please note that each of the
extensions is prefixed with two underscores.

The __automated Class Extension
Object linking and embedding (OLE) does not provide type information in a type
library. The automated section of a class that is derived from TAutoObject or a descen-
dant of TAutoObject is used by applications supporting OLE automation. The required
OLE automation information is generated for member functions and properties
declared in this section.

class TMyAutoClass : public TAutoObject

{

public:

virtual __fastcall TMyAutoClass(void);

__automated:

AnsiString __fastcall GetClassName(void) { return(“MyAutoClass”); }

};

The last point to make is that the declared method is of type __fastcall (described a
little later). This is required for automated functions and causes the compiler to
attempt to pass the parameters in the registers rather than on the stack.

CHAPTER 3 Programming in C++Builder116

05 0672324806 CH03 12/12/02 2:40 PM Page 116

The __classid(class) Class Extension
The __classid extension is used to bridge the gap between the VCL, RTTI functions,
and the C++ language. It is used when an RTTI function requires class information as
a parameter.

As an example, the RegisterComponentEditor() method enables you to create and
register a custom editor for your components. My business produces a security
component package (MJFSecurity) specifically for C++Builder. This package includes
a number of custom components designed for protecting applications from piracy.
One of these components is called TAppLock, and it uses a custom editor called
TAppLockEditor. As part of the Register() method of the package, the editor is regis-
tered using the following code:

namespace Applock

{

void __fastcall PACKAGE Register()

{

// ... code omitted from here

RegisterComponentEditor(__classid(TAppLock), __classid(TAppLockEditor));

}

}

The RegisterComponentEditor() method takes two parameters as pointers to TMetaClass
(C++Builder’s representation of the Delphi class-reference type). The TMetaClass for a
given class can be acquired by using the __classid operator. The compiler uses the
__classid operator to generate a pointer to the vtable (virtual table) for the given
class name.

For further information on MJFSecurity, go to http://www.mjfreelancing.com/.

The __closure Class Extension
Standard C++ enables you to assign a derived class instance to a base class pointer,
but does not enable you to assign a derived class’s member function to a base class
member function pointer. Listing 3.1 demonstrates this problem.

LISTING 3.1 Illegal Assignment of a Derived Class Member Function

enum HandTypes {htHour, htMinute, htSecond};

class TWatch

{

public:

void MoveHand(HandTypes HandType);

};

VCL Overview 117

05 0672324806 CH03 12/12/02 2:40 PM Page 117

class TWatchBrand : public TWatch

{

public:

void NewFeature(bool Start);

};

void (TWatch::*Wptr)(bool); // declare a base class member

// function pointer

Wptr = &TWatchBrand::NewFeature; // illegal assignment of derived

// class member function

C++Builder includes the __closure keyword to permit the previous situation.
Listing 3.2 uses the classes from Listing 3.1 to demonstrate how this is done.

LISTING 3.2 Assigning a Derived Class Member Function to a Base Member Function
Pointer by Using __closure

TWatchBrand *WObj = new TWatchBrand; // create the object

void (__closure *Wptr)(bool); // define a closure pointer

Wptr = WObj->NewFeature; // set it to the NewFeature member function

Wptr(false); // call the function, passing false

Wptr = 0; // set the pointer to NULL

delete WObj; // delete the object

Note that you can also assign closure pointers to the base class member functions, as
Listing 3.3 shows.

LISTING 3.3 Assigning Closure Pointers to Base Class Member Functions

void (__closure *Wptr2)(HandTypes);

Wptr2 = WObj->MoveHand;

Wptr2(htSecond);

The __closure keyword is predominantly used for events in C++Builder.

The __declspec Class Extension
VCL classes have the following restrictions imposed on them:

• No virtual base classes are allowed.

• No multiple inheritance is allowed.

• They must be dynamically allocated on the heap by using the global new
operator.

CHAPTER 3 Programming in C++Builder118

LISTING 3.1 Continued

05 0672324806 CH03 12/12/02 2:40 PM Page 118

• They must have a destructor.

• Copy constructors and assignment operators are not compiler generated for
VCL-derived classes.

The __declspec keyword is provided for language support with the VCL to overcome
the previously mentioned items. The sysmac.h file provides macros that you should
use if you need to use this keyword. The __declspec variations are discussed next.

__declspec(delphiclass, package)

sysmac.h defines the macro DELPHICLASS as __declspec(delphiclass, package). The
delphiclass argument is used for the declaration of classes derived from TObject. If a
class is translated from Delphi, the compiler needs to know that the class is derived
from TObject. Hence, this modifier is used.

Similarly, if you create a new class that is to be used as a property type in a compo-
nent, and you need to forward declare the class, you need to use the __declspec
(delphiclass, package) keyword for the compiler to understand. Listing 3.4 shows an
example of forward declaring a class where a new component has a pointer to that
class type.

LISTING 3.4 Forward Declaring a Class to Use as a Member of Another Class

class TMyObject;

class TMyClass : public TComponent

{

private:

TMyObject *FMyNewObject;

public:

__fastcall TMyClass(TComponent *Owner) : TComponent(Owner){}

__fastcall ~TMyClass(void);

};

class TMyObject : public TPersistent

{

public:

__fastcall TMyObject(void){}

__fastcall ~TMyObject(void);

};

Listing 3.4 will compile because the compiler only has a reference to the TMyObject
class. If you need to include a property of type TMyObject, you need to tell the

VCL Overview 119

05 0672324806 CH03 12/12/02 2:40 PM Page 119

compiler the class is derived from a descendant of TObject. The modified code is
shown in Listing 3.5.

LISTING 3.5 Using DELPHICLASS to Forward Declare a Class Required as a Property of
Another Class

class DELPHICLASS TMyObject;

class TMyObject;

class TMyClass : public TComponent

{

private:

TMyObject *FMyNewObject;

public:

__fastcall TMyClass(TComponent *Owner) : TComponent(Owner){}

__fastcall ~TMyClass(void);

__published:

__property TMyObject *NewObject = {read = FMyNewObject};

};

class TMyObject : public TPersistent

{

public:

__fastcall TMyObject(void){}

__fastcall ~TMyObject(void);

};

sysmac.h also defines a closely related macro RTL_DELPHICLASS as __declspec

(delphiclass). This macro is used when nonpackaged RTL (runtime library) function-
ality is required in a class. Because components are created in design time packages
or runtime/design time packages, you will find the DELPHICLASS macro used.

__declspec(delphireturn, package)

sysmac.h defines the macro DELPHIRETURN as __declspec(delphireturn, package).

The delphireturn parameter is used internally by C++Builder to enable classes created
with C++Builder to support Delphi’s built-in data types and language constructs.
Examples include Currency, AnsiString, Variant, TDateTime, and Set.

Similar to __declspec(delphiclass), there is also a macro defined for
__declspec(delphireturn). This macro, RTL_DELPHIRETURN, is used when Delphi’s
semantics are required in nonpackaged classes.

CHAPTER 3 Programming in C++Builder120

05 0672324806 CH03 12/12/02 2:40 PM Page 120

__declspec(dynamic)

sysmac.h defines the macro DYNAMIC as __declspec(dynamic). The dynamic argument is
used for dynamic functions and is valid only for classes derived from TObject. These
are similar to virtual functions except that the vtable information is stored only in
the object that created the functions. If you call a dynamic function that doesn’t
exist, the ancestor vtables are searched until the function is found. Dynamic func-
tions effectively reduce the size of the vtables at the expense of a short delay to look
up the ancestor tables.

Dynamic functions cannot be redeclared as virtual and vice versa.

__declspec(hidesbase)

sysmac.h defines the macro HIDESBASE as __declspec(hidesbase). The hidesbase parame-
ter is used to preserve Delphi semantics. Imagine a class called C1; derived from it is
another class called C2. If both classes contain a function called foo, C++ interprets
C2::foo() as a replacement for C1::foo(). In Delphi, C2::foo() is a different function
to C1::foo(). To preserve this in C++ classes, you use the HIDESBASE macro. Listing 3.6
demonstrates its use.

LISTING 3.6 Using HIDESBASE to Override Class Methods in Descendant Classes

class TMyObject : public TPersistent

{

public:

__fastcall TMyObject(void){}

__fastcall ~TMyObject(void);

void __fastcall Func(void){}

};

class TMyObject2 : public TMyObject

{

public:

__fastcall TMyObject2(void){}

__fastcall ~TMyObject2(void);

HIDESBASE void __fastcall Func(void){}

};

__declspec(hidesbase, dynamic)

sysmac.h defines the macro HIDESBASEDYNAMIC as __declspec(hidesbase, dynamic). This
is used when Delphi’s semantics need to be preserved for dynamic functions. The
HIDESBASE macro is used when you need to preserve the way Pascal overrides methods
in descendant classes. The HIDESBASEDYNAMIC macro does the same for dynamic
methods.

VCL Overview 121

05 0672324806 CH03 12/12/02 2:40 PM Page 121

__declspec(package)

sysmac.h defines the macro PACKAGE as __declspec(package). The package argument in
__declspec(package) indicates that the code defining the class can be compiled in a
package. This enables classes to be imported and exported from the resulting BPL
file.

__declspec(pascalimplementation)

sysmac.h defines the macro PASCALIMPLEMENTATION as __declspec(pascalimplementation).
The pascalimplementation argument indicates that the code defining the class was
implemented in Delphi. This modifier appears in a Delphi portability header file
with an .hpp extension.

The __fastcall Keyword
The __fastcall keyword is used to declare functions that expect parameters to be
passed in registers. If the parameter is a floating-point or struct type, the registers are
not used.

In general, use the __fastcall keyword only when declaring VCL class member func-
tions. Using this modifier in all other cases will, more often than not, result in
reduced performance. Typical examples of its use are found in all form class and
component member functions. You should also note that the __fastcall modifier is
used in name mangling.

The __property Keyword
The __property keyword is used to declare properties in classes, even non-VCL
classes. Properties are data members, with the following additional features:

• They have associated read and write methods.

• They can indicate default values.

• They can be streamed to and from a form file.

• They can extend a property defined in a base class.

• They can make the data member read-only or write-only.

Refer to Chapter 4, “Creating Custom Components,” for a more detailed look at
properties.

The __published Keyword
The __published keyword is permitted only in classes descendant from TObject.
Visibility rules for the __published section of a VCL class are the same as the public
section, with the addition of RTTI being generated for data members and properties
declared. RTTI enables you to query the data members, properties, and member func-
tions of a class.

This RTTI is useful in event handlers. All standard events have a parameter passed of
type TObject*. This parameter can be queried when the type of sender is unknown.

CHAPTER 3 Programming in C++Builder122

05 0672324806 CH03 12/12/02 2:40 PM Page 122

The following example shows how this is done when the OnButtonClick event is
called from either a button click or a manual call such as Button1Click(NULL). Note
that you can also do a manual call, passing the pointer of another button such as
Button1Click(Button2). Listing 3.7 shows how this can be implemented.

LISTING 3.7 Using RTTI to Query an Object Type

void __fastcall TForm1::Button1Click(TObect *Sender)

{

TButton *Button = dynamic_cast<TButton *>(Sender);

if (Button)

{

// do something if a button was pressed.

}

else

{

// do something when a call was made

// passing a NULL value for *Sender)

}

}

VCL and CLX
Although the underpinnings of VCL and CLX are very different (which is why VCL
is not portable across platforms), from a usage perspective they are almost identical,
providing largely the same components in the same hierarchy with the same
methods and properties. Look in the help to see if a component is VCL, CLX, or
both.

NOTE

If you create a new CLX Application or new CLX MDI Application, you get a project that only
supplies CLX components on the component palette. These projects are available from the
File, New menu, or from the dialog that is presented when you pick File, New, Other (CLX
Application is on the New page and CLX MDI Application is on the Projects page).

Review of the Component Palette
The VCL provides a large and mature family of interactive and noninteractive
components for use in your application. These can be found on the IDE component
palette.

Review of the Component Palette 123

05 0672324806 CH03 12/12/02 2:40 PM Page 123

To make that easier, the component palette is broken into pages, each containing a
variety of components. Also, some components only exist on the component palette
for specific editions.

• The Personal Edition contains the core VCL components.

• The Professional Edition adds the CLX components, the database components
(excluding support for Oracle 8i special features), Quick Reports, TeeCharts
(graphs), ActionLists and Actions, Office and other OLE Automation Server
components, a WebBrowser component, and the Indy Internet components.

• The Enterprise Edition adds special component features for Oracle, DataSnap
components for access to remote data module applications, SOAP, COM, and
CORBA-oriented distributed system connection components for use with
remote data modules, and Internet Express components to easily use XML with
remote data modules.

The pages of the component palette conveniently arrange these more than three
hundred components into something manageable.

Figure 3.2 shows the component palette properties dialog, which is produced when
you pick Properties from the pop-up menu you get with a right-button press over the
component palette.

CHAPTER 3 Programming in C++Builder124

FIGURE 3.2 Component palette properties dialog.

The pages contain components as follows (you can see the name of the component
in a hint if you hover over the component image on the palette):

• Standard: Basic user interface components, such as TMainMenu, TPanel, TLabel,
TEdit, TMemo, and TButton. These are typically standard Windows/Linux user
interface elements.

05 0672324806 CH03 12/12/02 2:40 PM Page 124

• Additional: More user-interface components, offering specialized features not
available from standard operating system components. These include special
buttons such as TBitBtn and TSpeedButton (extending TButton with images);
TMaskEdit (extending TEdit with the capability to enforce a format for input);
TDrawGrid and TStringGrid (which provide a scrollable spreadsheet-such as inter-
face object for images and strings, respectively); TImage and TShape, which can
be used as graphical elements, and the special Action components.

• Common Controls and Win32: There are many useful controls here. They
include the TpageControl, which enables you to create multipage user interfaces;
TProgressBar, which you can use to show the progress of some noninteractive
processing; TimageList, which can contain a set of indexable images for sequen-
tial display or use with controls such as TBitBtn. Note that the Common
Controls page is for CLX applications only and Win32 for Windows VCL appli-
cations only.

• System: A Windows only page, this contains a variety of specialized Windows
controls, including TPaintBox, TMediaPlayer, OLE, and DDE controls.

• Data Access: This now contains only a relatively small set of components that
are used for data access. These include TdataSource, which is used to connect
database components to the data-aware controls on the DataControls page);
TClientDataSet, which is used when working with client-server database
queries, and a set of XML transformation components.

• Data Controls: These are data-aware versions of standard user interface
controls. They can be hooked to a data source that makes the controls capable
of displaying data set rows or fields. Controls such as TDBGrid, TDBText (a label-
displaying field content), TDBEdit (allowing editing of the content of a field),
TDBImage (displaying an image stored in a BLOB field) makes it very easy to
connect your application to databases regardless of how they are implemented.

The next four pages offer components that provide similar interfaces, but which use
very different methods of accessing data in databases. At one time, C++Builder
provided only one type of database access component—the components now on the
BDE page. Now there are several different component sets for database access—which
means more choices. Fortunately, all those components link to the same data aware
controls using the TDataSource component on the Data Access page.

• dbExpress: These are a set of components to interface with the new lightweight
client-server database drivers from Borland. Those drivers can work with enter-
prise databases such as Oracle.

• DataSnap: These components connect to Remote Data Modules (RDM). RDM
are used to form the provider tier of a multitier system. TDCOMConnection enables

Review of the Component Palette 125

05 0672324806 CH03 12/12/02 2:40 PM Page 125

you to use DCOM to connect to the RDM, and pass data back and forth from
the components of the RDM as if they were on the local system. Other types of
connection are also provided. DataSnap is discussed in Chapter 21, “DataSnap
Multitier Connections.”

• BDE: These are a set of components to interface with Borland Database Engine
drivers, which allow access to databases both directly through the BDE and
indirectly through ODBC. Note that the BDE is currently stable—which means
it will not see much if any further development.

• ADO: This set of components only applies to Windows, where it connects to
databases through ActiveX Data Objects.

• Interbase: This set of components connects to the Borland open source
Interbase client-server database.

Multitier applications other than pure database applications are also easy to program
using components. The next few pages are dedicated to those sorts of distributed
programs:

• WebServices: These components are used to provide or work with WebServices-
enabled applications, which are covered in Chapter 19, “SOAP and Web
Services with BizSnap.”

• InternetExpress, Internet, WebSnap, FastNet: These components work with
HTML, HTTP, and other Web protocols.

• Decision Cube: This powerful database component set enables you to provide
fairly high-end analytical capabilities to your users.

Creating User Interfaces
As you saw in Chapter 1, it is easy to create a user interface in C++Builder by
combining forms with components. You can put application code in event handlers
on the controls so they can react to mouse and keyboard actions.

But, as your user interfaces become more complex, controls piled on forms are not
enough to make your programs manageable. In this section, you explore the next-
level techniques required to deal with complex user interfaces.

Component Templates and Frames
As you develop your applications, you might develop a style of components for your
user interfaces. For instance, your database user interfaces might typically have a
TDBGrid to its right, a splitter to its left, and a TDBRecordView to the left of that.

CHAPTER 3 Programming in C++Builder126

05 0672324806 CH03 12/12/02 2:40 PM Page 126

C++Builder offers three ways to solve this problem, any of which is better than
repeatedly dropping the same configuration of components on a form.

• Use Component Templates—these are combinations of components that you
select, set properties for, and put on the component palette as a group for later
reuse. The reused components are independent of the template after they have
been dropped on the form.

• Use Frames—these are combinations of components placed on a form-like
object, which are considered a cohesive whole. You can set properties and
event handlers for these components and for the frame as a whole. Frames can
be placed on the component palette in which case they can be dropped onto
other user interfaces (forms or frames). They can also be placed in the Object
Repository, which enables them to also be used as the basis for inheritance.
Such frames can be used to extend an already created frame, and then changes
to the original frame will also affect the descendant frame.

• Create your own combined component by programming the creation of
subcomponents into a new component. Component creation is covered in
Chapter 4, “Creating Custom Components.”

Component Templates
You can see a pair of components about to be turned into a component template in
Figure 3.3:

Creating User Interfaces 127

FIGURE 3.3 Creating a component template from a pair of components.

Figure 3.4 shows the form from which the template was derived, after the template
was dropped on the form. You can see the component on the template, where it
shows the icon of the first of the two components selected to make the template; the
hint shows that the component is called TEchoedEdit, demonstrating that you can set
a desired name for this new component. You can also see in the editor window that
the dropped component template has inserted a copy of the original event handler,
with the referenced component names changed.

05 0672324806 CH03 12/12/02 2:40 PM Page 127

FIGURE 3.4 Template on the form.

What happens when the event handler refers to a component outside the template?
That name is not changed. Of course, that will cause a compilation problem if you
drop the template on a form that does not include the named external component.

So, component templates are useful, but they should be constructed carefully if they
are to be successfully reused.

Frames
The word Frame is used to describe an object of the TFrame class or one of its descen-
dants. Conceptually, a Frame can be thought of as a child Form, although in reality,
a Frame is more closely related to a ScrollBox. Let’s examine this argument more
closely.

The TFrame class is a direct descendant of the TCustomFrame class, serving only to
publish selected properties of TCustomFrame; no implementation code is added. The
TCustomFrame class, in turn, descends from the TScrollingWinControl class. Both the
TCustomForm and TScrollBox classes are also descendants of the TScrollingWinControl
class.

The TScrollingWinControl class, a direct descendant of the TWinControl class, extends
its parent class by providing support for horizontal and vertical scrollbars and
management of the controls that it contains. The TCustomForm class extends the
TScrollingWinControl class by providing support for aspects specific to top-level
windows. The TScrollBox class extends the TScrollingWinControl class only via the
BorderStyle property. However, the TCustomFrame class presents no additional proper-
ties or member functions to its parent class.

CHAPTER 3 Programming in C++Builder128

05 0672324806 CH03 12/12/02 2:40 PM Page 128

In short, a Frame is little more than a TScrollingWinControl object—a child window
with scrolling support. At design time, a Frame most closely resembles a TForm object.
At runtime, a Frame most closely resembles a TScrollBox object with its BorderStyle
property set to bsNone.

The TCustomFrame Class
Because the TFrame class is a descendant of the TCustomFrame class and serves only to
publish selected properties of its parent class, it is worth examining the TCustomFrame
class in $(BCB)\Source\VCL\Forms.hpp.

Within the TCustomFrame constructor, the Width property is assigned a value of 320 and
the Height property is specified as 240. Also from within the constructor, the follow-
ing state flags are added to the ControlState property: csSetCaption,
csAcceptsControls, csCaptureMouse, csClickEvents, and csDoubleClicks. In fact, apart
from the csAcceptsControls flag, the other state flags are automatically set for all
TControl descendants. It is the csAcceptsControls state flag that makes the Frame
object a container control. In addition, similar to the case when working with a
Form (or a Data Module) at design time, the TCustomFrame class can also contain
nonvisual components. Because these nonvisual components should be streamed to
the .DFM file with the Frame object, the TCustomFrame class extends (by overriding) the
DYNAMIC GetChildren() member function in which a direct call to the supplied
TGetChildProc-type callback function is made for each owned nonvisual component.
Note that this is the same technique performed by the TCustomForm and TDataModule

classes.

ActionLists are supported in the TCustomFrame class via the private AddActionList()
and RemoveActionList() member functions. These functions serve to append and
delete any ActionList objects (contained within the TFrame descendant class) to and
from the internal ActionList array of the parent Form, respectively. As such, each of
these member functions is called appropriately from within the overridden
SetParent() (when the parent Form changes) and Notification() (when an ActionList
is added/removed) member functions.

Working with Frames at Design Time
When a new TFrame descendant class is added to a project at design time, the IDE
presents an instance of this class contained inside a Form Designer (a TWinControlForm
object). You can then work with this class just like a form. For example, you can
change aspects of the TFrame descendant class by changing any of its published prop-
erties. In fact, except for the TScrollBox::BorderStyle property, the properties (includ-
ing event types) of the default TFrame descendant are identical to those of the
TScrollBox class.

Manipulation of a TFrame descendant class within its own Form Designer makes
changes to the class itself. This is identical to what happens with a TForm descendant

Creating User Interfaces 129

05 0672324806 CH03 12/12/02 2:40 PM Page 129

class in its Form Designer. For example, when you drop a new component on a Form
at design time, the header file of the TForm descendant class is updated to reflect this
change. Similarly, when you change a property of a TFrame descendant class in its
Form Designer, the changes affect either the class header file or the corresponding
.DFM file. This is in contrast to working with most other components, where design
time manipulation only affects a particular instance of the component class. For
example, when you drop a TPanel component on a Form at design time, and then
change the Color property of this Panel, you are only altering a single instance of the
TPanel class, not the class itself. When utilizing components you expect that: In
many situations, the creation of a custom component class for each instance of a
particular component is not warranted. There’s no need to create, for example, a
TRedPanel class just to use a red-colored TPanel variation.

Of course, the C++Builder IDE supports the design time manipulation of a particular
instance of a TFrame descendant class. For example, you can select the Frames icon
from the Standard page of the Component Palette to add an instance of any TFrame
descendant class to another container control, such as a Form, a Panel, or even
another Frame, and then modify it. Or, you can add a TFrame descendant class to the
Component Palette by picking Add To Palette from the pop-up menu that appears
when the Frame is right-clicked in its Form Designer, from which you can reuse it
elsewhere.

The values set in properties of any TFrame descendant class or its components are
considered defaults for the frame’s instances and descendants. If you do not set those
properties in an instance or descendant, changes to the ancestor will take immediate
effect in the descendant or instance.

For example, imagine you have a button in your frame class that has the value Big
Button as the default for its caption. Drop an instance of this frame on your form.
Then, change the caption of the button in the class to Former Big Button. The
instance you dropped on the form will change to match. However, if you change the
caption on the button in the instance of the frame on your form to X, and then
change the caption of that same button in the class to Y, the instance will retain the
caption X.

Working with Frames at Runtime
There is nothing special about working with a TFrame descendant class instance at
runtime—it is just another type of TWinControl descendant. Indeed, a Frame most
closely resembles a ScrollBox at runtime. Without the design time enhancements
presented by the IDE and TCustomFrame class, there would be little advantage to using
a Frame over a ScrollBox.

However, frames have more sophisticated resource management than most other
controls. For example, if you place a TImage component on a Form, load the TImage

CHAPTER 3 Programming in C++Builder130

05 0672324806 CH03 12/12/02 2:40 PM Page 130

component with a 1MB bitmap file, and then make a dozen copies of this TImage
component, the result would be a significant increase in the size of your application.
On the other hand, if you add a new Frame to your project, drop a TImage compo-
nent on the Frame in its Form Designer (in other words, modify the TFrame descen-
dant class), load the TImage component with a 1MB bitmap file, and then use a
dozen instances of this Frame instead of the individual TImage objects, you would not
see a significant increase in application size. This results from the fact that each
Frame instance will share only one copy of the compiled bitmap resource. This is in
contrast to using a dozen TImage instances, where a dozen copies of the bitmap
would be compiled into your application’s resources.

Creating a TFrame Descendant Class
As you have seen, creating a TFrame descendant class is simplified by the visual
editing features of the IDE. This is in contrast to creating, for example, a TScrollBox
descendant, which requires programming. You are also not required to package and
register the component class when working with frames.

Practical Example: Using Frames to Create a Pop-Up Window
Many of the latest applications present temporary pop-up windows that contain
different types of controls. For example, many of the toolbar buttons in Microsoft
Office 2000 present what appear to be standard pop-up menus, but are actually
custom topmost, captionless windows. Another common example of such a window
is the drop-down list portion of a combo box control.

You can create your own version of a pop-up window via a TCustomFrame descendant
class (see Figure 3.5). The interface for this class is provided in Listing 3.8.

Creating User Interfaces 131

FIGURE 3.5 Using a Frame as a pop-up window containing a TreeView control.

LISTING 3.8 TPopupFrame.h, a TFrame Descendant Class

//---//

#ifndef PopupFrameUnitH

#define PopupFrameUnitH

//---//

05 0672324806 CH03 12/12/02 2:40 PM Page 131

#include <Classes.hpp>

#include <Controls.hpp>

#include <ComCtrls.hpp>

//---//

class TPopupFrame : public TFrame

{

__published:

TTreeView *TreeView1;

void __fastcall TreeView1MouseMove(TObject *Sender, TShiftState Shift,

int X, int Y);

void __fastcall TreeView1MouseUp(TObject *Sender, TMouseButton Button,

TShiftState Shift, int X, int Y);

private:

TNotifyEvent OnCloseUp_;

MESSAGE void __fastcall CMMouseEnter(TMessage& AMsg)

{

ReleaseCapture();

}

MESSAGE void __fastcall CMMouseLeave(TMessage& AMsg)

{

if (Visible) SetCapture(TreeView1->Handle);

}

protected:

virtual void __fastcall CreateParams(TCreateParams& AParams)

{

TFrame::CreateParams(AParams);

AParams.Style = AParams.Style | WS_BORDER;

AParams.ExStyle = AParams.ExStyle | WS_EX_PALETTEWINDOW;

}

virtual void __fastcall CreateWnd()

{

TFrame::CreateWnd();

::SetParent(Handle, GetDesktopWindow());

SNDMSG(TreeView1->Handle, WM_SETFOCUS, 0, 0);

}

DYNAMIC void __fastcall VisibleChanging()

{

TFrame::VisibleChanging();

CHAPTER 3 Programming in C++Builder132

LISTING 3.8 Continued

05 0672324806 CH03 12/12/02 2:40 PM Page 132

if (Visible) ReleaseCapture();

else SetCapture(TreeView1->Handle);

}

public:

BEGIN_MESSAGE_MAP

VCL_MESSAGE_HANDLER(CM_MOUSEENTER, TMessage, CMMouseEnter)

VCL_MESSAGE_HANDLER(CM_MOUSELEAVE, TMessage, CMMouseLeave)

END_MESSAGE_MAP(TFrame)

public:

__fastcall TPopupFrame(TComponent* AOwner);

__property TNotifyEvent OnCloseUp = {read = OnCloseUp_, write = OnCloseUp_};

};

//---//

extern PACKAGE TPopupFrame *PopupFrame;

//---//

#endif

A pop-up window is actually a child of the desktop window (the WS_CHILD style bit is
set) that is created with a combination of the WS_EX_TOOLWINDOW and WS_EX_TOPMOST

extended style bits (represented by WS_EX_PALETTEWINDOW). The WS_CHILD bit prevents
your Form from losing activation when the pop-up window itself is activated. The
WS_EX_PALETTEWINDOW bit prevents the pop-up window from being obscured by other
windows (WS_EX_TOPMOST) and from appearing in the dialog that’s displayed when the
end user presses the Alt+Tab keystroke combination (WS_EX_TOOLWINDOW).

To realize the style bit manipulation, you override the virtual CreateParams() member
function:

virtual void __fastcall CreateParams(TCreateParams& AParams)

{

TFrame::CreateParams(AParams);

AParams.Style = AParams.Style | WS_BORDER;

AParams.ExStyle = AParams.ExStyle | WS_EX_PALETTEWINDOW;

}

First, you call the CreateParams() member function of the parent class so that (up the
heirarchy ladder) the TWinControl can add the WS_CHILD bit, among others. Next, you
add the WS_BORDER bit to the Style data member, and the WS_EX_PALETTEWINDOW bit to
the ExStyle data member of the TCreateParams-type argument.

Creating User Interfaces 133

LISTING 3.8 Continued

05 0672324806 CH03 12/12/02 2:40 PM Page 133

To change the parent of the pop-up window to the desktop window, you override
the virtual CreateWnd() member function:

virtual void __fastcall CreateWnd()

{

TFrame::CreateWnd();

::SetParent(Handle, GetDesktopWindow());

SNDMSG(TreeView1->Handle, WM_SETFOCUS, 0, 0);

}

First, you call the CreateWnd() member function of the parent class so that (up the
heirarchy ladder) the TWinControl class can register the class with Windows and create
the window via CreateWindowHandle() member function. Next, you use the
SetParent() API function along with the GetDesktopWindow() API function to change
the parent of the pop-up window to the desktop window. This manipulation ensures
that the contents of the pop-up window are not clipped to the bounds of its usual
parent (a Form). You also send the child TreeView control the WM_SETFOCUS message to
fool it into thinking it has keyboard focus.

In addition to manipulating the style and parent of the pop-up window, you also
need to manage its mouse-related events—specifically, those that should trigger the
pop-up window to close. To this end, you make use of the VCL CM_MOUSENTER and
CM_MOUSELEAVE messages and extend the virtual VisibleChanging() member function.
You also make use of the readily available TTreeView::OnMouseMove and
TTreeView::OnMouseUp events. Mouse capture is accordingly granted/removed from the
TreeView control so that its OnMouseUp event handler will fire, even when a mouse
button is released when the cursor is beyond the bounds of your pop-up window.
Specifically, unless your pop-up window has captured the mouse, the WM_*BUTTONUP
messages will not be sent when the cursor is located outside the client area of your
pop-up window.

In fact, every step that you performed to create your pop-up window class could just
as well have been performed without the use of Frames. However, the goal of this
example was to demonstrate that the use of Frames can significantly simplify the
process of implementing such a class. For example, you did not have to manually
declare, and then assign the appropriate member functions to the TreeView’s
OnMouseMove and OnMouseUp events. Such a task can quickly become cumbersome when
a component contains several different child components, each with a vast number
of event handlers. For a slightly more complex example of a TFrame descendant class,
examine the TMCIWndFrame class included in the companion CD-ROM as part of the
Proj_VideoDemo.bpr project in the VideoDemo folder.

Finally, note that the redefinition of any virtual or dynamic member function
applies only at runtime. In this case, your redefined version will not be called at

CHAPTER 3 Programming in C++Builder134

05 0672324806 CH03 12/12/02 2:40 PM Page 134

design time. This would not be the case if you are going to place your component in
a design time package and register it with the IDE. Indeed, when a TFrame descendant
class is registered as a design time component, use of the csDesigning ComponentState

flag might be needed.

Inheriting from a TFrame Descendant Class
Descendants of a TFrame descendant class can also be visually manipulated at design
time. For example, if you create a descendant of your TPopupFrame class, it too will
open in its own Form Designer and reflect the attributes of its parent class. The
aforementioned rules of inheritance apply here as well—subsequent design time
changes made to the parent class will be reflected in the descendant, but not vice
versa.

It seems, however, that the IDE is not well-suited to handle visual Frame inheritance.
That is, the procedure, although straightforward, is not entirely user friendly. The
following steps are required to create a descendant of a TFrame descendant class that
can be visually designed:

1. Add the parent TFrame descendant class to the project (for example, TFrame2).

2. Choose File, New Frame to add a new TFrame descendant class to the project
(for example TFrame3).

3. Edit the header and source files of the new TFrame descendant class (Unit3.h,
Unit3.cpp), replacing all occurrences of the original parent class (TFrame) with
the name of the new parent class (for example, TFrame2).

4. Edit the .DFM file of the new descendant class, changing the keyword object
with the keyword inherited.

Reusing Frames
Like forms, frames can be added to the Object Repository for use in subsequent
projects. Frames can also be distributed to other developers by simply supplying the
source code (interface and implementation) and the .DFM file. Moreover, as previ-
ously mentioned, a TFrame descendant class can be placed in a design time package
and registered with the IDE much like any other custom component class. For
example, to register a new TFrame descendant class TMyFrame, you simply use the
PACKAGE macro where necessary, and then define the familiar ValidCtrCheck() and
Register() functions in the class source file:

static inline void ValidCtrCheck(TMyFrame*)

{

new TMyFrame(NULL);

}

Creating User Interfaces 135

05 0672324806 CH03 12/12/02 2:40 PM Page 135

namespace Myframeunit

{

void __fastcall PACKAGE Register()

{

TComponentClass classes[1] = {__classid(TMyFrame)};

RegisterComponents(“Samples”, classes, 0);

}

}

However, there are some caveats when working with a Frame in a package at design
time. First, when utilizing with the Package Editor, the IDE insists on opening the
.DFM file of a TFrame descendant class as if it was a standard Form object.
Consequently, the entries of the .DFM file are changed to reflect those of a TForm
descendant class. For example, a normal default TFrame descendant class will exhibit
the following entries:

object Frame2: TFrame2

Left = 0

Top = 0

Width = 320

Height = 240

TabOrder = 0

end

On the other hand, the .DFM file for the same TFrame descendant class that has been
mangled by the IDE will appear as follows:

object Frame2: TFrame2

Left = 0

Top = 0

Width = 320

Height = 240

Color = clBtnFace

Font.Charset = DEFAULT_CHARSET

Font.Color = clWindowText

Font.Height = -11

Font.Name = ‘MS Sans Serif’

Font.Style = []

OldCreateOrder = True

PixelsPerInch = 96

TextHeight = 13

end

CHAPTER 3 Programming in C++Builder136

05 0672324806 CH03 12/12/02 2:40 PM Page 136

Aside from the removal of the entry for the TabOrder property, the IDE appends
entries that apply to descendants of the TForm class, but not to TFrame descendants
(OldCreateOrder, for example). Moreover, after a TFrame descendant class is registered,
subsequent attempts to open its source file (and thus, its .DFM file) will result in the
aforementioned mangling (regardless of whether the Package Editor is in use). Note
that if a .DFM should become inadvertently changed, you can simply append an entry
for the TabOrder property, and then remove all nonapplicable entries.

Another side effect of registering a TFrame descendant class is that its contained
components cannot automatically be manipulated at design time. For example,
when included as a component template or simply added to a project, the contained
components of a TFrame descendant class instance can be individually manipulated at
design time. However, when working with a design-time instance of a registered
TFrame descendant class, these contained components are no longer accessible;
instead, other measures must be implemented (for example, individual property
editors).

Closing Remarks on Frames
Admittedly, the design-time functionality presented by Frames is far from that neces-
sary for true visual component development. At this stage, Frames are perhaps more
useful for simply managing groups of controls rather than for creating complex
components. Indeed, when system resources are an issue, the use of a TFrame descen-
dant class might not be the most robust approach. Recall that the TFrame class is a
TWinControl descendant, and thus each instance consumes a window handle. Still,
frames are a step in the right direction, and the concept is sound. Undoubtedly, you
can expect to see an increased level of sophistication in subsequent versions of
C++Builder.

Coping with Different Screen Conditions
Another important issue in user interface design is managing windows as they are
resized so that their components continue to occupy an optimal arrangement in the
space available.

Fortunately, C++Builder provides a variety of mechanisms for allocating the window
real estate:

• Alignment—controls the location of visual components by specifying the rela-
tive space they should occupy to the left, right, top, bottom, and client
(remainder) of the parent.

• Anchor—controls the specific positioning of a visual component by anchoring
one or more corners of the component.

Creating User Interfaces 137

05 0672324806 CH03 12/12/02 2:40 PM Page 137

In addition to these properties, two components are especially important in manag-
ing window layouts:

• TScrollbox—a panel that forms scrollbars when it gets too small to show all the
components it contains.

• TSplitter—a panel that enables you to change the size of aligned controls it
separates by dragging the splitter.

Alignment
TPanel and many other controls support alignment through the Align property.

Figure 3.6 shows the variations in alignment of a TPanel on a form.

CHAPTER 3 Programming in C++Builder138

FIGURE 3.6 Alignment of panels on a form.

Figure 3.7 shows how the panels adjust in size as the window changes shape.

FIGURE 3.7 Panels on a form change shape when aligned.

05 0672324806 CH03 12/12/02 2:40 PM Page 138

Figure 3.8 shows a fully aligned user interface with many aligned elements: grids,
panels, tabbed pages. Each panel is separated by splitters allowing their relative sizes
to be changed.

Creating User Interfaces 139

FIGURE 3.8 A user interface with many aligned elements.

Anchors
This figure also shows some anchored elements—TButton, TEdit, TUpDown components.
Such components do not offer the Align property, but they do offer the Anchor prop-
erty.

Figure 3.9 shows what happens to buttons anchored in a variety of ways as their
parent changes shape and size.

Notice that, unlike alignment, anchoring does not prevent elements from overlap-
ping. Under alignment, a component can shrink to invisibility.

Alignment, Anchors, Splitters, and Scroll Boxes
As you can see in Figure 3.10, the TSplitter components work with alignment to
allow user flexibility in changing the shape and size of portions of the user interface.

By moving the splitters (the dark vertical lines at the right edge of the Left panel and
on the left edge of the Right panel), the proportion of the form given to each of the
aligned components can be changed at runtime. Notice how the shapes and sizes of
the anchored components also change—within limits. When the limits are trans-
gressed, such components disappear over the edge of their parent panel and are
unreachable.

05 0672324806 CH03 12/12/02 2:40 PM Page 139

FIGURE 3.9 The behavior of anchored buttons.

CHAPTER 3 Programming in C++Builder140

FIGURE 3.10 The behavior of aligned panels and anchored buttons as TSplitters are
moved.

05 0672324806 CH03 12/12/02 2:40 PM Page 140

The TSplitter component needs to be a sibling of, and aligned the same as, the
component it controls. Thus, the left splitter, which controls the left pattern, has its
alignment set to alLeft; the right splitter is aligned alRight.

Because splitters and alignment can cause unanchored and anchored components
alike to become unreachable, it is a good idea to use the TScrollBox for panels where
that can occur.

In Figure 3.10, for instance, the top and bottom panels cannot be affected by either
resizing or by the splitters. But the left, right and client panels can be. In Figure 3.11,
you can see the effect of replacing the client-aligned panel with a client-aligned
TScrollBox.

Creating User Interfaces 141

FIGURE 3.11 The behavior of a TScrollBox as TSplitters are moved.

Although the anchors can squeeze some of the controls out of existence, those not
affected by the size of the TScrollBox are still able to be reached even when the scroll-
box starts to cut them off, simply by using the scrollbar.

Coping with Complexity in the Implementation of the User
Interface
Although much of the complexity of the user interface resides in the layout and
behavior of visual components, most of the real work of the application is done in
the component event handlers.

Unfortunately, this can lead to various problems, especially when it is desired to
share the actions of the user interface with several different visual representations.
For instance, a typical application might reveal a particular feature as a menu entry, a
toolbar icon, and a control in a dialog. For even more controllability, it might offer a
macro language that enables control from external applications, perhaps through a
COM interface.

C++Builder does allow event handlers to be shared. The event handlers can interro-
gate the Sender argument to determine the source of their invocation. This offers
some ability to reduce the complexity of the user interface implementation.

05 0672324806 CH03 12/12/02 2:40 PM Page 141

There is another element of such user interfaces that presents a problem. Sometimes
a feature might be disabled or an option can be checked off. Managing this in
conventional event handlers usually results in the event handler having code that
sets the appearance of every user interface element that represents the feature. That
adds complexity to the event handler, and can lead to errors in the behavior of the
user interface.

To ease the implementation of user interfaces, Borland introduced the TAction
classes. These actions, are components that can respond to control events. Unlike
event handlers, which are attached to components, components attach to actions.
This reversal of direction helps to ensure that any number of components can share
and be affected by the state of the action—for instance, whether it is enabled or
checked.

Action instances can be organized into lists, represented by the TActionList class.
Usually a given form or application will have a single action list.

One of the easiest ways to see a TActionList in action is to create an MDI (Multiple
Document Interface) Application in the File, New menu dialog tab Projects.

Figure 3.12 shows the resulting interface with the action list open, and its File cate-
gory selected. The File New action within that category is selected, and the Object
Inspector is displaying the event properties for the action. Below all that is the
Source Code Editor showing the default code automatically created for the event
handler on the action.

CHAPTER 3 Programming in C++Builder142

FIGURE 3.12 Editing an action event handler.

05 0672324806 CH03 12/12/02 2:40 PM Page 142

Naturally, you could add any additional code you might need to the event handler.
Also of interest is that the application’s menu entry for File, New and the toolbar
icon for creating a new file (the white sheet of paper icon) both share the action and,
through it, the event handler.

It is simple to create your own action list with actions, and associate each action
with a user interface element like a menu entry or button.

Figure 3.13 shows a simple program with two actions and an action list.

Creating User Interfaces 143

FIGURE 3.13 A simple Action List Program.

This example shows how the action contributes the caption to the menu and the
check box label. If you change the caption on the action, all the controls displaying
that text change to match the text you provided.

You can also see from the event handler for the EnableTheButtonAction that it sets the
action for the button to be enabled or disabled based on its Checked state. When the
action is disabled, both the button and the menu item will be disabled—and vice
versa.

Action Manager
C++Builder 6 introduced the Action Manager and Action Bands. Action Bands enable
you to create user interfaces by dragging and dropping actions onto special visual
components: the TActionMainMenuBar and the TActionToolBar.

NOTE

TActionManager, TactionMainMenuBar, and TActionToolBar are not allowed in CLX
programs at this time.

05 0672324806 CH03 12/12/02 2:40 PM Page 143

Figure 3.14 shows a design session with an Action Manager–oriented program. You
can see the Action Manager window, which is displaying the list of actions and
action categories. These actions are no different from those you create for an
ActionList–oriented program.

CHAPTER 3 Programming in C++Builder144

FIGURE 3.14 A session with the Action Manager.

What is different is the use of TActionMainMenuBar and TActionToolBar. Actions from
Action Manager have been dragged and dropped onto the TActionToolBar, automati-
cally forming buttons (the images are from the image list and are attached to the
action so that they are consistent across the application. The categories have been
dropped on the menu bar to form menu headings with items underneath them.

A number of properties affect the appearance and behavior of the menus, menu
items, and the buttons. For instance, the Action Window contains Caption Options
that control whether buttons on the toolbar show captions, and if captions are
shown, whether they are always shown or if showing captions is selective.

Action Manager–driven menus and toolbars offer the same features present in many
modern applications such as Microsoft office—including the capability to order
menu items based on the usage during the session.

Another feature of the Action Manager is the capability to present the Action
Manager to the user at runtime so that they can customize the tool bars and menu
bars. Adding the Customize Action Bars standard action to the Action Manager and
dragging and dropping it on the menu or tool bar are all you need to do.

05 0672324806 CH03 12/12/02 2:40 PM Page 144

Standard Actions
C++Builder offers a wide variety of standard actions such as Copy, Paste, File Open,
and File Save As.

Some of these actions can be very useful either as everything you need, or as build-
ing blocks for enhancement. Here are some of the more interesting types:

Format actions—These actions affect the active TRichEdit on the form (if there is
one) and alter the attributes of its selected text. They are attached to the button or
menu item that causes the action.

• TRichEditBold

• TRichEditItalic

• TRichEditUnderline

• TRichEditStrikeOut

• TRichEditBullets

• TRichEditAlignLeft

• TRichEditAlignRight

• TRichEditAlignCenter

Help Actions

• THelpContextAction—If this action is assigned to the Action List, the currently
selected control’s HelpContext property is forwarded to the Help Manager so
that the appropriate help can be displayed. Note that this is not assigned to a
control, but to the list, and that it operates with all the controls on the form.

File Actions

• TFileOpen—Attach this to a control or menu item and put appropriate code in
the OnAccept and OnCancel event of the action to make sure that the right things
happen after the dialog is presented. The action’s Dialog property can be used
to find information about the file to be opened, and, at design or runtime, you
can also use this to set the various properties that pertain to which files will be
displayed.

• TFileSaveAs—This is much like FileOpen, with an OnAccept and OnCancel event to
be filled in with what you need to have done.

• TFilePrintSetup—This action, like the other file actions, presents a dialog,
which, in this case sets up the printer. Because the dialog reaches directly into
the printer parameters, there is no need for additional processing.

Creating User Interfaces 145

05 0672324806 CH03 12/12/02 2:40 PM Page 145

• TFileRun—This runs the specified application or file.

• TFileExit—This closes the main form.

Search actions—Like the formatting actions, the search actions pertain to the
active control, assuming it can accept search and/or replace operations. The dialogs
automatically move the selection appropriately.

• TSearchFind

• TSearchFindFirst

• TSearchReplace

• TSearchFindNext

Tab (page control) Actions—These operate on the currently active tab or page
control

• TPreviousTab

• TNextTab

List actions—These operate on the currently selected list control.

• TListControlCopySelection

• TListControlDeleteSelection

• TListControlSelectAll

• TListControlClearSelection

• TListControlMoveSelection

• TStaticListAction—This action supplies items to the target control or controls.
On a TActionToolBar, it provides a drop-down list.

• TVirtualListAction—This is similar to the TStaticListAction, except that it uses
the OnGetItem event handler as its way of supplying items. This means it can get
the items from other controls or from a database or some other source.

Dialog Actions—These actions provide the specified dialog, and offer the appropri-
ate events to enable you to process the selection.

• TOpenPicture

• TSavePicture

• TColorSelect

CHAPTER 3 Programming in C++Builder146

05 0672324806 CH03 12/12/02 2:40 PM Page 146

• TFontEdit

• TPrintDlg

Internet Actions

• TBrowseURL—Launches the system default browser on the specified URL.

• TDownLoadURL—This causes the specified URL to be downloaded to a local file. A
periodic event occurs to report progress, and you can write code to do things
like update a progress bar.

• TSendMail—This enables the user to send a MAPI email message made from the
material in the Text property.

Tools Actions

• TCustomizeActionBars—Provides an Action Manager–based customization dialog
so that the user can rearrange the content of the TActionMainMenuBar and the
TActionToolBar.

Enhancing Usability by Allowing Customization of the User
Interface
A good way to improve the usability of your interface is to enable the user to
customize its appearance. This can be as simple as changing the color of different
elements of the interface, or it can be as complex as allowing the user to undock
parts of the interface or rearrange others. The ability to resize an interface is impor-
tant, as is the ability to make only certain parts of the interface visible at any given
time. Of all these, using color is probably the simplest. All you need to do is give the
user access to the Color properties of the controls you use to create the interface. In
some cases this might not be appropriate; for instance, when the interface is highly
graphical because there might only be small areas of the interface suitable for such
customization. A good way to meet the user’s expectations in terms of color is to use
the system colors when possible. The system colors are shown in Table 3.2 along
with a brief description of what they are for.

TABLE 3.2 System Colors

System Color Description

clBackground Current background color of the Windows desktop

clActiveCaption Current color of the title bar of the active window

clInactiveCaption Current color of the title bar of inactive windows

clMenu Current background color of menus

clWindow Current background color of windows

clWindowFrame Current color of window frames

Creating User Interfaces 147

05 0672324806 CH03 12/12/02 2:40 PM Page 147

clMenuText Current color of text on menus

clWindowText Current color of text in windows

clCaptionText Current color of the text on the title bar of the active window

clActiveBorder Current border color of the active window

clInactiveBorder Current border color of inactive windows

clAppWorkSpace Current color of the application workspace

clHighlight Current background color of selected text

clHighlightText Current color of selected text

clBtnFace Current color of a button face

clBtnShadow Current color of a shadow cast by a button

clBtnShadow Current color of text that is dimmed

clBtnText Current color of text on a button

clInactiveCaptionText Current color of the text on the title bar of an inactive window

clBtnHighlight Current color of the highlighting on a button

cl3DDkShadow Dark shadow for three-dimensional display elements

cl3DLight Light color for three-dimensional display elements (for edges

facing the light source)

clInfoText Text color for ToolTip controls

clInfoBk Background color for ToolTip controls

For example, when displaying text in a window, use the clWindowText color. If the
text is highlighted, use clHighlightText. These colors will already be specified to the
user’s preference and should, therefore, be a good choice for the interface. This
section concentrates on the resizing, aligning, visibility, and docking capabilities of a
user interface. The MiniCalculator provides all these features, so it is used as an
example. The remainder of this section is broken into subsections, each giving an
example of a particular technique.

Docking
In the some programs, the portions of the display can be undocked from the rest of
the interface, and then positioned and resized independently. To make it possible to
undock a panel from the main form, you must do three things:

1. Set DragKind to dkDock.

2. Set DragMode to dmAutomatic.

3. Set DockSite to true.

You can do all this at design time using the Object Inspector.

CHAPTER 3 Programming in C++Builder148

TABLE 3.2 Continued

System Color Description

05 0672324806 CH03 12/12/02 2:40 PM Page 148

This is enough to make a panel dockable, but to make it really do the job, a little
more work is required.

Consider what changes, if any, you need to make when the panel is undocked from
the form. A first thought might be to write a handler for the form’s OnUnDock event.
However, this might not be suitable if you are using a version of C++Builder that has
the bug in the VCL that results in OnUnDock not being fired the first time a control is
undocked. If you require any resizing, clearly it will not work as you expect. A better
approach is to write a handler for panel’s OnDockEnd event and check the value of the
Floating property of the panel. If Floating is true and this is the first call to
OnDockEnd, the control has been undocked. This event occurs at the same time as the
OnUnDock event, so there is no perceptible difference to the user. The only additional
requirement of using this method is that you must use a variable to indicate whether
the call to OnEndDock is the first call in the docking action. This is because OnEndDock is
called at the end of every move made by a docking control. You can use a bool vari-
able, for instance FirstPanelEndDock, to indicate if the OnEndDock event is the first in
the current docking sequence. This requires you to add the line

bool FirstPanelEndDock;

to the form’s class definition and initialize it to true in the constructor:

FirstPanelEndDock = true;

The code required in the panel’s OnEndDock event is shown in Listing 3.9.

LISTING 3.9 Implementation of OnEndDock

void __fastcall TMainForm::PanelEndDock(TObject *Sender,

TObject *Target,

int X,

int Y)

{

if(Panel->Floating)

{

SetFocus();

}

if(FirstPanelEndDock)

{

if(Panel->Floating) FirstPanelEndDock = false;

Height = Height - Panel->Height;

}

}

Creating User Interfaces 149

05 0672324806 CH03 12/12/02 2:40 PM Page 149

If this is the first time that Panel’s OnEndDock event is fired in the current docking
sequence (that is, Panel has just been undocked and FirstPanelEndDock is true), you
resize the form by subtracting the Height of Panel from The form’s current Height.
You do this even if the control is not floating because you add the Height of Panel
back to the form in the form’s OnDockDrop event, which will be fired if Panel is not
loating. This can occur the first time you try to undock Panel where it is possible to
undock and dock Panel in the same docking action.

You can now undock Panel, and the form will be automatically resized appropriately.
Notice that before you resize the form you first reset the FirstPanelEndDock to false,
but only if Panel is Floating. Again, this is because the first time you undock the
panel it is possible to undock and dock in the same action. Panel might not be
Floating, and setting FirstPanelUnDock to false would mean that this code would not
be executed the next time the panel is actually undocked.

Note that every time PanelEndDock() is called and Panel->Floating is true, you call
SetFocus() for the form. This ensures that the form never loses input focus from the
keyboard.

Docking Panel back onto the form is a bit more complicated than undocking it. First
you must implement the form’s OnGetSiteInfo event handler. This event passes a
TRect parameter, InfluenceRect, by reference. This TRect specifies where on the form
docking will be activated if a dockable control is released over it. This enables you to
specify docking regions on a control for specific controls. You can specify a dockable
region equal to the Height of Panel and the ClientWidth of the form starting at the top
of the main form. The event handler is shown in Listing 3.10.

LISTING 3.10 Implementation of the form ->OnGetSiteInfo

void __fastcall TMainForm::FormGetSiteInfo(TObject* Sender,

TControl* DockClient,

TRect& InfluenceRect,

TPoint& MousePos,

bool& CanDock)

{

if(DockClient->Name == “Panel”)

{

InfluenceRect.Left = ClientOrigin.x;

InfluenceRect.Top = ClientOrigin.y;

InfluenceRect.Right = ClientOrigin.x + ClientWidth;

InfluenceRect.Bottom = ClientOrigin.y + DockClient->Height;

}

}

CHAPTER 3 Programming in C++Builder150

05 0672324806 CH03 12/12/02 2:40 PM Page 150

The first thing you do inside FormGetSiteInfo() is check to see if the DockClient—the
TControl pointer to the object that caused the event to be fired—is Panel. If it is, you
define the docking site above which Panel can be dropped by specifying suitable
values for the InfluenceRect parameter. You do not use the remaining parameters:
MousePos and CanDock. MousePos is a reference to the current cursor position, and
CanDock is used to determine if the dock is allowed. With CanDock set to false, the
DockClient cannot dock.

You must now implement the form’s OnDockOver event. This event enables you to
provide visual feedback to the user as to where the control will be docked if the
control is currently over a dock site (the mouse is inside InfluenceRect) and the
control is dockable (CanDock == true). You use the DockRect property of the Source
parameter, a TDragDropObject pointer, to define the docking rectangle that appears to
the user. The implementation of OnDockOver is shown in Listing 3.11.

LISTING 3.11 Implementation of OnDockOver

void __fastcall TMainForm::FormDockOver(TObject* Sender,

TDragDockObject* Source,

int X,

int Y,

TDragState State,

bool& Accept)

{

if(Source->Control->Name == “Panel”)

{

TRect DockingRect(ClientOrigin.x,

ClientOrigin.y,

ClientOrigin.x + ClientWidth,

ClientOrigin.y + Source->Control->Height);

Source->DockRect = DockingRect;

}

}

When the docking control moves over its InfluenceRect (as defined in OnGetSiteInfo),
the outline rectangle that signifies the control’s position is snapped to the
Source->DockRect defined in OnDockOver. This gives the user visual confirmation of
where the docking control will be docked if the control is released. In this case,
Source->DockRect is set equal to the Height of the control and the ClientWidth of the
main form, with TRect starting at ClientOrigin. In fact, this is the same as the
InfluenceRect specified in OnGetsiteInfo.

Creating User Interfaces 151

05 0672324806 CH03 12/12/02 2:40 PM Page 151

The remaining parameters are not used: X, the horizontal cursor position; Y, the verti-
cal cursor position; State, of type TDragState, the movement state of the mouse in
relation to the control; and Accept. Setting Accept to false prevents the control from
docking.

Finally, you implement OnDockDrop. This event enables you to resize the control to fit
the DockRect specified in the OnDockOver handler. It also enables you to perform any
other processing that is needed, such as resizing the form or resetting the Anchors or
Align property. The implementation for FormDockDrop is shown in Listing 3.12.

LISTING 3.12 Implementation of the form ->OnDockDrop

void __fastcall TMainForm::FormDockDrop(TObject* Sender,

TDragDockObject* Source,

int X,

int Y)

{

if(Source->Control->Name == “Panel”)

{

Source->Control->Top = 0;

Source->Control->Left = 0;

Source->Control->Width = ClientWidth;

// Allow space...

Height = Height + Source->Control->Height;

// Must reset the Align of Panel

Source->Control->Align = alTop;

// Reset the FirstPanelEndDock flag

FirstPanelEndDock = true;

}

}

The implementation of FormDockDrop() as shown in Listing 3.12 is not as simple as it
first appears. First you resize Panel to fit the top of the form. Then, you allow space
for the docked panel by increasing the Height of the form by the Height of Panel.
Next reset Panel->Align to alTop. You must do this as the Align property is set to
alNone when Panel is undocked. Finally, you reset FirstPanelEndDock to true in readi-
ness for the next time Panel is undocked.

Note that you must adjust the Height of the form before you reset the Align property
of Panel to alTop. If Panel->Align is set to alTop before the form’s Height is adjusted,

CHAPTER 3 Programming in C++Builder152

05 0672324806 CH03 12/12/02 2:40 PM Page 152

the form’s Height might be adjusted twice. This is because the form will be automati-
cally resized to accommodate Panel if Panel->Align is alTop and there is not sufficient
room. Subsequently, changing the form’s Height manually results in twice as much
extra height as was needed. Changing the Height of the form first circumvents this
problem because there will always be enough room for Panel. When its Align prop-
erty is set to alTop, no automatic resizing is required.

In many ways, the docking capabilities of this example are small, but they are suffi-
cient. For a more involved example of docking in C++Builder, you should study the
example project dockex.bpr in the $(BCB)\Examples\Docking folder of your C++Builder
5 or above installation.

Controlling Visibility
Offering users the ability to show or hide parts of the interface is a relatively easy
way to allow user customization. By simply changing the Visible property of a
control, you can control whether the control appears in the interface. This enables
you to provide functionality that some users want, but that others might find a
nuisance. Those that need the functionality can make the required controls visible,
and those that don’t want it can hide the controls. The main consideration with
showing and hiding controls is that you must ensure that the appearance of the
interface remains acceptable. In other words, hiding a control should not leave a
large gap in the interface, and showing a control should not affect the current layout
any more than necessary.

Customizing the Client Area of an MDI Parent Form
Allowing the user to customize the background of an MDI parent form, typically by
adding an image to it, is not as easy as it first appears and, therefore, deserves a
special mention. To do this, you must subclass the window procedure of the client
window of the parent form. This is because the client window of the parent form is
the background for the MDI child windows. You must draw on the client window,
not the form itself. For more information about this, refer to the Win32 SDK online
help under “Frame, Client, and Child Windows.” To access the client window, use
the form’s ClientHandle property. To draw on the client window, you must respond to
the WM_ERASEBKGND message. The image can be centered, tiled, or stretched. You should
draw onto an offscreen bitmap, and then you use either the WinAPI BitBlt() or
StretchBlt() function to draw the image onto the client window. This minimizes
flicker. Second, you use the Draw() method to draw your image onto the Canvas of the
offscreen bitmap. You do this rather than use BitBlt() because you want to support
JPEG images. TJPEGImage derives from TGraphic and so implements the Draw()
method, but TJPEGImage does not have a Canvas and so cannot be used with BitBlt().

Creating User Interfaces 153

05 0672324806 CH03 12/12/02 2:40 PM Page 153

Working with Drag and Drop
One of the very early features on Microsoft’s Windows operating system was drag
and drop. The nature of the mouse makes dragging and dropping things on the
screen seem a very natural extension of human behavior. It is one of the very first
things that new Windows users grasp and, as such, should be implemented in all
your applications whenever it makes sense to do so. Fortunately the concept is pretty
simple and C++Builder makes the implementation very easy.

The Solution
To enable drag-and-drop in your application, you must first inform the operating
system that your application is ready to receive dropped files. You do this by calling
the DragAcceptFiles() method from the Win32 API. You then need to handle the
events that are created by the drop action. You do this by creating a message map
and an event handler for the WM_DROPFILES message that will read the name of the
dropped file and act accordingly.

The Code
To illustrate this concept, you can build an application that closely resembles the
System Configuration Editor that ships with Windows. To see it in action, click your
Start button, select Run, type Sysedit in the Run dialog box, and click OK. If you
play with it a little bit, you will notice that the Sysedit application does not handle
dropped files, but yours will. However, in the interest of brevity, that little applica-
tion will not handle most of the other functionality of the Sysedit application,
including allowing you to save edited files. That functionality is simple enough for
you to implement yourself if you want. Notice in Figure 3.15 the DragDrop applica-
tion displaying some of the readme files that come with C++Builder.

WARNING

Do not edit the contents of any of the child windows in the System Configuration Editor
unless you know what you’re doing. Depending on your version of Windows, these files tell
the operating system how to start up properly. Making any mistakes in these files or entering
improper values can result in a long night.

If you opened up the System Configuration Editor to look at it, close it now and let’s
go to work. Follow the instructions to create the DragDrop application, or you can just
load it from the CD-ROM that accompanies this book.

1. Start C++Builder and create a new application.

2. Change Form1’s name to MainForm.

CHAPTER 3 Programming in C++Builder154

05 0672324806 CH03 12/12/02 2:40 PM Page 154

3. Create a new form called ChildForm. Set its ClientHeight and ClientWidth proper-
ties to about 250 and 350, respectively.

4. Add a TRichEdit component from the Component Palette’s Win32 tab to
ChildForm, and set its Align property to alClient.

5. Save the application by clicking the floppy disk stack on the C++Builder
toolbar. Save the main form’s unit as MainUnit.cpp, the ChildForm’s unit as
ChildUnit.cpp, and the project file as DragDrop.bpr.

Creating User Interfaces 155

FIGURE 3.15 DragDrop at runtime.

Now that your form is done, it’s time to add the code to the event handlers.

To inform the operating system that you want to accept dropped files, you need to
call the DragAcceptFiles() method. The best place to do this is in the constructor for
the main form. Select the MainForm from the tabs on the Source Code Editor and put
the following line in its constructor:

DragAcceptFiles(Handle, True);

To create an event handler for the DragDrop event, open the header file for the main
form by right-clicking the MainUnit.cpp tab in the code editor and select Open
Header, Source File from the pop-up menu. Insert the following code in the public
section of the TMainForm class declaration:

class TMainForm : public Tform

{

__published: // IDE-managed Components

void __fastcall FormCreate(TObject *Sender);

private: // User declarations

void virtual __fastcall WMDropFiles(TWMDropFiles &message);

05 0672324806 CH03 12/12/02 2:40 PM Page 155

public: // User declarations

__fastcall TMainForm(TComponent* Owner);

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(WM_DROPFILES, TWMDropFiles, WMDropFiles)

END_MESSAGE_MAP(TForm);

};

Now switch back to the MainUnit.cpp file and add the code from Listing 3.13 to the
end. You can leave out all the comments if you want.

LISTING 3.13 WMDropFiles Event Handler

// fires an event when a file, or files are dropped onto the application.

void __fastcall TMainForm::WMDropFiles(TWMDropFiles &message)

{

AnsiString FileName;

FileName.SetLength(MAX_PATH);

int Count = DragQueryFile((HDROP)message.Drop, 0xFFFFFFFF, NULL, MAX_PATH);

// index through the files and query the OS for each file name...

for (int index = 0; index < Count; ++index)

{

// the following code gets the FileName of the dropped file. it

// looks cryptic but that’s only because it is. Hey, Why do you think

// Delphi and C++Builder are so popular anyway? Look up DragQueryFile

// the Win32.hlp Windows API help file.

FileName.SetLength(DragQueryFile((HDROP)message.Drop, index,FileName.c_

➥str(), MAX_PATH));

// examine the filename’s extension.

// If it’s a text or Rich Text file then ...

if (UpperCase(ExtractFileExt(FileName)) == “.TXT” || UpperCase

➥(ExtractFileExt(FileName)) == “.RTF”)

{

// create a new child form...

TChildForm *Viewer = new TChildForm(Application);

// display the file...

Viewer->Caption = FileName;

Viewer->RichEdit1->Lines->LoadFromFile(FileName);

Viewer->Show();

}

CHAPTER 3 Programming in C++Builder156

05 0672324806 CH03 12/12/02 2:40 PM Page 156

}

// tell the OS that you’re finished...

DragFinish((HDROP) message.Drop);

}

To prevent the application from leaking memory, you need to ensure that the
memory is properly freed when each viewer is closed. Select the ChildForm in the
Object Inspector. Switch to the Events tab and double-click the OnClose event to
create the OnClose event handler. Insert the following code into the event handler:

Action = caFree;

Open MainForm.cpp in the code editor, select File, Include Unit Header and select the
child form. This makes MainForm aware of the ChildForm so that the compiler knows
what you are talking about when you refer to the child form.

Compile and execute the application. When you drag a plain text or rich text file
into the application, it will open a simple text viewer in its client area.

How Does It Work?
When the application initializes and creates the MainForm, it calls the Win32 API
method DragAcceptFiles(), passing the application’s handle and the value true indi-
cating to the OS that the application is ready to accept dropped files. Passing false to
the OS will disable drag and drop in your application.

If drag and drop is enabled in your application, the application will receive a
WM_DROPFILES message from Windows for each file it receives. For the application to
properly handle these messages, you must define a MESSAGE_HANDLER macro, which is a
structure that associates a particular Windows message with one of the application’s
custom message handlers. The DragDrop application’s message map associates the
WM_DROPFILES message with the WMDropFiles message handler.

Inside the WMDropFiles message handler, the DragQueryFile() method will query the
OS for information about the dropped files. The following is Microsoft’s definition of
the DragQueryFile() method. It can be found in Win32.hlp.

The DragQueryFile() function retrieves the filenames of dropped files.

UINT DragQueryFile(

HDROP hDrop, // handle to structure for dropped files

UINT iFile, // index of file to query

LPTSTR lpszFile, // buffer for returned filename

UINT cch // size of buffer for filename

);

Creating User Interfaces 157

LISTING 3.13 Continued

05 0672324806 CH03 12/12/02 2:40 PM Page 157

Parameters:

hDrop

Identifies the structure containing the filenames of the dropped files.

iFile

Specifies the index of the file to query. If the value of the iFile parameter is 0xFFFFFFFF,

DragQueryFile() returns a count of the files dropped. If the value of the iFile parameter is

between zero and the total number of files dropped, DragQueryFile() copies the filename

with the corresponding value to the buffer pointed to by the lpszFile parameter.

lpszFile

Points to a buffer to receive the filename of a dropped file when the function returns. This file-

name is a null-terminated string. If this parameter is NULL, DragQueryFile() returns the

required size, in characters, of the buffer.

cch

Specifies the size, in characters, of the lpszFile buffer.

Return Values:

When the function copies a filename to the buffer, the return value is a count of the charac-

ters copied, not including the terminating null character.

If the index value is 0xFFFFFFFF, the return value is a count of the dropped files.

If the index value is between zero and the total number of dropped files and the lpszFile

buffer address is NULL, the return value is the required size, in characters, of the buffer, not

including the terminating null character.

When the DragDrop application receives a dropped file, it fires the WMDropFiles()
method, which uses the Message handle to query the operating system for the
number of files dropped. It then iterates through the file list, examining each file’s
extension looking for a .txt or .rtf extension. If the file has one of those extensions,
the application creates an instance of ChildForm and loads the file into the TRichText
component for display to the user. As each ChildWindow is closed, it calls the caFree
action, which releases the memory associated with the ChildForm’s instance.

Wrapping Up Drag and Drop
Although there’s no default VCL wrapper for drag and drop, C++Builder makes it
pretty easy to implement it in your applications. If you have neglected adding this
capability because you thought it would be too hard, you’ve just been empowered.

CHAPTER 3 Programming in C++Builder158

05 0672324806 CH03 12/12/02 2:40 PM Page 158

Nonvisual Components and Programming
C++Builder components are not just edits and panels and grids. There are a variety of
nonvisual components, including the database components covered in Chapters 6
through 12.

Other than the database components, there are components such as Ttimer, which
enables you to one-time or repeatedly trigger an event after a certain elapsed time.

The entire WebSnap and BizSnap component sets are also nonvisual (see Chapter 19
“SOAP and Web Services with BizSnap,” and Chapter 22 “Web Server Programming
with WebSnap”).

Actions, ActionLists, and ActionManager are also nonvisual.

In short, you don’t have to see a component for it to be useful. And in Chapter 4,
“Creating Custom Components,” you will see that creating a nonvisual component
can be a great way for you to solve important programming problems.

Creating Multithreaded Applications
For Scrabble players, “multitasking” and “multithreading” might be a great opportu-
nity to earn points. For developers, these terms are often sources of confusion and
unnecessary headaches. I should emphasize unnecessary here because, when
explained, they become part of the obvious programming concepts.

Understanding Multitasking
To put it simply, multitasking is the capability of the operating system to run multi-
ple programs at the same time. Unconsciously, you’ve been using this capability
while switching from your Microsoft Word document to Windows Explorer.
Although multitasking might seem characteristic of graphical operating systems such
as Windows or Linux, earlier computers also used multitasking to some extent. For
example, Unix enables you to run multiple programs in the background.

Under Windows 3.x, applications used cooperative multitasking. Cooperative means
that a program has control over the CPU and, before switching to another applica-
tion, this program must finish processing data. This type of multitasking has a
serious drawback: If an application stops responding, the entire operating system will
hang. 32-bit versions of Windows solved this problem by introducing preemptive
multitasking. A simple dictionary definition will help you understand its meaning:

preemptive: done before somebody else has had an opportunity to act.

In other words, to allow task-switching, 32-bit versions of Windows suspend the
current application, whether it is ready to lose control or not.

Creating Multithreaded Applications 159

05 0672324806 CH03 12/12/02 2:40 PM Page 159

NOTE

Cooperative multitasking is also called “nonpreemptive multitasking” for obvious reasons.
Unlike preemptive multitasking, the operating system is unable to suspend an application that
has stopped responding.

Understanding Multithreading
Multithreading is the capability of a program to run multiple tasks (threads) at the
same time. Most Windows applications use only one thread, the primary thread. A
primary thread takes care of child windows creation and message processing. All
secondary threads are used to perform background operations: loading large files,
looking for information, performing mathematical calculations.

WARNING

Throughout their learning process, young children tend to repeat words they have overheard
here and there, simply to prove their knowledge or to resemble “big people.” A similar situa-
tion occurs with programmers. Some developers tend to overuse programming techniques
they’ve learned.

Do not use separate threads in your application unless you’re dealing with lengthy back-
ground operations. Sometimes, with small code readjustments, you can simply avoid the use
of threads. Why complicate your work? That said, multithreaded applications offer advan-
tages, as you’ll see later in this chapter.

Creating a Thread Using API Calls
You can create a new thread from another one by calling the CreateThread() API
function. The CreateThread() parameters specify, among other things, the security
attributes, the creation flags, and the thread function:

HANDLE CreateThread(

LPSECURITY_ATTRIBUTES lpThreadAttributes,

DWORD dwStackSize,

LPTHREAD_START_ROUTINE lpStartAddress,

LPVOID lpParameter,

DWORD dwCreationFlags,

LPDWORD lpThreadId

);

The SECURITY_ATTRIBUTES structure determines whether other processes can modify
the object and whether a child process can inherit a handle to this object. If
lpThreadAttributes is NULL, the thread gets the default security descriptor.

CHAPTER 3 Programming in C++Builder160

05 0672324806 CH03 12/12/02 2:40 PM Page 160

The dwCreationFlags parameter specifies the thread creation flags. If its value is
CREATE_SUSPENDED, the thread will not run until you call the ResumeThread() function.
Set this value to 0 to run the thread immediately after creation.

The lpThreadId parameter points to an empty DWORD that will receive the thread iden-
tifier. Under Windows NT/2000, if this parameter is NULL, the thread identifier is
simply not returned. Windows 9x requires a DWORD variable. To ensure complete
compatibility with the current operating system, do not use the NULL value.

The most crucial parameter is the starting function, also known as thread function.
lpStartAddress is the address of the function that accepts one parameter and returns
a DWORD exit code:

DWORD WINAPI ThreadFunc(LPVOID);

TIP

In a sense, the starting function can be compared to the main() or WinMain() function in a
C++ program. ThreadFunc() is the main entry point for your thread.

Finally, dwStackSize and lpParameter specify the size of the stack (in bytes) and the
parameter passed to the thread, respectively.

TIP

CreateThread(), as many other API calls, contains a large list of arguments more or less
complex. In the beginning, understanding all aspects of this function can be disorienting.

A simple trick to overcome this problem is to first look at the arguments that can be zeroed.
For example, in almost all parameters of CreateThread() except for lpStartAddress and
lpThreadId, you can safely specify 0. After you fully understand these two arguments, you
can always go back and further explore the CreateThread() function.

With the previous explanations and a little help from the Win32 Programmer’s
Reference help file, you should now be able to write a simple multithreaded applica-
tion. Your example project should contain two buttons: Start and Stop. When the
user clicks the Start button, this resumes the newly created thread. The thread
should draw random ellipses and rectangles on the form. By clicking the Stop
button, the user should be able to suspend the thread. Take a look at Listing 3.14.
Don’t forget that you can find the complete source code in the ThreadAPI folder of
the companion CD-ROM.

Creating Multithreaded Applications 161

05 0672324806 CH03 12/12/02 2:40 PM Page 161

LISTING 3.14 ThreadFormUnit.cpp

#include <vcl.h>

#pragma hdrstop

#include “ThreadFormUnit.h”

#pragma package(smart_init)

#pragma resource “*.dfm”

TThreadForm *ThreadForm;

HANDLE Thread;

DWORD WINAPI ThreadFunc(LPVOID Param)

{

HANDLE MainWnd(Param);

RECT R;

GetClientRect(MainWnd, &R);

const MaxWidth = R.right - R.left;

const MaxHeight = R.bottom - R.top;

int X1, Y1, X2, Y2, R1, G1, B1;

bool IsEllipse;

while(true)

{

HDC DC = GetDC(MainWnd);

X1 = rand() % MaxWidth;

Y1 = rand() % MaxHeight;

X2 = rand() % MaxWidth;

Y2 = rand() % MaxHeight;

R1 = rand() & 255;

G1 = rand() & 255;

B1 = rand() & 255;

IsEllipse = rand() & 1;

HBRUSH Brush = CreateSolidBrush(

RGB(R1, G1, B1));

SelectObject(DC, Brush);

CHAPTER 3 Programming in C++Builder162

05 0672324806 CH03 12/12/02 2:40 PM Page 162

if(IsEllipse)

Ellipse(DC, X1, Y1, X2, Y2);

else

Rectangle(DC, X1, Y1, X2, Y2);

ReleaseDC(MainWnd, DC);

DeleteObject(Brush);

}

}

__fastcall TThreadForm::TThreadForm(TComponent* Owner)

: TForm(Owner)

{

randomize();

DWORD Id;

Thread = CreateThread(0, 0, ThreadFunc,

ThreadForm->Handle, CREATE_SUSPENDED, &Id);

if(!Thread)

{

ShowMessage(“Error! Cannot create thread.”);

Application->Terminate();

}

}

void __fastcall TThreadForm::StartClick(TObject *)

{

ResumeThread(Thread);

Start->Enabled = false;

Stop->Enabled = true;

}

void __fastcall TThreadForm::StopClick(TObject *)

{

SuspendThread(Thread);

Stop->Enabled = false;

Start->Enabled = true;

}

Creating Multithreaded Applications 163

LISTING 3.14 Continued

05 0672324806 CH03 12/12/02 2:40 PM Page 163

NOTE

As you can see in Listing 3.14, the code uses API functions almost exclusively. One of the
reasons is that you must avoid accessing VCL properties and methods from secondary threads.
I will describe why and provide a solution in the next section.

In the form constructor, you create a suspended thread using the CreateThread()
function and check whether the new thread is valid or not. The Start and Stop
buttons use the ResumeThread() and SuspendThread() API functions to modify the
thread state. Finally, the thread function draws random shapes on the form’s canvas.
(Notice how the window handle is passed to ThreadFunc().) Figure 3.16 shows the
project.

CHAPTER 3 Programming in C++Builder164

FIGURE 3.16 The ThreadAPI project.

NOTE

Another efficient way to start a new thread is the _beginthread() routine defined in
process.h (you can find process.h in the C++Builder installation Include folder):

unsigned long _beginthread(void (_USERENTRY *__start)(void *),

unsigned __stksize, void *__arg);

Because it requires fewer parameters, this function is commonly used in multithreaded appli-
cations.

Understanding the TThread Object
C++Builder encapsulates Windows thread objects into the TThread object. Creating a
new thread is basically a matter of creating a new instance of a TThread descendant.
Listing 3.15 contains the definition of the TThread abstract class.

05 0672324806 CH03 12/12/02 2:40 PM Page 164

LISTING 3.15 TThread Class

class DELPHICLASS TThread;

class PASCALIMPLEMENTATION TThread : public System::TObject

{

typedef System::TObject inherited;

private:

unsigned FHandle;

unsigned FThreadID;

bool FTerminated;

bool FSuspended;

bool FFreeOnTerminate;

bool FFinished;

int FReturnValue;

TNotifyEvent FOnTerminate;

TThreadMethod FMethod;

System::TObject* FSynchronizeException;

void __fastcall CallOnTerminate(void);

TThreadPriority __fastcall GetPriority(void);

void __fastcall SetPriority(TThreadPriority Value);

void __fastcall SetSuspended(bool Value);

protected:

virtual void __fastcall DoTerminate(void);

virtual void __fastcall Execute(void) = 0 ;

void __fastcall Synchronize(TThreadMethod Method);

__property int ReturnValue = {read=FReturnValue, write=FReturnValue,

nodefault};

__property bool Terminated = {read=FTerminated, nodefault};

public:

__fastcall TThread(bool CreateSuspended);

__fastcall virtual ~TThread(void);

void __fastcall Resume(void);

void __fastcall Suspend(void);

void __fastcall Terminate(void);

unsigned __fastcall WaitFor(void);

__property bool FreeOnTerminate = {read=FFreeOnTerminate, write=

FFreeOnTerminate, nodefault};

__property unsigned Handle = {read=FHandle, nodefault};

__property TThreadPriority Priority = {read=GetPriority, write=

SetPriority, nodefault};

Creating Multithreaded Applications 165

05 0672324806 CH03 12/12/02 2:40 PM Page 165

__property bool Suspended = {read=FSuspended, write=SetSuspended,

nodefault};

__property unsigned ThreadID = {read=FThreadID, nodefault};

__property TNotifyEvent OnTerminate = {read=FOnTerminate, write=

FOnTerminate};

};

If you’re wondering how to create a TThread descendant, the answer is simple. Open
the File, New dialog and select Thread Object from the Object Repository. C++Builder
will prompt you for the class name of the new descendant. Enter TRandomThread and
click OK.

C++Builder will create automatically a new source file containing the TRandomThread
object:

#include <vcl.h>

#pragma hdrstop

#include “Unit2.h”

#pragma package(smart_init)

__fastcall TRandomThread::TRandomThread(bool CreateSuspended)

: TThread(CreateSuspended)

{

}

void __fastcall TRandomThread::Execute()

{

}

The Execute() method contains the code that will be executed when the thread runs.
In other words, Execute() replaces your thread function. Also notice that the
constructor of your object contains a CreateSuspended parameter. Just like the
CREATE_SUSPENDED flag, when CreateSuspended is true, you must first call the Resume()
method; otherwise, Execute() won’t be called.

Tables 3.3 and 3.4 summarize the most common properties and methods of the
TThread class.

CHAPTER 3 Programming in C++Builder166

LISTING 3.15 Continued

05 0672324806 CH03 12/12/02 2:40 PM Page 166

TABLE 3.3 TThread Properties

Property Description

FreeOnTerminate Determines whether the thread object is automatically destroyed

when the thread terminates.

Handle Provides access to the thread’s handle. Use this value when calling API

functions.

Priority Specifies the thread’s scheduling priority. Set this priority to a higher

or lower value when needed.

ReturnValue Determines the value returned to other threads when the current

thread object finishes.

Suspended Specifies whether the thread is suspended or not.

Terminated Determines whether the thread is about to be terminated.

ThreadID Determines the thread’s identifier.

TABLE 3.4 TThread Methods

Method Description

DoTerminate() Calls the OnTerminate event handler without terminating the thread.

Execute() Contains the code to be executed when the thread runs.

Resume() Resumes a suspended thread.

Suspend() Pauses a running thread.

Synchronize() Executes a call within the VCL primary thread.

Terminate() Signals the thread to terminate.

WaitFor() Waits for a thread to terminate.

Now it’s time to try to use VCL objects exclusively.

You’ve already created a TRandomThread object, so use this object as the secondary
thread of your application. The first step is to add the main unit’s include file to the
new thread unit. Select File, Include Unit Hdr and then select ThreadFormUnit.

There’s not much to put in the TRandomThread constructor, except for the random
numbers generator:

__fastcall TRandomThread::TRandomThread(bool

CreateSuspended) : TThread(CreateSuspended)

{

randomize();

}

Now take care of the core part of your thread: the Execute() method. You no longer
need to determine the form size using the GetClientRect() API function. You can
simply read the ClientWidth and ClientHeight properties:

Creating Multithreaded Applications 167

05 0672324806 CH03 12/12/02 2:40 PM Page 167

const MaxWidth = ThreadForm->ClientWidth;

const MaxHeight = ThreadForm->ClientHeight;

int X1, Y1, X2, Y2, R1, G1, B1;

bool IsEllipse;

The TCanvas object, with which you’re probably familiar, can greatly simplify the
drawing process. There is a small problem: The VCL does not allow multiple threads
to access the same graphic object simultaneously. Therefore, you must use the Lock()
and Unlock() methods to make sure that other threads do not access the TCanvas
while you’re drawing:

while(true)

{

ThreadForm->Canvas->Lock();

X1 = rand() % MaxWidth;

Y1 = rand() % MaxHeight;

X2 = rand() % MaxWidth;

Y2 = rand() % MaxHeight;

R1 = rand() & 255;

G1 = rand() & 255;

B1 = rand() & 255;

IsEllipse = rand() & 1;

ThreadForm->Canvas->Brush->Color =

TColor(RGB(R1, G1, B1));

if(IsEllipse)

ThreadForm->Canvas->Ellipse(X1, Y1,

X2, Y2);

else

ThreadForm->Canvas->Rectangle(X1, Y1,

X2, Y2);

ThreadForm->Canvas->Unlock();

}

This puts an end to the thread object code. Take a look now at the main unit. In the
form constructor, you create a new instance of TRandomThread:

CHAPTER 3 Programming in C++Builder168

05 0672324806 CH03 12/12/02 2:40 PM Page 168

TRandomThread* Thread;

__fastcall TThreadForm::TThreadForm(TComponent*)

: TForm(Owner)

{

Thread = new TRandomThread(true);

if(!Thread)

{

ShowMessage(“Error! Cannot create thread.”);

Application->Terminate();

}

}

The Start button calls the Resume() method:

void __fastcall TThreadForm::StartClick(TObject *)

{

Thread->Resume();

Start->Enabled = false;

Stop->Enabled = true;

}

The Stop button calls the Suspend() method:

void __fastcall TThreadForm::StopClick(TObject *)

{

Thread->Suspend();

Stop->Enabled = false;

Start->Enabled = true;

}

TIP

The C++Builder IDE provides a Threads debug window containing the list of available threads:
their ID, state, location, and status. To display this window, choose View, Debug Windows,
Threads from the C++Builder menu or press Ctrl+Alt+T.

The thread is automatically terminated when the Execute() function finishes execut-
ing or when the application is closed. To ensure that memory occupied by your
thread object is freed on termination, always insert the following in the Execute()
method:

FreeOnTerminate = true;

Creating Multithreaded Applications 169

05 0672324806 CH03 12/12/02 2:40 PM Page 169

Sometimes, however, you might need to terminate a thread by code. To do so, you
could use the Terminate() method. Terminate() tells the thread to terminate by
setting the Terminated property to true.

It is important to understand that Terminate() does not exit the thread by itself. You
must periodically check in the Execute() method whether Terminated is true. For
example, to terminate your TRandomThread object, add the following line:

while(true)

{

if(Terminated) break;

Terminate() has the advantage of enabling you to do the cleaning by yourself, thus
giving you more control over the thread termination. Unfortunately, if the thread
stops responding, calling Terminate() will be useless.

The TerminateThread() API function is a more radical way to cause a thread to exit.
TerminateThread() instantly closes the current thread without freeing memory occu-
pied by the thread object. You should use this function only in extreme cases, when
no other options are left. The TerminateThread() syntax is simple. Here is an example:

TerminateThread((HANDLE)Thread->Handle, false);

Understanding the Main VCL Thread
Properties and methods of VCL objects are not necessarily thread safe. This means
that when accessing properties and methods, you can use memory that is not
protected from other threads. Therefore, the main VCL thread should be the only
thread to have control over the VCL.

NOTE

The main VCL thread is the primary thread of your application. It handles and processes
Windows messages received by VCL controls.

NOTE

Graphic objects are exceptions to the thread-safe rule. By using the Lock() and Unlock()

methods, other threads can be prevented from drawing on the canvas.

To allow threads to access VCL objects, TThread provides the Synchronize() method.
Synchronize() performs actions contained in a routine as if they were executed from
the main VCL thread:

void __fastcall Synchronize(TThreadMethod &Method);

CHAPTER 3 Programming in C++Builder170

05 0672324806 CH03 12/12/02 2:40 PM Page 170

Consider the example of a thread displaying increasing values in a Label component.
Obviously, you’ll use a for loop in the Execute() method. But, how will you change
the Label’s caption? By synchronizing with the VCL. Listing 3.16 contains the source
code of the TLabelThread object, and Figure 3.17 shows the results.

LISTING 3.16 TLabelThread Thread Object

#include <vcl.h>

#pragma hdrstop

#include “ThreadFormUnit.h”

#pragma package(smart_init)

#include <Classes.hpp>

class TLabelThread : public TThread

{

private:

protected:

int Num;

void __fastcall Execute();

void __fastcall DisplayLabel();

public:

__fastcall TLabelThread(bool CreateSuspended);

};

//---

__fastcall TLabelThread::TLabelThread(bool

CreateSuspended) : TThread(CreateSuspended)

{

}

void __fastcall TLabelThread::DisplayLabel()

{

ThreadForm->Label->Caption = Num;

}

void __fastcall TLabelThread::Execute()

{

FreeOnTerminate = true;

for(Num = 0; Num <= 1000; Num++)

{

Creating Multithreaded Applications 171

05 0672324806 CH03 12/12/02 2:40 PM Page 171

if(Terminated) break;

Synchronize (DisplayLabel);

}

}

TIP

As opposed to the TRandomThread example, where you had an endless loop, in this project
the thread is terminated when the value of 1000 is reached. By handling the OnTerminate
event of TLabelThread, you can determine when the thread is about to exit:

void __fastcall TThreadForm::bStartClick(TObject *)

{

Thread = new TLabelThread(false);

Thread->OnTerminate = OnTerminate;

bStart->Enabled = false;

}

void __fastcall TThreadForm::OnTerminate(TObject *)

{

bStart->Enabled = true;

}

In fact, you can use OnTerminate as a replacement for the Synchronize() method. If your
thread has actions to perform before exiting, OnTerminate will enable you to access VCL
properties and methods from within the main unit.

Consider the previous example where you enabled the bStart button in the OnTerminate
event handler. To accomplish the same thing directly from the thread object, you would have
written a far more complex code:

// void __fastcall EnableButton();

void __fastcall TLabelThread::EnableButton()

{

ThreadForm->bStart->Enabled = true;

}

void __fastcall TLabelThread::Execute()

{

// ...

if(Terminated)

{

CHAPTER 3 Programming in C++Builder172

LISTING 3.16 Continued

05 0672324806 CH03 12/12/02 2:40 PM Page 172

Synchronize(EnableButton);

// ...

}

Creating Multithreaded Applications 173

FIGURE 3.17 The LabelThread project.

Establishing Priorities
In an application using multiple threads, it is important to know which threads will
have a higher priority and run first. Table 3.5 describes all possible priority levels.

TABLE 3.5 Thread Priorities

Priority Level Description

THREAD_PRIORITY_TIME_CRITICAL 15 points above normal

THREAD_PRIORITY_HIGHEST 2 points above normal

THREAD_PRIORITY_ABOVE_NORMAL 1 point above normal

THREAD_PRIORITY_NORMAL Normal

THREAD_PRIORITY_BELOW_NORMAL 1 point below normal

THREAD_PRIORITY_LOWEST 2 points below normal

THREAD_PRIORITY_IDLE 15 points below normal

All threads are created using the THREAD_PRIORITY_NORMAL. After a thread
has been created, you can adjust the priority level higher or lower using the
SetThreadPriority() function. A general rule is that a thread dealing with the
user interface should have a higher priority to make sure that the application
remains responsive to the user’s actions. Background threads are usually set to
THREAD_PRIORITY_BELOW_NORMAL or THREAD_PRIORITY_LOWEST so that they can be
terminated when necessary.

NOTE

Priority levels are commonly called relative scheduling priorities because they are relative to
other threads in the same process.

05 0672324806 CH03 12/12/02 2:40 PM Page 173

The TThread object provides a Priority property, which determines the thread priority
level. Its possible values are

tpTimeCritical

tpHighest

tpHigher

tpNormal

tpLower

tpLowest

tpIdle

As you can see, they closely match the priority levels you previously described.

If you’re still not convinced of the importance of thread priorities, take a look at the
following example. Start a new application and add two progress bars (Max property
set to 5000) and a Start button. You will try to increment the position of the progress
bars using threads of different priorities. Listing 3.17 contains the source code of the
TPriorityThread thread object.

LISTING 3.17 TPriorityThread Thread Object

#include <vcl.h>

#pragma hdrstop

#include “PriorityThreadUnit.h”

#include “ThreadFormUnit.h”

#pragma package(smart_init)

__fastcall TPriorityThread::TPriorityThread(bool

Temp) : TThread(false)

{

First = Temp;

}

void __fastcall TPriorityThread::DisplayProgress()

{

if(First)

ThreadForm->ProgressBar1->Position++;

else

ThreadForm->ProgressBar2->Position++;

}

CHAPTER 3 Programming in C++Builder174

05 0672324806 CH03 12/12/02 2:40 PM Page 174

void __fastcall TPriorityThread::Execute()

{

FreeOnTerminate = true;

for(Num = 0; Num <= 5000; Num++)

{

if(Terminated) break;

Synchronize (DisplayProgress);

}

}

Notice that I slightly modified the TPriorityThread constructor. The Temp boolean
variable (which replaces CreateSuspended) will indicate which progress bar should be
accessed.

The main unit contains only the code for the Start button OnClick handler:

void __fastcall TThreadForm::bStartClick(TObject *)

{

TPriorityThread *First;

First = new TPriorityThread (true);

First->Priority = tpLowest;

TPriorityThread *Second;

Second = new TPriorityThread(false);

Second->Priority = tpLowest;

bStart->Enabled = false;

}

Run the program and click the Start button. Both progress bars should reach the end
at approximately the same time, as shown in Figure 3.18. Now, set the priority of the
first thread to tpLower. Any difference? See the result in Figure 3.19.

Timing Threads
Sometimes when developing it is useful to time sections of code. The basic principle
is to record the system time before and after the code and subtract the start time
from the end time to calculate the elapsed time. For general applications this can be
done with the Win32 API function GetTickCount(). This is illustrated in Listing 3.18.

Creating Multithreaded Applications 175

LISTING 3.17 Continued

05 0672324806 CH03 12/12/02 2:40 PM Page 175

FIGURE 3.18 Threads with same priority.

CHAPTER 3 Programming in C++Builder176

FIGURE 3.19 Threads with different priorities.

LISTING 3.18 Timing Code with GetTickCount()

int Start = GetTickCount();

// ...

Form1->Canvas->Lock();

for(int x = 0; x <= 100000; x++)

Form1->Canvas->TextOut(10, 10, x);

Form1->Canvas->Unlock();

// ...

int Total = GetTickCount() - Start;

ShowMessage(FloatToStr(Total / 1000.0) + “ sec”);

A similar example could be created using the clock() instead of GetTickCount(). There
are also other functions that can be used to time code.

Unfortunately, because of the preemptive behavior of Windows, threads are often
interrupted. For this reason, you can’t rely on GetTickCount() to retrieve the thread
execution time. However, Windows provides the GetThreadTimes() API function,
which helps you time your threads:

BOOL GetThreadTimes(

HANDLE hThread,

LPFILETIME lpCreationTime,

LPFILETIME lpExitTime,

05 0672324806 CH03 12/12/02 2:40 PM Page 176

LPFILETIME lpKernelTime,

LPFILETIME lpUserTime

);

WARNING

GetThreadTimes() is available only with Windows NT/2000.

As you can see, GetThreadTimes() uses the FILETIME structure. Before performing arith-
metic operations, you must first store the user time information in a LARGE_INTEGER.
Then, by subtraction of the 64-bit QuadPart members of the LARGE_INTEGER structure,
you could obtain the number of 100 nanoseconds that your code takes to execute.
Listing 3.19 illustrates this.

LISTING 3.19 GetThreadTimes() Example

FILETIME CreationTime, ExitTime, KernelTime;

union {

LARGE_INTEGER iUT;

FILETIME fUT;

} UserTimeS, UserTimeE;

GetThreadTimes((HANDLE)Handle, &CreationTime,

&ExitTime, &KernelTime, &UserTimeS.fUT);

// ...

Form1->Canvas->Lock();

for(int x = 0; x <= 100000; x++)

Form1->Canvas->TextOut(10, 10, x);

Form1->Canvas->Unlock();

// ...

GetThreadTimes((HANDLE)Handle, &CreationTime,

&ExitTime, &KernelTime, &UserTimeE.fUT);

float Total = UserTimeE.iUT.QuadPart - UserTimeS.

iUT.QuadPart;

Total /= 10 * 1000 * 1000; // Converts to seconds

OutputDebugString(FloatToStr(Total).c_str());

Creating Multithreaded Applications 177

05 0672324806 CH03 12/12/02 2:40 PM Page 177

TIP

OutputDebugString() is a useful API function that sends a string to the Event Log debug
window. Under normal circumstances, I have the tendency to use message boxes or to
change the window caption, but in multithreaded applications these actions can sometimes
be disastrous without considerable coding. OutputDebugString() is, therefore, a perfect alter-
native.

The OutputDebugString() function is covered in more detail in win32.hlp, which is part of
the C++Builder installation in the Borland Shared\MSHelp directory.

Synchronizing Threads
Probably the greatest disadvantage of using threads is the difficulty in organizing
them. Let’s say your application is simultaneously running two threads, which
modify some global data. What will happen if they try to access the same data at the
same time? Or, what if the second thread has to wait for the first thread to process
this data, and then execute? To coordinate threads, Windows offers various methods
of synchronization.

Critical Sections
To illustrate two threads accessing the same global data, you’ll create a sample appli-
cation using the TCriticalThread object (see Listing 3.20).

LISTING 3.20 CriticalThreadUnit.cpp: TCriticalThread Thread Object

#include <vcl.h>

#pragma hdrstop

#include “CriticalThreadUnit.h”

#include “ThreadFormUnit.h”

#pragma package(smart_init)

__fastcall TCriticalThread::TCriticalThread(bool CreateSuspended)

: TThread(CreateSuspended)

{

}

void __fastcall TCriticalThread::DisplayList()

{

ThreadForm->ListBox->Items->Add(Text);

}

CHAPTER 3 Programming in C++Builder178

05 0672324806 CH03 12/12/02 2:40 PM Page 178

void __fastcall TCriticalThread::Execute()

{

FreeOnTerminate = true;

for(int x = 0; x <= 50; x++)

{

if(Terminated) break;

// EnterCriticalSection(&ThreadForm->CS);

Sleep(50);

ThreadForm->ListText.Insert(“=====”, 1);

Text = ThreadForm->ListText;

Synchronize(DisplayList);

ThreadForm->ListText.SetLength(ThreadForm->

ListText.Length() - 5);

// LeaveCriticalSection(&ThreadForm->CS);

}

}

And in your main unit, you’ll create two instances of this object (see Listing 3.21).

LISTING 3.21 ThreadFormUnit.cpp

#include <vcl.h>

#pragma hdrstop

#include “ThreadFormUnit.h”

#include “CriticalThreadUnit.h”

#pragma package(smart_init)

#pragma resource “*.dfm”

TThreadForm *ThreadForm;

__fastcall TThreadForm::TThreadForm(TComponent* Owner)

: TForm(Owner)

{

ListText = “=====”;

// InitializeCriticalSection(&CS);

}

Creating Multithreaded Applications 179

LISTING 3.20 Continued

05 0672324806 CH03 12/12/02 2:40 PM Page 179

void __fastcall TThreadForm::StartClick(TObject *Sender)

{

TCriticalThread *FirstThread;

FirstThread = new TCriticalThread(false);

TCriticalThread *SecondThread;

SecondThread = new TCriticalThread(false);

}

void __fastcall TThreadForm::FormClose(TObject *,

TCloseAction &Action)

{

// DeleteCriticalSection(&CS);

}

Your code is both simple and useless, but it will demonstrate the importance of
thread synchronization. First, the TCriticalThread object adds to the global ListText
variable five equals (=) characters. Then, it adds the value of ListText to a ListBox.
Finally, TCriticalThread() truncates five characters, thus setting ListText to the value
it initially had. Logically, all ListBox items should display ==========, but as Figure
3.20 shows, that’s not always the case. Why? Because the second thread also accesses
the same global variable.

CHAPTER 3 Programming in C++Builder180

LISTING 3.21 Continued

FIGURE 3.20 The CriticalThread project without critical sections.

Critical sections are an easy and efficient way to temporarily block other threads
from accessing data (similar to the Lock() and Unlock() methods for graphic objects).
To define a critical section, you’ll use four basic API functions:

05 0672324806 CH03 12/12/02 2:40 PM Page 180

VOID InitializeCriticalSection(

LPCRITICAL_SECTION lpCriticalSection

);

VOID EnterCriticalSection(

LPCRITICAL_SECTION lpCriticalSection

);

VOID LeaveCriticalSection(

LPCRITICAL_SECTION lpCriticalSection

);

VOID DeleteCriticalSection(

LPCRITICAL_SECTION lpCriticalSection

);

It’s not so difficult to guess how to use these functions. First, you declare a variable
of type CRITICAL_SECTION. You initialize this variable at program startup
(InitializeCriticalSection()) and delete it when the program closes
(DeleteCriticalSection()). When your thread starts processing data, you block access
to other threads with EnterCriticalSection() and, when it finishes, you exit the criti-
cal section (LeaveCriticalSection()).

Go back to Listings 3.20 and 3.21, and comment out the four lines, which call the
critical section functions I described. Then, open the header file of your main unit
and add the following line:

CRITICAL_SECTION CS;

As shown on Figure 3.21, all ListBox items now contain the same string.

Creating Multithreaded Applications 181

FIGURE 3.21 The CriticalThread project with critical sections.

05 0672324806 CH03 12/12/02 2:40 PM Page 181

Mutexes
Mutexes offer the functionality of critical sections, while adding other interesting
features.

TIP

Although featureless, critical sections are slightly faster then mutexes and semaphores. If time
is an important factor in your application, consider using critical sections.

Mutex objects are created using the CreateMutex() API function:

HANDLE CreateMutex(

LPSECURITY_ATTRIBUTES lpMutexAttributes,

BOOL bInitialOwner,

LPCTSTR lpName

);

After you have the handle of the newly created mutex object, you must use the
WaitForSingleObject() function. This API call will request ownership for the mutex
object, wait until this object becomes available, and use the mutex until
ReleaseMutex() is called:

HANDLE Mutex;

Mutex = CreateMutex(NULL, false, NULL);

if(Mutex == NULL)

{

ShowMessage(“Cannot create mutex!”);

return;

}

// ...

if(WaitForSingleObject(Mutex, INFINITE) ==

WAIT_OBJECT_0)

{

// ...

}

ReleaseMutex (Mutex);

NOTE

Unlike critical sections, two or more processes can use the same mutex.

CHAPTER 3 Programming in C++Builder182

05 0672324806 CH03 12/12/02 2:40 PM Page 182

NOTE

If a thread doesn’t release its ownership of a mutex object, this mutex is considered to be
abandoned. Therefore, WaitForSingleObject() will return WAIT_ABANDONED. Although it’s not
perfectly safe, you can always acquire ownership of an abandoned mutex.

Others
Other synchronization objects such as semaphores and timers are also available. By
familiarizing yourself with critical sections and mutexes, you’ll already be one step
ahead into mastering thread synchronization.

Summary
This chapter has covered the major building blocks of programming with
C++Builder, ranging from the basics of the VCL to the complexities of user interfaces
and thread management.

Summary 183

05 0672324806 CH03 12/12/02 2:40 PM Page 183

05 0672324806 CH03 12/12/02 2:40 PM Page 184

IN THIS CHAPTER

• Creating, Compiling, and
Installing Packages

• Creating Custom
Components

• The Streaming Mechanism

• Distributing Components

4

Creating Custom
Components

by Mark Cashman

This chapter deals with creating and distributing custom
components. The components that you use in C++Builder
are often the beginning of your applications, but even
when you are the only developer on a project, you will
probably find situations where creating components based
on the components you already have can, in the long run,
save time and money. When you are a developer on a large
project, or when you want to make a capability available
to the wider development community (either as a package
of components for sale or simply as freeware or shareware)
the creation of custom components is a major focus of
your effort.

Creating, Compiling, and Installing
Packages

Three types of packages can be generated to create custom
components: design time only, runtime only, and dual
design time/runtime packages. When you distribute
components, you should endeavor to always distribute a
design time only and runtime only package pair—two
packages. When you are still developing a component or
components, the dual package is a reasonable and conve-
nient choice.

In addition to deciding how to structure your packages,
you must adopt a sensible naming convention for both the
units inside your package and the components themselves.
You must also decide if you want your components to be
usable in different versions of the compiler.

06 0672324806 CH04 12/12/02 2:37 PM Page 185

Packaging Components
Getting ready to create a component or components requires you to have a package
within which they will be compiled. You need to start with a project group to hold
your package because any package you create will be within the current project
group, and you usually do not want a package to be part of the application project
group you are currently using. Creating a project group is accomplished by picking
File, New from the IDE menu, and then, from the New tab of the resulting dialog,
picking Project Group. Next, pick File, New from the IDE menu and pick Package
from the New tab of the dialog.

The New tab of the File, New dialog is shown in Figure 4.1.

CHAPTER 4 Creating Custom Components186

FIGURE 4.1 View of the items in the File | New Dialog.

Next, you need to identify the type of package you are creating. Pick Options from
the pop-up menu on the package window, as shown in Figure 4.2.

FIGURE 4.2 Getting ready to edit the package type.

06 0672324806 CH04 12/12/02 2:37 PM Page 186

This produces a dialog where you can specify the type of package, as shown in
Figure 4.3.

Creating, Compiling, and Installing Packages 187

FIGURE 4.3 Setting the package type.

For most package development, it is convenient to create a dual design time, runtime
package. However, later, when preparing your package for distribution, you might
want to put your code into separate design time and runtime packages. This will be
the case when you have special property editors or other facilities that you need to
provide to those using the component (see the following section on component
distribution and Chapter 5, “Creating Property and Component Editors”).

When you are satisfied that your components are working properly, you should
make sure that they are packaged correctly. The most correct approach involves sepa-
rating the design time and runtime code. The correct way to do this using packages
involves creating a minimum of two packages: a runtime-only package and a design
time-only package—a runtime-only/design time-only package pair. This requires two
steps:

1. Create a runtime-only package containing only the source of your
component(s). Do not include any code to register the component(s) or any
code for the design time interface of the component(s) (such as code for prop-
erty and component editors).

2. Create a design time-only package containing only the registration code and
optionally any design time interface code for your component(s). Do not
include any source code for your component(s). Instead, add the import library
(the .bpi file) of the component(s) run time-only package to the package’s
Requires list.

06 0672324806 CH04 12/12/02 2:37 PM Page 187

The design time package is the package installed into the IDE. Figure 4.4 illustrates
the relationship between the two packages.

CHAPTER 4 Creating Custom Components188

MyComponents_R.lib

Runtime-only Package

MyComponents_R.bpk

MyComponents_R.cpp

Contains–

vcl50.bpi

Requires–

Dynamically link to target
application (.exe)

Statically link to target
application (.exe)

MyComponents_R.bplComponentSourceFiles.cpp

MyComponents_D.lib

 Designtime-only Package

MyComponents_D.bpk

MyComponents_D.cpp

ComponentPaletteBitmaps.rc

Contains–

MyComponents_R.bpi

vcl50.bpi

Requires–

MyComponents_D.bpi
Reg_MyComponents.cpp

PropEds_MyComponents.cpp

CompEds_MyComponents.cpp

Import Runtime.bpi file

MyComponents_R.bpi

Runtime-only/Designtime-only Package Pair

MyComponents_D.bpl

Install package to the IDE

FIGURE 4.4 A runtime-only/design time-only package pair.

It can be seen in Figure 4.4 that the design time package is only used to create a .bpl
file for installation into the IDE. The runtime package is used to create the files that
will actually be used by an application. In reality, one or more runtime-only pack-
ages could be used in conjunction with a single design time-only package (in other

06 0672324806 CH04 12/12/02 2:37 PM Page 188

words, appear in the Requires section of the design time-only package). All code, save
registration code, can be removed from the design time-only package, effectively
making the design time-only package a registration package.

For comparison, a dual design time/runtime package is shown in Figure 4.5.

Creating, Compiling, and Installing Packages 189

MyComponents.lib

MyComponents.bpl

 Design time/Runtime Package

MyComponents.bpk

MyComponents.cpp

ComponentPaletteBitmaps.rc

ComponentSourceFiles.cpp

Contains–

vcl50.bpi

Requires–

Dynamically link to target
application (.exe)

Statically link to target
application (.exe)

MyComponents.bpi

Install package to the IDE

Reg_MyComponents.cpp

PropEds_MyComponents.cpp

CompEds_MyComponents.cpp

FIGURE 4.5 A dual design time/runtime package.

The code required for registration and for property and component editors will be
unnecessarily included in any applications that use a dual package such as that
shown in Figure 4.5. For simple packages with no property or component editors,
this might be acceptable. Testing a component or set of components using a dual
package is also generally more convenient, however, you can simplify the effort by
including both design time and runtime packages in the same program group. Don’t
forget to save the program group and the package projects—generally into the direc-
tory where you are keeping the code for the components they contain.

Dual packages add some development complexity. Here are the considerations you
need to keep in mind.

The runtime-only package will be the first package created. To specify that a package
is a runtime-only package, check the Runtime Only option on the Description page
of the package’s Options dialog box. This package should contain only the source for
the component(s).

06 0672324806 CH04 12/12/02 2:37 PM Page 189

Any import libraries (.bpi files) required by the component(s) should be added to the
Requires list for this package project. Care should be taken to only add those import
libraries that are necessary for a successful build. Remember, packages that are refer-
enced in the Requires list are linked during compile time to any future application
that uses this package and one or more units from the Required package.

After the runtime-only package is successfully built, you will have three files (unless
you indicated you did not want to create a .lib file by having unchecked the
Generate .lib File option on the Linker page of the package’s Options dialog): a .bpl
file, a .bpi file, and a .lib file. Make sure all three are present because all are
required. The .lib file might not always be needed, but it should be available for
those times when it is desired to statically link your components to an application
(and many developers prefer the distribution simplicity of a statically linked applica-
tion).

After the runtime-only package is built, and you have an import file available, you
can now create the design time-only package, which depends on the runtime
package to provide the features of your component. This package will contain your
registration code and any special property and component editors that your compo-
nents need. The Requires section includes the import library of the runtime-only
package. If there are no special component or property editors for this package, you
are only required to write the registration code. (Property editor and component
editor creation is covered in Chapter 5.)

Compiling and Installing Packages
Package projects can be compiled in the normal fashion and produce the normal
compiler and linker output. Packages are essentially fancy DLLs under Windows and
fall into a similar category under Linux.

The package can be installed into the IDE in either of two ways. The first way is to
compile the package with the Install entry on the package project’s pop-up menu.
The second way is to compile the package normally, and then pick Install from that
menu, in which case, Install will simply add the package without recompiling.

A third way also exists, which is the one typically used by the recipients of your
package—that is, picking Install Packages from the IDE Components menu.

The Visual Component Library (VCL) is an extremely powerful tool, and putting
together an application is very easy using the many stock components, classes, and
methods that C++Builder provides. However, in some situations you might find that
a component doesn’t quite provide the capabilities you need. The ability to write
and modify components gives you a distinct advantage over other programming
languages and is one reason why C++Builder is the tool of choice for many program-
mers around the world. Creating custom components will give you an insight into

CHAPTER 4 Creating Custom Components190

06 0672324806 CH04 12/12/02 2:37 PM Page 190

how the VCL works and increase your productivity with C++Builder. Judging by the
number of commercial component sites on the Internet, it can be a profitable exer-
cise as well.

Creating Custom Components
The task of creating components can be quite daunting at first. After reading several
articles and tutorials on the topic, it is quite easy to find yourself wondering where
to start. The easiest approach is to start with a component that already exists and
build on its features and capabilities.

As trivial as this might seem, you might just find yourself customizing or extending
a number of the standard VCL components to suit the design and style of your real-
world applications. While building a database application, you might drop a TDBGrid
onto your form and change several properties to the same value. Similarly, while
developing some in-house utilities, you always drop a TStatusBar onto your form,
add some panels, and remove the size grip. Instead of doing this for every project, it
would make sense to create your own custom component and have these properties
set for you automatically. Not only does this make each new application faster to
create, but you also have confidence that they are all bug free. Additionally, should
you discover a new bug, all you have to do is correct the code in the component and
recompile your package projects. They will all inherit the changes without any addi-
tional reprogramming.

Understanding Component Writing
There are different types of components; therefore, the ancestor of your own compo-
nents will be determined by the very nature of that component.

Nonvisual components are derived from TComponent. TComponent is the minimal descen-
dant that can be used for the creation of a component because it is the lowest-level
component to offer the capability to be integrated into the IDE and have its proper-
ties streamed.

A nonvisual component is one that is simply a wrapper for other complex code in
which there is no visual representation provided to the user. An example is a compo-
nent that receives error log information and automatically sends it to a linked edit
control, such as a TMemo or TrichEdit, and appends it to a file on disk. The compo-
nent itself is invisible to the user of the application, but it continues to function in
the background, providing the functionality required by the application.

Windowed components are derived from TWinControl. These objects appear to the user
at runtime and can be interacted with (such as selecting a file from a list). Although
it is possible to create your own components from TWinControl, C++Builder provides
the TCustomControl component to make this task easier.

Creating Custom Components 191

06 0672324806 CH04 12/12/02 2:37 PM Page 191

Graphic components are similar to windowed components with the main difference
being that they don’t have a window handle and, therefore, do not interact with the
user. The absence of a handle also means fewer resources are being consumed.
Although these components do not interact with the user, it is possible to have these
components react to window messages such as those from mouse events. These
components are derived from TGraphicControl.

Why Build on an Existing Component?
The biggest advantage you will find from building on existing components is the
reduced development time of projects. It is also worthwhile to know that all the
components used in your projects are bug free.

Take TLabel as an example, of which every project has more than one. If every
project you created needed to maintain a particular design style, you could find
yourself adding multiple label components and changing their properties to the
same values for each new application. By creating a custom component descending
from TLabel, you can add several of these new labels to a form and be left with only
the task of setting their captions and positions.

To demonstrate how easy this can be, we can create a component in about a minute
and have to type only three lines of code. From C++Builder’s menu, choose
Component, New Component. After the New Component dialog opens, select TLabel
for the new component’s Ancestor Type, and for the Class Name, type TStyleLabel.
For a component that you will be installing into C++Builder’s Component Palette
and using in applications, you will probably want to choose a more descriptive class
name. For this example, you could leave the other options with their default values
and simply click the OK button. C++Builder will create the unit files for you; all that
is needed is to add the lines of code that will set the label’s properties. After you’ve
made the necessary changes, save the file and from C++Builder’s menu choose
Component, Install Component. If you have the file open in C++Builder’s IDE, the
Unit File Name edit box will reflect the component’s file. Click the OK button to
install the component in the Component Palette. Listings 4.1 and 4.2 show the
complete code.

LISTING 4.1 The TStyleLabel Header File, StyleLabel.h

//---

#include <SysUtils.hpp>

#include <Controls.hpp>

#include <Classes.hpp>

#include <Forms.hpp>

#include <StdCtrls.hpp>

//---

class PACKAGE TStyleLabel : public TLabel

CHAPTER 4 Creating Custom Components192

06 0672324806 CH04 12/12/02 2:37 PM Page 192

{

private:

protected:

public:

__fastcall TStyleLabel(TComponent* Owner);

__published:

};

//---

#endif

LISTING 4.2 The TStyleLabel Code File, StyleLabel.cpp

//---

#include <vcl.h>

#pragma hdrstop

#include “StyleLabel.h”

#pragma package(smart_init)

//---

// ValidCtrCheck is used to assure that the components created do not have

// any pure virtual functions.

//

static inline void ValidCtrCheck(TStyleLabel *)

{

new TStyleLabel(NULL);

}

//---

__fastcall TStyleLabel::TStyleLabel(TComponent* Owner)

: TLabel(Owner)

{

Font->Name = “Verdana”;

Font->Size = 12;

Font->Style = Font->Style << fsBold;

}

//---

namespace Stylelabel

{

void __fastcall PACKAGE Register()

{

Creating Custom Components 193

LISTING 4.1 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 193

TComponentClass classes[1] = {__classid(TStyleLabel)};

RegisterComponents(“TestPack”, classes, 0);

}

}

//---

Another advantage to building on existing components is the ability to create a base
class with all the functionality it requires, while leaving the properties unpublished.
An example of this would be a specific TListBox type of component that doesn’t have
the Items property published to the user. By descending this component from
TCustomListBox, it is possible to publish the properties you want the user to have
access to (at design time), while making the others available (such as the Items prop-
erty) only at runtime.

Finally, the properties and events you add to an existing component means writing
far less code than if you create the component from scratch.

Designing Custom Components
Although it might seem trivial, the same rules apply to component design as per-
application development when creating a custom component from an existing one.
It is important to think about the possible future direction your components might
take. The previously mentioned components that provide a list of database informa-
tion don’t just descend from TListBox. Instead, we decided to create a custom version
of TCustomListBox that would contain the additional properties common to each
descendant we wanted to create. Each new component was then built on this
custom version, eliminating the need for three different versions of the same code.
The final version of each component contained nothing more than the code (proper-
ties, methods, and events) that made it unique compared to its relatives.

Using the VCL Chart
To gain an appreciation for C++Builder’s VCL architecture, take some time to review
the VCL chart that ships with the product. This resource gives you a quick visual
overview of not only what components are available, but also what they are derived
from.

During your learning phase of component design and creation, you should endeavor
to model your own components in this same object-oriented fashion, by creating
strong, versatile base classes from which to create custom components. Although the
source code for the C++Builder components are written in Pascal, it is a worthwhile
exercise to look at each of the base classes for a particular component and see for
yourself how they all come together. You will soon observe how components sharing
the same properties are all derived from the same base class, or a descendant of one.

CHAPTER 4 Creating Custom Components194

LISTING 4.2 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 194

Finally, the chart shows what base classes are available for your own custom compo-
nent requirements. In combination with the VCL help files, you can quickly deter-
mine the most suitable class from which to derive your components. As mentioned
previously, the minimum base class will be TComponent, TWinControl, or
TGraphicControl, depending on the type of component you will be creating.

Writing Nonvisual Components
The world of components is built on three main entities: properties, events, and
methods. This section looks at each of these, with the aim of giving you a greater
understanding of what makes up a component and how components work together
to provide the building blocks of your C++Builder applications.

Properties
Properties come in two flavors: published and nonpublished. Published properties are
available in the C++Builder Integrated Development Environment (IDE) at design
time (they are also available at runtime). Nonpublished properties are used at runtime
by your application. We will look at nonpublished properties first.

NonPublished Properties A component is a packaged class with some additional
functionality. Take a look at the sample class in Listing 4.3.

LISTING 4.3 Getting and Setting Private Variables

class LengthClass

{

private:

int FLength;

public:

LengthClass(void){}

~LengthClass(void){}

int GetLength(void);

void SetLength(int pLength);

void LengthFunction (void);

}

Listing 4.3 shows a private variable used internally by the class and the methods
used by the application to read and write its value. This can easily lead to messy
code. Take a look at Listing 4.4 for another example.

Creating Custom Components 195

06 0672324806 CH04 12/12/02 2:37 PM Page 195

LISTING 4.4 Using Set and Get Methods

LengthClass Rope;

Rope.SetLength(15);

// do something

int NewLength = Rope.GetLength();

The code in Listing 4.4 isn’t complex by any means, but it can quickly become diffi-
cult to read in a complex application. Wouldn’t it be better if we could refer to
Length as a property of the class? This is what C++Builder enables you to do. In
C++Builder, the class could be written as shown in Listing 4.5.

LISTING 4.5 Using a Property to Get and Set Private Variables

class LengthClass2

{

private:

int FLength;

public:

LengthClass2(void){}

~LengthClass2(void){}

void LengthFunction(void);

__property int Length = {read = FLength, write = FLength};

}

The sample code in Listing 4.4 would be changed when using properties as shown in
Listing 4.6.

LISTING 4.6 Setting and Getting with a Property

LengthClass Rope;

Rope.Length = 15;

// do something

int NewLength = Rope.Length;

The class declaration has now been altered to use a __property (an extension to the
C++ language in C++Builder). This property has read and write keywords defined. In
Listing 4.6, when you read the Length property, you are returned the value of FLength;
when you set the Length property, you are setting the value of FLength.

Why go to all this trouble when you could just make the FLength variable public?
Properties enable you to do the following:

CHAPTER 4 Creating Custom Components196

06 0672324806 CH04 12/12/02 2:37 PM Page 196

• You can make the Length property read-only by not using the write keyword.

• You can provide an application public access to private information of the class
without affecting the implementation of the class. This is more relevant when
the property value is derived or some action needs to be taken when the value
of the property changes.

• You can cause side effects when the value is assigned to the property. These
side effects can be used to maintain a consistent internal state for the object, to
write information to a persistent store, or prepare other property values to be
requested by a caller (eager evaluation).

• You can compute a value when it is asked for (lazy evaluation). This is espe-
cially nice for things such as infinite sequences of numbers (such as prime
numbers), or complex calculations that you might want to avoid performing if
nothing ever requests the value.

Listing 4.7 shows a slight variation on the previous example.

LISTING 4.7 Combining Set and Get Methods with Properties

class LengthClass3

{

private:

int FLength;

int GetLength(void);

void SetLength(int pLength);

public:

LengthClass3(void){}

~LengthClass3(void){}

void LengthFunction(void);

__property int Length = {read = GetLength, write = SetLength};

}

The example in Listing 4.7 is starting to show how properties can become quite
powerful. The property declaration shows that the value is returned by the
GetLength() method when Length is read. The SetLength() method is called when
Length needs to be set.

The GetLength() method might perform some calculations based on other private
members of the class. The SetLength() method might perform some validation, and
then continue to perform some additional tasks before finally setting the value of
FLength.

Creating Custom Components 197

06 0672324806 CH04 12/12/02 2:37 PM Page 197

In C++Builder, an example of this is the connection to a database source when the
name of an alias is changed. As a developer, you change the name of the alias. In the
background, the component is disconnecting from the current database (if there is
one) before attempting to connect to the new source. The implementation is hidden
from the user, but it is made available by the use of properties.

Types of Properties Properties can be of any type, whether it is a simple data type
such as int, bool, short, and so on, or a custom class. There are two considerations
when using custom classes as property types. The first is that the class must be
derived from TPersistent (at a minimum) if it is to be streamed to the form. The
second is that, if you need to forward declare the class, you need to use the
__declspec(delphiclass) keyword.

The code in Listing 4.8 will compile using typical forward declaration. Note that we
haven’t yet defined a property.

LISTING 4.8 Forward Declaration

class MyClass;

class PACKAGE MyComponent : public TComponent

{

private:

MyClass *FMyClass;

// …

};

class MyClass : public TPeristent

{

public:

__fastcall MyClass (void){}

};

The PACKAGE keyword between the class name and class keyword is a macro that
expands to code that enables the component to be exported from a package library
(.BPL—Borland Package Library). A package library is a special kind of DLL that
allows code to be shared between applications. For more information about package
libraries and the PACKAGE macro, see “PACKAGE macro” and “Creating packages and
DLLs” in the C++Builder online help.

But, if we want to add a property of type MyClass, we need to modify the forward
declaration as shown in Listing 4.9.

CHAPTER 4 Creating Custom Components198

06 0672324806 CH04 12/12/02 2:37 PM Page 198

LISTING 4.9 Custom Class Property

class __declspec(delphiclass) MyClass;

class PACKAGE MyComponent : public TComponent

{

private:

MyClass *FMyClass;

// …

__published:

__property MyClass *Class1 = {read = FMyClass, write = FMyClass};

};

class MyClass : public TPeristent

{

public:

__fastcall MyClass (void){}

};

Published Properties Publishing properties provides users with access to the proper-
ties of the component within the C++Builder IDE at design time. The properties are
displayed in the Object Inspector, enabling the user to see or change the current
value of those properties. The properties are also available at runtime, but their main
purpose is to provide the user a quick method of setting up the component settings
without the need to write a single line of code. Additionally, published properties are
streamed to the form, so their values become persistent. This means the values are
restored each time the project is opened and when the executable is launched.

Published properties are defined the same as all other properties, but they are
defined in the __published area of the class declaration. Listing 4.10 shows an
example.

LISTING 4.10 Publishing a Property

class PACKAGE LengthClass : public TComponent

{

private:

int FLength;

int GetLength(void);

void SetLength(int pLength);

public:

Creating Custom Components 199

06 0672324806 CH04 12/12/02 2:37 PM Page 199

__fastcall LengthClass(TObject *Owner) : TComponent(Owner) {}

__fastcall ~LengthClass(void){}

void LengthFunction(void);

__published:

__property int Length = {read = Getlength, write = Setlength};

}

The previous class is the same as in Listing 4.9 except that the Length property has
been moved to the __published section. Published properties shown in the Object
Inspector are readable and writeable, but it is possible to make a property read-only
and still visible in the IDE by creating a dummy write method. Listing 4.11 shows
how to add a published property in the previous component that shows the current
version of the component.

LISTING 4.11 A Version Property

const int MajorVersion = 1;

const int MinorVersion = 0;

class PACKAGE LengthClass : public TComponent

{

private:

AnsiString FVersion;

int FLength;

int GetLength(void);

void SetLength(int pLength);

void SetVersion(AnsiString /* pVersion */)

{FVersion = AnsiString(MajorVersion) + “.” +

AnsiString(MinorVersion);}

public:

__fastcall LengthClass(TObject *Owner) : TComponent(Owner)

{SetVersion(“”);}

__fastcall ~LengthClass(void){}

void LengthFunction(void);

__published:

__property int Length = {read = Getlength, write = Setlength};

__property AnsiString Version = {read = FVersion, write = SetVersion};

}

CHAPTER 4 Creating Custom Components200

LISTING 4.10 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 200

We have defined a private variable FVersion, which has its value set in the class
constructor. We have then added the Version property to the __published section and
assigned the read and write keywords. The read keyword returns the value of
Fversion, and the write method sets the value back to the original value. The variable
name in the parameter list of SetVersion() has been commented out to prevent
compiler warnings that the variable is declared, but not used. Because the property is
of type AnsiString, the SetVersion() method by design must have an AnsiString para-
meter in the declaration.

Array Properties Some properties are arrays, rather than simple data types such as
bool, int, and AnsiString. This is not greatly documented for the user. An example of
an array property is the Lines property of the TMemo component. This property
enables the user to access the individual lines of the Memo component.

Array properties are declared the same as other properties, but with two main differ-
ences: The declaration includes the appropriate indexes with required types, and
these indexes are not limited to being integers. Listings 4.12 through 4.15 illustrate
the use of two properties. One takes a string as an index, and the other takes an
integer value as an index.

LISTING 4.12 Using a String as an Index

class PACKAGE TStringAliasComponent : public TComponent

{

private:

TStringList RealList;

TStringList AliasList;

__AnsiString __fastcall GetStringAlias(AnsiString RawString);

AnsiString __fastcall GetRealString(int Index);

void __fastcall SetRealString(int Index, AnsiString Value);

public:

__property AnsiString AliasString[AnsiString RawString] =

{read = GetStringAlias};

__property AnsiString RealString[int Index] = {read=GetRealString,

write=SetRealString};

}

The previous example could be part of a component that internally stores a list of
strings and another list of alias strings. The AliasString property takes the RawString
value and returns the alias via the GetStringAlias() method. The one thing many
component writers are confused about when they first start using array properties is
that the declaration uses index notation (that is, []), yet in code you use the same
notation as when calling another method. Look at the RealString property, and
notice that not only does it have an AnsiString return type, but it also takes an

Creating Custom Components 201

06 0672324806 CH04 12/12/02 2:37 PM Page 201

integer as an index. The GetRealString() method would be called when retrieving a
particular string from the list based on the index, as in Listing 4.13.

LISTING 4.13 Array Property Read Method

AnsiString __fastcall TStringAliasComponent::GetRealString(int Index)

{

if(Index > (RealList->Count –1))

return “”;

return RealList->Strings[Index];

}

In code, the property would look like this:

AnsiString str = StringAlias1->RealString[0];

Now take a look at the SetRealString() method. This method might look a bit odd if
you are unfamiliar with using arrays as properties. It takes as its first parameter an
integer value as its index and an AnsiString value. The RealList TStringList variable
will insert the AnsiString in the list at the position specified by the index parameter.
Listing 4.14 shows the definition of the SetRealString() method.

LISTING 4.14 Array Property Write Method

void __fastcall TStringAliasComponent::SetRealString(int Index,

AnsiString Value)

{

if((RealList->Count – 1) < Index)

RealList->Add(Value);

else

RealList->Insert(Index, Value);

}

In Listing 4.14, the value of the Index parameter is checked against the number of
strings already in the list. If Index is greater, the string specified by Value is simply
added to the end of the list. Otherwise, the Insert() method of TStringList is called
to insert the string at the position specified by Index. Now you can assign a string to
the list like this:

StringAlias1->RealString[1] = “Some String”;

Now here is the fun part. The GetStringAlias() method is the read method for the
AliasString property, which takes a string as an index. You know that the string lists

CHAPTER 4 Creating Custom Components202

06 0672324806 CH04 12/12/02 2:37 PM Page 202

are arrays of strings, so every string has an index, or a position within the list. You
can use the IndexOf() method of TStringList to compare the string passed as the
index against the strings contained in the list. This method returns an integer value
that is the index of the string within the list, or it returns -1 if the string is not
present. Now all you have to do is return the string with the index returned from the
call to IndexOf() from the list of aliases. This is demonstrated in Listing 4.15.

LISTING 4.15 The GetStringAlias() Method

AnsiString __fastcall TStringAliasComponent::GetStringAlias(

AnsiString RawString)

{

int Index;

Index = RealList->IndexOf(RawString);

if((Index == -1) || (Index > (AliasList->Count-1)))

return RawString;

return AliasList->Strings [Index];

}

To use the property, you would do something like this:

AnsiString MyAliasString = StringAlias1->AliasString(“The Raw String”);

Beyond Read and Write The code examples in Listings 4.5 through 4.15 have
shown properties using read and write keywords as part of the declaration.
C++Builder also provides three more options: default, nodefault, and stored.

The default keyword does not set the default value for the property. Instead, it tells
C++Builder what default value will be assigned to this property (by the developer) in
the component constructor. The IDE then uses this information to determine
whether the value of the property needs to be streamed to the form. If the property
is assigned a value equivalent to the default, the value of this property will not be
saved as part of the form. For example

__property int IntegerProperty = {read = Finteger, write = Finteger,

default = 10};

The nodefault keyword tells the IDE that this property has no default value associ-
ated with it. When a property is declared for the first time, there is no need to
include the nodefault keyword because the absence of a default means there is no
default. The nodefault keyword is mainly used when you need to change the defini-
tion of the inherited property. For example

Creating Custom Components 203

06 0672324806 CH04 12/12/02 2:37 PM Page 203

__property int DescendantInteger = {read = Finteger, write = Finteger,

nodefault};

Be aware that the value of a property with the nodefault keyword in its declaration
will be streamed only if a value is assigned to the property or underlying member
variable, either in one of its methods, or via the Object Inspector.

The stored keyword is used to control the storing of properties. All published proper-
ties are stored by default. You can change this behavior by setting the stored
keyword to true or false or by giving the name of a function that returns a Boolean
result. The code in Listing 4.16 shows an example of the stored keyword in use.

LISTING 4.16 Using the stored Keyword

class PACKAGE LengthClass : public TComponent

{

protected:

int FProp;

bool StoreProperty(void);

__published:

__property int AlwaysStore = {read = FProp, write = FProp, stored = true};

__property int NeverStore = {read = FProp, write = FProp, stored = false};

__property int SimetimesStore = {read = FProp, write = FProp,

stored = StoreProperty};

}

Order of Creation If your component has properties that depend on the values of
other properties during the streaming phase, you can control the order in which
they load (and hence initialize) by declaring them in the required order in the class
header. For example, the code in Listing 4.17 loads the properties in the order PropA,
PropB, PropC.

LISTING 4.17 Property Dependencies

class PACKAGE SampleComponent : public TComponent

{

private:

int FPropA;

bool FPropB;

String FProC;

void __fastcall SetPropB(bool pPropB);

void __fastcall SetPropC(String pPropC);

CHAPTER 4 Creating Custom Components204

06 0672324806 CH04 12/12/02 2:37 PM Page 204

public:

__property int PropA = {read = FPropA, write = FPropA};

__property bool PropB = {read = FPropB, write = SetPropB};

__property String PropC = {read = FPropC, write = SetPropC};

}

If you have properties with dependencies and are having trouble getting them to
initialize correctly, ensure that the order of the property declarations in the class is
correct.

Events
An event in a component is the call of an optional method in response to another
incident. The incident could be a hook for the user to perform a task before the
component continues the catching of an exception or the trapping of a Windows
message.

As a simple example, let’s assume we have a component that traverses directories
from a given root location. If this component were designed to notify the user when
the current directory has changed, this would be referred to as an event. When the
event occurs, the component determines if the user has provided an event handler (a
method attached to the event) and calls the respective method. If this all sounds
confusing, take a look at Listing 4.18.

LISTING 4.18 Declaring an Event Property

class PACKAGE TTraverseDir : public TComponent

{

private:

AnsiString FCurrentDir;

TNotifyEvent *FOnDirChanged;

public:

__fastcall TTraverseDir(TObject *Owner) : TComponent(Owner){

FOnDirChanged = 0;}

__fastcall ~TTraverseDir(void){}

__fastcall Execute();

__published:

__property AnsiString CurrentDir = {read = FCurrentDir};

__property TNotifyEvent OnDirChanged = {read = FOnDirChanged,

write = FOnDirChanged};

}

Creating Custom Components 205

LISTING 4.17 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 205

Listing 4.18 shows the relevant sections of code to describe the declaration of a read-
only property and a standard event. When this component is executed, there will be
instances when the current directory is changed. Let’s have a look at some example
code:

void __fastcall TTraverseDir::Execute(void)

{

// perform the traversing of a directory

// This is where the directory has changed,

// call the DirChanged event if there is one.

if(FOnDirChanged)

FOnDirChanged(this);

// remainder of component code here

}

The variable FOnDirChanged in the previous example is a pointer to a TNotifyEvent,
which is declared as

typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* Sender)

As you can see, the declaration indicates that a single parameter of type TObject* is
expected. When the event is created (by double-clicking the event in the Object
Inspector), the IDE creates the following code:

void __fastcall TTraverseDir::Traverse1DirChanged(TObject *Sender)

{

}

Within this code, the user can now add code to be performed when this event is
called. In this case, the event is a standard event that simply passes a pointer of the
object that generated the event. This pointer enables you to distinguish between
multiple components of the same type within the project.

void __fastcall TTraverseDir::Traverse1DirChanged(TObject *Sender)

{

if(Sender == Traverse1)

// perform this code for the component called Traverse1

else

// handle the alternative here

}

CHAPTER 4 Creating Custom Components206

06 0672324806 CH04 12/12/02 2:37 PM Page 206

How to Create an Event That Contains Additional Parameters You will recall that
the standard event is defined as shown in the following code:

typedef void __fastcall (__closure *TNotifyEvent)(System::TObject* Sender)

The following code shows how to define a custom event:

typedef void __fastcall (__closure *TDirChangedEvent)

(System::TObject* Sender, bool &Abort)

We have done two things in the previous code:

• Created a unique typedef. TNotifyEvent is now TDirChangedEvent.

• Added the required parameters to the parameter list.

We can now modify our class declaration. The changes are shown in Listing 4.19.

LISTING 4.19 Custom Event Properties

typedef void __fastcall (__closure *TDirChangedEvent)(

System::TObject* Sender, bool &Abort)

class PACKAGE TTraverseDir : public TComponent

{

private:

TDirChangedEvent *FOnDirChanged;

__published:

__property TDirChangedEvent OnDirChanged = {read = FOnDirChanged,

write = FOnDirChanged};

}

Now when the user creates the event, the IDE will add the following code:

void __fastcall TTraverseDir::Traverse1DirChanged(TObject *Sender, bool &Abort)

{

}

There is only one more change to make: the source code that calls the event, as
shown in Listing 4.20.

Creating Custom Components 207

06 0672324806 CH04 12/12/02 2:37 PM Page 207

LISTING 4.20 Calling the Event

void __fastcall TTraverseDir::Execute(void)

{

// perform the traversing of a directory

bool &Abort = false;

// This is where the directory has changed,

// call the DirChanged event if there is one.

if(FOnDirChanged)

FOnDirChanged(this, Abort);

if(Abort)

// handle the abort process

// remainder of component code here

}

The component has been sufficiently modified to enable the user to abort the
process if required.

Methods
Methods of a component are supporting routines developed to carry out the various
tasks required; they are no different than the methods defined for a typical class. In
writing components, the goal is to minimize the number of methods the application
needs to call. Here are some simple rules to follow when designing your compo-
nents:

• The user must not be required to call any methods to make the component
behave the way he expects. For example, the component must take care of all
initializations.

• There must be no dependencies on the order in which given methods must be
called. You must design your component to allow for any combination of
events to take place. For example, if a user calls a routine that is state depen-
dent (such as trying to query a database when there is no active connection),
the component must handle the situation. Whether the component should
attempt to connect or should throw an exception is up to the developer based
on the component’s function.

• The user must not be able to call a method that would change the state of a
component while it is performing another task.

CHAPTER 4 Creating Custom Components208

06 0672324806 CH04 12/12/02 2:37 PM Page 208

• The method should not generally be used to set or get values from the compo-
nent because that is the role of the property.

Write your methods so that they check the current component state. If all of the
requirements are not met, the component should attempt to correct the problem.
The components should throw an exception if the component state cannot be
corrected. Where appropriate, create custom exceptions so that the user can check
for component-specific exception types.

Try to create properties rather than methods. Properties enable you to hide an active
implementation from the user and, hence, make the component easier to under-
stand.

Methods you write for components will typically be public or protected. Private
methods should be written when they are hiding a specific implementation for that
component, to the point that even derived components should not call them.

Public Methods Public methods are those that the user needs to make the compo-
nent perform as required.

When you have a method that runs for a long time, consider creating an event that
can be used by the developer to inform the user of any processing activity taking
place. Providing an opportunity for the user to abort the processing, for instance,
through a return value from the event is another possibility.

Imagine a component that searches a tree of directories for a given file. Depending
on the system being searched, this could take a great deal of processing time. Rather
than leaving the user wondering if the application has ceased functioning, it is better
to create an event that is called within the method. This event can then provide
feedback, such as displaying the name of the current directory being traversed.

Protected Methods If your components have methods that must not be called by
the application developer, but need to be called from derived components, these
methods are declared as protected. This ensures that the method is not called at the
wrong time. It is safer to create public methods for the user that call protected
methods when all requirements are established first.

When a method is created for the implementation of properties, it should be
declared as a virtual protected method. This enables descendant components to
enhance or replace the implementation used.

An example of a virtual protected method is the Loaded() method of components.
When a component is completely loaded (streamed from the form), the Loaded()
method is called.

In some cases, a descendant component needs to know when the component is
loaded after all properties have been read so that it can perform some additional

Creating Custom Components 209

06 0672324806 CH04 12/12/02 2:37 PM Page 209

tasks. An example is a component that performs validation in a property setter, but
cannot perform the validation until all properties have been read. In such a case,
create a private variable called IsLoaded and set this to false in the constructor.
(Although this is done by default, doing it this way makes the code more readable.)
Then, overload the Loaded() method and set IsLoaded to true. This variable can then
be used in the property-implementation methods to perform validation as required.

Listings 4.21 and 4.22 are from the custom TAliasComboBox component.
TAliasComboBox is part of the free MJFPack package, which can be downloaded from
http://www.mjfreelancing.com. The package contains other components that can be
linked together in this fashion.

LISTING 4.21 The TAliasComboBox Header File

class PACKAGE TAliasComboBox : public TSmartComboBox

{

private:

bool IsLoaded;

protected:

virtual void __fastcall Loaded(void);

}

LISTING 4.22 The TAliasComboBox Source File

void __fastcall TAliasComboBox: :Loaded(void)

{

TComponent::Loaded();

if(!ComponentState.Contains(csDesigning))

{

IsLoaded = true;

GetAliases();

}

}

In this code, you can see that the Loaded() method has been overloaded in the class
declaration. In the .CPP file, start by calling the ancestor Loaded() method, and then
your additional code. Listing 4.22 shows the component verifying that it is not in
design mode before it retrieves available alias information. Because the state of
certain properties might depend on other properties, additional methods for this

CHAPTER 4 Creating Custom Components210

06 0672324806 CH04 12/12/02 2:37 PM Page 210

component check the IsLoaded variable before performing any processing that might
require the value of those properties to be set. Essentially, most of the processing by
this component is performed only at runtime.

Creating Component Exceptions
Sometimes it is possible to rethrow an exception that you have caught in your
component, which enables the user to deal with the situation. You have more than
likely performed a number of steps in your component that need to be cleaned up
when an exception occurs. After you have performed the cleanup process, you need
to do one of two things.

First, you can rethrow the exception. This would be the standard approach for an
error such as Divide By Zero. However, there are situations in which it would be
better to convert the exception into an event. This provides very clean handling
methods for your users. Don’t make the mistake of converting all exceptions to
events because this can sometimes make it harder for your users to develop their
applications.

An example might help to make this clearer. Imagine a component performing a
number of sequential database queries. This component would be made up of a
TStrings property that contains all the queries and an Execute() method that
performs them. How does the user want to use this component? Something such as
the following would be the most desirable.

MultiQuery->Queries->Assign(Memo1->Lines);

MultiQuery1->Execute();

This is very simple code for the user to implement, but what about a possible excep-
tion? Should the user be required to handle any exceptions himself? This might not
be the best approach during one of the queries. A better approach would be to build
an event that is called when an exception occurs. Within the event, the user should
have the opportunity to abort the process.

Let’s create a custom exception that will be called if the user attempts to execute an
individual query when it is outside the available index range. For the moment,
assume that there is another method called ExecuteItem() that takes an index to the
list of available queries.

First, we need to create the exception in the header file. This is as simple as creating
a new exception class derived from the Exception class, as shown in Listing 4.23.

LISTING 4.23 A Custom Exception Class

class EMultiQueryIndexOutOfBounds : public Exception

{

public:

Creating Custom Components 211

06 0672324806 CH04 12/12/02 2:37 PM Page 211

__fastcall EMultiQueryIndexOutOfBounds(const AnsiString Msg) :

Exception(Msg){}

};

That’s it. Now if the user tries to execute a query (by index), and the index provided
is outside the available range, we can throw our unique exception.

The code for throwing this exception is shown in Listing 4.24.

LISTING 4.24 Throwing the Custom Exception

void __fastcall TMultiQuery::ExecuteItem(int Index)

{

if(Index < 0 || Index > Queries->Count)

throw EmultiQueryIndexOutOfBounds;

// … perform the query here

}

As you can see from Listings 4.23 and 4.24, a custom exception is very easy to create
and implement. If this component is to perform the query at design time, you need
to provide the user with a message (rather than have an exception thrown within
the IDE). You should modify the code as shown in Listing 4.25.

LISTING 4.25 Throwing an Exception at Design Time

void __fastcall TMultiQuery::ExecuteItem(int Index)

{

if(Index < 0 || Index > Queries->Count)

{

if(ComponentState.Contains(csDesigning))

throw EmultiQueryIndexOutOfBounds(“The Query index is out of range”);

else

throw EmultiQueryIndexOutOfBounds;

}

// … perform the query here

}

CHAPTER 4 Creating Custom Components212

LISTING 4.23 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 212

The namespace

As you develop your components and name them, there might be other developers
who, by coincidence, use the same names. This will cause conflicts when using both
components in the same project. This is overcome with the namespace keyword.

When a component is created using the New Component Wizard, the IDE creates
code similar to that shown in Listing 4.26.

LISTING 4.26 namespace Code

namespace Aliascombobox

{

void __fastcall PACKAGE Register()

{

TComponentClass classes[1] = {__classid(TAliasComboBox)};

RegisterComponents(“MJF Pack”, classes, 0);

}

}

The namespace keyword ensures that the component is created in its own subsystem.
Let’s look at a case where namespace needs to be used even further within a package.

Suppose that two developers build a clock component, and they both happen to
create a const variable to indicate the default time mode. If both clocks are used in
an application, the compiler will complain because of the duplication.

// From the first developer

const bool Mode12; // 12 hour mode by default

class PACKAGE TClock1 : public TComponent

{

}

// From the second developer

const bool Mode12; // 12 hour mode by default

class PACKAGE TClock2 : public TComponent

{

}

As you can see, it is important to develop your component packages with this possi-
bility in mind. To get around this issue, use the namespace keyword. After all the
#include statements in your header file, surround the code as shown in Listing 4.27.

Creating Custom Components 213

06 0672324806 CH04 12/12/02 2:37 PM Page 213

LISTING 4.27 Surrounding Your Code

namespace NClock1

{

class PACKAGE TClock1 : public

}

}

Develop a convention for all your components. For example, you could start your
namespace identifiers with a capital N, followed by the component name. If it is possi-
ble that the same name has already been used, come up with something unique,
such as prefixing with your company’s initials. Using namespaces in this fashion
ensures that your packages will integrate smoothly with others.

Responding to Messages
The VCL does a fantastic job of handling almost all of the window messages you will
ever require. There are times, however, when a need arises to respond to an addi-
tional message to further enhance your project.

NOTE

Keep in mind that the explicit use of Windows messages will prevent porting your component
to other operating systems. CLX components you create should never use Windows messages
directly.

An example of such a requirement is to support filename drag and drop from
Windows Explorer onto a string Grid component. We can create such a component,
called TSuperStringGrid, that is nothing more than a descendant of TStringGrid with
some additional functionality.

The drag-and-drop operation is handled by the API message WM_DROPFILES. The infor-
mation needed to carry out the operation is stored in the TWMDropFiles structure.

The interception of window messages in components is the same as for other areas
of your projects. The only difference is that we are working with a component and
not with the form of a project. Hence, we set up a message map, as shown in
Listing 4.28.

LISTING 4.28 Trapping Messages

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(WM_DROPFILES, TWMDropFiles, WmDropFiles)

END_MESSAGE_MAP(TStringGrid)

CHAPTER 4 Creating Custom Components214

06 0672324806 CH04 12/12/02 2:37 PM Page 214

NOTE

No trailing semicolons are used in declaring the message map. This is because
BEGIN_MESSAGE_MAP, MESSAGE_HANDLER, and END_MESSAGE_MAP are macros that expand to
code during compilation. The macros contain the necessary semicolons.

The code in Listing 4.28 creates a message map for the component (note TStringGrid
in the END_MESSAGE_MAP macro). The message handler will pass all intercepts of the
WM_DROPFILES messages to the WmDropFiles() method (which will be created shortly).
The information is passed to this method in the TWMDropFiles structure as defined by
Windows.

Now we need to create the method that will handle the message. In the protected
section of the component we define the method as shown in the following code:

protected:

void __fastcall WmDropFiles(TWMDropFiles &Message);

You’ll notice we have provided a reference to the required structure as a parameter of
the method.

Before this component will work, we need to register the component with Windows,
telling it that the string grid is allowed to accept the dropped filenames. This is
performed when the component is loaded via the DragAcceptFiles() command.

DragAcceptFiles(Handle, FCanDropFiles);

In the previous code, the FCanDropFiles variable is used by the component to indicate
whether it is allowed to accept the filenames as part of a drag-and-drop operation.

Now the method accepts the filenames when the component intercepts the
Windows message. The code in Listing 4.29 is stripped slightly from the full version.

LISTING 4.29 Accepting Dropped Files

void __fastcall TSuperStringGrid::WmDropFiles(TWMDropFiles &Message)

{

char buff[MAX_PATH];

HDROP hDrop = (HDROP)Message.Drop;

POINT Point;

int NumFiles = DragQueryFile(hDrop, -1, NULL, NULL);

TStringList *DFiles = new TStringList;

Creating Custom Components 215

06 0672324806 CH04 12/12/02 2:37 PM Page 215

DFiles->Clear();

DragQueryPoint(hDrop, &Point);

for(int you = 0; you < NumFiles; i++)

{

DragQueryFile(hDrop, i, buff, sizeof(buff));

DFiles->Add(buff);

}

DragFinish(hDrop);

// do what you want with the list of files now stored in DFiles

delete DFiles;

}

An explanation of this code is beyond the scope of this chapter. The help files
supplied with C++Builder provide a good overview of what each function performs.

As you can see, intercepting messages is not hard after you understand how to set
them up, although some understanding of the Windows API is required. Refer to the
messages.hpp file that comes with your C++Builder installation for a list of the
message structures available.

Design Time Versus Runtime
We’ve already made some references to the operation of a component at design time
compared to runtime. Design time operation refers to how the component behaves
while the user is creating the project in the IDE. Runtime operation refers to what the
component does when the application is executed.

The TComponent object has a property (a Set) called ComponentState that is made up of
the following constants: csAncestor, csDesigning, csDesignInstance, csDestroying,
csFixups, csFreeNotification, csInline, csLoading, csReading, csWriting, and
csUpdating. Table 4.1 lists these ComponentState flags and gives the purpose of each.

TABLE 4.1 The ComponentState Flags

Flag Purpose

csAncestor Indicates that the component was introduced in an ancestor

form. Set only if csDesigning is also set. Set or cleared in the

TComponent::SetAncestor() method.

csDesigning Indicates that the component is being manipulated at design

time. Used to distinguish design time and runtime manipula-

tion. Set or cleared in the TComponent::SetDesigning()

method.

CHAPTER 4 Creating Custom Components216

LISTING 4.29 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 216

csDesignInstance Indicates that the component is the root object in a designer.

For example, it is set for a frame when you are designing it, but

not on a frame that acts like a component. This flag always

appears with csDesigning. Set or cleared in the

TComponent::SetDesignInstance() method.

csDestroying Indicates that the component is being destroyed. Set in the

TComponent::Destroying() method.

csFixups Indicates that the component is linked to a component in

another form that has not yet been loaded. This flag is cleared

when all pending fixups are resolved. Cleared in the

GlobalFixupReferences() global function.

csFreeNotification Indicates that the component has sent a notification to other

forms that it is being destroyed, but has not yet been

destroyed. Set in the TComponent::FreeNotification()

method.

csInline Indicates that the component is a top-level component that can

be modified at design time and also embedded in a form. This

flag is used to identify nested frames while loading and saving.

Set or cleared in the component’s SetInline() method. Also

set in the TReader::ReadComponent() method

csLoading Indicates that a filer object is currently loading the component.

This flag is set when the component is first created and not

cleared until the component and all its children are fully loaded

(when the Loaded() method is called). Set in the

TReader::ReadComponent() and

TReader::ReadRootComponent() methods. Cleared in the

TComponent::Loaded() method. (For more information on filer

objects, see “TFiler” in the C++Builder online help index.)

csReading Indicates that the component is reading its property values

from a stream. Note that the csLoading flag is always set when

csReading is set. That is, csReading is set for the period of time

that a component is reading in property values when the

component is loading. Set and cleared in the

TReader::ReadComponent() and

TReader::ReadRootComponent() methods.

csWriting Indicates that the component is writing its property values to a

stream. Set and cleared in the TWriter::WriteComponent()

method.

Creating Custom Components 217

TABLE 4.1 Continued

Flag Purpose

06 0672324806 CH04 12/12/02 2:37 PM Page 217

csUpdating Indicates that the component is being updated to reflect

changes in an ancestor form. Set only if csAncestor is also set.

Set in the TComponent::Updating() method and cleared in the

TComponent::Updated() method.

The Set member we are most interested in is csDesigning. As long as the component
exists in the IDE (as part of a developing project), the component will contain this
constant as part of the Set to indicate that it is being used at design time. To deter-
mine if a component is being used at design time, use the following code:

if(ComponentState.Contains(csDesigning))

// carry out the designtime code here

else

// carry out the runtime code here

Why would you need to run certain code at runtime only? This is required in many
instances, such as the following:

• To specifically validate a property that has dependencies available only at
runtime.

• To display a warning message to the user if he sets an inappropriate property
value.

• To display a selection dialog or a property editor if an invalid property value is
given.

Many component writers don’t go to the trouble of providing the user with these
types of warnings and dialogs. However, it is these extra features that make a compo-
nent more intuitive and user friendly.

Linking Components
Linking components refers to giving a component the capability to reference or alter
another component in the same project. An example in C++Builder is the
TDriveComboBox component. This component has a property called DirList that
enables the developer to select a TDirectoryListBox component available on the same
form. This type of link gives the developer a quick and easy method to update the
directory listing automatically every time the selected drive is changed. Creating a
project to display a list of directories and filenames doesn’t get any easier than drop-
ping three components (TDriveComboBox, TdirectoryListBox, and TFileListBox) onto a
form and setting two properties. Of course, you still need to assign code to the event

CHAPTER 4 Creating Custom Components218

TABLE 4.1 Continued

Flag Purpose

06 0672324806 CH04 12/12/02 2:37 PM Page 218

handlers to actually make the project perform something useful, but up to that point
there isn’t a single line of code to be written.

Providing a link to other components starts by creating a property of the required
type. If you create a property of type TLabel, the Object Inspector will show all avail-
able components on the form that are of type TLabel. To show how this works for
descendant components, we are going to create a simple component that can link to
a TMemo or a TRichEdit component. To do this, you need to realize that both compo-
nents descend from TCustomMemo.

Let’s start by creating a component descending from TComponent that has a property
called LinkedEdit, as shown in Listing 4.30.

LISTING 4.30 Linked Components

class PACKAGE TMsgLog : public TComponent

{

private:

TCustomMemo *FLinkedEdit;

➥// can be TMemo or TRichEdit or any other derived component

public:

__fastcall TMsgLog(TComponent* Owner);

__fastcall ~TMsgLog(void);

void __fastcall OutputMsg(const AnsiString Message);

protected:

virtual void __fastcall Notification(TComponent *AComponent,

TOperation Operation);

__published:

__property TCustomMemo *LinkedEdit = {read = FLinkedEdit,

write = FLinkedEdit};

};

The code in Listing 4.30 creates the component with a single property, called
LinkedEdit. There are two more things to take care of. First, we need to output the
messages to the linked Memo or RichEdit component (if there is one). We also need to
take care of the possibility that the user might delete the linked edit control. The
OutputMsg() method is used to pass the text message to the linked edit control, and
the Notification() method is used to detect if it has been deleted.

Creating Custom Components 219

06 0672324806 CH04 12/12/02 2:37 PM Page 219

The following provides the output:

void __fastcall TMsgLog::OutputMsg(const AnsiString Message)

{

if(FLinkedEdit)

FLinkedEdit->Lines->Add(Message);

}

Because both TMemo and TRichEdit components have a Lines property, there is no
need to perform any casting. If you need to perform a task that is component
specific (or handled differently), use the code shown in Listing 4.31.

LISTING 4.31 The OutputMsg() Method

void __fastcall TMsgLog::OutputMsg(const AnsiString Message)

{

TMemo *LinkedMemo = 0;

TRichEdit *LinkedRichEdit = 0;

LinkedMemo = dynamic_cast<TMemo *>(FLinkedEdit);

LinkedRichEdit = dynamic_cast<TRichEdit *>(FLinkedEdit);

if(FLinkedMemo)

FLinkedMemo->Lines->Add(Message);

else

{

FLinkedRichEdit->Font->Color = clRed;

FLinkedRichEdit->Lines->Add(Message);

}

}

The final check is to detect the linked edit control being deleted. This is done by
overloading the Notification() method of Tcomponent, as shown in Listing 4.32.

LISTING 4.32 The Notification() Method

void __fastcall TMsgLog::Notification(TComponent *AComponent,

TOperation Operation)

{

// We don’t care about controls being added.

if(Operation != opRemove)

return ;

CHAPTER 4 Creating Custom Components220

06 0672324806 CH04 12/12/02 2:37 PM Page 220

// We have to check each one in case the user did something

// like have the same label attached to multiple properties.

if(AComponent == FLinkedEdit)

FLinkedEdit = 0;

}

The code in Listing 4.32 shows how to handle code resulting from another compo-
nent being deleted. The first two lines are to show the purpose of the Operation para-
meter.

The most important code is the last two lines, which compare the pointer AComponent
to the LinkedEdit property (a pointer to a component descending from TCustomMemo).
If the pointers match, we NULL the LinkedEdit pointer. This removes the reference
from the Object Inspector and ensures that our code is no longer pointing to a
memory address that is about to be lost (when the edit component is actually
deleted). Note that LinkedEdit = 0 is the same as LinkedEdit = NULL.

One final point is that if you link your component to another that has dependencies
(such as TDBDataSet descendants that require a database connection), it is up to you
to ensure that these dependencies are checked and handled appropriately. Good
component design is recognized when the user has the least amount of work to do
to get the component to behave as expected.

Linking Events Between Components
We’ve looked at how components can be linked together via properties. Our discus-
sion so far has been about how a property of TMsgLog can be linked to another
component so that messaging can be provided automatically without the user
having to write the associated code.

What we are going to look at now is how to link events between components.
Continuing with the previous examples, we’re going to show how we intercept the
OnExit event for the linked edit control (note that TMemo and TRichEdit both have an
OnExit event and are of type TNotifyEvent) so that we can perform some additional
processing after the user’s code has executed. Let’s assume the linked edit control is
not read-only. This means the user could enter something into the log; this change
needs to be recorded as a user-edited entry. We will demonstrate how to perform the
intercept and leave the functionality up to you.

Component events can be implemented differently according to the nature of the
event itself. If the component is looping through a process, the code might simply
have a call to execute the event handler if one exists. Take a look at the following
example:

Creating Custom Components 221

LISTING 4.32 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 221

// start of loop

if(FOnExit)

FOnExit(this);

endif;

// …

// end of loop

Other events could result from a message. Listing 4.26 showed the message map
macro for accepting files dropped onto a control from Windows Explorer as follows:

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(WM_DROPFILES, TWMDropFiles, WmDropFiles)

END_MESSAGE_MAP(TStringGrid)

If our component has an OnDrop event, we can write our implementation as shown in
the following code:

void __fastcall TSuperStringGrid::WmDropFiles(TWMDropFiles &Message)

{

if(FOnDrop)

FOnDrop(this);

endif;

// … remainder of code here

}

What you should have noticed by now is that the components maintain a pointer to
the event handler, such as FOnExit and FOnDrop in the previous example. This makes
it very easy to create our own pointer to note where the user’s handler resides, and
then redirect the user’s event so that it calls an internal method instead. This inter-
nal method will execute the user’s original code, followed by the component’s code
(or vice versa).

The only other consideration to make is when you redirect the pointers. The logical
place to do this is in the component’s Loaded() method. This is called when the
entire component is streamed from the form, and, hence, all of the user’s event
handlers have been assigned.

Define the Loaded() method and a pointer to a standard event in your class. (The
event is the same type as the one we are going to intercept—in our case it is the
OnExit event, which is of type TNotifyEvent.) We also need an internal method with
the same declaration as the event that we are intercepting. In our class, we create a
method called MsgLogOnExit. This is the method that will be called before the OnExit
event of the linked edit control. In Listing 4.33, we include a typedef of type

CHAPTER 4 Creating Custom Components222

06 0672324806 CH04 12/12/02 2:37 PM Page 222

TComponent called Inherited. The reason will become obvious when we get to the
source code.

LISTING 4.33 The TMsgLog Class Header File

class PACKAGE TMsgLog : public TComponent

{

typedef TComponent Inherited;

private:

TNotifyEvent *FonUsersExit;

void __fastcall MsgLogOnExit(TObject *Sender);

protected:

virtual void __fastcall Loaded(void);

// … remainder of code not shown

}

In the source code, you might have something such as Listing 4.34.

LISTING 4.34 The TMsgLog Class Source File

void __fastcall TMsgLog::TMsgLog(TComponent *Owner)

{

FOnUsersExit = 0;

}

void __fastcall TMsgLog::Loaded(void)

{

Inherited::Loaded();

if(!ComponentState.Contains(csDesigning))

{

if(FlinkedEdit)

{

if(FlinkedEdit->OnExit)

FOnUsersExit = FlinkedEdit->OnExit;

FlinkedEdit->OnExit = MsgLogOnExit;

}

}

}

Creating Custom Components 223

06 0672324806 CH04 12/12/02 2:37 PM Page 223

void __fastcall TMsgLog::MsgLogOnExit(TObject *Sender)

{

if(FOnUsersExit)

FOnUsersExit(this);

// … and now perform the additional code we want to do

}

When the component is first created, the constructor initializes FOnUsersExit to NULL.
When the form is completely streamed, the component’s OnLoaded event is called.
This starts by calling the inherited method first (the typedef simply helps to make
the code easy to read). Next, we make sure the component is not in design mode. If
the application is in runtime mode, we see if the component has a linked edit
control. If so, we find out if the user has assigned a method to the OnExit event of
that control. If these tests are true, we set our internal pointer FOnUsersExit to the
address of the user’s event handler. Finally, we reassign the edit control’s event
handler to our internal method MsgLogOnExit(). This results in the MsgLogOnExit()
method being called every time the cursor exits the edit control, even if the user did
not assign an event handler.

The MsgLogOnExit() method starts by determining if the user assigned an event
handler; if so, it is executed. We then continue to perform the additional processing
tasks we want to implement. The decision to call the user’s event before or after our
own code is executed depends on the nature of the event, such as data encryption or
validation.

Writing Visual Components
As you’ve seen, components can be any part of a program that the developer can
interact with. Components can be nonvisual (TOpenDialog or TTable) or visual
(TListBox or TButton). The most obvious difference between them is that visual
components have the same visual characteristics during design time as they do
during runtime. As the properties of the component that determine its visual appear-
ance are changed in the Object Inspector, the component must be redrawn or
repainted to reflect those changes. Windowed controls are wrappers for Windows
Common Controls, and Windows will take care of redrawing the control more often
than not. In some situations, such as with a component that is not related to any
existing control, redrawing the component is up to you. In either case, it is helpful
to know some of the useful classes that C++Builder provides for drawing onscreen.

CHAPTER 4 Creating Custom Components224

LISTING 4.10 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 224

Where to Begin
One of the most important considerations when writing components is determining
the parent class from which to inherit. You should review the help files and the VCL
source code if you have it. This is time well spent; there is nothing more frustrating
than having worked on a component for hours or days just to discover that it
doesn’t have the capabilities you need. If you are writing a windowed component
(one that can receive input focus and has a window handle), derive it from
TCustomControl or TWinControl. If your component is purely graphical, such as a
TSpeedButton, derive from TGraphicControl. Very few if any limitations exist when it
comes to writing visual components, and there is a wealth of freeware and shareware
components and source code on the Internet from which to get ideas. http://www.
torry.net/ is one of the most comprehensive sources; others can be found on the
C++Builder Programmer’s Webring, which starts on http://www.temporaldoorway.com/
programming/cbuilder/index.htm.

TCanvas

The TCanvas object is C++Builder’s wrapper for the Device Context. It encapsulates
various tools for drawing complex shapes and graphics onscreen. TCanvas can be
accessed through the Canvas property of most components, although Windows draws
some windowed controls and, therefore, those windowed controls do not provide a
Canvas property. There are ways around this, and we’ll discuss them shortly. TCanvas
also provides several methods to draw lines, shapes, and complex graphics onscreen.

Listing 4.35 is an example of how to draw a line diagonally from the upper-left
corner to the bottom-right corner of the canvas. The LineTo() method draws a line
from the current pen position to the coordinates specified in the X and Y variables.
First, set the start position of the line by calling the MoveTo() method.

LISTING 4.35 Drawing a Line Using MoveTo()

Canvas->MoveTo(0, 0);

int X = ClientRect.Right;

int Y = ClientRect.Bottom;

Canvas->LineTo (X, Y);

Listing 4.36 uses the Frame3D() method to draw a frame around a canvas, giving the
control a button appearance.

LISTING 4.36 Creating a Button Appearance

int PenWidth = 2;

TColor Top = clBtnHighlight;

TColor Bottom = clBtnShadow;

Frame3D(Canvas, ClientRect, Top, Bottom, PenWidth);

Creating Custom Components 225

06 0672324806 CH04 12/12/02 2:37 PM Page 225

It is also very common to use API drawing routines with the TCanvas object to accom-
plish certain effects. Some API drawing methods use the DeviceContext of the control,
although it isn’t always necessary to get the HDC of the control to call an API that
requires it. To get the HDC of a control, use the GetDC() API.

NOTE

HDC is the data type returned by the call to GetDC(). It is simply the handle of the
DeviceContext and is synonymous with the Handle property of TCanvas.

Listing 4.37 uses a form with TPaintBox (we’ll use TPaintBox because its Canvas prop-
erty is published) and calls the RoundRect() API to draw an ellipse within the
TPaintBox. The TPaintBox can be placed anywhere on the form. The code would be
placed in the OnPaint event handler for the TPaintBox. The full project can be found
in the PaintBox1 folder on the CD-ROM that accompanies this book. The project file-
name is Project1.bpr.

LISTING 4.37 Using API Drawing Methods

void __fastcall TForm1::PaintBox1Paint(TObject *Sender)

{

// We’ll use a TRect structure to save on typing

TRect Rect;

int nLeftRect, nTopRect, nRightRect, nBottomRect, nWidth, nHeight;

Rect = PaintBox1->ClientRect;

nLeftRect = Rect.Left;

nTopRect = Rect.Top;

nRightRect = Rect.Right;

nBottomRect = Rect.Bottom;

nWidth = Rect.Right - Rect.Left;

nHeight = Rect.Bottom - Rect.Top;

if(RoundRect(

PaintBox1->Canvas->Handle, // handle of device context

nLeftRect, // x-coord. of bounding rect’s upper-left corner

nTopRect, // y-coord. of bounding rect’s upper-left corner

nRightRect, // x-coord. of bounding rect’s lower-right corner

nBottomRect, // y-coord. of bounding rect’s lower-right corner

nWidth, // width of ellipse used to draw rounded corners

nHeight // height of ellipse used to draw rounded corners

) == 0)

ShowMessage(“RoundRect failed...”);

}

CHAPTER 4 Creating Custom Components226

06 0672324806 CH04 12/12/02 2:37 PM Page 226

Try changing the values of the nWidth and nHeight variables. Start with zero; the
rectangle will have sharp corners. As you increase the value of these two variables,
the corners of the rectangle will become more rounded. This method and other
similar drawing routines can be used to create buttons or other controls that are
rounded or elliptical. Some examples will be shown later. See “Painting and Drawing
Functions” in the Win32 help files (win32.hlp, specifically) that ship with
C++Builder for more information.

Using Graphics in Components
Graphics are becoming more commonplace in components. Some familiar examples
are TSpeedButton and TBitButton, and there are several freeware, shareware, and
commercial components available that use graphics of some sort. Graphics add more
visual appeal to components and, fortunately, C++Builder provides several classes to
handle bitmaps, icons, JPEGs, and GIFs. The norm for drawing components is to use
an offscreen bitmap to do the drawing, and then copy the bitmap to the onscreen
canvas. This reduces screen flicker because the canvas is painted only once. This is
very useful if the image you are working with contains complex shapes or images.
The TBitmap class has a Canvas property, which is a TCanvas object and, thus, enables
you to draw shapes and graphics off the screen.

The following example uses a form with a TPaintBox component. A TBitmap object is
created and used to draw an image similar to a TSpeedButton with its Flat property set
to true. The TBitmap is then copied to the screen in one action. In this example we
add a TButton, which will change the appearance of the image from raised to
lowered. The full project can be found in the PaintBox2 folder on the CD-ROM that
accompanies this book. The project filename is Project1.bpr. First, take a look at the
header file in Listing 4.38.

LISTING 4.38 Creating a Raised or Lowered Appearance

class TForm1 : public TForm

{

__published: // IDE-managed Components

TPaintBox *PaintBox1;

TButton *Button1;

private: // User declarations

bool IsUp;

public: // User declarations

__fastcall TForm1(TComponent* Owner);

};

We declare a Boolean variable IsUp, which we’ll use to swap the highlight and
shadow colors and to change the caption of the button. If IsUp is true, the image is

Creating Custom Components 227

06 0672324806 CH04 12/12/02 2:37 PM Page 227

in its up state; if the value of IsUp is false, the image is in its down state. Because
IsUp is a member variable, it will be initialized to false when the form is created. The
Caption property of Button1 can be set to Up via the Object Inspector.

The OnClick event of the button is quite simple. It changes the value of the IsUp vari-
able, changes the Caption property of the button based on the new value, and calls
the TPaintBox’s Repaint() method to redraw the image. This is shown Listing 4.39.

LISTING 4.39 The Button1Click() Method

void __fastcall TForm1::Button1Click(TObject *Sender)

{

IsUp = !IsUp;

Button1->Caption = (IsUp) ? “Down” : “Up”;

PaintBox1->Repaint ();

}

A private method, SwapColors(), is declared and will change the highlight and
shadow colors based on the value of the IsUp variable, which is shown in
Listing 4.40.

LISTING 4.40 The SwapColors() Method

void __fastcall TForm1::SwapColors(TColor &Top, TColor &Bottom)

{

Top = (IsUp) ? clBtnHighlight : clBtnShadow;

Bottom = (IsUp) ? clBtnShadow : clBtnHighlight;

}

The final step is to create an event handler for the OnPaint event of the TPaintBox.
This is shown in Listing 4.41.

LISTING 4.41 Painting the Button

void __fastcall TForm1::PaintBox1Paint(TObject *Sender)

{

TColor TopColor, BottomColor;

TRect Rect;

Rect = PaintBox1->ClientRect;

Graphics::TBitmap *bit = new Graphics::TBitmap;

bit->Width = PaintBox1->Width;

CHAPTER 4 Creating Custom Components228

06 0672324806 CH04 12/12/02 2:37 PM Page 228

bit->Height = PaintBox1->Height;

bit->Canvas->Brush->Color = clBtnFace;

bit->Canvas->FillRect(Rect);

SwapColors(TopColor, BottomColor);

Frame3D(bit->Canvas, Rect, TopColor, BottomColor, 2);

PaintBox1->Canvas->Draw(0, 0, bit);

delete bit;

}

Listing 4.42 will go one step further and demonstrate how to use bitmap files as well
as drawing lines on a canvas. Most button components, for example, contain not
only lines and borders that give it shape, but also icons, bitmaps, and text. This can
become a bit more complicated because it requires a second TBitmap to load the
graphics file, the position of the graphic must be calculated and copied to the first
bitmap, and the final result must be copied to the onscreen canvas. The full project
can be found in the PaintBox3 folder on the CD-ROM that accompanies this book.
The project filename is Project1.bpr.

LISTING 4.42 Using Bitmaps and Lines

void __fastcall TForm1::PaintBox1Paint(TObject *Sender)

{

TColor TopColor, BottomColor;

TRect Rect, gRect;

Rect = PaintBox1->ClientRect;

Graphics::TBitmap *bit = new Graphics::TBitmap;

Graphics::TBitmap *bitFile = new Graphics::TBitmap;

bitFile->LoadFromFile(“geom1b.bmp”);

// size the off-screen bitmap to size of on-screen canvas

bit->Width = PaintBox1->Width;

bit->Height = PaintBox1->Height;

// fill the canvas with the brush’s color

bit->Canvas->Brush->Color = clBtnFace;

bit->Canvas->FillRect(Rect);

// position the second TRect structure centered h/v within Rect

gRect.Left = ((Rect.Right - Rect.Left) / 2) - (bitFile->Width / 2);

Creating Custom Components 229

LISTING 4.41 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 229

gRect.Top = ((Rect.Bottom - Rect.Top) / 2) - (bitFile->Height / 2);

// move the inner rect up and over by 1 pixel to give the appearance of

// the panel moving up and down

gRect.Top += (IsUp) ? 0 : 1;

gRect.Left += (IsUp) ? 0 : 1;

gRect.Right = bitFile->Width + gRect.Left;;

gRect.Bottom = bitFile->Height + gRect.Top;

// copy the bitmap to the off-screen bitmap object using transparency

bit->Canvas->BrushCopy(gRect, bitFile,

TRect(0,0,bitFile->Width, bitFile->Height), bitFile->TransparentColor);

// draw the borders

SwapColors(TopColor, BottomColor);

Frame3D(bit->Canvas, Rect, TopColor, BottomColor, 2);

// copy the off-screen bitmap to the on-screen canvas

BitBlt(PaintBox1->Canvas->Handle, 0, 0, PaintBox1->ClientWidth,

PaintBox1->ClientHeight, bit->Canvas->Handle, 0, 0, SRCCOPY);

delete bitFile;

delete bit;

}

Responding to Mouse Messages
Graphical components are normally derived from TGraphicControl, which provides a
canvas to draw on and handles WM_PAINT messages. Remember that nonwindowed
components do not need to receive input focus and do not have or need a window
handle. Although these types of components cannot receive input focus, the VCL
provides custom messages for mouse events that can be trapped.

For example, when the Flat property of a TSpeedButton is set to true, the button pops
up to show its borders when the user moves the mouse cursor over it, and it returns
to a flat appearance when the mouse is moved away from the button. This effect is
accomplished by responding to two messages—CM_MOUSEENTER and CM_MOUSELEAVE,
respectively. These messages are shown in Listing 4.43.

CHAPTER 4 Creating Custom Components230

LISTING 4.42 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 230

LISTING 4.43 The CM_MOUSEENTER and CM_MOUSELEAVE Messages

void __fastcall CMMouseEnter(TMessage &Msg); // CM_MOUSEENTER

void __fastcall CMMouseLeave(TMessage &Msg); // CM_MOUSELEAVE

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(CM_MOUSEENTER, TMessage, CMMouseEnter)

MESSAGE_HANDLER(CM_MOUSELEAVE, TMessage, CMMouseLeave)

END_MESSAGE_MAP(TBaseComponentName)

Another important message to consider is the CM_ENABLEDCHANGED message. The Enabled
property of TGraphicControl is declared as public, and the setter method simply sends
the control the CM_ENABLECHANGED message so that the necessary action can be taken;
for example, showing text or graphics as grayed or not firing an event. If you want
to give your component the capability to be enabled or disabled, you would rede-
clare this property as published in your component’s header file and declare the
method and message handler. Without it, users will still be able to assign a true or
false value to the Enabled property at runtime, but it will have no effect. The
CM_ENABLECHANGED message is shown in Listing 4.44.

LISTING 4.44 The CM_ENABLEDCHANGED Message

void __fastcall CMEnabledChanged(TMessage &Msg);

__published:

__property Enabled ;

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(CM_ENABLEDCHANGED, TMessage, CMEnabledChanged)

END_MESSAGE_MAP(TYourComponentName)

Other mouse events such as OnMouseUp, OnMouseDown, and OnMouseOver are conveniently
declared in the protected section of TControl, so all that is necessary is to override the
methods to which you want to respond. If you want derivatives of your component
to have the capability to override these events, remember to declare them in the
protected section of the component’s header file. This is shown in Listing 4.45.

LISTING 4.45 Overriding TControl’s Mouse Events

private:

TMmouseEvent FOnMouseUp;

TMouseEvent FOnMouseDown;

TMouseMoveEvent FOnMouseMove;

protected:

Creating Custom Components 231

06 0672324806 CH04 12/12/02 2:37 PM Page 231

void __fastcall MouseDown(TMouseButton Button, TShiftState Shift, int X,

int Y);

void __fastcall MouseMove(TshiftState Shift, int X, int Y);

void __fastcall MouseUp(TMouseButton Button, TShiftState Shift, int X,

int Y);

__published:

__property TMouseEvent OnMouseUp = {read=FOnMouseUp, write=FOnMouseUp};

__property TMouseEvent OnMouseDown = {read=FOnMouseDown,

write=FOnMouseDown};

__property TMouseMoveEvent OnMouseMove = {read=FOnMouseMove,

write=FOnMouseMove};

In the example projects shown previously, an event handler was created for the
OnPaint() event of TPaintBox. This event is fired when the control receives the
WM_PAINT message. TGraphicControl traps this message and provides a virtual Paint()
method that can be overridden in descendant components to draw the control
onscreen or, as TPaintBox does, provide an OnPaint() event.

These messages and others are defined in messages.hpp. If you have the VCL source
code, take time to find out which messages or events are available and which
methods can be overridden.

Putting It All Together
This section will cover putting all the previous techniques into a basic component
that you can expand and enhance. This component is not complete, although it
could be installed onto C++Builder’s Component Palette and used in an application.
As a component writer, you should never leave things to chance; the easier your
component is to use, the more likely it will be used. The example shown in Listings
4.46 and 4.47 will be a type of Button component that responds like a TSpeedButton
and has a bitmap and text. The source code is shown in Listings 4.46 and 4.47, and
then we’ll look at some of the obvious enhancements that could be made. The
source code is also provided in the ExampleButton folder on the CD-ROM that accom-
panies this book.

LISTING 4.46 The TExampleButton Header File, ExampleButton.h

//---

#ifndef ExampleButtonH

#define ExampleButtonH

//---

#include <SysUtils.hpp>

CHAPTER 4 Creating Custom Components232

LISTING 4.45 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 232

#include <Controls.hpp>

#include <Classes.hpp>

#include <Forms.hpp>

//---

enum TExButtonState {esUp, esDown, esFlat, esDisabled};

class PACKAGE TExampleButton : public TGraphicControl

{

private:

Graphics::TBitmap *FGlyph;

AnsiString FCaption;

TImageList *FImage;

TExButtonState FState;

bool FMouseInControl;

TNotifyEvent FOnClick;

void __fastcall SetGlyph(Graphics::TBitmap *Value);

void __fastcall SetCaption(AnsiString Value);

void __fastcall BeforeDestruction(void);

void __fastcall SwapColors(TColor &Top, TColor &Bottom);

void __fastcall CalcGlyphLayout(TRect &r);

void __fastcall CalcTextLayout(TRect &r);

MESSAGE void __fastcall CMMouseEnter(TMessage &Msg);

MESSAGE void __fastcall CMMouseLeave(TMessage &Msg);

MESSAGE void __fastcall CMEnabledChanged(TMessage &Msg);

protected:

void __fastcall Paint(void);

void __fastcall MouseDown(TMouseButton Button, TShiftState Shift,

int X, int Y);

void __fastcall MouseUp(TMouseButton Button, TShiftState Shift,

int X, int Y);

public:

__fastcall TExampleButton(TComponent* Owner);

__published:

__property AnsiString Caption = {read=FCaption, write=SetCaption};

__property Graphics::TBitmap * Glyph = {read=FGlyph, write=SetGlyph};

Creating Custom Components 233

LISTING 4.46 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 233

__property TNotifyEvent OnClick = {read=FOnClick, write=FOnClick};

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(CM_MOUSEENTER, TMessage, CMMouseEnter)

MESSAGE_HANDLER(CM_MOUSELEAVE, TMessage, CMMouseLeave)

MESSAGE_HANDLER(CM_ENABLEDCHANGED, TMessage, CMEnabledChanged)

END_MESSAGE_MAP(TGraphicControl)

};

//---

#endif

LISTING 4.47 The TExampleButton Source File, ExampleButton.cpp

//---

#include <vcl.h>

#pragma hdrstop

#include “ExampleButton.h”

#pragma package(smart_init)

//---

// ValidCtrCheck is used to assure that the components created do not have

// any pure virtual functions.

//

static inline void ValidCtrCheck(TExampleButton *)

{

new TExampleButton(NULL);

}

//---

__fastcall TExampleButton::TExampleButton(TComponent* Owner)

: TGraphicControl(Owner)

{

SetBounds(0,0,50,50);

ControlStyle = ControlStyle << csReplicatable;

FState = esFlat;

}

//---

namespace Examplebutton

{

void __fastcall PACKAGE Register()

CHAPTER 4 Creating Custom Components234

LISTING 4.46 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 234

{

TComponentClass classes[1] = {__classid(TExampleButton)};

RegisterComponents(“Samples”, classes, 0);

}

}

// ---

void __fastcall TExampleButton::CMMouseEnter(TMessage &Msg)

{

if(Enabled)

{

FState = esUp;

FMouseInControl = true;

Invalidate();

}

}

// ---

void __fastcall TExampleButton::CMMouseLeave(TMessage &Msg)

{

if(Enabled)

{

FState = esFlat;

FMouseInControl = false;

Invalidate();

}

}

// ---

void __fastcall TExampleButton::CMEnabledChanged(TMessage &Msg)

{

FState = (Enabled) ? esFlat : esDisabled;

Invalidate();

}

// ---

void __fastcall TExampleButton::MouseDown(TMouseButton Button, TShiftState

Shift, int X, int Y)

{

if(Button == mbLeft)

{

if(Enabled && FMouseInControl)

{

FState = esDown;

Creating Custom Components 235

LISTING 4.47 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 235

Invalidate();

}

}

}

// ---

void __fastcall TExampleButton::MouseUp(TMouseButton Button, TShiftState

Shift, int X, int Y)

{

if(Button == mbLeft)

{

if(Enabled && FMouseInControl)

{

FState = esUp;

Invalidate();

if(FOnClick)

FOnClick(this);

}

}

}

// ---

void __fastcall TExampleButton::SetGlyph(Graphics::TBitmap * Value)

{

if(Value == NULL)

return;

if(!FGlyph)

FGlyph = new Graphics::TBitmap;

FGlyph->Assign(Value);

Invalidate();

}

// ---

void __fastcall TExampleButton::SetCaption(AnsiString Value)

{

FCaption = Value;

Invalidate();

}

// ---

void __fastcall TExampleButton::SwapColors(TColor &Top, TColor &Bottom)

{

if(ComponentState.Contains(csDesigning))

CHAPTER 4 Creating Custom Components236

LISTING 4.47 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 236

{

FState = esUp;

}

Top = (FState == esUp) ? clBtnHighlight : clBtnShadow;

Bottom = (FState == esDown) ? clBtnHighlight : clBtnShadow;

}

// ---

void __fastcall TExampleButton::BeforeDestruction(void)

{

if(FImage)

delete FImage;

if(FGlyph)

delete FGlyph;

}

// ---

void __fastcall TExampleButton::Paint(void)

{

TRect cRect, tRect, gRect;

TColor TopColor, BottomColor;

Canvas->Brush->Color = clBtnFace;

Canvas->FillRect(ClientRect);

cRect = ClientRect;

Graphics::TBitmap *bit = new Graphics::TBitmap;

bit->Width = ClientWidth;

bit->Height = ClientHeight;

bit->Canvas->Brush->Color = clBtnFace;

bit->Canvas->FillRect(cRect);

if(FGlyph)

if(!FGlyph->Empty)

{

CalcGlyphLayout(gRect);

bit->Canvas->BrushCopy(gRect, FGlyph,

Rect(0,0,FGlyph->Width,FGlyph->Height),

FGlyph->TransparentColor);

}

if(!FCaption.IsEmpty())

{

Creating Custom Components 237

LISTING 4.47 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 237

CalcTextLayout(tRect);

bit->Canvas->TextRect(tRect, tRect.Left,tRect.Top, FCaption);

}

if(FState == esUp || FState == esDown)

{

SwapColors(TopColor, BottomColor);

Frame3D(bit->Canvas, cRect, TopColor, BottomColor, 1);

}

BitBlt(Canvas->Handle, 0, 0, ClientWidth, ClientHeight,

bit->Canvas->Handle, 0, 0, SRCCOPY);

delete bit;

}

// ---

void __fastcall TExampleButton::CalcGlyphLayout(TRect &r)

{

int TotalHeight=0;

int TextHeight=0;

if(!FCaption.IsEmpty())

TextHeight = Canvas->TextHeight(FCaption);

// the added 5 could be a ‘Spacing’ property but for simplicity we just

// added the 5.

TotalHeight = FGlyph->Height + TextHeight + 5;

r = Rect((ClientWidth/2)-(FGlyph->Width/2),

((ClientHeight/2)-(TotalHeight/2)), FGlyph->Width +

(ClientWidth/2)-(FGlyph->Width/2), FGlyph->Height +

((ClientHeight/2)-(TotalHeight/2)));

}

// ---

void __fastcall TExampleButton::CalcTextLayout(TRect &r)

{

int TotalHeight=0;

int TextHeight=0;

int TextWidth=0;

TRect temp;

CHAPTER 4 Creating Custom Components238

LISTING 4.47 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 238

if(FGlyph)

TotalHeight = FGlyph->Height;

TextHeight = Canvas->TextHeight(FCaption);

TextWidth = Canvas->TextWidth(FCaption);

TotalHeight += TextHeight + 5;

temp.Left = 0;

temp.Top = (ClientHeight/2)-(TotalHeight/2);

temp.Bottom = temp.Top + TotalHeight;

temp.Right = ClientWidth;

r = Rect(((ClientWidth/2) - (TextWidth/2)), temp.Bottom-TextHeight,

((ClientWidth/2)-(TextWidth/2))+TextWidth, temp.Bottom);

}

Here only the OnClick event is published. In a real component you would more than
likely publish the OnMouseUp, OnMouseDown, and OnMouseMove events as well. The two
properties Caption and Glyph are published, but you should have a Font property to
enable users to change the font of the caption.

It would probably be a good idea to catch the CM_FONTCHANGED message so that the
positions of the button glyph and caption can be redrawn accordingly. In calculating
the position of the image and the text, we use a value of five pixels as the spacing
between the two. It would also be a good idea to create a property that enables the
user to specify this value.

In Listing 4.47, take a look at the write method for the Glyph property, SetGlyph(). If
a NULL pointer is assigned to the Glyph property, the method simply returns without
doing anything. This might seem like typical behavior for this type of property, but
after you have assigned an image there is no way to get rid of it. In other words, you
cannot show only the caption without deleting the component and creating a
new one.

The last thing we will look at is the Boolean FMouseInControl
FMouseInControl>variable. Because the control is responding to mouse events, it is
wise to keep track of it. This variable is used to track whether the mouse cursor is
over the control. Without this variable in place, certain member functions would be
called inappropriately because the component will still receive mouse events even
though the action did not begin over the control. For example, if a user clicked and
held the mouse button, and then moved the mouse over the component and

Creating Custom Components 239

LISTING 4.47 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 239

released the button, the CMMouseUp() method would be called without the component
knowing that the mouse is actually over the control. This in effect would cause the
component to redraw itself in its Up state and would not redraw unless you moved
the mouse away, and then back again or clicked the button. The FMouseInControl
variable prevents this.

In Listing 4.47, the shape of the button is drawn using the Frame3D() method. By
including the Buttons.hpp header file in your source file, you can gain access to
another method for drawing button shapes, DrawButtonFace(), shown in Listing 4.48.

LISTING 4.48 The DrawButtonFace() Method

TRect DrawButtonFace(TCanvas *Canvas, const TRect Client,

int BevelWidth, TButtonStyle Style, bool IsRounded, bool IsDown,

bool IsFocused);

The DrawButtonFace() method will draw a button shape the size of Client on the
Canvas specified. Some of the parameters are effective according to the value of the
others. For example, the BevelWidth and IsRounded parameters seem to have an effect
only when Style is bsWin31. IsFocused has no apparent effect.

The DrawButtonFace() method uses the DrawEdge() API (see the Win32 online help
included with C++Builder). This can also be used in your own drawing routines.

Modifying Windowed Components
As stated previously, windowed components are wrappers for the standard Windows
controls. These components already know how to draw themselves, so you don’t
have to worry about that. In modifying windowed controls, you most likely will
want to change what the component actually does rather than its look. Fortunately,
the VCL provides protected methods in these components that can be overridden to
do just that.

In this last example we’ll use some of the techniques shown in this chapter to create
a more familiar and robust replacement for the TFileListBox component that comes
standard with C++Builder. Before we write any code, it’s a good idea to get an
overview of what we want to accomplish. Remember that we want to make this
component as easy to use as possible and relieve the user from the task of writing
code that is common when using a component that lists filenames. The following
lists the changes we’ll make in our component:

• Display the correct icon for each file.

• Give the user the ability to launch an application or open a document when
the item is double-clicked.

• Allow the user the option to add a particular item to the list box.

CHAPTER 4 Creating Custom Components240

06 0672324806 CH04 12/12/02 2:37 PM Page 240

• Allow an item to be selected when right-clicked.

• Show a horizontal scrollbar when an item is longer than the width of the list
box.

• Maintain compatibility with TDirectoryListBox.

Now that we know what our component should do, we must decide from which
base class to derive it. As stated previously, C++Builder provides custom classes from
which to derive new components, which is currently not the case in our component.
TDirectoryListBox and TFileListBox are linked together through the FileList property
of TDirectoryListBox. This property is declared as a pointer to a TFileListBox, so a
component derived from TCustomListBox or TListBox will not be visible to the prop-
erty. To maintain compatibility with TDirectoryListBox, we will have to derive our
component from TFileListBox. Fortunately, the methods it uses to read the filenames
are protected, so all we have to do is override them in our new component.

Next, we’ll consider the changes we want to make to this component and declare
some new properties, methods, and events. First we want to allow the user to launch
an application or open a document by double-clicking an item. We can declare a
Boolean property that will allow the user to turn this option on or off, as shown in
the following code.

__property bool CanLaunch = {read=FCanLaunch, write=FCanLaunch, default=true};

When a user double-clicks the list box, it is sent a WM_LBUTTONDBLCLK message.
TCustomListBox conveniently provides a protected method that is called in response
to this message. Listing 4.49 shows how we can override the DblClick() method to
launch an application or open a document.

LISTING 4.49 The DblClick() Method

void __fastcall TSHFileListBox::DblClick(void)

{

if(FCanLaunch)

{

int ii=0;

// go through the list and find which item is selected

for(ii=0; ii < Items->Count; ii++)

{

if(Selected[ii])

{

AnsiString str = Items->Strings[ii];

ShellExecute(Handle, “open”, str.c_str(), 0, 0, SW_SHOWDEFAULT);

Creating Custom Components 241

06 0672324806 CH04 12/12/02 2:37 PM Page 241

}

}

}

// fire the OnDblClick event

if(FOnDblClick)

FOnDblClick(this);

}

It the FCanLaunch variable is true, we must first find which item is selected, and then
use the ShellExecute() API to launch the application. This method also fires an
OnDblClick event, which is declared as shown in the following code.

private:

TNotifyEvent FOnDblClick;

__published:

__property TNotifyEvent OnDblClick = {read=FOnDblClick, write=FOnDblClick};

The OnDblClick event does not really need to provide any information, so we can
declare it as a TNotifyEvent variable. This behavior can certainly be changed if the
need arises, but for now this will suffice. Now let’s tackle the problem of allowing an
item to be selected when right-clicked. First, we need to declare a new property as
shown in the following code.

__property bool RightBtnClick = {read=FRightBtnSelect, write=FRightBtnSelect,

default=true};

Notice that the property is referencing a member variable, and there is no read or
write method. This is because we’ll use the member variable in the MouseUp() event to
determine whether to select the item. Listing 4.50 shows the code for the MouseUp()

method.

LISTING 4.50 The MouseUp() Method

//--

void __fastcall TSHFileListBox::MouseUp(TMouseButton Button, TShiftState Shift,

int X, int Y)

{

if(!FRightBtnSel)

return;

TPoint ItemPos = Point(X,Y);

CHAPTER 4 Creating Custom Components242

LISTING 4.49 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 242

// is there an item under the mouse ?

int Index = ItemAtPos(ItemPos, true);

// if not just return

if(Index == -1)

return;

// else select the item

Perform(LB_SETCURSEL, (WPARAM)Index, 0);

}

The code in Listing 4.50 is fairly simple. First we check the FRightBtnSel variable to
see if we can select the item. Next, we need to convert the mouse coordinates to a
TPoint structure. To find which item is under the mouse, we use the ItemAtPos()
method of TcustomListBox, which takes the TPoint structure we created and a Boolean
value that determines if the return value should be -1 or one more than the last item
in the list box if the coordinate contained in the TPoint structure is beyond the last
item. Here the parameter is true and, if the return value is -1, the method simply
returns. You could change this value to false and remove the if() statement that
checks the return value. Finally, we use the Perform() method to force the control to
act as if it has received a window message. The first parameter to the Perform()
method is the actual message we want to simulate. LB_SETCURSEL tells the list box that
the mouse has changed the selection. The second parameter is the index of the item
we want to select; the third parameter is not used, so it is zero.

Next, we want to enable the user the option to add a particular item. TFileListBox
has a Mask property that enables you to specify file extensions that can be added to
the list box. It is possible to redeclare the Mask property and provide a read and write
method that filters the filenames according to the value of the Mask property. You
took the easy way out and chose to provide an event that enables the user to apply
his own algorithm for filtering the filenames. You could keep this event in place and
still cater to the Mask property to provide even more functionality.

First, let’s declare our new event.

typedef void __fastcall (__closure *TAddItemEvent)(TObject *Sender, AnsiString

Item, bool &CanAdd);

As you can see, the event provides three parameters. Sender is the list box, Item is an
AnsiString value that contains the filename, and CanAdd is a Boolean value that deter-
mines if the item can be added. Notice that the CanAdd parameter is passed by refer-
ence so that a user can change this value to false in the event handler to prevent
Item from being added to the items in the list box.

Creating Custom Components 243

LISTING 4.50 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 243

Before we look at how to get the filenames and add them to the list box, let’s look at
Listing 4.51 and see how we can use the same icons as Windows Explorer.

LISTING 4.51 Getting the System Image List

SHFILEINFO shfi;

DWORD iHnd;

TImageList *Images;

Images = new TImageList(this);

Images->ShareImages = true;

iHnd = SHGetFileInfo(“”, 0, &shfi, sizeof(shfi), SHGFI_SYSICONINDEX |

SHGFI_SHELLICONSIZE | SHGFI_SMALLICON);

if(iHnd != 0)

Images->Handle = iHnd;

Notice in Listing 4.51 that the ShareImages property of FImages is set to true. This is
very important. It informs the image list that it should not destroy its handle when
the component is destroyed. The handle of the system image list belongs to the
system, and if your component destroys it, Windows will not be able to display any
of its icons for menus and shortcuts. This isn’t permanent; you would just have to
reboot your system so that Windows could get the handle of the system images
again.

At this point we can override the ReadFileNames() method of TFileListBox to retrieve
the filenames in a slightly different manner. Our version will use the shell to get the
filenames using COM interfaces. Because walking an itemid list can look a bit messy
and is beyond the scope of this chapter, we will not go into detail. We will create a
new method, AddItem(), shown in Listing 4.52. It will retrieve the display name of
the file and its icon index in the system image list and fire the OnAddItem event we
created previously.

NOTE

An itemid is another name for an item identifier or identifier list. You can find more informa-
tion about “Item Identifiers and Identifier Lists” in the Win32 help files that ship with
C++Builder.

LISTING 4.52 The AddItem() Method

int __fastcall TSHFileListBox::AddItem(LPITEMIDLIST pidl)

{

SHFILEINFO shfi;

int Index;

CHAPTER 4 Creating Custom Components244

06 0672324806 CH04 12/12/02 2:37 PM Page 244

SHGetFileInfo((char*)pidl, 0, &shfi, sizeof(shfi), SHGFI_PIDL |

➥SHGFI_SYSICONINDEX |

SHGFI_SMALLICON | SHGFI_DISPLAYNAME | SHGFI_USEFILEATTRIBUTES);

// fire the OnAddItem event to allow the user the choice to add the

// file name or not

bool FCanAdd = true;

if(FOnAddItem)

FOnAddItem(this, AnsiString(shfi.szDisplayName), FCanAdd);

if(FCanAdd)

{

TShellFileListItem *ShellInfo = new TShellFileListItem(pidl, shfi.iIcon);

Index = Items->AddObject(AnsiString(shfi.szDisplayName),

➥(TObject*)ShellInfo);

// return the length of the file name

return Canvas->TextWidth(Items->Strings[Index]);

}

// return zero as the length as the file has not been added

return 0;

}

The AddItem() method takes an itemid as its only parameter and returns an integer
value. In Listing 4.52 we use the SHGetFileInfo() API to retrieve the display name of
the file and its icon index. After we have the file’s display name, we create a Boolean
variable named CanAdd to determine if the item can be added, and then fire the
OnAddItem event. We can then check the value of CanAdd and, if it is true, we go ahead
and add the new item to the list box. After the item is added, we use the TextWidth()
method of TCanvas to get its width in pixels. This value is the return value of the
method, if the item was added, or zero if not. You will see the reason for this shortly.

One thing that we haven’t discussed yet is the TShellFileListItem class. Because we
need to do the actual drawing of the icons and text in the list box, we need some
way of keeping track of each item’s icon index. For each item that is added to the list
box, we create an instance of TShellFileListItem and assign it to the Object property
of the list box’s Items property. This way we can retrieve it later when we need to
draw the item’s icon. TShellFileListItem also holds a copy of the item’s itemid. This
is for possible future enhancements; for example, you could create a descendant of
TSHFileListBox and override the MouseUp() method to display the context menu for
the file.

Creating Custom Components 245

LISTING 4.52 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 245

One thing to remember about using the Object property in this way is that the
memory being used to hold the TShellFileListItem instance must be freed when the
item is deleted from the list box. We do this by overriding the DeleteString()
method, as shown in Listing 4.55.

As stated previously, the return value from the AddItem() method is the length in
pixels of the item that has just been added to the list box. This value is used to deter-
mine the longest item and to display a horizontal scrollbar if the longest item is
longer than the width of the list box. Take a look at the following code:

while(Fetched > 0)

{

// add the item to the listbox

int l = AddItem(rgelt);

if(l > hExtent)

hExtent = l;

ppenumIDList->Next(celt, &rgelt, &Fetched);

}

This is a snippet from the ReadFileNames() method. It loops through a folder’s itemid
list and retrieves an itemid for each file. The AddItem() method returns the item’s
length and compares it to the previous item. If it is longer, the variable l is assigned
the new length and the process is repeated until no more files remain. At the end of
this loop, l holds the length of the longest item. Then, the DoHorizontalScrollBar()
method can be called to determine if the horizontal scrollbar needs to be displayed.

The DoHorizontalScrollBars() method, shown in Listing 4.53, takes an integer value
as its parameter. This is the length in pixels of an item just added to the list. The
value is increased by two pixels for the left margin and, if the ShowGlyphs property is
true, 18 pixels more is added to compensate for the width of the image and spacing
between the image and text. Finally, the Perform() method is called to set the hori-
zontal extent of the items in the list box, which in effect will show the scrollbar if
the value of WPARAM is greater than the width of the control.

LISTING 4.53 Adding a Horizontal Scrollbar

void __fastcall TSHFileListBox::DoHorizontalScrollBar(int he)

{

he += 2;

if(ShowGlyphs)

he += 18;

Perform(LB_SETHORIZONTALEXTENT, he, 0);

}

CHAPTER 4 Creating Custom Components246

06 0672324806 CH04 12/12/02 2:37 PM Page 246

Listings 4.54 and 4.55 are the full source code for the TSHFileListBox component,
which can be found in the SHFileListBox folder on the CD-ROM that accompanies
this book.

LISTING 4.54 The TSHFileListBox Header File, SHFileListBox.h

//---

#ifndef SHFileListBoxH

#define SHFileListBoxH

//---

#include <SysUtils.hpp>

#include <Controls.hpp>

#include <Classes.hpp>

#include <Forms.hpp>

#include <FileCtrl.hpp>

#include <StdCtrls.hpp>

#include “ShlObj.h”

//---

class TShellFileListItem : public TObject

{

private:

LPITEMIDLIST Fpidl;

int FImageIndex;

public:

__fastcall TShellFileListItem(LPITEMIDLIST lpidl, int Index);

__fastcall ~TShellFileListItem(void);

__property LPITEMIDLIST pidl = {read=Fpidl};

__property int ImageIndex = {read=FImageIndex};

};

typedef void __fastcall (__closure *TAddItemEvent)(TObject *Sender, AnsiString

Item, bool &CanAdd);

class PACKAGE TSHFileListBox : public TFileListBox

{

private:

TImageList *FImages;

TNotifyEvent FOnDblClick;

bool FCanLaunch;

bool FRightBtnSel;

TAddItemEvent FOnAddItem;

Creating Custom Components 247

06 0672324806 CH04 12/12/02 2:37 PM Page 247

int __fastcall AddItem(LPITEMIDLIST pidl);

void __fastcall GetSysImages(void);

protected:

void __fastcall DblClick(void);

void __fastcall ReadFileNames(void);

void __fastcall MouseUp(TMouseButton Button, TShiftState Shift, int X,

int Y);

void __fastcall DrawItem(int Index, const TRect &Rect,

TOwnerDrawState State);

void __fastcall DoHorizontalScrollBar(int he);

void __fastcall DeleteString(int Index);

public:

__fastcall TSHFileListBox(TComponent* Owner);

__fastcall ~TSHFileListBox(void);

__published:

__property bool CanLaunch = {read=FCanLaunch, write=FCanLaunch,

default=true};

__property bool RightBtnSel = {read=FRightBtnSel, write=FRightBtnSel,

default=true};

__property TNotifyEvent OnDblClick = {read=FOnDblClick, write=FOnDblClick};

__property TAddItemEvent OnAddItem = {read=FOnAddItem, write=FOnAddItem};

};

#endif

LISTING 4.55 The TSHFileListBox Source File, SHFileListBox.cpp

//---

#include <vcl.h>

#pragma hdrstop

#include “SHFileListBox.h”

#pragma package(smart_init)

//---

__fastcall TShellFileListItem::TShellFileListItem(LPITEMIDLIST lpidl,

int Index)

: TObject()

{

// store a copy of the file’s pidl

Fpidl = CopyPIDL(lpidl);

// and save its icon index

CHAPTER 4 Creating Custom Components248

LISTING 4.54 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 248

FImageIndex = Index;

}

//--

__fastcall TShellFileListItem::~TShellFileListItem(void)

{

LPMALLOC lpMalloc=NULL;

if(SUCCEEDED(SHGetMalloc(&lpMalloc)))

{

// free the memory associated with the pidl

lpMalloc->Free(Fpidl);

lpMalloc->Release();

}

}

//---

__fastcall TSHFileListBox::TSHFileListBox(TComponent* Owner)

: TFileListBox(Owner)

{

ItemHeight = 18;

ShowGlyphs = true;

FCanLaunch = true;

FRightBtnSel = true;

}

//---

__fastcall TSHFileListBox::~TSHFileListBox(void)

{

// free the images

if(FImages)

delete FImages;

FImages = NULL;

}

//--

void __fastcall TSHFileListBox::DeleteString(int Index)

{

// This method is called in response to the LB_DELETESTRING messeage

// First delete the TShellFileListItem pointed to by the string’s

// Object property

TShellFileListItem *ShellItem = reinterpret_cast<TShellFileListItem*>

(Items->Objects[Index]);

delete ShellItem;

ShellItem = NULL;

Creating Custom Components 249

LISTING 4.55 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 249

// now delete the item

Items->Delete(Index);

}

//--

namespace Shfilelistbox

{

void __fastcall PACKAGE Register()

{

TComponentClass classes[1] = {__classid(TSHFileListBox)};

RegisterComponents(“Samples”, classes, 0);

}

}

//---

void __fastcall TSHFileListBox::ReadFileNames(void)

{

LPMALLOC g_pMalloc;

LPSHELLFOLDER pisf;

LPSHELLFOLDER sfChild;

LPITEMIDLIST pidlDirectory;

LPITEMIDLIST rgelt;

LPENUMIDLIST ppenumIDList;

int hExtent;

try

{

try

{

if(HandleAllocated())

{

GetSysImages();

// prohibit screen updates

Items->BeginUpdate();

// delete the items already in the list

Items->Clear();

// get the shell’s global allocator

if(SHGetMalloc(&g_pMalloc) != NOERROR)

{

return;

}

// get the desktop’s IShellFolder interface

CHAPTER 4 Creating Custom Components250

LISTING 4.55 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 250

if(SHGetDesktopFolder(&pisf) != NOERROR)

{

return;

}

// convert folder string to WideChar

WideChar oleStr[MAX_PATH];

FDirectory.WideChar(oleStr, MAX_PATH);

unsigned long pchEaten;

unsigned long pdwAttributes;

// get pidl of current folder

pisf->ParseDisplayName(Handle, 0, oleStr, &pchEaten,

&pidlDirectory, &pdwAttributes);

// get an IShellFolder interface for the current folder

if(pisf->BindToObject(pidlDirectory,NULL,

IID_IShellFolder, (void**)&sfChild) != NOERROR)

{

return;

}

// enumerate the objects withing the folder

sfChild->EnumObjects(Handle, SHCONTF_NONFOLDERS |

SHCONTF_INCLUDEHIDDEN, &ppenumIDList);

// walk through the enumlist

ULONG celt = 1;

ULONG Fetched = 0;

ppenumIDList->Next(celt, &rgelt, &Fetched);

hExtent = 0;

while(Fetched > 0)

{

// add the item to the listbox

int l = AddItem(rgelt);

if(l > hExtent)

hExtent = l;

ppenumIDList->Next(celt, &rgelt, &Fetched);

}

}

}

catch(Exception &E)

Creating Custom Components 251

LISTING 4.55 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 251

{

throw(E); // re-throw any exceptions

}

}

__finally

{ // make sure we do this reguardless

g_pMalloc->Free(rgelt);

g_pMalloc->Free(ppenumIDList);

g_pMalloc->Free(pidlDirectory);

pisf->Release();

sfChild->Release();

g_pMalloc->Release();

Items->EndUpdate();

}

// Show the horizontal scrollbar if necessary

DoHorizontalScrollBar(hExtent);

}

// ---

void __fastcall TSHFileListBox::DoHorizontalScrollBar(int he)

{

// add a little space for the margins

he += 2;

// if we’re showing the images make room for it plus a bit more

// for the space between the image and the text

if(ShowGlyphs)

he += 18;

Perform(LB_SETHORIZONTALEXTENT, he, 0);

}

// ---

void __fastcall TSHFileListBox::GetSysImages(void)

{

SHFILEINFO shfi;

DWORD iHnd;

if(!FImages)

{

FImages = new TImageList(this);

FImages->ShareImages = true;

FImages->Height = 16;

FImages->Width = 16;

CHAPTER 4 Creating Custom Components252

LISTING 4.55 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 252

iHnd = SHGetFileInfo(“”, 0, &shfi, sizeof(shfi), SHGFI_SYSICONINDEX |

SHGFI_SHELLICONSIZE | SHGFI_SMALLICON);

if(iHnd != 0)

FImages->Handle = iHnd;

}

}

// ---

int __fastcall TSHFileListBox::AddItem(LPITEMIDLIST pidl)

{

SHFILEINFO shfi;

int Index;

SHGetFileInfo((char*)pidl, 0, &shfi, sizeof(shfi), SHGFI_PIDL |

SHGFI_SYSICONINDEX |

SHGFI_SMALLICON | SHGFI_DISPLAYNAME | SHGFI_USEFILEATTRIBUTES);

// fire the OnAddItem event to allow the user the choice to add the

// file name or not

bool FCanAdd = true;

if(FOnAddItem)

FOnAddItem(this, AnsiString(shfi.szDisplayName), FCanAdd);

if(FCanAdd)

{

TShellFileListItem *ShellInfo = new TShellFileListItem(pidl, shfi.iIcon);

Index = Items->AddObject(AnsiString(shfi.szDisplayName),

(TObject*)ShellInfo);

// return the length of the file name

return Canvas->TextWidth(Items->Strings[Index]);

}

// return zero as the length as the file has not been added

return 0;

}

// ---

void __fastcall TSHFileListBox::DrawItem(int Index, const TRect &Rect,

TOwnerDrawState State)

{

int Offset;

Canvas->FillRect(Rect);

Offset = 2;

Creating Custom Components 253

LISTING 4.55 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 253

if(ShowGlyphs)

{

TShellFileListItem *ShellItem = reinterpret_cast<TShellFileListItem*>

(Items->Objects[Index]);

// draw the file’s icon in the listbox

FImages->Draw(Canvas, Rect.Left+2, Rect.Top+2, ShellItem->ImageIndex,

true);

Offset += 18;

}

int Texty = Canvas->TextHeight(Items->Strings[Index]);

Texty = ((ItemHeight - Texty) / 2) + 1;

// now draw the text

Canvas->TextOut(Rect.Left + Offset, Rect.Top + Texty, Items->Strings[Index]);

}

//--

void __fastcall TSHFileListBox::DblClick(void)

{

if(FCanLaunch)

{

int ii=0;

// go through the list and find which item is selected

for(ii=0; ii < Items->Count; ii++)

{

if(Selected[ii])

{

AnsiString str = Items->Strings[ii];

ShellExecute(Handle, “open”, str.c_str(), 0, 0, SW_SHOWDEFAULT);

}

}

}

// fire the OnDblClick event

if(FOnDblClick)

FOnDblClick(this);

}

//--

void __fastcall TSHFileListBox::MouseUp(TMouseButton Button, TShiftState Shift,

int X, int Y)

{

if(!FRightBtnSel)

return;

CHAPTER 4 Creating Custom Components254

LISTING 4.55 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 254

TPoint ItemPos = Point(X,Y);

// is there an item under the mouse ?

int Index = ItemAtPos(ItemPos, true);

// if not just return

if(Index == -1)

return;

// else select the item

Perform(LB_SETCURSEL, (WPARAM)Index, 0);

}

//--

// ValidCtrCheck is used to assure that the components created do not have

// any pure virtual functions.

//

static inline void ValidCtrCheck(TSHFileListBox *)

{

new TSHFileListBox (NULL);

}

Creating Custom Data-Aware Components
Just as with any other custom component, it is important to decide from the start
which ancestor will be used for the creation of a data-aware component. In this
section, we are going to look at extending the TMaskEdit edit component so that it
will read data from a datasource and display it in the masked format provided. This
type of control is known as a data-browsing control. We will then extend this control
further to make it a data-aware control, meaning that changes to the field or data-
base will be reflected in both directions.

Making the Control Read-Only
The control we are going to create already has ReadOnly, a read-only property, so we
don’t have to create it. If your component doesn’t, create the property as you would
for any other component.

If our component did not already have the ReadOnly property, we would create it as
shown in Listing 4.56 (note that this code is not required for this component).

LISTING 4.56 Creating a Read-Only Property

class PACKAGE TDBMaskEdit : public TMaskEdit

{

private:

bool FReadOnly;

Creating Custom Components 255

LISTING 4.55 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 255

protected:

public:

__fastcall TDBMaskEdit(TComponent* Owner);

__published:

__property ReadOnly = {read = FReadOnly, write = FReadOnly,

default = true};

};

In the constructor we would set the default value of the property.

__fastcall TDBMaskEdit::TDBMaskEdit(TComponent* Owner)

: TMaskEdit(Owner)

{

FReadOnly = true;

}

Finally, we need to ensure that the component acts as a read-only control. You need
to override the method normally associated with the user accessing the control. If we
were creating a data-aware grid, it would be the SelectCell() method in which you
would check the value of the ReadOnly property and act accordingly. If the value of
ReadOnly is false, you call the inherited method, otherwise, just return.

If the TMaskEdit control had a SelectEdit() method, the code would look like this:

bool __fastcall TDBMaskEdit::SelectEdit(void)

{

if(FReadOnly)

return(false);

else

return(TMaskEdit::SelectEdit());

}

In this case, we don’t have to worry about the ReadOnly property. TMaskEdit already
has one.

Establishing the Link
For our control to become data aware, we need to provide it the data link required to
communicate with a data member of a database. This data link class is called
TFieldDataLink.

A data-aware control owns its data link class. It is the control’s responsibility to
create, initialize, and destroy the data link.

CHAPTER 4 Creating Custom Components256

LISTING 4.56 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 256

Establishing the link requires three steps:

1. Declare the data link class as a member of the control

2. Declare the read and write access properties as appropriate

3. Initialize the data link

Declare the Data Link The data link is a class of type TFieldDataLink and requires
DBCTRLS.HPP to be included in the header file.

#include <DBCtrls.hpp>

class PACKAGE TDBMaskEdit : public TMaskEdit

{

private:

TFieldDataLink *FDataLink;

...

};

Our data-aware component now requires DataSource and DataField properties (just
like all other data-aware controls). These properties use pass-through methods to
access properties of the data link class. This enables the control and its data link to
share the same datasource and field.

Declare read and write Access The access you allow your control is governed by
the declaration of the properties themselves. We are going to give our component
full access. It has a ReadOnly property that will automatically take care of the read-
only option because the user will be unable to edit the control. Note that this will
not stop the developer from writing code to write directly to the linked field of the
database via this control. If you require read-only access, simply leave out the write
option.

The code in Listings 4.57 and 4.58 shows the declaration of the properties and their
corresponding read and write implementation methods.

LISTING 4.57 The TDBMaskEdit Class Declaration from the Header File

class PACKAGE TDBMaskEdit : public TMaskEdit

{

private:

...

AnsiString __fastcall GetDataField(void);

TDataSource* __fastcall GetDataSource(void);

void __fastcall SetDataField(AnsiString pDataField);

void __fastcall SetDataSource(TDataSource *pDataSource);

Creating Custom Components 257

06 0672324806 CH04 12/12/02 2:37 PM Page 257

...

__published:

__property AnsiString DataField = {read = GetDataField,

write = SetDataField, nodefault};

__property TDataSource *DataSource = {read = GetDataSource,

write = SetDataSource, nodefault};

};

LISTING 4.58 The TDBMaskEdit Methods from the Source File

AnsiString __fastcall TDBMaskEdit::GetDataField(void)

{

return(FDataLink->FieldName);

}

TDataSource * __fastcall TDBMaskEdit::GetDataSource(void)

{

return(FDataLink->DataSource);

}

void __fastcall TDBMaskEdit::SetDataField(AnsiString pDataField)

{

FDataLink->FieldName = pDataField;

}

void __fastcall TDBMaskEdit::SetDataSource(TDataSource *pDataSource)

{

if(pDataSource != NULL)

pDataSource->FreeNotification(this);

FDataLink->DataSource = pDataSource;

}

The only code here that requires additional explanation is the FreeNotification()
method of pDataSource. C++Builder maintains an internal list of objects so that all
other objects can be notified when the object is about to be destroyed. The
FreeNotification() method is called automatically for components on the same
form, but in this case there is a chance that a component on another form (such as a
data module) has references to it. As a result, we need to call FreeNotification() so
that the object can be added to the internal list for all other forms.

CHAPTER 4 Creating Custom Components258

LISTING 4.57 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 258

Initialize the Data Link You might think everything that needs to be done has been
done. If you attempt to compile this component and add it to a form, you will find
access violations reported in the Object Inspector for the DataField and DataSource

properties. The reason is that the internal FieldDataLink object has not been instanti-
ated.

Add the following declaration to the public section of the class’s header file:

__fastcall ~TDBMaskEdit(void);

Add the following code to the component’s constructor and destructor:

__fastcall TDBMaskEdit::TDBMaskEdit(TComponent* Owner)

: TMaskEdit(Owner)

{

FDataLink = new TFieldDataLink();

FDataLink->Control = this;

}

__fastcall TDBMaskEdit::~TDBMaskEdit(void)

{

if(FDataLink)

{

FDataLink->Control = 0;

FDataLink->OnUpdateData = 0;

delete FDataLink;

}

}

The Control property of FDataLink is of type TComponent. This property must be set to
the component that uses the TFieldDataLink object to manage its link to a TField
object. We need to set the Control property to this to indicate that this component is
responsible for the link.

Accessing the TObject is achieved by adding a read-only property. Add the property
to the public section of the class definition.

__property TField *Field = {read = GetField};

Add the GetField declaration to the private section:

TField * __fastcall GetField(void);

Add the following code to the source file:

TField * __fastcall TDBMaskEdit::GetField(void)

Creating Custom Components 259

06 0672324806 CH04 12/12/02 2:37 PM Page 259

{

return(FDataLink->Field);

}

Using the OnDataChange Event
So far we have created a component that can link to a datasource, but doesn’t yet
respond to data changes. We are now going to add code that enables the control to
respond to changes in the field, such as moving to a new record.

Data link classes have an OnDataChange event that is called when the datasource indi-
cates a change to the data. To give our component the capability to respond to these
changes, we add a method and assign it to the OnDataChange event.

NOTE

TDataLink is a helper class used by data-aware objects. Look in the online help files that ship
with C++Builder for a listing of its properties, methods, and events.

The OnDataChange event is of type TNotifyEvent, so we need to add our method with
the same prototype. Add the following line of code to the private section of the
component header.

class PACKAGE TDBMaskEdit : public TMaskEdit

{

private:

// …

void __fastcall DataChange(TObject *Sender);

}

We need to assign the DataChange() method to the OnDataChange event in the
constructor. We also remove this assignment in the component destructor.

__fastcall TDBMaskEdit::TDBMaskEdit(TComponent* Owner)

: TMaskEdit(Owner)

{

FDataLink = new TFieldDataLink();

FDataLink->Control = this;

FDataLink->OnDataChange = DataChange;

}

__fastcall TDBMaskEdit::~TDBMaskEdit(void)

{

if(FDataLink)

CHAPTER 4 Creating Custom Components260

06 0672324806 CH04 12/12/02 2:37 PM Page 260

{

FDataLink->Control = 0;

FDataLink->OnUpdateData = 0;

FDataLink->OnDataChange = 0;

delete FDataLink;

}

}

Finally, define the DataChange() method as shown in the following code:

void __fastcall TDBMaskEdit::DataChange(TObject *Sender)

{

if(!FDataLink->Field)

{

if(ComponentState.Contains(csDesigning))

Text = Name;

else

Text = “”;

}

else

Text = FDataLink->Field->AsString;

}

The DataChange() method first checks to see if the data link is pointing to a datasource
(and field). If there is no valid pointer, the Text property (a member of the inherited
component) is set to an empty string (at runtime) or the control name (at design time).
If a valid field is set, the Text property is set to the value of the field’s content via the
AsString property of the TField object.

You now have a data-browsing control, so-called because it is capable only of
displaying data changes in a datasource. It’s now time to turn this component into a
data-editing control.

Changing to a Data-Editing Control
Turning a data-browsing control into a data-editing control requires additional code
to respond to key and mouse events. This enables any changes made to the control
to be reflected in the underlying field of the linked database.

The ReadOnly Property When a user places a data-editing control into his project,
he expects the control not to be read-only. The default value for the ReadOnly prop-
erty of TMaskEdit (the inherited class) is false, so we have nothing further to do. If
you create a component that has a custom ReadOnly property added, be sure to set
the default value to false.

Creating Custom Components 261

06 0672324806 CH04 12/12/02 2:37 PM Page 261

Keyboard and Mouse Events If you refer to the controls.hpp file, you will find
protected methods of TMaskEdit called KeyDown() and MouseDown(). These methods
respond to the corresponding window messages (WM_KEYDOWN, WM_LBUTTONDOWN,
WM_MBUTTONDOWN, and WM_RBUTTONDOWN) and call the appropriate event if the user
defines one.

To override these methods, add the KeyDown() and MouseDown() methods to the
TDBMaskEdit class. Take the declarations from the controls.hpp file.

virtual void __fastcall MouseDown(TMouseButton, TShiftState Shift, int X,

int Y);

virtual void __fastcall KeyDown(unsigned short &Key, TShiftState Shift);

Refer to the controls.hpp file in your C++ Builder installation (or the help file) to see
the original declaration.

Next we add the source code, shown in Listing 4.59.

LISTING 4.59 The MouseDown() and KeyDown() Methods

void __fastcall TDBMaskEdit::MouseDown(TMouseButton Button, TShiftState Shift,

int X, int Y)

{

if(!ReadOnly && FDataLink->Edit())

TMaskEdit::MouseDown(Button, Shift, X, Y);

else

{

if(OnMouseDown)

OnMouseDown(this, Button, Shift, X , Y);

}

}

void __fastcall TDBMaskEdit::KeyDown(unsigned short &Key, TShiftState Shift)

{

Set<unsigned short, VK_PRIOR, VK_DOWN> Keys;

Keys = Keys << VK_PRIOR << VK_NEXT << VK_END << VK_HOME << VK_LEFT

<< VK_UP << VK_RIGHT << VK_DOWN;

if(!ReadOnly && (Keys.Contains(Key)) && FDataLink->Edit())

TMaskEdit::KeyDown(Key, Shift);

else

{

if(OnKeyDown)

OnKeyDown(this, Key, Shift);

}

}

CHAPTER 4 Creating Custom Components262

06 0672324806 CH04 12/12/02 2:37 PM Page 262

In both cases, we check to make sure the component is not read-only and the
FieldDataLink is in edit mode. The KeyDown() method also checks for any cursor
control keys (defined in winuser.h). If all checks pass, the field can be edited, so the
inherited method is called. This method will automatically call the associated user
event if one is defined. If the field cannot be edited, the user event is executed (if
one exists).

Working Toward a Dataset Update
If the user modifies the contents of the data-aware control, the change must be
reflected in the field. Similarly, if the field value is altered, the data-aware control
will require a corresponding update.

The TDBMaskEdit control already has a DataChange() method that is called by the
TFieldDataLink OnDataChange event. This method reflects the change of the field value
in the TDBMaskEdit control. This takes care of the first scenario.

Now we need to update the field value when the user modifies the contents of the
control. The TFieldDataLink class has an OnUpdateData event where the data-aware
control can write any pending edits to the record in the dataset. We can now create
an UpdateData() method for TDBMaskEdit and assign this method to the OnUpdateData
event of the TFieldDataLink class.

Add the declaration for our UpdateData() method to the TDBMaskEdit control, as
shown in the following code:

void __fastcall UpdateData(TObject *Sender);

Assign this method to the TFieldDataLink OnUpdateData event in the constructor:

__fastcall TDBMaskEdit::TDBMaskEdit(TComponent* Owner)

: TMaskEdit(Owner)

{

FDataLink = new TFieldDataLink();

FDataLink->Control = this;

FDataLink->OnUpdateData = UpdateData;

FDataLink->OnDataChange = DataChange;

}

Set the field value to the current contents of the TDBMaskEdit control:

void __fastcall TDBMaskEdit::UpdateData(TObject *Sender)

{

if(FDataLink->CanModify)

FDataLink->Field->AsString = Text;

}

Creating Custom Components 263

06 0672324806 CH04 12/12/02 2:37 PM Page 263

The TDBMaskEdit control is a descendant of TMaskEdit, which happens to be a descen-
dant of the TCustomEdit class. This class has a protected Change() method that is trig-
gered by Windows events. This method then triggers the OnChange event.

We are going to override the Change() method so that it updates the dataset before
calling the inherited method. In the protected section of the TDBMaskEdit class, add
the following method:

DYNAMIC void __fastcall Change(void);

Add the Change() method in Listing 4.60 to the source code.

LISTING 4.60 The Change() Method

void __fastcall TDBMaskEdit::Change(void)

{

if(FDataLink)

{

// we need to see if the datasource is in edit mode

// if not then we need to save the current value because

// placing the datasource into edit mode will change the

// current value to that already present in the table

AnsiString ChangedValue = Text;

// get cursor position too

int CursorPosition = SelStart;

// need to be in edit mode

if(FDataLink->CanModify && FDataLink->Edit())

{

Text = ChangedValue; // just in case we were not in edit mode

SelStart = CursorPosition;

FDataLink->Modified(); // posting a change (the datasource

// is not put back into edit mode)

}

}

TMaskEdit::Change ();

}

This change notifies the TFieldDataLink class that modifications have been made and
finishes up by calling the inherited Change() method.

CHAPTER 4 Creating Custom Components264

06 0672324806 CH04 12/12/02 2:37 PM Page 264

The final step is to provide for when focus is moved away from the control. The
TWinControl class responds to the CM_EXIT message by generating an OnExit event.

We can also respond to this message as a method of updating the record of the
linked dataset. Creating a message map in the TDBMaskEdit class does this. Add the
following code to the private section:

void __fastcall CMExit(TWMNoParams Message);

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(CM_EXIT, TWMNoParams, CMExit)

END_MESSAGE_MAP(TMaskEdit)

This message map indicates that the CMExit() method will be called in response to a
CM_EXIT message with the relevant information passed in the TWMNoParams structure.

The CMExit() method is added to the source file.

void __fastcall TDBMaskEdit::CMExit(void)

{

try

{

ValidateEdit();

if(FDataLink && FDataLink->CanModify)

FDataLink->UpdateRecord();

}

catch(...)

{

SetFocus();

throw;

}

}

This attempts to validate the contents of the field against the defined mask. If the
datasource can be modified, the record is updated in the dataset. If an exception is
raised, the cursor is positioned back in the control that caused the problem, and the
exception is raised again so the application can handle it.

Adding a Final Message
C++Builder has a component called TDBCtrlGrid. This control displays records from a
datasource in a free-form layout. When this component updates its datasource, it
sends out the message CM_GETDATALINK. If you perform a search for this in the
C++Builder header files, you’ll find a message map defined in all of the database

Creating Custom Components 265

06 0672324806 CH04 12/12/02 2:37 PM Page 265

controls. Following this with the corresponding .pas file, you will find message
handlers such as the following:

procedure TDBEdit.CMGetDataLink(var Message: TMessage);

begin

Message.Result := Integer(FDataLink);

end;

We can add this support to our component by adding the message map, declaring
the method, and implementing the message handler.

In the private section

void __fastcall CMGetDataLink(TMessage Message);

In the public section, modify the message map to look like the following:

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(CM_EXIT, TWMNoParams, CMExit)

MESSAGE_HANDLER(CM_GETDATALINK, TMessage, CMGetDataLink)

END_MESSAGE_MAP(TMaskEdit)

Finally, implement the method in the source file:

void __fastcall TDBMaskEdit::CMGetDataLink(TMessage Message)

{

Message.Result = (int)FDataLink;

}

And that’s it. We now have a complete data-aware control that behaves just like any
other data control.

Registering Components
Registering components is a straightforward, multistage procedure. The first stage is
simple. You must ensure that any component you want to install onto the
Component Palette does not contain any pure virtual (or pure DYNAMIC) functions—in
other words, functions of the following form:

virtual ReturnType __fastcall FunctionName(ParameterList) = 0;

Note that the __fastcall keyword is not a requirement of pure virtual functions, but
it will be present in component member functions. This is why it is shown.

You can check for pure virtual functions manually by examining the class definition
for the component, or you can call the function ValidCtrCheck(), passing a pointer to

CHAPTER 4 Creating Custom Components266

06 0672324806 CH04 12/12/02 2:37 PM Page 266

your component as an argument. The ValidCtrCheck() function is placed anywhere
in the implementation file. For a component called TcustomComponent, it is of the
form

static inline void ValidCtrCheck(TCustomComponent *)

{

new TCustomComponent(NULL);

}

All this function does is try to create an instance of TCustomComponent. Because you
cannot create an instance of a class with a pure virtual function, the compiler will
give the following compilation errors:

E2352 Cannot create instance of abstract class ‘TCustomComponent’

E2353 Class ‘TCustomComponent’ is abstract because of ‘function’

The second error will identify the pure virtual function. Both errors refer to this line:

new TCustomComponent(NULL);

Using this function is often not necessary because it is not likely you will create a
pure virtual function by accident. However, when you use the IDE to create a new
component, this function is automatically added to the implementation file. Then,
you might as well leave it there just in case.

After you have determined that your component is not an abstract base class and
that it can be instantiated from, you can now write the code to perform the actual
registration. To do this, you must write a Register() function. The Register() func-
tion must be enclosed in a namespace that is the same as the name of the file in which
it is contained. There is one proviso that must be met. The first letter of the name-
space must be in uppercase, and the remaining letters must be in lowercase. Hence,
the Register() function must appear in your code in the following format:

namespace Thenameofthefilethisisin

{

void __fastcall PACKAGE Register()

{

// Registration code goes here

}

}

You must not forget the PACKAGE macro in front of the Register() function. Now that
the Register() function is in place, it requires only that the component (or compo-
nents) that we want to register is registered. To do this, use the RegisterComponents()
function. This is declared in $(BCB)\Include\Vcl\Classes.hpp as

Creating Custom Components 267

06 0672324806 CH04 12/12/02 2:37 PM Page 267

extern PACKAGE void __fastcall RegisterComponents(const AnsiString Page,

TMetaClass* const * ComponentClasses,

const int ComponentClasses_Size);

RegisterComponents() expects two things to be passed to it: an AnsiString representing
the name of the palette page onto which the component is to be installed, and an
open array of TMetaClass pointers to the components to be installed. If the AnsiString
value for Page does not match one of the palette pages already present in the
Component Palette, a new page is created with the name of the AnsiString passed.
The value of this argument can be obtained from a string resource if required, allow-
ing different strings to be used for different locales.

The TMetaClass* open array requires more thought. There are essentially two ways of
doing this: Use the OPENARRAY macro or create the array by hand. Let’s look at an
example that illustrates both approaches.

Consider that we want to register three components: TCustomComponent1,
TCustomComponent2, and TCustomComponent3. We want to register these onto a new
palette page, MyCustomComponents. First, we must obtain the TMetaClass* for each of the
three components. We do this by using the __classid operator, for example:

__classid(TCustomComponent1)

Using the OPENARRAY macro, we can write the RegisterComponents() function as
follows:

RegisterComponents(“MyCustomComponents”,

OPENARRAY(TMetaClass*,

(__classid(TCustomComponent1),

__classid(TCustomComponent2),

__classid(TCustomComponent3))));

We could use TComponentClass instead of TMetaClass* because it is a typedef for
TMetaClass*, declared in $(BCB)\Include\Vcl\Classes.hpp as

typedef TMetaClass* TComponentClass;

Note that you are restricted to registering a maximum of 19 arguments (components)
in any single RegisterComponents call because limitations of the OPENARRAY macro.
Normally this is not a problem.

The other approach is to declare and initialize an array of TMetaClass* (or
TComponentClass) by hand:

TMetaClass Components[3] = { __classid(TCustomComponent1),

__classid(TCustomComponent2),

__classid(TCustomComponent3) };

CHAPTER 4 Creating Custom Components268

06 0672324806 CH04 12/12/02 2:37 PM Page 268

We then pass this to the RegisterComponents() function as before, but this time we
must also pass the value of the last valid index for the array, in this case 2:

RegisterComponents(“MyCustomComponents”, Components, 2);

The final function call is simpler, but there is a greater chance of error in passing an
incorrect value for the last parameter.

We can now see what a complete Register() function looks like:

namespace Thenameofthefilethisisin

{

void __fastcall PACKAGE Register()

{

RegisterComponents(“MyCustomComponents”,

OPENARRAY(TMetaClass*,

(__classid(TCustomComponent1),

__classid(TCustomComponent2),

__classid(TCustomComponent3))));

}

}

Remember that you can have as many RegisterComponents() functions in the
Register() function as required. You can also include other registrations such as
those for property and component editors. This is the subject of the next chapter.
You can place the component registration in the implementation file of the compo-
nent, but typically the registration code should be isolated from the component
implementation.

The Streaming Mechanism
C++Builder is referred to as a Rapid Application Development (RAD) environment.
This is partly because of the GUI interface to the developer and the object-orientated
nature of the language itself. In addition, C++Builder uses a streaming (read and
write) mechanism to maintain property settings.

During design time, you set various properties of components. The IDE stores these
settings (described in more detail later) as part of the form on which these compo-
nents belong. The forms are saved as part of the project in a file with a .dfm exten-
sion. What is stored in the form’s file is loaded again at runtime. In other words, the
properties are persistent.

The __published area is used to define properties that will be persisted. Such
“storable” properties are written to the form file at design time save.

The Streaming Mechanism 269

06 0672324806 CH04 12/12/02 2:37 PM Page 269

When a component is created, the developer gives it a set of default values for its
published properties. These defaults are assigned in the constructor of the compo-
nent. At runtime, the user modifies these properties via the Object Inspector. In fact,
every property shown in the Object Inspector is a published property. Properties can
be declared in the public section of a component’s definition (the class), but these
will be available only at runtime.

Not all properties that are published are required to be stored, however. Imagine two
properties, one with a default value of 10 and the other defined not to be stored.

__property int SomeProperty1 = {read=FProp1, write=FProp1, default=10};

__property AnsiString SomeProperty2 = {read=FProp2, stored=false};

The declaration of SomeProperty1 does not set its value to 10. This is always done in
the constructor. The default keyword is used to tell the IDE to store the value of this
property in the form file only if it has a value other than 10.

The second property, SomeProperty2, is declared to not store its value in the form file.
An example of this might be a property to indicate the current version for the
component. Because the version number will not change, it does not need to be
stored in the form.

When the component is saved, the property information that differs from the
default is written to the form file. When a project is opened again, an instance of
each component is created, the component properties are set to their defined
defaults, and the stored, nondefault values are read and assigned.

Component construction and the associated property-streaming processes are some-
thing that the programmer often doesn’t have to worry about.

Advanced Streaming Requirements
Component properties can be numerical, character, strings, enumerated types
(including Boolean), sets, or more complex objects such as custom-defined structs
and classes. C++Builder has built-in handling for the streaming of simple data types.
Support for streaming custom objects, such as class properties, is provided if that
class is derived from TPersistent.

TPersistent provides the capability to assign objects to other objects and enable the
reading and writing of their properties to and from a stream. Additional information
can be found in the index of the online help under the topic “TPersistent.”

Some property types, such as arrays, require their own property editor. Without an
editor, the Object Inspector is unable to provide the programmer an interface to edit
the contents of the property. Refer to Chapter 5, for more information on property
editors.

CHAPTER 4 Creating Custom Components270

06 0672324806 CH04 12/12/02 2:37 PM Page 270

Streaming Unpublished Properties
So far we have learned that the Object Inspector provides the programmer a design-
time interface to the published properties of a component. This is the default behav-
ior of components, but we are not limited to this. We have also discovered that
properties derived from TPersistent have the capability to stream to and from a form
file. This means we have the ability to create persistent properties that do not appear
in the Object Inspector. Additionally, we can create streaming methods for properties
that C++Builder does not know how to read or write.

Saving an unpublished property is achieved by adding code to tell C++Builder how
to read and write the property’s value. This is accomplished in a two-step process.

• Override the DefineProperties() method. The previously defined methods are
passed to what is known as a filer object.

• Create methods to read and write the property value.

We have already ascertained that published properties are automatically streamed to
the form file. Using read and write methods defined for the various property types
handles this. The property names and the methods used to perform the streaming
are defined by the DefineProperties() method. When you want to stream a nonpub-
lished property, you need to tell C++Builder. This is done by overriding the
DefineProperties() method.

Listing 4.61 provides an example component, TSampleComp, which has three unpub-
lished properties. The component is capable of streaming the properties by the
methods provided. It creates an instance of a second component called TComp at
runtime and is referenced via the property Comp3. Because this component is not
dropped onto a form by the developer, the properties for it are not automatically
streamed to the form file. We will provide our component with the code it requires
to stream this information as well.

LISTING 4.61 A Component to Stream Unpublished Properties

// A minimum class declaration to get the example to compile

class TComp : public TComponent

{

public:

__fastcall TComp::TComp(TComponent *Owner) : TComponent(OWner) {}

};

class TSampleComp : public TComponent

{

private:

The Streaming Mechanism 271

06 0672324806 CH04 12/12/02 2:37 PM Page 271

int FProp1;

AnsiString FProp2;

TComp *FComp3;

void __fastcall ReadProp1(TReader *Reader);

void __fastcall WriteProp1(TWriter *Writer);

void __fastcall ReadProp2(TReader *Reader);

void __fastcall WriteProp2(TWriter *Writer);

void __fastcall ReadComp3(TReader *Reader);

void __fastcall WriteComp3(TWriter *Writer);

protected:

void __fastcall DefineProperties(TFiler *Filer);

public:

__fastcall TSampleComp(TComponent* Owner);

__fastcall ~TSampleComp(void);

__property int Prop1 = {read = FProp1, write = FProp1, default = 10};

__property AnsiString Prop2 = {read = FProp2, write = FProp2, nodefault};

__property TComp *Comp3 = {read = FComp3, write = FComp3};

};

void __fastcall TSampleComp::TSampleComp(TComponent* Owner) : TComponent(Owner)

{

FProp1 = 10; // The default

FComp3 = new TComp(NULL); // we will need to stream this

}

void __fastcall TSampleComp::~TSampleComp (void)

{

if(FComp3)

delete FComp3;

}

void __fastcall TSampleComp::DefineProperties(TFiler *Filer)

{

// Call the base method first

TComponent::DefineProperties(Filer);

CHAPTER 4 Creating Custom Components272

LISTING 4.61 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 272

Filer->DefineProperty(“Prop1”, ReadProp1, WriteProp1, (FProp1 != 10));

Filer->DefineProperty(“Prop2”, ReadProp2, WriteProp2, (FProp2 != “”));

// need to determine if the properties for Comp3 need to be written

bool WriteValue;

if(Filer->Ancestor) // check for inherited value

{

TSampleComp *FilerComp = dynamic_cast<TSampleComp *>(Filer->Ancestor);

if(FilerComp->Comp3 == NULL)

WriteValue = (Comp3 != NULL);

else

{

if((Comp3 == NULL) || (FilerComp->Comp3->Name != Comp3->Name))

WriteValue = true;

else

WriteValue = false;

}

}

else // no inherited value, write property if not null

WriteValue = (Comp3 != NULL);

Filer->DefineProperty(“Comp3”, ReadComp3, WriteComp3, WriteValue);

}

void __fastcall TSampleComp::ReadProp1(TReader *Reader)

{

Prop1 = Reader->ReadInteger();

}

void __fastcall TSampleComp::WriteProp1(TWriter *Writer)

{

Writer->WriteInteger(FProp1);

}

void __fastcall TSampleComp::ReadProp2(TReader *Reader)

{

FProp2 = Reader->ReadString();

}

The Streaming Mechanism 273

LISTING 4.61 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 273

void __fastcall TSampleComp::WriteProp2(TWriter *Writer)

{

Writer->WriteString(FProp2);

}

void __fastcall TSampleComp::ReadComp3(TReader *Reader)

{

if(Reader->ReadBoolean())

FComp3 = (TComp *)Reader->ReadComponent(NULL);

}

void __fastcall TSampleComp::WriteComp3(TWriter *Writer)

{

if(FComp3)

{

Writer->WriteBoolean(true);

Writer->WriteComponent(Comp3);

}

else

Writer->WriteBoolean (false);

}

The DefineProperties() method contains these two lines of code to register the first
two properties:

Filer->DefineProperty(“Prop1”, ReadProp1, WriteProp1, (FProp1 != 10));

Filer->DefineProperty(“Prop2”, ReadProp2, WriteProp2, (FProp2 != “”));

This tells C++Builder to use the read-and-write methods provided when streaming
these properties. The last parameter is a flag to indicate if we have data to store.
Prop1 and Prop2 need to be stored only if their values differ from the default value.

The Comp3 property is different and will require some additional explanation. This
property is different from other properties because it is a component (instantiated by
the class at runtime) rather than a data type. Listing 4.62 presents the section of
code responsible for determining if this property requires streaming.

CHAPTER 4 Creating Custom Components274

LISTING 4.61 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 274

LISTING 4.62 Determining If a Property That Is a Component Requires Streaming

bool WriteValue;

if(Filer->Ancestor) // check for inherited value

{

TSampleComp *FilerComp = dynamic_cast<TSampleComp *>(Filer->Ancestor);

if(FilerComp->Comp3 == NULL)

WriteValue = (Comp3 != NULL);

else

{

if((Comp3 == NULL) || (FilerComp->Comp3->Name != Comp3->Name))

WriteValue = true;

else

WriteValue = false;

}

}

else // no inherited value, write property if not null

WriteValue = (Comp3 != NULL);

Filer->DefineProperty(“Comp3”, ReadComp3, WriteComp3, WriteValue);

This property represents a component instantiated at runtime. Because the compo-
nent is not dropped onto a form, the default mechanism of streaming the properties
is not performed. This implementation of the DefineProperties() method will take
care of that for us.

First we need to determine if the filer’s Ancestor property is true to avoid saving a
property value in inherited forms. If there is no inherited value, we will stream the
property (which is a component) if Comp3 is not NULL.

If the filer’s Ancestor property is true, we need to look at the Comp3 property of the
ancestor next. If this property is NULL, we stream our property (TSampleComp->Comp3) if
it is not NULL. If the filer’s Ancestor Comp3 property is not NULL, we perform two final
checks. If our property (TsampleComp->Comp3) is NULL or the name of our Comp3 property
is different than the ancestor’s, we will stream the property (a component).

Finally, we define our property, using DefineProperty() as previously explained.

We have seen the uses of the DefineProperty() method, which deals with data types
such as integers, strings, chars, Booleans, and enumerated types. There is another
method, DefineBinaryProperty(), that is designed to be used for the streaming of
binary information such as graphics and sound files. Refer to the
“DefineBinaryProperty” section of “TWriter” in the online help index for additional
information on this.

The Streaming Mechanism 275

06 0672324806 CH04 12/12/02 2:37 PM Page 275

Distributing Components
When considering distribution of your components, the file of most interest to you
is the .bpl file. This is the package library that the IDE will use to make the compo-
nents available at design time.

WARNING

Whenever you build your packages, be sure to check the Option source (Edit, Option, Source)
of the package and remove any unnecessary library file entries in the <LIBRARIES> and
<SPARELIBS> sections. If this is not done, you might find that you have many frustrated users
looking for a .lib file that your package references, but that they don’t have. However,
because your package references the .lib file, they will not be able to use the package
without it, even though it is not required for the correct operation of the package.

The files that must be distributed for each package to be useable are shown in
Figure 4.6.

As can be seen from Figure 4.6, in addition to the .bpl, .bpi, and .lib files previously
mentioned, the header (.h) files for each unit appearing in the runtime-only
package’s Contains section must also be distributed. You should also distribute the
header files of the units used in the design time-only package; the exception to this
is the header file for the registration unit itself—this is normally empty and is of no
use. Typically, though, you would distribute the source for the registration unit so
that the users of your components can see what changes your package will make to
the IDE. Note that .rc files are shown as the resource files to store the Component
Palette bitmaps for the components. There are alternatives to this: .res files or .dcr
files can be used. This is discussed in the “Creating Component Palette Bitmaps”
section later in this chapter. Consider also that if you do ship custom property and
component editors, it should be possible for the user to derive new editors from
them.

Remember from the “Understanding and Using Packages” section in Chapter 2,
“C++Builder Projects and More on the IDE,” that the .lib file for a package is effec-
tively a collection of the package unit’s .obj files. Distributing either the .lib file for
the runtime-only package (that containing the source for the component(s)) or the
.obj files for the component(s) will enable the components to be statically linked to
the application, if the user so desires. The .lib file has the advantage that all the
components’ .obj files are contained in a single file, making file maintenance easier.

Where Distributed Files Should Be Placed
Where your distribution files are placed on the target computer can affect how easy
they are to use. Using the default directories that C++Builder uses, shown in
Figure 4.7, effectively guarantees that the user will not have to edit his project’s

CHAPTER 4 Creating Custom Components276

06 0672324806 CH04 12/12/02 2:37 PM Page 276

directory settings. Most people prefer that third-party components not be placed in
to these directories. However, an appreciation of the structure that C++Builder uses
is useful.

Distributing Components 277

Runtime-only Package Files Required for Distribution

MyComponents_R.bpk

MyComponents_R.cpp

ComponentSourceFiles.cpp

Contains–

vcl50.bpi

Requires–

Design time-only Package

MyComponents_D.bpk

MyComponents_D.cpp

ComponentPaletteBitmaps.rc

Reg_MyComponents.cpp

PropEds_MyComponents.cpp

CompEds_MyComponents.cpp

Contains–

vcl50.bpi

MyComponents_R.bpi

Requires–

Runtime-only/Design time-only Package Pair

MyComponents_R.bpk

MyComponents_R.bpl

MyComponents_R.bpi

MyComponents_R.lib

MyComponents_D.bpk

MyComponents_D.bpl

MyComponents_D.bpi

MyComponents_D.lib

Reg_MyComponents.h
Reg_MyComponents.cpp
Reg_MyComponents.obj

PropEds_MyComponents.h

PropEds_MyComponents.cpp
PropEds_MyComponents.obj

CompEds_MyComponents.h

CompEds_MyComponents.cpp
CompEds_MyComponents.obj

ComponentHeaderFiles.h

ComponentSourceFiles.cpp
ComponentObjectFiles.obj

ComponentPaletteBitmaps.rc

Filename.ext The file must be distributed
Filename.ext This file should be distributed
Filename.ext Unless you have a reason not to you should distribute this file
Filename.ext Distributing this file is entirely optional

Legend

FIGURE 4.6 Files required for package distribution.

06 0672324806 CH04 12/12/02 2:37 PM Page 277

FIGURE 4.7 Default package directories.

Note that the naming convention shown in Figure 4.7 has been used for consistency.
Also, source modules have not been shown because their placement is only of
concern when compiling the package. The simplest alternative to using the default
directories of Figure 4.7 is to place all the files belonging to a package into a single
directory, with the exception of the runtime library .bpl files, which should be
placed in Windows\System or an equivalent directory. This makes adding paths to a
project’s directory settings easier. For linking, the linker must be able to find the .bpi
and .lib files of the runtime package (assuming a runtime/design time pair), so the
directory that contains these should be added to the global Library Path setting
(Tools, Environment Options, Library). This can also be modified by editing the
Registry key HKEY_CURRENT_USER\Software\Borland\C++Builder\6.0\Library\Search Path,
where 6.0 is the version number of C++Builder (it could be 1.0, 3.0, or 5.0).
Remember that if the directory (or directories) that contain your components is off
the main C++Builder installation directory, you can use the $(BCB) string to represent
the installation directory in any pathnames required.

CHAPTER 4 Creating Custom Components278

$(BCB) (C++ Builder Installation Directory)

Bin

–

MyComponents_D50.bpl

Windows (Windows Installation Directory)

System

–

MyComponents_R50.bpl

MyComponents_R50.lib

MyComponents_R50.bpi

MyComponents_D50.lib

MyComponents_D50.bpi

Include

Vcl

ComponentHeaderFiles.h

ComponentObjectFiles.obj

–

–

Obj

Lib

06 0672324806 CH04 12/12/02 2:37 PM Page 278

Naming Packages and Package Units
The naming of packages and package units is of crucial importance when preparing
components for distribution. Assuming that a runtime-only/design time-only
package pair (or similar model) is adopted for packaging the components, we must
name the runtime-only package (or packages) so that it can be distinguished from
the design time-only registration package. Typically, an _R or _RTP is appended to
runtime-only package names and _D or _DTP is appended to design time-only package
names. An underscore is entirely optional.

Another consideration is that you should include a number that represents the
version of the VCL that was used in the creation of the package. In the case of pack-
ages made for C++Builder 6, this would be 60 (the version number of the VCL in
C++Builder 6). This makes it immediately obvious for which version of C++Builder
the package is intended. For example, runtime-only packages could have _R60
appended to their names and design time-only packages could have _D60 appended
to their names (again the underscore is optional). As long as this information is
presented in some obvious way, the exact approach taken is immaterial. For
example, the convention used for the VCL packages is to replace the V of VCL with a D
(making DCL) when the package is a design time-only package. The version number is
appended to the end of the package name in both cases. For example, the package
names for data access and data control components are VCLDB50.bpl and DCLDB50.bpl

for the runtime-only and design time-only packages, respectively.

In addition to the naming of packages to reflect how the package should be used
(design time or runtime), and the version of the VCL for which they are designed,
the names must also be unique. It is not possible to install or use a package whose
name clashes with an existing package in the same application.

The naming of units inside a package is equally as important as that of the package
itself. Before we consider the possibilities, we must be aware that units exported from
a package must be unique for any application that uses them (it is not possible to
have units of the same name in more than one package if those packages are used
simultaneously by the same application), and this includes the IDE.

Two cases must be considered. The first is the naming of units that would normally
only be found in a design time-only package (units containing registration code and
units containing property and component editors). The second is the naming of
units normally found only in a runtime-only package (the units that contain the
source for components).

When naming units in the design time-only package, you should include the
package name in the unit name. This ensures that the unit name will be unique. For
example, the unit containing the registration code could be called
Registration_PackageName.cpp. Changing the word order, replacing Registration with

Distributing Components 279

06 0672324806 CH04 12/12/02 2:37 PM Page 279

Reg (and so on), and using underscores are all matters of personal choice; the essen-
tial thing is to keep the purpose of the unit clear and the name unique. Because the
package must be unique, including this in the unit name helps ensure that it too will
be unique. Therefore, for a design time-only package called NewComponentsD60, the
following are all suitable names for the registration unit of the package:

Reg_NewComponentsD60

RegNewComponentsD60

Registration_NewComponentsD60

RegistrationNewComponentsD60

Many more possibilities abound, but basically you simply need to adopt an approach
and use it. The requirement for unit names to be unique precludes obvious choices
for the names of units containing property and component editors. This means
PropertyEditors.cpp and ComponentEditors.cpp are not good choices. The easiest way
to ensure a unique name is as demonstrated earlier; append the package name to the
unit name. However, there is an alternative to uniquely naming the units used to
contain property and components editors. It is possible to use the #pragma
package(smart_init,weak) directive in place of the normal #pragma package(smart_init)
directive for these units. This results in these units being weakly packaged to the
design time-only package. Effectively, the name of the unit becomes irrelevant
because the unit itself is not added to the design time-only package; instead, the
code from the unit is directly accessed when it is required. Everything will be fine as
long as the property and component editor class names are unique.

The second case that should be considered when naming units is that of the units
for the runtime-only package (or packages). If each unit is used to contain an indi-
vidual component, it is sensible to use the component’s name as the name of the
unit, omitting the initial T. Because the component name must be unique (see the
next section), following this convention will almost certainly guarantee that the unit
name is unique. For units that contain several components, a sensible naming
convention to follow is to choose a name that reflects the components contained
within the package, and then append the package name to this name—similar to the
method presented for naming design time-only packages. If these guidelines are
followed, the chances of name clash are small.

Naming Components
Choosing a suitable component name is very important. There are two considera-
tions: First, the component name must be unique, and second, it must accurately
represent the component’s purpose.

Making sure the component name is unique is not as easy as it sounds. It is surpris-
ing how many components are made to accomplish the same task, such as encapsu-
lating the serial port on a computer. There are only so many sensible variations of

CHAPTER 4 Creating Custom Components280

06 0672324806 CH04 12/12/02 2:37 PM Page 280

TComport that you can have. Because of this, developers serious about distributing
their components normally assign a signature to the component name in the form
of initials placed after the T and before the component name. Making such initials
either all lowercase or all uppercase makes them easy to ignore. Some might find all-
uppercase initials easier to ignore than all-lowercase letters because of the more
symbolic nature of uppercase letters. The use of initials is similar to the approach
taken when naming enumerations used by component properties. The choice of
initials could be arbitrary or it could be the initials of your company. Assuming a
company is called Components for Builder, the initials cfb could be used. Using our
TComport example, the component’s name becomes TcfbComport. It might not be
pretty but, when the user has no access to the source of the component, it can be
quite necessary. The likelihood of another component vendor using the same name
and the same initials is slim. We mentioned user access to the source of a compo-
nent. If the user has the full source for the component, the name of the component
is not as important because the user can change it if he wants.

Choosing a name that adequately reflects the component’s purpose can sometimes
require careful thought. It is important to adhere to conventional names as often as
possible and be aware of implied meanings for any names that you choose. For
example, avoid choosing a name such as TCOM for a component that encapsulates
the serial port because this obviously implies that the component offers functionality
related to COM programming. This is a rather silly example, but it illustrates the
point. If you are having difficulty choosing a suitable name for a component, it
might be a symptom of poor design. Perhaps a rethink of the component is neces-
sary.

Distributing Only a Design Time-Only Package
So far we have looked at distributing components as a set of packages—a design
time-only package with one or more runtime packages required by the design time-
only package. In this section, we will look briefly at the distribution of components
using a design time-only package model. If this is done, the user will be forced to
statically link the object (.obj) files of your components directly to any application
that uses them. This might appear to add complexity to the user’s use of the compo-
nents, but this is not the case. When a non-VCL component is added to a form in an
application, the IDE does two things: It includes the header file of the unit that
contains the component’s definition, and it adds a #pragma link “unitname” state-
ment to the form’s implementation file (where unitname is the name of the unit that
implements the component). This has the effect of requesting that the linker stati-
cally link the component to the application. The user need not write any additional
code for this to be done. Assuming the linker can find the necessary .obj files, every-
thing will be fine. Figure 4.8 shows the structure of a design time-only distribution.
Files that must be distributed when using this technique are also shown.

Distributing Components 281

06 0672324806 CH04 12/12/02 2:37 PM Page 281

FIGURE 4.8 The design time-only package model.

CHAPTER 4 Creating Custom Components282

Design time-only Package

MyComponents_D.bpk

Compiled Separately

MyComponents_D.cpp

ComponentPaletteBitmaps.rc

Reg_MyComponents.cpp

PropEds_MyComponents.cpp

CompEds_MyComponents.cpp

Contains–

vcl50.bpi

Requires–

Design time-only Package

Statically link to target
application (.exe)

Install package to the IDE

Files Required for Distribution

Reg_MyComponents.h
Reg_MyComponents.cpp
Reg_MyComponents.obj

PropEds_MyComponents.h

PropEds_MyComponents.cpp
PropEds_MyComponents.obj

CompEds_MyComponents.h

CompEds_MyComponents.cpp
CompEds_MyComponents.obj

ComponentPalletteBitmaps.rc

ComponentHeaderFiles.h

ComponentSourceFiles.obj

ComponentObjectFiles.ccp

MyComponents_D.bpk

MyComponents_D.bpl

MyComponents_D.bpi

MyComponents_D.lib

Filename.ext The file must be distributed
Filename.ext This file should be distributed
Filename.ext Unless you have a reason not to you should distribute this file
Filename.ext Distributing this file is entirely optional

Legend

06 0672324806 CH04 12/12/02 2:37 PM Page 282

One thing that is worth noting about this technique is that you can distribute a
static library (.lib) file containing the object files of the components, rather than
distribute the .obj files themselves. This can be achieved in one of two ways. You
could create a runtime-only package containing only the components. When built,
the .lib file will contain the necessary .obj files of the components. The remaining
package files, the .bpl and .bpi files, are not required. This .lib file can be distrib-
uted instead of separate .obj files. Another possibility is to add the .obj files directly
to the design time-only package using the USEOBJ macro. You can then distribute the
design time-only package’s .lib file. In either case, if the linker does not find the
necessary .lib file, the project’s Option source must be edited and the name of the
static library added to the <SPARELIBS> line, as shown in the following:

<SPARELIBS value=”VCL50.lib MyStaticLibrary.lib”/>

As long as this file is on one of the library file paths as specified in the project
options, it will link successfully.

The thing to note about using this single design time-only package approach is that
only one package needs to be maintained. When creating a package for different
versions of C++Builder (the subject of the next section), this could possibly make life
easier. The object files of the components can be generated simply by compiling the
components in the different versions of C++Builder that are required, assuming of
course that the code is structured so that it will compile on each version. You might
also want to use this packaging model if you don’t want to distribute a runtime
library for dynamic linking (for whatever reason). On the whole, though, the
runtime-only/design time-only package pair approach is superior and should be used
in preference to this one.

Distributing Components for Different Versions of C++Builder
In cases where you want to distribute components as a component vendor, you will
want to provide versions of your components that can be used on as many versions
of C++Builder as possible (currently five versions exist: 1, 3, 4, 5, and 6). Of course, it
might not be possible to do this in some cases because your components might rely
on a feature or extend a feature that is only available in certain versions of the
compiler. However, if we assume that it is possible to make the components available
for more than one version of C++Builder (the majority of cases), more than one
version of components must be produced. Distributing your components to different
versions of C++Builder requires that you compile your code for each version to
which you want to distribute. You must also create a package for components to be
installed into versions 3, 4, 5, and 6 of the compiler (in the first version of
C++Builder components are installed directly into CMPLIB32.CCL, and packages are not
used). For this, the considerations presented previously are appropriate. The appro-
priate import libraries for each version of C++Builder are used and the package is

Distributing Components 283

06 0672324806 CH04 12/12/02 2:37 PM Page 283

built as before. This will be fine, assuming that the component source will compile
on each version of the compiler. This is unlikely and, hence, this is the area that
causes the most problems when trying to distribute to different versions. It is often
not practical to maintain separate source listings for each version of the compiler for
which the components are to be available, so an alternative approach is used. This
alternative approach uses the same units for the components for each version of
C++Builder. To allow for differences in compiler versions, the version of the compiler
is detected and the preprocessor is used to select which code is to be used for which
compiler. This and other topics relevant to the compiler version are listed in the
following sections.

Detecting the Compiler Version at Compile Time
Each version of C++Builder defines a specific version number. By checking the value
of this number, it is possible to selectively compile different sections of code.
Listing 4.63 shows a method of setting a #defines for the different versions of
C++Builder.

LISTING 4.63 Setting #defines for C++Builder Versions

#ifndef VERSION_DEFINES

#define VERSION_DEFINES

#if(__TURBOC__ == 0x550) // C++Builder 5

#define CPPBUILDER_VERSION_5

#endif

#if(__TURBOC__ == 0x540) // C++Builder 4

#define CPPBUILDER_VERSION_4

#endif

#if(__TURBOC__ == 0x530) // C++Builder 3

#define CPPBUILDER_VERSION_3

#endif

#if(__TURBOC__ == 0x520) // C++Builder 1

#define CPPBUILDER_VERSION_1

#endif

#endif

Including the code shown above in the header file of your component’s unit, or
indirectly by placing it in another header file on its own and including that header
file, allows code such as the following to be written:

CHAPTER 4 Creating Custom Components284

06 0672324806 CH04 12/12/02 2:37 PM Page 284

#ifdef CPPBUILDER_VERSION_5

// Register Property Filters as only version 5 supports this

#endif

By using #ifdef/#endif and #ifndef/#endif, you can selectively remove sections of
code for different versions of the C++Builder. In Chapter 3, it was advised that you
avoid using the preprocessor unless absolutely necessary. This is one of those times
when the preprocessor is your friend, and using it can save a lot of trouble.

Using the ValidCtrCheck() Function
This function is used to determine if any of the components that you want to install
contain pure virtual functions. It detects this condition at compile time.
Components containing pure virtual functions cannot be installed to the IDE. The
function used for this is different in version 1 of C++Builder. The following
ValidCtrCheck() function is used:

static inline TComponentName *ValidCtrCheck()

{

return new TComponentName(NULL);

}

For versions 3, 4, 5, and 6 of C++Builder, the following ValidCtrCheck() function is
appropriate:

static inline void ValidCtrCheck(TComponentName *)

{

new TComponentName(NULL);

}

The Use of Packages and C++Builder Version 1
Version 1 of the compiler does not use packages, so the PACKAGE macro should not be
used after the class keyword in the component’s definition, and it should not appear
before Register() in the registration function. Also, the #pragma package(smart_init)
directive should not be found by the compiler in the component source files.

Because packages are not used in version 1 of the compiler, only the component’s
header and object files need to be distributed, optionally with a separate registration
unit.

Using Sets in Components
The following discussion relates to the implementation of Sets in the different
versions of C++Builder. Essentially, the use of Sets in versions 1 and 3 of the
compiler is different than that in versions 4 up of the compiler. The following
discussion explains this more fully.

Distributing Components 285

06 0672324806 CH04 12/12/02 2:37 PM Page 285

In Malcolm Smith’s MJFSecurity package for C++Builder 3 (available at
http:\\www.mjfreelancing.com), the following code appears in the header file:

#include <sysdefs.h>

enum TFailedShareRegKey { fsrNone, fsrInstalledDate,

fsrRegUser, fsrRegOrgn,

fsrRegCode, fsrRunCount,

fsrUserDefined };

typedef Set<TFailedShareRegKey, fsrNone, fsrUserDefined> TFailedShareRegKeys;

typedef void __fastcall (__closure *TLoadErrorEvent) (TObject *Sender,

TFailedShareRegKeys FailedKeys, bool &Terminate);

In the implementation file, code similar to that shown in Listing 4.64 is used.

LISTING 4.64 Source Code Illustrating the Use of a Set

TFailedShareRegKeys FailedKeys;

FailedKeys << fsrNone;

// ... some sample code while reading the registry:

if(MyReg->ValueExists(KeyNames->InstalledDate))

FInstalledDate = MyReg->ReadDate(KeyNames->InstalledDate);

else

{

FailedKeys >> fsrNone;

FailedKeys << fsrInstalledDate;

}

if(MyReg->ValueExists(KeyNames->Username))

FRegisteredName = MyReg->ReadString(KeyNames->Username);

else

{

FailedKeys >> fsrNone;

FailedKeys << fsrRegUser;

}

// ... and many more

// ... and then later in the code that calls the event:

CHAPTER 4 Creating Custom Components286

06 0672324806 CH04 12/12/02 2:37 PM Page 286

if(FOnLoadError)

{

bool Terminate = TerminateOnLoadError;

FOnLoadError(this, FailedKeys, Terminate);

}

The code above should allow the component to construct a Set defining all possible
causes for the application’s failure to load. This Set is passed as a parameter to the
OnLoadError event, where the user can examine the information and act accordingly.

This code will work fine in versions 4 and 5 of C++Builder, but not in version 1 and
3. In version 1 and 3, the following declaration is required:

template class TFailedShareRegKeys;

This explicit declaration forces the compiler to compile all methods of the Set class.

C++Builder 4 and 5 already contain an explicit declaration for Set in
$(BCB)\Include\Vcl\Sysmac.h included indirectly through the line #include
<system.hpp>. This is shown here:

template<class T, unsigned char minEl, unsigned char maxEl>

class RTL_DELPHIRETURN Set;

By wrapping the line

template class TFailedShareRegKeys;

in preprocessor directives it can be selectively compiled for versions 1 and 3 and
ignored for versions 4 and 5.

Creating Component Palette Bitmaps
Throughout this discussion of packages, the Component Palette bitmaps have been
referred to as .rc (resource script) files. The reason for this is that using resource
script files (or a single resource script file with entries for all palette bitmaps—the
preferred method) enables greater flexibility over palette bitmap creation. Essentially,
creating your Component Palette bitmaps using a more powerful graphics tool and
manually adding them through a resource script file allows custom palettes to be
used effectively. This can greatly enhance the appearance of your component
bitmaps on the Component Palette.

Distributing Components 287

LISTING 4.64 Continued

06 0672324806 CH04 12/12/02 2:37 PM Page 287

Using Guidelines in the Design of Components for Distribution
Writing components for yourself or for in-house use is not the same as writing
components for outside use by unknown parties. The main reason is that you have
no idea how an outside party might want to use your component. To this end, you
should design your component with the following considerations in mind:

• Don’t hide functionality from the user that he probably won’t need. If making a
feature available does not compromise the component design, make it avail-
able. There will always be someone who does need that functionality.

• When adding events to components, be sure to fire events for each possible
event that the user might want to handle. Failing to allow the user to respond
to certain events because they have been omitted severely limits the usefulness
of your component.

• Don’t force the user to rely on component linking as a method of achieving
certain functionality by linking several of your components together. For
example, if you write a component that allows input from a sound card to be
captured and a component that displays this data, it makes sense to allow
them to be linked together and the process controlled by the components.
However, if that is the only way you can use the components, they can be
virtually useless—for example, the data that the sound card component
captures should always be accessible for display or manipulation by any other
means that a components user might require.

• Try to keep the interface of your component intuitive, particularly at design
time; this will be most users’ first experience of your component. Where appro-
priate, make intelligent use of property and component editors. Sensible use of
property filters (property Categories) can also make a component with many
properties much easier to navigate.

• Finally, you might want to create an abstract base class version of your compo-
nent, such as the TCustom components in C++Builder. This might not always be
appropriate, but it can prove very useful for users of your component.

Taking a Look at Other Distribution Issues
Other issues regarding distributing components include customizing the compo-
nent’s component editors so that a hyperlink is available to your Web site, your
company logo is displayed, or other information is given (the component’s version,
for example).

Other things to consider are whether you want your component to be freeware or
shareware. Do you want to include source or not? Should you pack your components
so that they must be installed from an installation program that requires a license

CHAPTER 4 Creating Custom Components288

06 0672324806 CH04 12/12/02 2:37 PM Page 288

agreement to be accepted? And so on. These issues are beyond the scope of this
section. However, it is important to be aware of them before you start to distribute
your components to others.

A final consideration is that for all but the most trivial of components, you should
always distribute accompanying documentation. You can do this in the form of help
files, an actual electronic document, or even extensive instruction and comments in
the header files of the components themselves. The general preference is for both
help files and some printable electronic document. No matter how good a compo-
nent is, it is virtually useless if no proper documentation is available for it. On a
similar note, you should endeavor to ship example code and possibly a demo appli-
cation(s) that shows your component being used.

Summary
This chapter has shown the important issues involved with component develop-
ment, including the best ways to make and deploy packages of components and how
to create components of various types.

Summary 289

06 0672324806 CH04 12/12/02 2:37 PM Page 289

06 0672324806 CH04 12/12/02 2:37 PM Page 290

IN THIS CHAPTER

• Creating Custom Property
Editors

• Properties and Exceptions

• Registering Custom Property
Editors

• Using Images in Property
Editors

• Creating Custom Component
Editors

• Registering Component
Editors

5

Creating Property and
Component Editors

Components are the building blocks of C++Builder. They
are the essential elements of every C++Builder program.
Developers spend much of their time working with
components, learning about their features, and trying to
make the best use of the facilities that they offer. To that
end, improving the design-time interface of a component
is one of the single most powerful ways to improve a
component’s usefulness. Developers often spend great
effort on improving their application’s user interface for
their customers. Component writers should also consider
the interface that they present to their customers—the
developers.

This chapter covers the techniques required to successfully
implement property editors and component editors. Some
of the biggest changes to C++Builder’s IDE have been to
allow improved property and component interfaces at
design time to help improve the productivity of develop-
ers. All the new features added in C++Builder are covered
in depth, and definitive guidelines are presented as to their
proper use.

All the code of the property editors and component editors
discussed in this chapter is contained on the accompany-
ing CD-ROM. By examining the source to these editors, it
should be possible to develop a good understanding of the
issues involved in creating custom editors for components.
The code shown in the listings throughout the chapter is
contained in two packages: the EnhancedEditors package
(EnhancedEditors.bpk, a design time–only package), and the
NewAdditionalComponents design time and runtime packages.

07 0672324806 CH05 12/12/02 2:42 PM Page 291

The design-time package, called NewAdditionalComponentsDTP.bpk, contains property
and component editor code as well as registration code. The runtime package, called
NewAdditionalComponentsRTP.bpk, contains code for components.

It would probably be helpful to install these packages into your installation of
C++Builder before reading this chapter. That way you can see the effect that the
property and component editors have while you are reading the chapter. Before you
install either package, first copy the folder called Chapter5Packages to your hard drive.
It contains the files you require. Feel free to give the folder a more imaginative
name. Then, copy both files in the System folder to a folder on the system path, for
example, Windows\System on Windows 9x machines or WINNT\System32 on Windows
NT and Windows 2000 machines. These files are runtime packages required by the
two design-time packages you will install shortly. Both of those design-time packages
require the TNonVCLTypeInfoPackage.bpl runtime-only file, and the
NewAdditionalComponentsDTP.bpl design time–only package also requires the
NewAdditionalComponentsRTP.bpl runtime-only package.

There are several additional directories that should also be copied to some location
where you keep your development source code files:

• NonVCLTypeInfoPackage—provides runtime type information for types not
based on Tobject.

• NewAdditionalComponents (Contains NewAddtionalComponentsRTP and
NewAdditionalComponentsDTP for the runtime and design-time packages
respectively—provides various components to use the property and component
editors.

• EnhancedEditors—provides special component and property editors for use
with the “new additional components”.

Each of these contains source code and projects needed to demonstrate the content
of this chapter.

To install the EnhancedEditors package, run C++Builder and click Install Packages in
the Component menu. Click the Add button in the Design packages group and
browse to where you have copied the EnhancedEditors\BPL directory and select the
EnhancedEditors.bpl file. When you click Open, the Add Design Package dialog will
close and the package will appear in the Design packages list as Enhanced Property
and Component Editors. Click OK to finish. Table 5.1 lists the property and compo-
nent editors contained in the EnhancedEditors package and indicates whether they
are registered (in other words, installed) with the IDE when the package is installed.

CHAPTER 5 Creating Property and Component Editors292

07 0672324806 CH05 12/12/02 2:42 PM Page 292

TABLE 5.1 Property and Component Editors Registered by the EnhancedEditors
Package

Editors Registered

TShapeTypePropertyEditor Yes

TImageListPropertyEditor Yes

TImageIndexProperty No—An Abstract Base Class

TPersistentDerivedImageIndexProperty Yes

TComponentDerivedImageIndexProperty Yes

TMenuItemImageIndexProperty Yes

TTabSheetImageIndexProperty Not required

TToolButtonImageIndexProperty Yes

TCoolBandImageIndexProperty Not required

TListColumnImageIndexProperty Yes

TCustomActionImageIndexProperty Not required

THeaderSectionImageIndexProperty Not required

TDisplayCursorProperty Yes

TDisplayFontNameProperty Yes

TUnsignedProperty Yes

TCharPropertyEditor Yes

TSignedCharProperty Yes

TUnsignedCharProperty Yes

TImageComponentEditor Yes

The method for installing the NewAdditionalComponents package is the same as for the
EnhancedEditors package. Click Install Packages on the Component menu. Click the
Add button in the Design packages group and browse into the NewAdditional
Components\NewAdditionalComponentsDTP\BPL directory for the NewAdditional
ComponentsDTP.bpl file. When you click Open, the Add Design Package dialog will
close, and the package will appear in the Design packages list as New Components
for the Additional Palette Page. Click OK to finish. The following components are
registered with the IDE by this package:

• TEnhancedImage

• TFilterEdit

The TImageIndexPropertyEditor property editor is also registered by this package.
Additionally, the TNonVCLTypeInfoPackage runtime-only package
(TNonVCLTypeInfoPackage.bpk) is included. This contains code referred to in Listings
5.7 and 5.8 in the section “Obtaining a TTypeInfo* (PTypeInfo) from an Existing
Property and Class for a Non-VCL Type,” later in this chapter. Both the
EnhancedEditors.bpk and the NewAdditionalComponentsDTP.bpk package require this
package for their registration code. Therefore, if you want to recompile either

Creating Property and Component Editors 293

07 0672324806 CH05 12/12/02 2:42 PM Page 293

package, the header files (*.h) and import file (.bpi) of this package must be found
by the IDE when it is compiling and linking the packages.

Creating Custom Property Editors
One of the best ways to improve a component’s design-time interface is to ensure
that property editors are easy to use and intuitive. This section looks at the main
principles involved in creating your own property editors. All custom property
editors descend ultimately from TPropertyEditor, which provides the basic function-
ality required for the editor to function within the IDE. Listing 5.1 shows the the
class definition for TPropertyEditor (in C++ Builder 5 and earlier, this is from
$(BCB)\Include\Vcl\VCLEditors.hpp, where $(BCB) is the C++Builder installation direc-
tory. In C++Builder 6, this has been moved to $(BCB)\Include\VCL\VCLEditors.hpp or
$(BCB)\Include\VCL\CLXEditors.hpp depending on whether you are constructing
editors for Windows alone or for CLX compatibility).

LISTING 5.1 TPropertyEditor Class Definition

class DELPHICLASS TPropertyEditor;

class PASCALIMPLEMENTATION TPropertyEditor : public Designintf::TBasePropertyEditor

{

typedef Designintf::TBasePropertyEditor inherited;

private:

Designintf::_di_IDesigner FDesigner;

TInstProp *FPropList;

int FPropCount;

AnsiString __fastcall GetPrivateDirectory();

protected:

virtual void __fastcall SetPropEntry(int Index, Classes::TPersistent*

➥AInstance, Typinfo::PPropInfo APropInfo);

Extended __fastcall GetFloatValue(void);

Extended __fastcall GetFloatValueAt(int Index);

__int64 __fastcall GetInt64Value(void);

__int64 __fastcall GetInt64ValueAt(int Index);

System::TMethod __fastcall GetMethodValue();

System::TMethod __fastcall GetMethodValueAt(int Index);

int __fastcall GetOrdValue(void);

int __fastcall GetOrdValueAt(int Index);

AnsiString __fastcall GetStrValue();

AnsiString __fastcall GetStrValueAt(int Index);

Variant __fastcall GetVarValue();

CHAPTER 5 Creating Property and Component Editors294

07 0672324806 CH05 12/12/02 2:42 PM Page 294

Variant __fastcall GetVarValueAt(int Index);

System::_di_IInterface __fastcall GetIntfValue();

System::_di_IInterface __fastcall GetIntfValueAt(int Index);

void __fastcall Modified(void);

void __fastcall SetFloatValue(Extended Value);

void __fastcall SetMethodValue(const System::TMethod &Value);

void __fastcall SetInt64Value(__int64 Value);

void __fastcall SetOrdValue(int Value);

void __fastcall SetStrValue(const AnsiString Value);

void __fastcall SetVarValue(const Variant &Value);

void __fastcall SetIntfValue(const System::_di_IInterface Value);

bool __fastcall GetEditValue(/* out */ AnsiString &Value);

bool __fastcall HasInstance(Classes::TPersistent* Instance);

public:

__fastcall virtual TPropertyEditor(const Designintf::_di_IDesigner ADesigner,

➥int APropCount);

__fastcall virtual ~TPropertyEditor(void);

virtual void __fastcall Activate(void);

virtual bool __fastcall AllEqual(void);

virtual bool __fastcall AutoFill(void);

virtual void __fastcall Edit(void);

virtual Designintf::TPropertyAttributes __fastcall GetAttributes(void);

Classes::TPersistent* __fastcall GetComponent(int Index);

virtual int __fastcall GetEditLimit(void);

virtual AnsiString __fastcall GetName();

virtual void __fastcall GetProperties(Designintf::TGetPropProc Proc);

virtual Typinfo::PPropInfo __fastcall GetPropInfo(void);

Typinfo::PTypeInfo __fastcall GetPropType(void);

virtual AnsiString __fastcall GetValue();

AnsiString __fastcall GetVisualValue();

virtual void __fastcall GetValues(Classes::TGetStrProc Proc);

virtual void __fastcall Initialize(void);

void __fastcall Revert(void);

virtual void __fastcall SetValue(const AnsiString Value);

bool __fastcall ValueAvailable(void);

__property Designintf::_di_IDesigner Designer = {read=FDesigner};

__property AnsiString PrivateDirectory = {read=GetPrivateDirectory};

__property int PropCount = {read=FPropCount, nodefault};

__property AnsiString Value = {read=GetValue, write=SetValue};

private:

Creating Custom Property Editors 295

LISTING 5.1 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 295

void *__IProperty; /* Designintf::IProperty */

public:

operator IProperty*(void) { return (IProperty*)&__IProperty; }

};

To customize the editor’s behavior, one or more TPropertyEditor virtual (or DYNAMIC)
functions must be overridden. You can save a lot of coding by deriving your custom
property editor from the most appropriate property editor class. The hierarchy of
TPropertyEditor descendants is shown in Figure 5.1. Descendants in shaded boxes are
those that override the custom rendering functionality of TPropertyEditor.

The hierarchy shown in Figure 5.1 is useful when deciding which property editor to
inherit from. The purpose of each property editor is fairly self-explanatory, with the
exception of one or two of the more specialized. For your convenience, brief descrip-
tions of the more commonly encountered property editors are given in Table 5.2.

TABLE 5.2 Common Property Editor Classes and Their Uses

Property Editor Class Use

TCaptionProperty The editor for all Caption and Text named AnsiString properties.

The Caption property of TForm and the Text property of TEdit are

examples. The difference between this property editor and the

TStringProperty from which it derives is that the component being

edited is continually updated as the property is edited. With

TStringProperty the updating occurs after the edit has finished.

TCharProperty The default editor for all char properties and subtypes of char.

Displays either the character of the property’s value or the value itself

preceded by the # character. The PasswordChar (char) property of

TMaskEdit is an example.

TClassProperty The default editor for TPersistent-derived class properties. Published

properties of the class are displayed as subproperties when the +

image before the property name is clicked. The Constraints

(TSizeConstraints*) property of TForm is an example.

TColorProperty The default editor for TColor type properties. Displays the color as a

clXXX value if one exists, otherwise displays the value as hexadecimal

(in BGR format; 0x00BBGGRR). The value can be entered as either a

clXXX value or as a number. Also allows the clXXX value to be picked

from a list. When the property is double-clicked, the Color dialog is

displayed. The Color (TColor) property of TForm is an example.

CHAPTER 5 Creating Property and Component Editors296

LISTING 5.1 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 296

TComponentProperty The default editor for pointers to TComponent-derived objects. The

editor displays a drop-down list of type-compatible objects that

appear in the same form as the component being edited. The Images

(TCustomImageList*) property of TToolBar is an example.

TCursorProperty For TCursor properties. Allows a cursor to be selected from a list that

gives each cursor’s name and its corresponding image. The Cursor

(TCursor) property of TForm is an example.

TEnumProperty The default editor for all enum-based properties. A drop-down list

displays the possible values the property can take. The Align (TAlign)

and BorderStyle (TFormBorderStyle) properties of TForm are exam-

ples.

TFloatProperty The default editor for all floating-point–based properties, namely

double, long double, and float. The PrintLeftMargin (double) and

PrintRightMargin (double) properties of TF1Book are examples.

TFontProperty For TFont properties. The editor allows the font settings to be edited

either through the Font dialog (by clicking the ellipses button) or by

editing an expandable list of subproperties. The Font (TFont) property

of TForm is an example.

TIntegerProperty The default editor for all int properties. The Height (int) and Width

(int) properties of TForm are examples.

TMethodProperty The default editor for pointer-to-method (member function) proper-

ties; that is, events. The editor displays a drop-down list of event

handlers for the event type matching that of the property. The

OnClick and OnClose events of TForm are examples.

TOrdinalProperty All ordinal-based (that is integral) property editors ultimately descend

from this class, such as TIntegerProperty, TCharProperty,

TenumProperty, and TSetProperty.

TPropertyEditor The class from which all property editors are descended.

TSetElementProperty This editor is used to edit the individual elements of a Set. The prop-

erty can be set to true to indicate that the element is contained in the

Set and false to indicate that it is not.

TSetProperty The default editor for all Set properties. Each element of the Set is

displayed as a subproperty of the Set property allowing each element

to be removed from or added to the Set as desired. The Anchors

(TAnchors) and BorderIcons (TBorderIcons) properties of TForm are

examples.

TStringProperty The default editor for AnsiString properties. The Hint and Name

properties of TForm are examples.

Creating Custom Property Editors 297

TABLE 5.2 Continued

Property Editor Class Use

07 0672324806 CH05 12/12/02 2:42 PM Page 297

FIGURE 5.1 The TPropertyEditor inheritance hierarchy.

CHAPTER 5 Creating Property and Component Editors298

TObject

TPropertyEditor

TOrdinalProperty

TIntegerProperty

TFontCharsetProperty

TColorProperty

TCursorProperty

TModalResultProperty

TTabOrderProperty

TCharProperty

TEnumProperty

TBoolProperty

TBrushProperty

TPenProperty

TSetProperty

TShortCutProperty

TInt64Property

TFloatProperty

TStringProperty

TComponentNameProperty

TFontNameProperty

TImeNameProperty

TMPFileNameProperty

TCaptionProperty

TNestedProperty

TSetElementProperty

TClassProperty

TFontProperty

TMethodProperty

TComponentProperty

TDateProperty

TTimeProperty

TDateTimeProperty

07 0672324806 CH05 12/12/02 2:42 PM Page 298

Choosing the right property editor to inherit from is linked inextricably with the
requirements specification of the property editor. In fact, the hardest part of creating
a custom property editor is deciding exactly what behavior is required. This is an
issue that will come up later in this section.

The stages of developing a new property editor are summarized in the following list:

1. Decide exactly how you want the editor to behave. Property editors often are
developed to offer a bounded choice that ensures proper component operation
and an intuitive interface. The nature of bounding, such as to restrict the user
to a choice of some discrete predefined values, must be decided.

2. Decide whether a custom property editor is even required. By slightly changing
how a property is used, it might be that no custom property editor is necessary.
To this end, it is important to know which property editors are registered for
which property types; Table 5.2 can be used as a guide. Because this section is
about creating custom property editors, that alternative will not be explored
further. Needless to say, you cannot know too much about the existing prop-
erty editors and how they work. A good source of information is the
$(BCB)\Source\ToolsApi\VCLEditors.pas file.

3. Choose carefully the property editor from which your custom property editor
descends. A careful choice can save a lot of unnecessary coding.

4. Decide which property attributes are applicable to your property editor.

5. Determine which functions of the parent property editor need to be overridden
and which do not.

6. Finally, write the necessary code and try it out.

After it has been decided that a custom property editor is required and the parent
property editor class has been chosen, the next step is to decide which property
attributes are suitable. Every property editor has a method called GetAttributes() that
returns a TPropertyAttributes Set. This tells the Object Inspector how the property is
to be used. For example, if the property displays a drop-down list of values, you must
ensure that paValueList is contained by the TPropertyAttributes Set returned by the
property editor’s GetAttributes() method. Unless the property attributes of the
parent property editor class exactly match those required in the custom property
editor, the GetAttributes() method must be overridden. Table 5.3 shows the different
values that can be contained by the TPropertyAttributes Set. Methods that might
require overridding as a result of the property editor having a particular attribute are
also shown.

Creating Custom Property Editors 299

07 0672324806 CH05 12/12/02 2:42 PM Page 299

TABLE 5.3 TPropertyAttributes Set Values

Value Purpose

paAutoUpdate Properties whose editors have this attribute are updated automatically

because they are changed in the Object Inspector, such as the

Caption property of TLabel. Normally, a property will not be updated

until the Return key is pressed or focus leaves the property.

SetValue() is called to convert the AnsiString representation to the

proper format and ensure the value is valid. Overriding SetValue() is

probably necessary.

Override: SetValue(const AnsiString Value)

paDialog Properties with this attribute display an ellipsis button (...) on the

right side of the property value region. When clicked, this displays a

form to allow the property to be edited. When the ellipses button is

pressed, the Edit() method of the property editor is invoked. This

must, therefore, be overridden for properties with this attribute.

Override: Edit()

paFullWidthName Properties with this attribute do not display a value region in the

Object Inspector. Rather, the property name extends to the full width

of the Object Inspector.

paMultiSelect Properties whose editors have this attribute can be edited when more

than one component is selected on a form. For example, the property

editor for the Caption property of TLabel and TButton has this

attribute. When several TLabel and TButton components are placed

on a form and selected, the Caption properties can be edited simulta-

neously. The Object Inspector displays all properties whose editors

have the paMultiSelect attribute and whose property names and

types are exactly the same.

paReadOnly Properties whose editors have this attribute cannot be edited in the

Object Inspector.

paRevertable Properties whose editors have this attribute enable the Revert to

Inherited menu item in the Object Inspector’s context menu, allowing

the property editor to revert the current property value to some

default value.

paSortList Properties with this attribute have their value lists sorted by the Object

Inspector.

paSubProperties Properties with this attribute tell the Object Inspector that the prop-

erty editor has subproperties that can be edited. A + symbol is placed

in front of the property name. The TFont property editor is an

example of this. To tell the Object Inspector which subproperties to

display, GetProperties() must be overridden.

Override: GetProperties(TGetPropEditProc Proc)

CHAPTER 5 Creating Property and Component Editors300

07 0672324806 CH05 12/12/02 2:42 PM Page 300

paValueList Properties whose editors have this attribute display a drop-down list of

possible values that the property can take. A value can still be entered

manually in the editable property value region. For example, TColor

properties behave this way. To provide a list of values for the Object

Inspector to display, you must override the GetValues() method.

Override: GetValues(Classes::TGetStrProc Proc)

After the attributes of the property editor have been decided, it is easy to see which
methods of the parent property editor must be overridden. Other methods can also
require overriding; this will depend on the specifications of the property editor.
Table 5.4 lists the virtual and DYNAMIC methods of TPropertyEditor. The methods are
grouped and ordered according to their use; they are not listed alphabetically.

TABLE 5.4 The virtual and DYNAMIC Methods of TPropertyEditor

Method Declaration and Purpose

GetAttributes() virtual TPropertyAttributes __fastcall GetAttributes(void);

Returns a TPropertyAttributes Set. Invoked to set the property

editor attributes.

GetValue() virtual AnsiString __fastcall GetValue();

Returns an AnsiString that represents the property’s value. By default

(that is, in TPropertyEditor) it returns (unknown). Therefore, if you

derive directly from TPropertyEditor, you must override this method

to return the correct value.

SetValue() virtual void __fastcall SetValue(const AnsiString Value);

Called to set the value of a property. SetValue() must convert the

AnsiString representation of the property’s value to a suitable format.

If an invalid value is entered, SetValue() should throw an exception

that describes the error. Note that SetValue() takes a const

AnsiString as its parameter and returns void. An exception, there-

fore, is the only appropriate method of dealing with invalid values.

Edit() virtual void __fastcall Edit(void);

Invoked when the ellipses button is pressed or the property is double-

clicked (GetAttributes() should return paDialog). Normally used to

display a form to allow more intuitive editing of the property value.

Edit() can call GetValue() and SetValue(), or it can read and write

the property value directly. If this is the case, input validation should

be carried out. If an invalid value is entered, an exception describing

the error should be thrown.

Creating Custom Property Editors 301

TABLE 5.3 Continued

Value Purpose

07 0672324806 CH05 12/12/02 2:42 PM Page 301

GetValues() virtual void __fastcall

GetValues(Classes::TGetStrProc Proc);

Only called when paValueList is returned by GetAttributes(). The

single parameter Proc is of type TGetStrProc, a __closure (pointer to

an instance member function), declared in

$(BCB)\Include\Vcl\Classes.hpp as:

typedef void __fastcall (__closure *TGetStrProc)(const

AnsiString S).

The Proc parameter is in fact the address of a method with a const

AnsiString called S as its single parameter, which adds the

AnsiString passed to the property editor’s drop-down list. Call

Proc(const AnsiString S) once for every value that should be

displayed in the property value’s drop-down list, for example:

Proc(value1); //value1 is an AnsiString,

Proc(value2); //value2 is an AnsiString,

and so on.

Activate() virtual void __fastcall Activate(void);

Invoked when the property is selected in the Object Inspector. Enables

the property editor attributes to be determined only when the prop-

erty becomes selected (with the exception of paSubProperties and

paMultiSelect).

AllEqual() virtual bool __fastcall AllEqual(void);

Returns a bool value. Called only when paMultiSelect is one of the

property editor’s attributes (when it is returned by GetAttributes()).

It determines if all properties of the same name and type for which

that editor is registered are equal when more than one is selected at

once (it returns true). If this is the case (they are equal), GetValue()

is called to display the value; otherwise the value region is blanked.

AutoFill() virtual bool __fastcall AutoFill(void);

Returns a bool value. Called only when paValueList is returned by

GetAttributes(), it determines whether or not (returns true or

false) the values returned by GetValues() can be selected incremen-

tally in the Object Inspector. By default it returns true.

GetEditLimit() virtual int __fastcall GetEditLimit(void);

Returns an int representing the maximum number of input characters

allowed in the Object Inspector for this property. Overriding this

method allows this number to be changed. The default value for the

Object Inspector is 255.

CHAPTER 5 Creating Property and Component Editors302

TABLE 5.4 Continued

Method Declaration and Purpose

07 0672324806 CH05 12/12/02 2:42 PM Page 302

GetName() virtual AnsiString __fastcall GetName();

Returns an AnsiString that is used by the Object Inspector to display

the property name. This should be overridden only when the name

determined from the property’s type information is not the name that

you want to appear in the Object Inspector.

GetProperties() virtual void __fastcall

GetProperties(TGetPropEditProc Proc);

If it is required that subproperties be displayed, you must override this

method. The single parameter Proc is of type TGetPropEditProc, a

__closure declared in $(BCB)\Include\Vcl\VCLEditors.hpp as

typedef void __fastcall (__closure

TGetPropEditProc)(TPropertyEditor Prop);

Proc is, therefore, the address of a method with a pointer to a

TPropertyEditor-derived editor called Prop as its single parameter.

Call Proc(TPropertyEditor* Prop) once for each subproperty,

passing a pointer to a TPropertyEditor-derived editor as an argu-

ment. For example, TSetProperty overrides this method and passes a

TSetElementProperty pointer for each element in its Set.

TClassProperty also overrides the GetProperties() method, display-

ing a subproperty for each of the class’s published properties.

Initialize() virtual void __fastcall Initialize(void);

This is invoked when the Object Inspector is going to use the property

editor. Initialize() is called after the property editor has been

constructed, but before it is used. When several components are

selected at once, property editors are constructed, but are often

discarded because they will not be used. This method allows the possi-

bility of postponing certain operations until it is certain that they will

be required.

The following are methods inherited from the interface IcustomPropertyEditor. If
you want to implement these, you must add ICustomPropertyEditor to the inheri-
tance list for your property editor—it doesn’t come automatically when you inherit
from other property editors. Note that inheriting interfaces is the only exception to
the rule that prevents multiple inheritance in VCL classes.

ListMeasureWidth() virtual void __fastcall ListMeasureWidth(const AnsiString

Value, Graphics::TCanvas* ACanvas, int& AWidth);

Creating Custom Property Editors 303

TABLE 5.4 Continued

Method Declaration and Purpose

07 0672324806 CH05 12/12/02 2:42 PM Page 303

This is called during the width calculation phase of the prop-

erty’s drop-down list. If images are to be placed alongside text

in the drop-down list, this method should be overridden to

ensure the list is wide enough.

ListMeasureHeight() virtual void __fastcall ListMeasureHeight(const

AnsiString Value, Graphics::TCanvas* ACanvas, int&

AHeight);

This is called during the height calculation phase of the prop-

erty’s drop-down list. If an image’s height is greater than that of

the property value text, this must be overridden to prevent clip-

ping the image.

ListDrawValue() virtual void __fastcall ListDrawValue(const AnsiString

Value, Graphics::TCanvas* ACanvas, const TRect&

ARect, bool ASelected);

This is called to render the current list item in the property’s

drop-down list. If an image is to be rendered, this method must

be overridden. The default behavior of this method is to render

the text representing the current list value.

PropDrawValue() virtual void __fastcall PropDrawValue(Graphics::TCanvas*

ACanvas, const TRect& ARect, bool ASelected);

This is called when the property value itself is to be rendered in

the Object Inspector. If an image is to be rendered with the

property value, this method must be overridden.

PropDrawName() virtual void __fastcall PropDrawName(Graphics::TCanvas*

ACanvas, const TRect &ARect, bool ASelected);

This is called when the property name is to be rendered in the

Object Inspector. If an image is to be rendered with the prop-

erty name, this method must be overridden. However, this is

rarely needed.

Now, you should have a reasonable idea of the capabilities that can be implemented
for a custom property editor. The next few sections look at some of the most impor-
tant methods and present basic coding guidelines for their proper use. The last five
methods (ListMeasureWidth(), ListMeasureHeight(), ListDrawValue(), PropDrawValue(),
and PropDrawName()) are concerned with rendering images in the Object Inspector
and are looked at in the section “Using Images in Property Editors,” later in this
chapter.

The methods that are most often overridden by custom property editors are
GetAttributes(), GetValue(), SetValue(), Edit(), and GetValues(), the first five

CHAPTER 5 Creating Property and Component Editors304

07 0672324806 CH05 12/12/02 2:42 PM Page 304

methods in Table 5.4. Listing 5.2 shows a class definition for a custom property
editor derived from TPropertyEditor.

TIP

A key point to note in Listing 5.2 is the use of the typedef:

typedef TPropertyEditor inherited;

This allows inherited to be used as a namespace modifier in place of TPropertyEditor. This
is commonly encountered in the VCL and makes it easy to call parent (in this case
TPropertyEditor) methods explicitly while retaining code maintainability. If the name of the
parent class changes, only this one occurrence needs to be updated.

For example, you can write code such as this in the property editor’s GetAttributes()
method:

return inherited::GetAttributes() << paValueList >> paMultiSelect

This calls the property editor’s base class GetAttributes() method, returning a
TPropertyAttributes Set. paValueList is added to this Set, and paMultiSelect is removed
from the Set. The final Set is returned.

LISTING 5.2 Definition Code for a Custom Property Editor

class TExamplePropertyEditor : public TPropertyEditor

{

typedef TPropertyEditor inherited;

public:

virtual TPropertyAttributes __fastcall GetAttributes(void);

virtual AnsiString __fastcall GetValue();

virtual void __fastcall SetValue(const AnsiString Value);

virtual void __fastcall Edit(void);

virtual void __fastcall GetValues(Classes::TGetStrProc Proc);

protected:

#pragma option push -w-inl

inline __fastcall virtual

TExamplePropertyEditor(const _DesignIntf::di_IDesigner ADesigner,

int APropCount)

: TPropertyEditor(ADesigner, APropCount)

{ }

#pragma option pop

Creating Custom Property Editors 305

07 0672324806 CH05 12/12/02 2:42 PM Page 305

public:

#pragma option push -w-inl

inline __fastcall virtual ~TCustomProperty(void) { }

#pragma option pop

};

The GetAttributes() Method
The GetAttributes() method is very simple to implement. The only consideration is
you should change just the attributes returned by the parent class that have a direct
effect on your code. Remaining attributes should be unchanged so that you add only
attributes that you definitely need and remove only attributes that you definitely
don’t want. Be sure to check the attributes of the parent class. You might not need to
change them at all. For example, a property editor that derives directly from
TPropertyEditor is required to display a drop-down list of values and should not be
used when multiple components are selected. Suitable code for the GetAttributes()
method is

TPropertyAttributes __fastcall TExamplePropertyEditor::GetAttributes(void)

{

return TPropertyEditor::GetAttributes()

<< paValueList >> paMultiSelect;

}

Because TPropertyEditor::GetAttributes() returns paRevertable, the following is the
same:

TPropertyAttributes __fastcall TExamplePropertyEditor::GetAttributes(void)

{

return TPropertyAttributes() << paValueList << paRevertable >> paMultiSelect;

}

The GetValue() Method
Use the GetValue() method to return an AnsiString representation of the value of the
property being edited. To do this, use one of the GetXxxValue() methods from the
TPropertyEditor class, where Xxx will be one of Float, Int64, Method, Ord, Str, or Var.
These are listed in Table 5.5.

CHAPTER 5 Creating Property and Component Editors306

LISTING 5.2 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 306

TABLE 5.5 TPropertyEditor GetXxxValue() Methods

Method Description

GetFloatValue() Returns an Extended value, in other words a long double. Used to

retrieve floating-point property values, such as float, double, and

long double.

GetInt64Value() Returns an __int64 value. Used to retrieve Int64 (__int64) property

values.

GetMethodValue() Returns a TMethod structure:

struct TMethod

{

void *Code;

void *Data;

};

Used to retrieve Closure property values, in other words, events.

GetOrdValue() Returns an int value. Used to retrieve Ordinal property values such as

char, signed char, unsigned char, int, unsigned, short, and long.

Can also be used to retrieve a pointer value; the int must be cast to

the appropriate pointer using reinterpret_cast.

GetStrValue() Returns an AnsiString value. Used to retrieve string (AnsiString)

property values.

GetVarValue() Returns a Variant by value. Used to retrieve Variant property values.

The Variant class models Object Pascal’s intrinsic variant type. Refer

to the online help for a description of Variants.

The following code shows an implementation of the GetValue() method to retrieve
the value of a char-based property by calling the GetOrdValue() method.

AnsiString __fastcall TExamplePropertyEditor::GetValue()

{

char ch = static_cast<char>(GetOrdValue());

if(ch > 32 && ch < 128) return ch;

else return AnsiString().sprintf(“#%d”, ch);

// Note the ‘#’ character is pre-pended to characters

// that cannot be displayed directly. This is how the

// VCL displays non-printable character values, for

// example #8 is the backspace character (\b).

}

Notice the use of static_cast to cast the returned int value as a char. The casting
operators are often used when overriding the GetValue() and SetValue() methods of
TPropertyEditor. It is essential that their proper use be understood.

Creating Custom Property Editors 307

07 0672324806 CH05 12/12/02 2:42 PM Page 307

The SetValue() Method
Use the SetValue() method to set a property’s actual value by converting the
AnsiString representation to a suitable format. To do this, use one of the
SetXxxValue() methods from TPropertyEditor, where Xxx will be one of Float, Int64,
Method, Ord, Str, or Var. These are listed in Table 5.6.

TABLE 5.6 TPropertyEditor SetXxxValue() Methods

Method Sets

SetFloatValue() Pass an Extended (long double) value as an argument. Used to set

floating-point property values, namely float, double, and long

double.

SetInt64Value() Pass an __int64 value as an argument. Used to set Int64 (__int64)

property values.

SetMethodValue() Pass a TMethod structure as an argument. Used to set Closure (event)

property values.

SetOrdValue() Pass an int value as an argument. Used to set Ordinal property

values, namely char, signed char, unsigned char, int, unsigned,

short, and long. It can also be used to set pointer property values,

though the pointer value must first be cast to an int using reinter-

pret_cast.

SetStrValue() Pass an AnsiString as an argument. Used to set string (AnsiString)

property values.

SetVarValue() Pass a Variant as an argument. Used for variant (Variant) property

values.

SetValue() should ensure that values passed to it are valid before calling one of the
SetXxxValue() methods, and it should raise an exception if this is not the case. The
EPropertyError exception is sensible to use or serve as a base class from which to
derive your own exception class. Sample code for an int property is shown in the
following, where a value of less than zero is not allowed:

void __fastcall

TExamplePropertyEditor::SetValue

(const AnsiString Value)

{

if(Value.ToInt() < 0)

{

throw EPropertyError(“The value must be greater than 0”);

}

else SetOrdValue(Value.ToInt());

}

CHAPTER 5 Creating Property and Component Editors308

07 0672324806 CH05 12/12/02 2:42 PM Page 308

The Edit() Method
The Edit() method is generally used to offer a better interface to the user. Often this
is a form behaving as a dialog. The Edit() method can also call GetValue() and
SetValue() or even call the GetXxxValue() and SetXxxValue() methods. It should be
noted at this point that TPropertyEditor (and derived classes) has a property called
Value whose read and write methods are GetValue() and SetValue(), respectively. Its
declaration is

__property AnsiString Value = {read=GetValue, write=SetValue};

This can be used instead of calling GetValue() and SetValue() directly. Regardless of
how GetValue() and SetValue() are called, the Edit() method should be able to
display a suitable form to allow intuitive editing of the property’s value.

Two basic approaches can be taken. The first is to allow the form to update the prop-
erty’s value while it is displayed. The second is to use the form as a dialog to retrieve
the desired value or values from the user, and then set the property’s value when the
form returns a modal result of mrOK upon closure. Which of the two approaches is
taken affects the code that appears in the Edit() method.

Now consider the first instance in which the form will continually update the value
of the property. There are two basic types of property value: one that represents a
single entity, such as an int, and one that represents a collection of values, such as
the class TFont (though the property editor for TFont behaves according to the second
approach). The difference between the two is in how Value is used to update the
property. In a class property, Value is a pointer. For the form to be able to update the
property, it must have the address of Value or whatever Value points to. For a class
property this is simple; the pointer to the class is read from Value, and the class’s
values are edited through that pointer. A convenient way to do this is to declare a
property of the same type as the property to be edited. This can then be equated to
Value before the form is shown, allowing initial values to be displayed and stored.

In a single entity, a reference to Value should be passed in the form’s constructor.
Using a reference to Value ensures that each time it is modified the GetValue() and
SetValue() methods are called. The only other consideration for this approach is that
it is probably a good idea to store the value or values that the property had when the
form was originally shown. This allows the edit operation to be cancelled and any
previous value or values restored. Suitable code for these situations is shown in
Listings 5.3 and 5.4, for a class property and a single entity property, respectively.

Creating Custom Property Editors 309

07 0672324806 CH05 12/12/02 2:42 PM Page 309

LISTING 5.3 Code for a Custom Form to Be Called from the Edit() Method for a Class
Property

// First show important code for TMyPropertyForm

// IN THE HEADER FILE

//---//

#ifndef MyPropertyFormH

#define MyPropertyFormH

//---//

#include <Classes.hpp>

#include <Controls.hpp>

#include <StdCtrls.hpp>

#include <Forms.hpp>

#include “HeaderDeclaringTPropertyClass”

//---//

class TMyPropertyForm : public TForm

{

__published: // IDE-managed Components

private:

TPropertyClass* FPropertyClass;

// Other decalrations here for example restore values if ‘Cancel’

// is pressed

protected:

void __fastcall SetPropertyClass(TPropertyClass* Pointer);

public:

__fastcall TMyPropertyForm(TComponent* Owner);

__property TPropertyClass* PropertyClass = {read=FPropertyClass,

write=SetPropertyClass};

// Other declarations here

};

//---//

#endif

// THE IMPLEMENTATION FILE

//---//

#include <vcl.h>

#pragma hdrstop

#include “MyPropertyForm.h”

//---//

#pragma package(smart_init)

#pragma resource “*.dfm”

//---//

CHAPTER 5 Creating Property and Component Editors310

07 0672324806 CH05 12/12/02 2:42 PM Page 310

__fastcall TMyPropertyForm::TMyPropertyForm(TComponent* Owner)

: TForm(Owner)

{

}

//---//

void __fastcall TMyPropertyForm::SetPropertyClass(TPropertyClass* Pointer)

{

FPropertyClass = Pointer;

if(FPropertyClass != 0)

{

// Store current property values

}

}

//---//

// NOW SHOW THE Edit() METHOD

#include “MyPropertyForm.h” // Remember this

void __fastcall TExamplePropertyEditor::Edit(void)

{

// Create the form

std::auto_ptr<TMyPropertyForm*>

MyPropertyForm(new TMyPropertyForm(0));

// Link the property

MyPropertyForm->PropertyClass

= reinterpret_cast<TPropertyClass*>(GetOrdValue());

// Show the form. The form does all the work.

MyPropertyForm->ShowModal();

}

//---//

Notice the use of reinterpret_cast to convert the ordinal (int) representation of the
pointer to the class to an actual pointer to the class. Listing 5.4 is shorter than
Listing 5.3 because only the different code is shown.

LISTING 5.4 Code for a Custom Form to Be Called from the Edit() Method for an int
Property

// First show important code for TMyPropertyForm

//---//

// IN THE HEADER FILE CHANGE THE DEFINITION TO:

Creating Custom Property Editors 311

LISTING 5.3 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 311

class TMyPropertyForm : public TForm

{

__published: // IDE-managed Components

private:

AnsiString& Value;

int OldValue;

// Other declarations here

public:

__fastcall TMyPropertyForm(TComponent* Owner, AnsiString& PropertyValue);

// Other declarations here

};

//---//

#endif

//---//

// IN THE IMPLEMENTATION FILE MODIFY THE CONSTRUCTOR TO:

__fastcall TMyPropertyForm::TMyPropertyForm(TComponent* Owner,

AnsiString& PropertyValue)

: TForm(Owner),Value(PropertyValue)

{

// Store the current property value. In this case it is an int

// so code such as this is required

OldValue = Value.ToInt();

}

//---//

// NOW SHOW THE Edit() METHOD, almost the same...

#include “MyPropertyForm.h” // Remember this

void __fastcall TExamplePropertyEditor::Edit(void)

{

// Create the form as before, but pass the extra parameter!

std::auto_ptr<TMyPropertyForm*>

MyPropertyForm(new TMyPropertyForm(0, Value));

// Show the form. The form does all the work.

MyPropertyForm->ShowModal();

}

//---//

CHAPTER 5 Creating Property and Component Editors312

LISTING 5.4 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 312

The difference between the second approach and the previous approach is that the
value is modified after the modal form returns rather than continually modifying it
while the form is displayed. This is the more common way to use a form to edit a
property’s value. Listing 5.5 shows the basic code required in the Edit() method.

LISTING 5.5 Code for a Custom Form to Be Called from the Edit() Method with No
Updating Until Closing

#include “MyPropertyDialog.h” // Include the header for the Dialog!

// Dialog is TMyPropertyDialog

void __fastcall TExamplePropertyEditor::Edit(void)

{

// Create the form

std::auto_ptr<TMyPropertyDialog*>

MyPropertyDialog(new TMyPropertyDialog(0));

// Set the current property values in the dialog

// MyPropertyDialog->value1 = GetValue();

// MyPropertyDialog->value2 = GetXxxValue();

// and so on...

// Show the form and see the result.

if(MyPropertyDialog->ShowModal() == IDOK)

{

// Then set the new property value(s)

}

}

Note that TMyPropertyDialog might not be a dialog itself, but a wrapper for a dialog,
similar to the standard dialog components. If this is the case, the dialog is shown by
calling the wrapper’s Execute() method. For more information on this method of
displaying a dialog, refer to the C++Builder online help under “Making a Dialog Box
a Component.” In this case, such a dialog wrapper need only descend from TObject,
not TComponent.

The GetValues() Method
The GetValues() method is used to populate the drop-down list of a property. This is
done by successively calling Proc() and passing an AnsiString representation of the
value. For example, if a series of values is desired that represents the transmission
rate between a computer’s communication port and an external modem, assuming
the property editor had paValueList as an attribute, the GetValues() method could be
written as follows:

Creating Custom Property Editors 313

07 0672324806 CH05 12/12/02 2:42 PM Page 313

void __fastcall GetValues(Classes::TGetStrProc Proc)

{

Proc(“300”);

Proc(“9600”);

Proc(“57600”);

// and so on...

}

Using the TPropertyEditor Properties
TPropertyEditor has four properties that can be used when writing custom property
editors. One of these, Value, we have already discussed in the previous two sections.
The remaining three properties are not used very often. They are described in the
following list:

• Designer—This property is read-only and returns a pointer to the IDE’s Designer
interface. This is used to inform the IDE when certain events occur or to
request the IDE to perform certain actions. For example, if you write your own
implementation for one of the SetXxxValue() methods, you must tell the IDE
that you have modified the property. You do this by calling
Designer->Modifed();. In fact, you would call TPropertyEditor’s Modified()
method, which calls the same code. TPropertyEditor’s Revert() method also
uses this property. You probably will not need to use this property. It is shown
for completeness.

• PrivateDirectory—This property is a directory, represented as an AnsiString, as
returned by GetPrivateDirectory(), which itself obtains the directory from
Designer->GetPrivateDirectory(). Hence, we can see that this directory is speci-
fied by the IDE. If your property editor requires a directory to store additional
files, it should be the directory specified by this property. This property is read-
only.

• PropCount—This property is read-only and returns the number of properties
being edited when more than one component is selected. It is only used when
GetAttributes() returns paMultiSelect.

Considerations When Choosing a Suitable Property Editor
Consider a property in a component that wraps the Windows communication API
and allows different baud rates to be set. The values that can be chosen are predeter-
mined, but a user-defined baud rate may be specified. What is the best way to enter
such values?

CHAPTER 5 Creating Property and Component Editors314

07 0672324806 CH05 12/12/02 2:42 PM Page 314

It would be nice to have a drop-down list of choices. It would also be nice if the
values in the drop-down list were numbers, not enumerations. The first thought that
springs to mind is a custom property editor that descends from TintegerProperty, but
displays a drop-down list of the values that can be set. A user-defined value could be
entered in the editing region of the property value in the Object Inspector. This is
trivial to implement and will work fine.

Have we really thought about whether this is the best approach? Let’s think again.
All is well when a value from the drop-down list is chosen, but we must detect when
a user-defined value is entered. This is relatively simple, but requires that all values
in the list be compared with the value returned by the property. If it is different, it is
a user-defined baud rate. The component must then request a user-defined baud rate
from the communication API equal to the value entered. Some values might be too
big or too small. We must, therefore, perform bounds checking each time a value is
entered. Our property editor is simple, but we have to write an increasing amount of
maintenance code to support it. Not only that, but all these problems will be revis-
ited by the runtime code.

We could restrict the values allowable to only those in the drop-down list by overrid-
ing the SetValue() method, and then creating two separate properties: one to enter a
user-defined baud rate, and a Boolean property to indicate which we want to use. It
seems that we are doing an awful lot of code writing just to enter a simple integer.
Let’s go back to the start and look at our original requirements.

We want to be able to enter a value from a given list of possible values, and we want
to be able to specify a user-defined value, which may not be acceptable. Our initial
thought was probably to use an enumeration for the values, but the convenience of
using actual integer values made that option seem more attractive. Let’s look at the
enumeration route. A set of values is easily generated; we can even ensure that they
appear in numerical order in the drop-down list by using underscores between the
enumeration initials and the value. For example, given an enum called TBaudRate with
the initials br, the baud rates 9600 and 115200 could be represented as br___9600 and
br_115200, respectively.

We can even add a brUserDefined value to the enum. When brUserDefined is selected,
an int UserDefined property can be read and the value tried. Therefore, we need this
property as well. To do all this, we don’t need to create a custom property editor at
all since TEnumProperty is already defined as an editor for enum-based properties. We
have a problem though: Any time we want to set or get a value at runtime, we must
use the enumeration, which is often inconvenient. We must make this enumeration
available to the component user. In the interest of keeping the global namespace
clean, we could wrap the enum in a namespace, but this will make the enum even more
of a hassle to use, so we won’t do that. In fact, most components don’t do this
either. That is why initials are used in the enum’s values.

Creating Custom Property Editors 315

07 0672324806 CH05 12/12/02 2:42 PM Page 315

So, which is best? It all depends on exactly what is required of the property and the
component as a whole. Because this is a hypothetical discussion, it is hard to choose
which method is better. The one thing to remember is that you must make your
components robust and easy to use. Overly complex code should be avoided espe-
cially, because it might hide some of the more subtle features of how your compo-
nent works. The enumeration approach might be a bit of a hassle as you convert to
and from int values, but everyone knows what you can and cannot do with them.
The time you save on not having to write a custom property editor could be used
elsewhere. Remember also that if you need to read a value, you can simply create a
read-only property so that, for example, the int value of the baud rate could be
stored when it is successfully set by the enum property. This then could be read from
an int-based read-only property.

Always think carefully when you are writing property editors and components in
general. Consider the big picture and think ahead.

Properties and Exceptions
When a property value is to be changed and there is a possibility that the new value
might not be valid, the function obtaining the value should detect the invalid value
and throw an exception so that the user can enter a valid value. Where can the prop-
erty value be changed? It can be requested to change from one of three places: from
a property editor dialog, from a property editor, and from the property itself at
runtime. The relationship between the three is shown in Figure 5.2. Note that the
parameter to the SetValue() method is a const AnsiString even though it is pass-by-
value . This only restricts Value from being modified within SetValue(). This is
contrary to the normal use of const, where the main purpose of the keyword is to
indicate that the argument passed to the function will not be modified. With pass-
by-value, the argument is copied so it will not be modified in any way. If an error
occurs, throwing an exception is the only appropriate way of informing the user. The
other set methods can also be written using this approach, that is, pass-by-value vari-
ables declared as const.

From Figure 5.2 it can be seen that the set method for the property, in this case
SetColor(), is ultimately called every time (unless an exception is thrown). It can
then be tempting to detect only the validity of the property value at this stage and
throw an exception from here. Remember that the purpose of throwing the excep-
tion is to detect the error and allow the user to enter a new value. By the time an
exception is thrown from the property’s set method, the user’s edit operation is most
likely finished. This might mean redisplaying a dialog or other inconveniences. You
should throw an exception at the source of the error. Throwing an exception only
from the property editor (or property editor dialog) is also no good because the prop-
erty editor will not be used at runtime, letting invalid values silently cause havoc.

CHAPTER 5 Creating Property and Component Editors316

07 0672324806 CH05 12/12/02 2:42 PM Page 316

The solution is to throw an exception from the point of error. It might not be the
easiest solution to implement, but it is the most robust.

Registering Custom Property Editors 317

_property TColor Color = {read=FColor, write=SetColor};

FColor

_property AnsiString Value = {read=GetValue, write=SetValue};

private: TColor DialogColor;
Public: void SetDialogColor(TColor NewColor);

void SetDialogColor(TColor NewColor)
{
 // Implementation
}

Property Editor Dialog

NewColor not valid:
Exception thrown

void SetValue(const AnsiString Value)
{
 // Implementation
}

Property Editor

Value not valid:
Exception thrown

void SetColor (TColor Newcolor)
{
 // Implementation
}

Property

NewColor not valid:
Exception thrown

Edit property
value from

here

Edit property
value from

here

Edit property
value from

here

NewColor valid: New Color
assigned to Value

Value valid: Value
assigned to Color

NewColor valid: New Color
assigned to FColor

FIGURE 5.2 Exceptions thrown when editing a property.

Registering Custom Property Editors
Registering property editors is almost straightforward. I say almost because even
though RegisterPropertyEditor() is all that is required, the parameters that need to

07 0672324806 CH05 12/12/02 2:42 PM Page 317

be passed are not always so trivial. As with other registration functions, the
RegisterPropertyEditor() function must be placed inside the package’s Register()
function. The declaration for the RegisterPropertyEditor() function is

extern PACKAGE

void __fastcall RegisterPropertyEditor(Typinfo::PTypeInfo PropertyType,

TMetaClass* ComponentClass,

const AnsiString PropertyName,

TMetaClass* EditorClass);

Each parameter’s purpose and an example of its use are shown in Table 5.7. The
PropertyType and PropertyName parameters are used to specify criteria that must be
matched by a property for it to be considered for use with the property editor.

TABLE 5.7 RegisterPropertyEditor() Parameters

Parameter Name Purpose

PropertyType This parameter expects a pointer to a TTypeInfo structure that

contains type information for the property for which the editor is to

be used. This parameter must be specified. If the property type is a

VCL-derived class, the pointer can be obtained using the __typeinfo

macro:

__typeinfo(TVCLClass)

Otherwise, it must be obtained either by examining the typeinfo of a

similar existing property or by manually creating it. Both techniques

are discussed in this section.

ComponentClass This parameter is used to specify whether the editor is to be used for

all matching properties in all components or only matching properties

in components of the type specified. To specify a particular compo-

nent type, use the __classid operator (which returns TMetaClass* as

required) with the component class name:

__classid(TComponentClassName)

Otherwise, specify all components by passing 0 as the parameter.

PropertyName This parameter is used to specify a property name, in the form of an

AnsiString, that a property must have (in addition to having the

same type information). It is used to restrict the property specification.

If all properties of matching type information are required, an empty

AnsiString is passed (“”). If ComponentClass is 0, this parameter is

ignored.

EditorClass This parameter must be specified. It tells the IDE which property editor

you want to register. As in the ComponentClass parameter, a

TMetaClass pointer is expected. The property editor class name is,

therefore, passed wrapped in the __classid operator, such as

classid(TPropertyEditorClassName)

CHAPTER 5 Creating Property and Component Editors318

07 0672324806 CH05 12/12/02 2:42 PM Page 318

In Table 5.7 you can see that ComponentClass and PropertyName can both be given a
value so that they do not restrict the property editor to a specific component class or
property name, respectively. This is contrary to their normal use. The only parameter
that requires any further comment is PropertyType. As was stated before, the
__typeinfo macro can be used to retrieve this information if the property type is a
VCL-based class (ultimately derived from TObject). The __typeinfo macro is defined
in $(BCB)\Include\Vcl\Sysmac.h as

#define __typeinfo(type) (PTypeInfo)TObject::ClassInfo(__classid(type))

If the property is not a VCL class, information must be obtained through other
means. There are two approaches to this: Either the appropriate PTypeInfo can be
obtained from the property’s name and the PTypeInfo of the class it belongs to, or the
PTypeInfo can be manually generated.

PTypeInfo is a pointer to a TTypeInfo structure:

typedef TTypeInfo* PTypeInfo;

TTypeInfo is declared in $(BCB)\Include\Vcl\Typinfo.hpp as

struct TTypeInfo

{

TTypeKind Kind;

System::ShortString Name;

};

TTypeKind, declared in the same file, is an enumeration of type kinds. It is declared as

enum TTypeKind { tkUnknown, tkInteger, tkChar,

tkEnumeration, tkFloat, tkString,

tkSet, tkClass, tkMethod,

tkWChar, tkLString, tkWString,

tkVariant, tkArray, tkRecord,

tkInterface, tkInt64, tkDynArray };

The Name variable is a string version of the actual type. For example, int is “int”, and
AnsiString is “AnsiString”. The following two sections discuss how a TTypeInfo*
pointer can be obtained for non-VCL property types.

Obtaining a TTypeInfo* (PTypeInfo) from an Existing Property and
Class for a Non-VCL Type
This approach requires that a VCL class containing the property already be defined
and accessible. Then a PTypeInfo for that property type can be obtained using the

Registering Custom Property Editors 319

07 0672324806 CH05 12/12/02 2:42 PM Page 319

GetPropInfo() function declared in $(BCB)\Include\Vcl\Typinfo.hpp. PPropInfo is a
typedef for a TPropInfo pointer, as in the following:

typedef TPropInfo* PPropInfo;

The GetPropInfo() function returns a pointer to a TPropInfo structure (PPropInfo) for a
property within a particular class with a given property name, and optionally of a
specific TTypeKind. It is available in one of four overloaded versions:

extern PACKAGE PPropInfo __fastcall GetPropInfo(PTypeInfo TypeInfo,

const AnsiString PropName);

extern PACKAGE PPropInfo __fastcall GetPropInfo(PTypeInfo TypeInfo,

const AnsiString PropName,

TTypeKinds AKinds);

extern PACKAGE PPropInfo __fastcall GetPropInfo(TMetaClass* AClass,

const AnsiString PropName,

TTypeKinds AKinds);

extern PACKAGE PPropInfo __fastcall GetPropInfo(System::TObject* Instance,

const AnsiString PropName,

TTypeKinds AKinds);

These overloaded versions all ultimately call the first overloaded version of the
method listed, namely

extern PACKAGE PPropInfo __fastcall GetPropInfo(PTypeInfo TypeInfo,

const AnsiString PropName);

This is the version we are most interested in. The other versions also allow a Set of
type TTypeKinds to be specified. This is a Set of the TTypeKind enumeration and is used
to specify a TypeKind or TypeKinds that the property must also match. From the
PPropInfo returned, we can obtain a pointer to an appropriate PTypeInfo for the prop-
erty, which is the PropType field of the TPropInfo structure. TPropInfo is declared in
$(BCB)\Include\Vcl\Typinfo.hpp as

struct TPropInfo

{

PTypeInfo* PropType;

void* GetProc;

void* SetProc;

void* StoredProc;

int Index;

CHAPTER 5 Creating Property and Component Editors320

07 0672324806 CH05 12/12/02 2:42 PM Page 320

int Default;

short NameIndex;

System::ShortString Name;

};

For example, the PTypeInfo for the Name property of TFont can be obtained by first
obtaining a PPropInfo:

PPropInfo FontNamePropInfo = Typinfo::GetPropInfo(__typeinfo(TFont),

“Name”);

Then, obtain the PTypeInfo for the required property:

PTypeInfo FontNameTypeInfo = *FontNamePropInfo->PropType;

This PTypeInfo value can now be passed to the RegisterPropertyEditor() function.
What we have actually obtained from this is a pointer to the TTypeInfo for an
AnsiString property. This PTypeInfo could, therefore, be obtained and used as the
PTypeInfo parameter anytime the PTypeInfo for an AnsiString is required.
Additionally, the PTypeInfo for a custom property for a custom component can be
similarly obtained:

PPropInfo CustomPropInfo = Typinfo::GetPropInfo(__typeinfo(TCustomComponent),

“CustomPropertyName”);

PTypeInfo CustomTypeInfo = *CustomPropInfo->PropType;

Note that it is possibly more clear if TTypeInfo* and TPropInfo* are used instead of
their respective typedefs (PTypeInfo and PPropInfo). The typedefs have been used here
for easy comparison with the GetPropInfo() function declarations.

The intermediate steps shown to obtain the PTypeInfo can be ignored. For example,
the following can be used as an argument to RegisterPropertyEditor() for the custom
property of a custom component:

*(Typinfo::GetPropInfo(__typeinfo(TCustomComponent),

“CustomPropertyName”))->PropType

This method of obtaining a TTypeInfo* relies on there being a published property of
the desired type already in use by the VCL. This might not always be the case. Also,
sometimes it might appear that a type already in use matches a type you want to
use, but in fact it does not. An example of this is the Interval property of the TTimer
component. The type of the Interval property is Cardinal, which is typedefed to
unsigned int in the file $(BCB)\Include\Vcl\Sysmac.h. It is reasonable, therefore, to
believe that retrieving the TypeInfo* for this property would enable you to register

Registering Custom Property Editors 321

07 0672324806 CH05 12/12/02 2:42 PM Page 321

property editors for unsigned int properties. This is not so. You must have a property
whose type is unsigned int, and it must appear in a C++–implemented class. There is
an important lesson here: The TTypeInfo* for a non-VCL class type is not necessarily
the same if the property belongs to an Object Pascal–implemented class and not a
C++–implemented class. There is a very simple and effective way around this
problem, and that is to create a class containing published properties of the types we
desire. We then use the techniques previously discussed to retrieve a suitable
TTypeInfo*, which we then use to register our property editor. Listing 5.6 shows such
a class.

LISTING 5.6 Non-VCL Property Types in a Single Class

class PACKAGE TNonVCLTypesClass : public TObject

{

public:

__published:

// Fundamental Integer Types

__property int IntProperty = {};

__property unsigned int UnsignedIntProperty = {};

__property short int ShortIntProperty = {};

__property unsigned short int UnsignedShortIntProperty = {};

__property long int LongIntProperty = {};

__property unsigned long int UnsignedLongIntProperty = {};

__property char CharProperty = {};

__property unsigned char UnsignedCharProperty = {};

__property signed char SignedCharProperty = {};

// Fundamental Floating Point Types

__property double DoubleProperty = {};

__property long double LongDoubleProperty = {};

__property float FloatProperty = {};

// Fundamental Boolean type

__property bool BoolProperty = {};

// The AnsiString class

__property AnsiString AnsiStringProperty = {};

private:

CHAPTER 5 Creating Property and Component Editors322

07 0672324806 CH05 12/12/02 2:42 PM Page 322

// Private Constructor, class cannot be instantiated from

inline __fastcall TNonVCLTypesClass() : TObject()

{ }

};

If you created a component called TTestComponent with an unsigned int property
called Size, the following code would allow you to register a custom property editor:

RegisterPropertyEditor(*(Typinfo::GetPropInfo

(__typeinfo(TNonVCLTypesClass),

“UnsignedIntProperty”)

)->PropType,

__classid(TTestComponent),

“Size”,

__classid(TUnsignedProperty));

The first parameter is a bit confusing. It is shown again for clarification:

*(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“UnsignedIntProperty”))->PropType

This is the same as the code we saw earlier in this section. It’s not very attractive to
look at or easy to write. To help make it easier to use, you can create a class that
contains static member functions that return the correct TTypeInfo* for each type.
The definition for such a class is shown in Listing 5.7.

LISTING 5.7 NonVCLTypeInfo.h

//---//

#ifndef NonVCLTypeInfoH

#define NonVCLTypeInfoH

//---//

#ifndef TypInfoHPP

#include <TypInfo.hpp>

#endif

//---//

class PACKAGE TNonVCLTypeInfo : public TObject

{

public:

// Fundamental Integer Types

Registering Custom Property Editors 323

LISTING 5.6 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 323

static PTypeInfo __fastcall Int();

static PTypeInfo __fastcall UnsignedInt();

static PTypeInfo __fastcall ShortInt();

static PTypeInfo __fastcall UnsignedShortInt();

static PTypeInfo __fastcall LongInt();

static PTypeInfo __fastcall UnsignedLongInt();

static PTypeInfo __fastcall Char();

static PTypeInfo __fastcall UnsignedChar();

static PTypeInfo __fastcall SignedChar();

// Fundamental Floating Point Types

static PTypeInfo __fastcall Double();

static PTypeInfo __fastcall LongDouble();

static PTypeInfo __fastcall Float();

// Fundamental Boolean type

static PTypeInfo __fastcall Bool();

// The AnsiString class

static PTypeInfo __fastcall AnsiString();

private:

// Private Constructor, class cannot be instantiated from

inline __fastcall TNonVCLTypeInfo() : TObject()

{ }

};

// The definition for TNonVCLTypesClass goes here (Listing 5.6)

//---//

#endif

The implementation is shown in Listing 5.8.

CHAPTER 5 Creating Property and Component Editors324

LISTING 5.7 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 324

LISTING 5.8 NonVCLTypeInfo.cpp

#include <vcl.h>

#pragma hdrstop

#include “NonVCLTypeInfo.h”

//---//

#pragma package(smart_init)

//---//

PTypeInfo __fastcall TNonVCLTypeInfo::Int()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“IntProperty”))->PropType;

}

PTypeInfo __fastcall TNonVCLTypeInfo::UnsignedInt()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“UnsignedIntProperty”))->PropType;

}

//---//

PTypeInfo __fastcall TNonVCLTypeInfo::ShortInt()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“ShortIntProperty”))->PropType;

}

PTypeInfo __fastcall TNonVCLTypeInfo::UnsignedShortInt()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“UnsignedShortIntProperty”))->PropType;

}

//---//

PTypeInfo __fastcall TNonVCLTypeInfo::LongInt()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“LongIntProperty”))->PropType;

}

PTypeInfo __fastcall TNonVCLTypeInfo::UnsignedLongInt()

Registering Custom Property Editors 325

07 0672324806 CH05 12/12/02 2:42 PM Page 325

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“UnsignedLongIntProperty”))->PropType;

}

//---//

PTypeInfo __fastcall TNonVCLTypeInfo::Char()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“CharProperty”))->PropType;

}

PTypeInfo __fastcall TNonVCLTypeInfo::UnsignedChar()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“UnsignedCharProperty”))->PropType;

}

PTypeInfo __fastcall TNonVCLTypeInfo::SignedChar()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“SignedCharProperty”))->PropType;

}

//---//

PTypeInfo __fastcall TNonVCLTypeInfo::Double()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“DoubleProperty”))->PropType;

}

PTypeInfo __fastcall TNonVCLTypeInfo::LongDouble()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“LongDoubleProperty”))->PropType;

}

PTypeInfo __fastcall TNonVCLTypeInfo::Float()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“FloatProperty”))->PropType;

CHAPTER 5 Creating Property and Component Editors326

LISTING 5.8 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 326

}

//---//

PTypeInfo __fastcall TNonVCLTypeInfo::Bool()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“BoolProperty”))->PropType;

}

//---//

PTypeInfo __fastcall TNonVCLTypeInfo::AnsiString()

{

return *(Typinfo::GetPropInfo(__typeinfo(TNonVCLTypesClass),

“AnsiStringProperty”))->PropType;

}

//---//

Using our previous example of registering a property editor for an unsigned int prop-
erty called Size in a component called TTestComponent, the registration function is

RegisterPropertyEditor(TNonVCLTypeInfo::UnsignedInt(),

__classid(TTestComponent),

“Size”,

__classid(TUnsignedProperty));

The previous code is simple, easy to understand, and easy to write. This should be
your preferred method of registering property editors for non-VCL based properties.

It was mentioned earlier that determining a TTypeInfo* for a non-VCL property
implemented in Object Pascal is not the same as one implemented in C++. An
example of this is the PasswordChar property of TMaskEdit. To register a new property
editor for all char types requires two registrations: one for Object Pascal–imple-
mented properties and one for C++ implementations. The previous approach (a
special class containing the appropriate non-VCL type properties) works fine for C++
implementations, but to get the correct TTypeInfo* for the Object Pascal implementa-
tions, the TTypeInfo* pointer must be determined directly from the VCL class, in this
case from the PasswordChar property of TMaskEdit. This was the very first way we used
to obtain a TTypeInfo*. If we want to register a new char property editor called
TCharPropertyEditor for all components and all properties of type char, the registra-
tions required are

Registering Custom Property Editors 327

LISTING 5.8 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 327

TPropInfo* VCLCharPropInfo = Typinfo::GetPropInfo(__typeinfo(TMaskEdit),

“PasswordChar”);

// Register the property editor for native VCL (Object Pascal) components

RegisterPropertyEditor(*VCLCharPropInfo->PropType,

0,

“”,

__classid(TCharPropertyEditor));

// Register the property editor for C++ implemented components

RegisterPropertyEditor(TNonVCLTypeInfo::Char(),

0,

“”,

__classid(TCharPropertyEditor));

Obtaining a TTypeInfo* (PTypeInfo) for a Non-VCL Type by Manual
Creation
Creating a TTypeInfo* manually is an alternative approach to obtaining a TTypeInfo*
from a VCL class for a non-VCL type. It is shown largely for comparison purposes
and also because it is a commonly used technique. However, it should generally be
avoided in preference to the first method. Manually creating the required PTypeInfo
pointer can be done in place before the call to RegisterPropertyEditor(), or the code
can be placed in a function that will return the pointer.

There are two ways to write the code to do this. One is to declare a static TTypeInfo

structure locally, assign the appropriate values to it, and use a reference to it as the
PTypeInfo argument. The other is to allocate a TTypeInfo structure dynamically, assign
the appropriate values, and then use the pointer as the PTypeInfo argument. Both
methods for generating a suitable PTypeInfo for an AnsiString property are shown in
Listing 5.9. Note that this code and other similar functions are found in the
GetTypeInfo unit on the CD-ROM.

LISTING 5.9 Manually Creating a TTypeInfo*

//---//

// As Functions //

//---//

TTypeInfo* AnsiStringTypeInfo(void)

{

static TTypeInfo TypeInfo;

TypeInfo.Name = “AnsiString”;

CHAPTER 5 Creating Property and Component Editors328

07 0672324806 CH05 12/12/02 2:42 PM Page 328

TypeInfo.Kind = tkLString;

return &TypeInfo;

}

// OR

TTypeInfo* AnsiStringTypeInfo(void)

{

TTypeInfo* TypeInfo = new TTypeInfo;

TypeInfo->Name = “AnsiString”;

TypeInfo->Kind = tkLString;

return TypeInfo;

}

//---------------- In the Registration code simply write:--------------------//

RegisterPropertyEditor(AnsiStringTypeInfo(),

0 ,

“”,

__classid(TAnsiStringPropertyEditor));

//---//

// In Place Before RegisterPropertyEditor() //

//---//

static TTypeInfo AnsiStringTypeInfo;

TypeInfo.Name = “AnsiString”;

TypeInfo.Kind = tkLString;

RegisterPropertyEditor(&AnsiStringTypeInfo,

0 ,

“”,

__classid(TAnsiStringPropertyEditor));

// OR

TTypeInfo* AnsiStringTypeInfo = new TTypeInfo;

TypeInfo->Name = “AnsiString”;

TypeInfo->Kind = tkLString;

Registering Custom Property Editors 329

LISTING 5.9 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 329

RegisterPropertyEditor(AnsiStringTypeInfo,

0 ,

“”,

__classid(TAnsiStringPropertyEditor));

Notice that when the TTypeInfo structure is dynamically allocated (with new), it is not
deleted after the call to RegisterPropertyEditor(). If this is done, the registration will
fail. The reason for this is explained in the following section.

How to Obtain a TTypeInfo* for a Non-VCL Type
Which of the two approaches you use to obtain a TTypeInfo* for a non-VCL type—
determine it from a VCL class or manually create it—is straightforward. Always use
the first method when you can. In particular, you must use the first method if you
are writing a property editor to override an existing property editor for which an
editor has been specifically registered by the VCL (as opposed to being determined
dynamically) or one that has been previously registered using the first approach. In
general, the first approach is more robust because you are using the VCL’s representa-
tion of the TTypeInfo* for the given property. The need to use the first method to
override a property editor registered using the first method should be noted.
Creating a class with static member functions to return a suitable TTypeInfo* makes
the first method just as easy as the manual creation method and should be consid-
ered the superior technique.

An important point about using the two approaches is that writing a function to a
specific PTypeInfo (the second method) is not the same as obtaining the PTypeInfo
from the VCL (the first method). The reason for this is that the implementation of
TPropertyClassRec, used internally by the RegisterPropertyEditor() function, main-
tains only a PTypeInfo variable, not the actual values that it points to, namely the
Name and Kind of the TTypeInfo. This is why a reference to a locally declared non-
static TTypeInfo structure cannot be used and a dynamically allocated TTypeInfo
structure must not be deleted (it is simply abandoned on free store).

Registering property editors is then relatively easy. However, care must be taken to
ensure that the parameters passed are exact. Often it is possible to compile and
install property editors that do not appear to function, only to find later that the
registration code is not quite right (such as when the PropertyName parameter has
been spelled incorrectly) and that the property editor worked all along.

Rules for Overriding Property Editors
With the knowledge of how to register custom property editors and the realization
that it is possible to override any previously installed property editor, the question is

CHAPTER 5 Creating Property and Component Editors330

LISTING 5.9 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 330

this: What are the rules for overriding property editors? The following highlights the
two main considerations:

• In general, property editors are used from newest to oldest. In other words, the
most recently installed property editor for a given property will be used. The
exception to this is noted in the next point.

• A newly registered property editor will override an existing property editor only
if the specification used to register it is at least as specific as that used to register
the existing editor. For example, if a property editor is registered specifically for
the Shape property (of type TShapeType) in the TShape component, installing a
new editor for properties of type TShapeType for all components (ComponentClass
== 0) will not override the property editor for the Shape property of TShape.

The only other consideration when overriding property editors is the method used
to obtain the appropriate PTypeInfo, as previously discussed. Such property overriding
can be seen in practice by examining the EnhancedEditors package on the accompa-
nying CD-ROM.

Using Images in Property Editors
This section introduces the techniques required to render images in the Object
Inspector for custom property editors. Some property editors already render images
in the Object Inspector. For example, a property of type TColor will appear automati-
cally in the Object Inspector as other TColor properties do. However, there are many
more types of properties that could benefit from the use of images when editing the
property. To facilitate this, you must not only inherit from TpropertyEditor or a
descendant, but must also inherit from ICustomPropertyEditor;
ICustomPropertyEditor provides six new methods, five of which can be overridden.
The declarations for those five functions are as follows:

void __fastcall ListMeasureWidth(const AnsiString Value,

Graphics::TCanvas* ACanvas,

int& AWidth);

void __fastcall ListMeasureHeight(const AnsiString Value,

Graphics::TCanvas* ACanvas,

int& AHeight);

void __fastcall ListDrawValue(const AnsiString Value,

Graphics::TCanvas* ACanvas,

const TRect& ARect,

bool ASelected);

Using Images in Property Editors 331

07 0672324806 CH05 12/12/02 2:42 PM Page 331

void __fastcall PropDrawValue(Graphics::TCanvas* ACanvas,

const TRect& ARect,

bool ASelected);

void __fastcall PropDrawName(Graphics::TCanvas* ACanvas,

const TRect& ARect,

bool ASelected);

The remaining method, to be used in conjunction with the XxxxDrawValue methods,
is declared as

AnsiString __fastcall GetVisualValue();

These are listed in Table 5.8, along with a description of the purpose of each. Note
that you must implement all five of the overridable methods or your class will not
link.

TABLE 5.8 New Methods of ICustomPropertyEditor to Allow Custom Images

Method Purpose

ListMeasureWidth() This is used to allow the default width of an entry in the drop-down

list to be modified. As the width of the overall drop-down list is set to

that of the widest entry or greater, this is effectively the minimum

width of the drop-down list.

ListMeasureHeight() This is used to allow the default height of each list entry to be modi-

fied. Unless a large image is displayed (as is the case with TCursor

properties), this method does not generally need to be overridden.

ListDrawValue() This is called to render each property value in the drop-down list.

PropDrawValue() This is called to render the selected property value for the property

when it does not have focus. When the property has focus, the current

property value is shown as an editable AnsiString.

PropDrawName() This is called to render the property name in the Object Inspector. It is

not required often.

GetVisualValue() This is used to return the displayable value of the property. This

method is used in conjunction with the ListDrawValue() and

PropDrawValue() methods to render the AnsiString representation

of the property value.

Where in the Object Inspector these methods are used is illustrated in Figure 5.3. You
can see that the three most important methods to override are ListMeasureWidth(),
ListDrawValue(), and PropDrawValue().

CHAPTER 5 Creating Property and Component Editors332

07 0672324806 CH05 12/12/02 2:42 PM Page 332

FIGURE 5.3 Areas in the Object Inspector that are affected by the new overridable
TPropertyEditor methods.

To create your own custom images in the Object Inspector, you must derive a new
property editor class from TPropertyEditor or from a class derived from
TPropertyEditor. Which you choose depends on the type of the property that the
editor is for. For example, a property of type int would descend from
TIntegerProperty. Refer to the section “Creating Custom Property Editors,” earlier in
this chapter, for more information. A new property editor class can then be defined
according to the format in Listing 5.10. As an example, the editor is derived from
TEnumProperty.

LISTING 5.10 Definition Code for a Property Editor That Renders Custom Images

#include “VCLEditors.hpp”

class TCustomImagePropertyEditor : public TenumProperty,ICustomPropertyEditor

{

typedef TEnumProperty inherited;

public:

void __fastcall ListMeasureWidth(const AnsiString Value,

Graphics::TCanvas* ACanvas,

int& AWidth);

void __fastcall ListMeasureHeight(const AnsiString Value,

Graphics::TCanvas* ACanvas,

int& AHeight);

void __fastcall ListDrawValue(const AnsiString Value,

Graphics::TCanvas* ACanvas,

Using Images in Property Editors 333

PropDrawValue

Object Inspector

PropDrawName

ListDrawValue

ListMeasureHeight

ListMeasureWidth

07 0672324806 CH05 12/12/02 2:42 PM Page 333

const TRect& ARect,

bool ASelected);

void __fastcall PropDrawValue(Graphics::TCanvas* ACanvas,

const TRect& ARect,

bool ASelected);

void __fastcall PropDrawName(Graphics::TCanvas* ACanvas,

const TRect& ARect,

bool ASelected);

protected:

#pragma option push -w-inl

inline __fastcall virtual

TCustomImagePropertyEditor(const _DesignIntf::di_IDesigner ADesigner,

int APropCount)

: TEnumProperty(ADesigner,

APropCount)

{ }

#pragma option pop

public:

#pragma option push -w-inl

inline __fastcall virtual ~TCustomImagePropertyEditor(void)

{ }

#pragma option pop

};

It is assumed that only the drawing behavior of the property editor is to be modified.
The remainder of the class is not altered.

The implementation of each of the five functions is discussed in the sections that
follow. For each of the methods, comments will indicate the code that should be
present in each method. This will be followed by the actual code used to produce the
images shown in Figure 5.4, which shows a finished property editor in use.

As an example, a property editor for the TShapeType enumeration from the TShape
component will be developed. The class definition for such a property editor is
exactly the same as that shown in Listing 5.10. However, the class is called
TShapeTypePropertyEditor. The parameters used in the five image-rendering methods
are detailed in Table 5.9 so that an overall picture of how they are used can be devel-
oped.

CHAPTER 5 Creating Property and Component Editors334

LISTING 5.10 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 334

FIGURE 5.4 The TShapeTypePropertyEditor in use.

TABLE 5.9 Parameters for Custom Image-Rendering Methods

Method Purpose

AWidth This is the current width in pixels of the AnsiString representation of the

value as it will be displayed in the Object Inspector, including leading and

trailing space.

AHeight This is the default height of the display area for the current item.

Typically, this is 2 pixels greater than the height of

ACanvas->TextHeight(“Ag”), where Ag is chosen simply to remind the

reader that the actual font height of the current font is returned, that is

the ascender height (from A) plus the descender height (from g). Adding

2 pixels allows a 1-pixel border. Remember that the ascender height also

includes the internal leading height (used for accents, umlauts, and tildes

in non-English character sets), typically 2 to 3 pixels. Refer to Figure 5.5

for clarification.

ACanvas This encapsulates the device context for the current item in the Object

Inspector.

ARect This represents the client area of the region to be painted.

ASelected This parameter is true when the list item is currently selected in the

Object Inspector.

Using Images in Property Editors 335

07 0672324806 CH05 12/12/02 2:42 PM Page 335

Figure 5.5 shows a diagram illustrating how the height of text is calculated.

CHAPTER 5 Creating Property and Component Editors336

Text Height
Ascender

Descender

Internal Leading

FIGURE 5.5 Calculating text height.

Figure 5.6 shows the relationship between the parameters in Table 5.9 and the actual
rendering of an image and text in the Object Inspector. This figure will be referred to
throughout the discussion, and additional information is therefore shown.

Rect (ARect.Left, ARect.Top, vRight, ARect.Bottom)

Rect (vRight, ARect.Top, ARect.Right, ARect.Bottom)

ACanvas

TextWidth (“stRoundSquare”)

vRight = ARect.Bottom - ARect.Top + ARect.Left ARect.Right

ARect.Bottom

TextHeight (“Ag”) = 16

ARect.Top

AWidth

Rect (ARect.Left+1, ARect.Top+1, vRight–1, ARect.Bottom–1)

AHeight

ARect.Left
TextRect (Rect, vRight+1, ARect.Top+1, “stRoundSquare”)

FIGURE 5.6 The relationship between image-rendering parameters and actual display.

The ListMeasureWidth() Method
Initially, AWidth is equal to the return value of ACanvas->TextWidth(Value). However, if
an image is added to the display, the width of the image must be added to AWidth to

07 0672324806 CH05 12/12/02 2:42 PM Page 336

update it. This method, called during the width calculation phase of the drop-down
list, enables you to do this. If a square image region is required, AWidth can simply be
adjusted by adding ACanvas->TextHeight(“Ag”)+2 to its current value. This is because
this value will equal the default AHeight value, as previously mentioned in Table 5.9.
(Also, see Figure 5.6, in which ACanvas->TextHeight(“Ag”)+2 is 18 (16+2) pixels.)
Remember that Ag could be replaced by any characters. If a larger image is required, a
multiple of this value can be used or a constant can be added to the width. If the
image width is known, this can simply be added to the current AWidth value. The
code is shown in Listing 5.11.

LISTING 5.11 Overriding the ListMeasureWidth() Method

void __fastcall

TShapeTypePropertyEditor::ListMeasureWidth(const AnsiString Value,

Graphics::TCanvas* ACanvas,

int& AWidth)

{

AWidth += (ACanvas->TextHeight(“Ag”)+2) + 0; // 0 can be replaced

// by a constant

}

The ListMeasureHeight() Method
AHeight must not be given a value smaller than ACanvas->TextHeight(“Ag”)+2 because
this would clip the text displayed. Therefore, two choices are available. A constant
value can be added to the current AHeight, normally to maintain a constant ratio
with the image width, or AHeight can be changed directly. If it is changed directly,
the new value must be greater than ACanvas->TextHeight(“Ag”)+2; otherwise, this
value should be used. The code is shown in Listing 5.12.

LISTING 5.12 Overriding the ListMeasureHeight() Method

void __fastcall

TShapeTypePropertyEditor::ListMeasureHeight(const AnsiString Value,

Graphics::TCanvas* ACanvas,

int& AHeight)

{

AHeight += 0; // 0 could be replaced by a constant value

}

// OR :

void __fastcall

TShapeTypePropertyEditor::ListMeasureHeight(const AnsiString Value,

Using Images in Property Editors 337

07 0672324806 CH05 12/12/02 2:42 PM Page 337

Graphics::TCanvas* ACanvas,

int& AHeight)

{

if((ACanvas->TextHeight(“Ag”)+2) < ImageHeight)

{

AHeight = ImageHeight;

}

}

The ListDrawValue() Method
This method does most of the hard work. It is this method that renders each item in
the drop-down list by drawing directly onto the list item’s canvas. To write well-
behaved code, this method should have the layout in Listing 5.13.

This listing works for the case where you are inheriting from a property editor that
implements IcustomPropertyEditor. If you do not inherit from such an editor, it is
inappropriate to call the inherited methods, since they have no implementation.

To get an appreciation of what the actual rendering code is doing, refer to Figure 5.6.
For the big picture, refer to Figure 5.3.

LISTING 5.13 A Template for Overriding the ListDrawValue() Method

void __fastcall

TCustomImagePropertyEditor::ListDrawValue(const AnsiString Value,

Graphics::TCanvas* ACanvas,

const TRect& ARect,

bool ASelected)

{

// Declare an int vRight to indicate the right most edge of the image.

// The v prefix is used to indicate that it is a variable. This used

// to follow the convention used in VCLEditors.pas.

try

{

// Step 1 - Save ACanvas properties that we are going to change.

// Step 2 - Frame the area to be modified. This is required so that any

// previous rendering on the canvas is overwritten. For example

// when the IDE selection rendering is applied, i.e. the

// property value is surrounded by a dashed yellow and black

CHAPTER 5 Creating Property and Component Editors338

LISTING 5.12 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 338

// line and the AnsiString representation is highlighted in

// clNavy, and focus then moves to another list value the

// modified parts of ACanvas are cleared, ready for the custom

// rendering. If the entire ACanvas is going to be changed then

// this operation is not required.

// Step 3 - Perform any preparation required. For example paint a

// background colour and place a highlight box around the image

// of the list value if ASelected is true.

//

// To choose a colour to match the current text used by windows

// select clWindowText, this is useful as an image border, hence

// this is often selected as a suitable ACanvas->Pen colour.

//

// To give the appearance of a clear background, clear border or

// both set the ACanvas->Brush and/or ACanvas->Pen colour to

// clWindow.

//

// To use a colour the same as the Object Inspector choose

// clBtnFace.

// Step 4 - Determine the value of the current list item.

// Step 5 - Draw the required image onto ACanvas.

// Step 6 - Restore modified ACanvas properties to their original values.

}

__finally

{

// Perform the following operation to render the AnsiString

// representation of the current item, i.e. Value, onto ACanvas.

// 1. Either call the parents ListDrawValue method passing vRight as the

// l (left) parameter of the Rect variable, i.e.

//

// TEnumProperty::ListDrawValue(Value,

// ACanvas,

// Rect(vRight,

// ARect.Top,

// ARect.Right,

// ARect.Bottom),

Using Images in Property Editors 339

LISTING 5.13 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 339

// ASelected);

// which becomes:

//

// inherited::ListDrawValue(Value,

// ACanvas,

// Rect(vRight,

// ARect.Top,

// ARect.Right,

// ARect.Bottom),

// ASelected);

//

// using our typedef which is more maintainable.

// 2. Or perform this operation directly by calling the TextRect() member

// function directly removing the need to call the parent version of

// this (ListDrawValue()) virtual function

// i.e.

// ACanvas->TextRect(Rect(vRight,

// ARect.Top,

// ARect.Right,

// ARect.Bottom),

// vRight+1,

// ARect.Top+1,

// Value);

}

}

Actual code based on the template in Listing 5.13 is shown in Listing 5.14. The code
renders each item in the drop-down list. Each item in the list consists of an image
followed by text representing the enum value to which the item refers. Figure 5.4
shows an image of the rendered drop-down list.

Once again, keep in mind that this assumes there is an inherited implementation for
the ICustomPropertyEditor member functions. If that is not the case, do not call the
inherited member functions.

LISTING 5.14 An Implementation of the ListDrawValue() Method

void __fastcall

TShapeTypePropertyEditor::ListDrawValue(const AnsiString Value,

Graphics::TCanvas* ACanvas,

const TRect& ARect,

CHAPTER 5 Creating Property and Component Editors340

LISTING 5.13 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 340

bool ASelected)

{

// Declare vRight (‘v’ stands for variable)

int vRight = ARect.Bottom - ARect.Top + ARect.Left;

try

{

// Step 1 - Save ACanvas properties that we are going to change

TColor vOldPenColor = ACanvas->Pen->Color;

TColor vOldBrushColor = ACanvas->Brush->Color;

// Step 2 - Frame the area to be modified.

ACanvas->Pen->Color = ACanvas->Brush->Color;

ACanvas->Rectangle(ARect.Left, ARect.Top, vRight, ARect.Bottom);

// Step 3 - Perform any preparation required.

if(ASelected) // Choose a Pen colour

{ // depending on whether

ACanvas->Pen->Color = clYellow; // the list value is

} // selected or not

else

{

ACanvas->Pen->Color = clBtnFace;

}

ACanvas->Brush->Color = clBtnFace; // Choose a background color to

// match the Object Inspector

ACanvas->Rectangle(ARect.Left + 1, // Draw the background onto

ARect.Top + 1, // the Canvas using the

vRight - 1, // current Pen and the

ARect.Bottom - 1); // current Brush :-)

Using Images in Property Editors 341

LISTING 5.14 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 341

// Step 4 - Determine the value of the current list item

TShapeType ShapeType = TShapeType(GetEnumValue(GetPropType(), Value));

// Step 5 - Draw the required image onto ACanvas

ACanvas->Pen->Color = clBlack;

ACanvas->Brush->Color = clWhite;

switch(ShapeType)

{

case stRectangle : ACanvas->Rectangle(ARect.Left+2,

ARect.Top+4,

vRight-2,

ARect.Bottom-4);

break;

case stSquare : ACanvas->Rectangle(ARect.Left+2,

ARect.Top+2,

vRight-2,

ARect.Bottom-2);

break;

case stRoundRect : ACanvas->RoundRect(ARect.Left+2,

ARect.Top+4,

vRight-2,

ARect.Bottom-4,

(ARect.Bottom-ARect.Top-6)/2,

(ARect.Bottom-ARect.Top-6)/2);

break;

case stRoundSquare : ACanvas->RoundRect(ARect.Left+2,

ARect.Top+2,

vRight-2,

ARect.Bottom-2,

(ARect.Bottom-ARect.Top)/3,

(ARect.Bottom-ARect.Top)/3);

break;

case stEllipse : ACanvas->Ellipse(ARect.Left+1,

ARect.Top+2,

vRight-1,

ARect.Bottom-2);

break;

case stCircle : ACanvas->Ellipse(ARect.Left+1,

CHAPTER 5 Creating Property and Component Editors342

LISTING 5.14 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 342

ARect.Top+1,

vRight-1,

ARect.Bottom-1);

break;

default : break;

}

// Step 6 - Restore modified ACanvas properties to their original values

ACanvas->Pen->Color = vOldPenColor;

ACanvas->Brush->Color = vOldBrushColor;

}

__finally

{

// Render the AnsiString representation onto ACanvas

// Use method 1, call the parent method

inherited::ListDrawValue(Value,

ACanvas,

Rect(vRight,

ARect.Top,

ARect.Right,

ARect.Bottom),

ASelected);

}

}

Step 4 in Listing 5.14 is of crucial importance to the operation of ListDrawValue().
The value of the drop-down list item is determined here. This allows a decision to be
made in Step 5 as to what should be rendered. For enumerations such as TShapeType,
the AnsiString representation of the value must be converted to an actual value. The
code that performs this is

TShapeType ShapeType = TShapeType(GetEnumValue(GetPropType(), Value));

GetEnumValue() is declared in $(BCB)\Include\Vcl\TypInfo.hpp and returns an int value.
This int value is used to construct a new TShapeType variable called ShapeType. The
function GetPropType() returns a pointer to a TTypeInfo structure containing the
TypeInfo for the property type (in this case TShapeType). This could alternatively have
been obtained using

*GetPropInfo()->PropType

Using Images in Property Editors 343

LISTING 5.14 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 343

This is similar to the approach used to obtain type information when registering
property editors (see the section “Obtaining a TTypeInfo* (PTypeInfo) from an Existing
Property and Class for a Non-VCL Type,” earlier in this chapter, for more details) and
can be used more generally. Value is the AnsiString representation of the current
enumeration value. GetPropType() and GetPropInfo() are both member functions of
TPropertyEditor and, as such, are declared in $(BCB)\Include\Vcl\VCLEditors.hpp.
Techniques such as these are indispensable to writing property editors, so it is impor-
tant to be aware of them.

Each of the images is rendered according to the bounding ARect parameter. This
means that the code does not need to be modified to enlarge or reduce the rendered
images. To do this, simply change the values of AWidth and AHeight. Changing the
constant 0 in the ListMeasureWidth() and ListMeasureHeight() methods to 10, for
example, will increase the rendered image size in the drop-down list by 10 pixels in
each direction. Note that the image in the property value region will not be affected.

The PropDrawValue() Method
This method is responsible for rendering the current property value in the Object
Inspector. The height of the area to be rendered is fixed (ARect.Bottom - ARect.Top) so
there is less flexibility over the images that can be rendered compared with images
rendered in the drop-down list. The code required for this operation is the same as
that required to render the same value in the drop-down list. The only difference is
the value of the ARect parameter. The rendering can, therefore, be carried out by the
ListDrawValue() method, passing the PropDrawValue() parameters as arguments. The
code for this member function is shown in Listing 5.15.

LISTING 5.15 An Implementation of the PropDrawValue() Method

void __fastcall

TShapeTypePropertyEditor::PropDrawValue(Graphics::TCanvas* ACanvas,

const TRect& ARect,

bool ASelected)

{

if(GetVisualValue() != “”)

{

ListDrawValue(GetVisualValue(), ACanvas, ARect, ASelected);

}

else

{

// As in the ListDrawValue method either the parent method can be called

// or the code required to render the text called directly, i.e.

//

// inherited::PropDrawValue(ACanvas, ARect, ASelected);

CHAPTER 5 Creating Property and Component Editors344

07 0672324806 CH05 12/12/02 2:42 PM Page 344

//

// or:

//

// ACanvas->TextRect(ARect,

// ARect.Left+1,

// ARect.Top+1,

// GetVisualValue());

//

// For comparison the text is rendered directly, i.e.

ACanvas->TextRect(ARect,

ARect.Left+1,

ARect.Top+1,

GetVisualValue());

}

}

The PropDrawName() Method
This is the last of the overridable methods for custom rendering and the one least
often required. It controls the rendering of the property Name (see Figure 5.3). As with
the PropDrawValue() method, the height of the drawing region is fixed. This method
has limited use, but it can be used to add symbols to properties that exhibit certain
behavior, read-only properties, for instance (such as About properties). Overuse
should be avoided because it might confuse rather than help users.

Another possible use is to add an image to TComponent-derived properties to indicate
the component required. This method is not used in the TShapeTypePropertyEditor
example, but the required code, should it be needed, is shown in Listing 5.16.

LISTING 5.16 An Implementation of the PropDrawName() Method

void __fastcall

TCustomImagePropertyEditor::PropDrawValue(Graphics::TCanvas* ACanvas,

const TRect& ARect,

bool ASelected)

{

if(GetName() != “”)

{

// Write a function to render the desired image, similar to

// the ListDrawValue() method, i.e.

//

Using Images in Property Editors 345

LISTING 5.15 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 345

// PropDrawNameValue(GetName(), ACanvas, ARect, ASelected); // Must be

// defined

}

else

{

// As in the PropDrawValue method either the parent method can be called

// or the code required to render the text called directly, i.e.

//

// inherited::PropDrawName(ACanvas, ARect, ASelected);

//

// or:

//

// ACanvas->TextRect(ARect,

// vRect.Left+1,

// ARect.Top+1,

// GetName());

//

// For comparison the text is rendered directly, i.e.

ACanvas->TextRect(ARect,

ARect.Left+1,

ARect.Top+1,

GetName());

}

}

The TImageListPropertyEditor from the EnhancedEditors package (see Table 5.1) does
implement this method to display an icon representing a TImageList component for
TCustomImageList* properties. Listing 5.17 shows its implementation of this method
for comparison. Note that ImageListPropertyImage is a resource loaded in the property
editor’s constructor.

LISTING 5.17 An Alternative Implementation of the PropDrawName() Method

void __fastcall

TImageListPropertyEditor::PropDrawName (Graphics::TCanvas* ACanvas,

const TRect& ARect,

bool ASelected)

{

TRect ValueRect = ARect;

CHAPTER 5 Creating Property and Component Editors346

LISTING 5.16 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 346

try

{

// Clear the canvas using the current pen and brush

ACanvas->FillRect(ARect);

if(GetName() != “”)

{

if(Screen->PixelsPerInch > 96) // If Large fonts

{

ACanvas->Draw(ARect.Left + 1,

ARect.Top + 2,

ImageListPropertyImage);

}

else // Otherwise small fonts

{

ACanvas->Draw(ARect.Left + 1,

ARect.Top,

ImageListPropertyImage);

}

ValueRect = Rect(ARect.Left + 16 + 2,

ARect.Top,

ARect.Right,

ARect.Bottom);

}

}

__finally

{

// Whether or not we successfully draw the image we must draw the text

inherited::PropDrawName(ACanvas, ValueRect, ASelected);

}

}

The code in Listing 5.17 is reasonably straightforward. Of note is the try/__finally
block to ensure that the text is always rendered. The code inside the try block is
similar to that in Listing 5.16; the only difference is that the ImageListPropertyImage
resource is positioned differently, depending on whether the screen is using large or
small fonts. After the ImageListPropertyImage resource is rendered, the Rect for render-
ing the text is offset to allow for the width of the resource, which in this case is 16
pixels.

Using Images in Property Editors 347

LISTING 5.17 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 347

Creating Custom Component Editors
The previous section discussed property editors for components as a method of
allowing a more intuitive and robust interface at design time. Component Editors
take this further by allowing custom editors for the whole component to be created.
Custom component editors also allow the context menu for each component
(shown when the component is right-clicked) to be customized, along with specify-
ing the behavior when a component is double-clicked on a form. This section, like
the previous one, presents the background and principles required to create custom
component editors. Component editors add the possibility of customizing the
default behavior associated with editing a component and also allowing additional
behavior to be specified. Two classes are available for creating component editors:
TComponentEditor and TDefaultEditor. The relationship between the two is shown in
Figure 5.7.

CHAPTER 5 Creating Property and Component Editors348

TObject

TInterfaceObject

TComponentEditor

Edit()
GetVerbCount()
GetVerb()
PrepareItem()
ExecuteVerb()
Copy()

TDefaultEditor

Edit()
GetVerbCount()
GetVerb()
PrepareItem()
ExecuteVerb()
Copy()

EditProperty()

Method Implemented virtual method

Method Unimplemented virtual method

Legend

protected virtual method

public virtual methods

public virtual methods

FIGURE 5.7 The TComponentEditor inheritance hierarchy.

Figure 5.7 shows additional information, namely the virtual functions that should
be overridden to customize the component editor’s behavior. This can be referred to

07 0672324806 CH05 12/12/02 2:42 PM Page 348

when the virtual functions themselves are discussed later in this section, in
Table 5.11 and in subsequent sections with the methods’ names.

As was stated initially, creating a custom component editor allows the default behav-
ior that occurs in response to the component being right-clicked or double-clicked in
the IDE to be specified. Table 5.10 lists both mouse events and indicates which of
the virtual functions are invoked. The default behavior of each of the classes is also
stated.

TABLE 5.10 TComponentEditor and TDefaultEditor Mouse Responses

When the Default Action virtual Functions Invoked
component
is…

Right- The component’s GetVerbCount() is invoked

Clicked context menu is first. This is used to return

displayed. the number of items to be

added to the top of the

default context menu.

GetVerb() is called next. This

allows an AnsiString represent-

ing each of the menu items to be

returned.

PrepareItem() is called before

the menu item is shown, allowing

it to be customized.

ExecuteVerb() is called only if

one of the newly added menu

items is clicked. Code to execute

the desired behavior goes here.

Double- The default Edit() is invoked. Code to

Clicked action depends perform the desired action is

on the class from placed here.

which the editor

is derived.

TComponentEditor:

If items have

been added to

the context menu,

the first item is

executed.

TDefaultEditor:

An empty event

handler is created

Creating Custom Component Editors 349

07 0672324806 CH05 12/12/02 2:42 PM Page 349

for OnChange,

OnCreate, or

OnClick, whichever

appears first in

the component’s

list of event

properties. If

none of the previous

events exist for

the component,

a handler is

created for the

first event that

appears. If the

component has no

events, nothing

happens.

In Figure 5.7 we can see that TComponentEditor and TDefaultEditor are essentially the
same in that they offer similar functionality. Where they differ (as seen in Table 5.10)
is in the implementation of the Edit() method. Choosing which of the two classes
to derive your custom component editor from should be based on the following
criteria.

If you want the component editor to generate an empty event handler for one of
three default events or for a particular event, when the component is double-clicked,
you should derive it from TDefaultEditor; otherwise, derive it from TComponentEditor.
If you do not create a custom component editor for a component, C++Builder uses
TDefaultEditor.

After the decision has been made as to which component editor class to derive from,
the appropriate methods should be overridden. Table 5.11 lists the methods from
both classes and details the purpose of each.

TABLE 5.11 TComponentEditor and TDefaultEditor virtual Functions

virtual Function Purpose

int GetVerbCount(void) Returns an int representing the number of menu items

(verbs, as in doing words) that are going to be added.

CHAPTER 5 Creating Property and Component Editors350

TABLE 5.10 Continued

When the Default Action virtual Functions Invoked
component
is…

07 0672324806 CH05 12/12/02 2:42 PM Page 350

AnsiString GetVerb(int Index) Returns an AnsiString representing the menu item’s

name as it will appear in the context menu. The

following conventions should be remembered:

Use & to designate a hotkey.

Append ... to an item that executes a dialog.

Use a - to make the menu item a separator bar.

void PrepareItem(int Index, PrepareItem() is called for each verb in the context

const Menus::TMenuItem* AItem) menu, passing the TMenuItem that will be used to repre-

sent the verb in the context menu. This allows the menu

item to be customized. It can also be used to hide an

item by setting its Visible property to false.

void ExecuteVerb(int Index) ExecuteVerb() is invoked when one of the custom

menu items is selected. Index indicates which one.

void Edit(void) Edit() is invoked when the component is double-

clicked. What happens is user defined. The default

behavior is listed in Table 5.10.

void EditProperty(TPropertyEditor* Used to determine which event an empty handler is

PropertyEditor, bool& Continue, generated for when the component is double-clicked.

bool& FreeEditor)

(TDefaultEditor only)

void Copy(void) Copy() should be invoked when the component is

copied to the Clipboard. This needs to be overridden

only if a special format needs to be copied to the

Clipboard, such as an image from a graphical

component.

Suitable class definitions for TComponentEditor- and TDefaultComponent-derived compo-
nent editors are shown in Listing 5.18 and Listing 5.19, respectively.

LISTING 5.18 Definition Code for a Custom TComponentEditor-Derived Component
Editor

#include “VCLEditors.hpp”

class TCustomComponentEditor : public TComponentEditor

{

typedef TComponentEditor inherited;

public:

// Double-Click

Creating Custom Component Editors 351

TABLE 5.11 Continued

virtual Function Purpose

07 0672324806 CH05 12/12/02 2:42 PM Page 351

virtual void __fastcall Edit(void);

// Right-Click

// CONTEXT MENU - Step 1

virtual int __fastcall GetVerbCount(void);

// - Step 2

virtual AnsiString __fastcall GetVerb(int Index);

// - Step 3 (OPTIONAL)

virtual void __fastcall PrepareItem(int Index,

const Menus::TMenuItem* AItem);

// - Step 4

virtual void __fastcall ExecuteVerb(int Index);

// Copy to Clipboard

virtual void __fastcall Copy(void);

public:

#pragma option push -w-inl

inline __fastcall virtual

TCustomComponentEditor(Classes::TComponent* AComponent,

_DesignIntf::di_IDesigner ADesigner)

: TComponentEditor(AComponent, ADesigner)

{ }

#pragma option pop

public:

#pragma option push -w-inl

inline __fastcall virtual ~TCustomComponentEditor(void) { }

#pragma option pop

};

LISTING 5.19 Definition Code for a Custom TDefaultEditor-Derived Component
Editor

#include “VCLEditors.hpp”

class TCustomDefaultEditor : public TDefaultEditor

{

typedef TDefaultEditor inherited;

protected:

// Double-Click

CHAPTER 5 Creating Property and Component Editors352

LISTING 5.18 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 352

// CHOOSE EVENT

virtual void __fastcall EditProperty(TPropertyEditor* PropertyEditor,

bool& Continue,

bool& FreeEditor);

public:

// Right-Click

// CONTEXT MENU - Step 1

virtual int __fastcall GetVerbCount(void);

// - Step 2

virtual AnsiString __fastcall GetVerb(int Index);

// - Step 3 (OPTIONAL)

virtual void __fastcall PrepareItem(int Index,

const Menus::TMenuItem* AItem);

// - Step 4

virtual void __fastcall ExecuteVerb(int Index);

// Copy to Clipboard

virtual void __fastcall Copy(void);

public:

#pragma option push -w-inl

inline __fastcall virtual

TCustomDefaultEditor(Classes::TComponent* AComponent,

_DesignIntf::di_IDesigner ADesigner)

: TDefaultEditor(AComponent, ADesigner)

{ }

#pragma option pop

public:

#pragma option push -w-inl

inline __fastcall virtual ~TCustomDefaultEditor(void) { }

#pragma option pop

};

In Listing 5.18 and Listing 5.19, it can be seen that there is little difference between
the definitions of the two kinds of component editor. In fact, the techniques for
implementing context menu items are identical. The difference between the classes
is that you override the Edit() method for a TComponentEditor-derived class’s double-
click behavior, whereas you override the EditProperty() method for a TDefaultEditor
class’s double-click behavior.

Creating Custom Component Editors 353

LISTING 5.18 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 353

The following sections take each of the virtual methods in turn and discuss imple-
mentation issues. Information presented for the Edit() method is applicable only to
TComponentEditor-derived classes, and information presented for the EditProperty()
method is applicable only to TDefaultEditor-derived classes. Note that the example
namespace modifiers used in the function implementation headers reflect this.
TCustomComponentEditor is a hypothetical TComponentEditor-derived class,
TCustomDefaultEditor is a hypothetical TDefaultEditor-derived class, and
TMyCustomEditor is a class that could be derived from either.

The Edit() Method
The main purpose of overriding the Edit() method is to display a form to the user to
allow easier editing of the component’s values. A good example of this is the compo-
nent editor for the TChart component on the Additional page of the Component
Palette. To this end, the code required is similar to that presented for
TPropertyEditor’s Edit() method in the “Creating Custom Property Editors” section,
earlier in this chapter. As before, there are two approaches to implementing such a
form. Either the form can update the component as the form itself is modified, or
the component can be updated after the form is closed.

There is one extra and very important consideration that must be remembered: Each
time the component is updated, the Modified() method of TComponentEditor’s
Designer property must be called. This is so that the IDE knows that the component
has been modified. Hence, the following is required after code that modifies the
component:

if(Designer) Designer->Modified();

An if statement is used in the previous code to ensure that a nonzero value is
returned from Designer before we try to call Modified(). If zero is returned, there is
little we can do because it means the IDE is not accessible. We know that, for the
form to be able to change the component’s properties, we must somehow link the
form to the component in a similar fashion as for property editors previously. This is
reasonably straightforward and requires two things. The first is that a public property
should be declared in the form’s definition that is a pointer to the type of compo-
nent the component editor is for. Secondly, this must be pointed to the actual
instance of the component that is to be edited. The pointer to the current instance
of the component is obtained by using TComponentEditor’s Component property, as
follows:

TMyComponent* MyComponent = dynamic_cast<TMyComponent*>(Component);

The pointer obtained can be equated to the form’s component pointer property.
However, we must also make a reference to Designer available from within the form

CHAPTER 5 Creating Property and Component Editors354

07 0672324806 CH05 12/12/02 2:42 PM Page 354

so that the IDE can be notified of changes that are made to the component. This can
be passed as a parameter in the form’s constructor. The component can then be
modified directly through the property in the form. Suitable code for this approach
is shown in Listing 5.20. Don’t forget to call Designer->Modified() after the compo-
nent is modified by the form.

LISTING 5.20 Code for a Custom Component Editor Form to Be Called from Edit()
That Allows Continual Updating

// First show important code for TComponentEditorForm

// IN THE HEADER FILE

//---//

#ifndef MyComponentEditorFormH

#define MyComponentEditorFormH

//---//

#include <Classes.hpp>

#include <Controls.hpp>

#include <StdCtrls.hpp>

#include <Forms.hpp>

#include “HeaderDeclaringTComponentClass”

//---//

class TMyComponentEditorForm : public TForm

{

__published: // IDE-managed Components

private:

TComponentClass* FComponentClass;

_DesignIntf::di_IDesigner & Designer;

// Other decalrations here for example restore values if ‘Cancel’

// is pressed

protected:

void __fastcall SetComponentClass(TComponentClass* Pointer);

public:

__fastcall TMyComponentEditorForm(TComponent* Owner,

_DesignIntf::di_IDesigner & EditorDesigner);

__property TComponentClass* ComponentClass = {read=FComponentClass,

write=SetComponentClass};

// Other declarations here

};

//---//

#endif

Creating Custom Component Editors 355

07 0672324806 CH05 12/12/02 2:42 PM Page 355

// THE IMPLEMENTATION FILE

//---//

#include <vcl.h>

#pragma hdrstop

#include “MyComponentEditorForm.h”

//---//

#pragma package(smart_init)

#pragma resource “*.dfm”

//---//

__fastcall

TMyComponentEditorForm::

TMyComponentEditorForm(TComponent* Owner,

_DesignIntf::di_IDesigner & EditorDesigner)

: TForm(Owner), Designer(EditorDesigner)

{

}

//---//

void __fastcall TMyPropertyForm::SetComponentClass(TComponentClass* Pointer)

{

FComponentClass = Pointer;

if(FComponentClass != 0)

{

// Store current component values and display them

}

}

//---//

// NOW SHOW THE Edit() METHOD

#include “MyComponentEditorForm.h” // Remember this

void __fastcall TCustomComponentEditor::Edit(void)

{

// Create the form

std::auto_ptr<TMyComponentEditorForm*>

MyComponentEditorForm(new TMyComponentEditorForm(0));

// Link the component property

MyComponentEditorForm->ComponentClass

= dynamic_cast<TComponentClass*>(Component);

CHAPTER 5 Creating Property and Component Editors356

LISTING 5.20 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 356

// Show the form. The form does all the work.

MyPropertyForm->ShowModal();

}

As in the case of custom property editor forms, the component’s current property
values can be stored when the form’s Component property is linked to the component.
This allows the operation to be cancelled and the previous values restored. One thing
to pay attention to is the possibility of a NULL pointer being returned from
dynamic_cast; this should not occur, but if it does the form will not be able to modify
any of the component’s properties. An exception could be thrown to indicate this to
the user.

The second approach to implementing the Edit() method is equally simple. A form
is displayed as a dialog and, when it returns, the values entered are assigned to the
component. A pointer to the current instance of the component being edited is
obtained from TComponentEditor’s Component property:

TMyComponent* MyComponent = dynamic_cast<TMyComponent*>(Component);

The code required in the Edit() method in this approach to its implementation is
greater because the component property values must be assigned to the form after it
is created, but before it is shown. On closing, the form’s values must be assigned to
the requisite component properties. The code required for the Edit() method is
shown in Listing 5.21.

LISTING 5.21 Code for a Custom Form to Be Called from the Edit() Method with No
Updating Until Closing

#include “MyComponentEditorDialog.h” // Include the header for the Dialog!

// Dialog is TMyComponentDialog

void __fastcall TCustomComponentEditor::Edit(void)

{

TMyComponent* MyComponent = dynamic_cast<TMyComponent*>(Component);

if(MyComponent != 0)

{

// Create the form

std::auto_ptr<TMyComponentDialog*>

MyComponentDialog(new TMyComponentDialog(0));

// Set the current property values in the dialog

// MyComponentDialog->value1 = MyComponent->value1;

Creating Custom Component Editors 357

LISTING 5.20 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 357

// MyComponentDialog->value2 = MyComponent->value2;

// and so on...

// Show the form and see the result.

if(MyPropertyDialog->ShowModal() == IDOK)

{

// Then set the new property value(s)

// MyComponent->value1 = MyComponentDialog->value1;

// MyComponent->value2 = MyComponentDialog->value2;

// and so on...

if(Designer) Designer->Modified(); // DON’T FORGET!

}

}

else

{

throw EInvalidPointer

(“Cannot Edit: A component pointer is not available!”);

}

}

In the second approach to implementing the Edit() method shown in Listing 5.21,
implementation code for the dialog has not been shown. This is because there are no
special considerations specific to this approach that need to be highlighted. Also be
aware that a dialog wrapper class could be used instead of calling the dialog directly,
in which case the dialog’s Execute() method would be called to display the dialog.

The EditProperty() Method
The purpose of overriding the EditProperty() method is to specify a particular event
or one of a number of possible events that should have an empty event handler
generated for it by the IDE when the component is double-clicked. For example,
consider a component for serial communications. Typically, the most commonly
used event would be one that signals when data has been received and is available,
perhaps named OnDataReceived. For this to be the event for which a handler is gener-
ated, EditProperty() needs to be overridden as follows:

void __fastcall

TCustomDefaultEditor::EditProperty(TPropertyEditor* PropertyEditor,

bool& Continue,

bool& FreeEditor)

{

CHAPTER 5 Creating Property and Component Editors358

LISTING 5.21 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 358

if(PropertyEditor->ClassNameIs(“TMethodProperty”) &&

(CompareText(PropertyEditor->GetName(), “OnDataReceived”) == 0))

{

inherited::EditProperty(PropertyEditor, Continue, FreeEditor);

}

}

The if statement checks two things. First, it checks that the property editor is a
TMethodProperty class; in other words, it checks that the property editor is for an
event. It then checks to see if the property editor is called OnDataReceived. The
CompareText() function is used for this. CompareText() returns 0 when the two
AnsiStrings passed to it are equal. Note that CompareText() is not case sensitive. If the
property editor matches these criteria, the parent EditProperty() method is called, in
this case TDefaultEditor’s EditProperty(), which generates the empty event handler
for this event. This is called by using the inherited typedef as a namespace modifier,
so the previous code could be written as follows:

TDefaultEditor::EditProperty(PropertyEditor, Continue, FreeEditor);

The reason for using the typedef is that if the name of TDefaultEditor ever changed,
the implementation code would not be affected. Only the class definition in the
header file would need to be changed.

If a choice of events was to be specified, perhaps because the same component editor
was to be registered for a variety of components, the if statement would be replaced
by if-else-if statements. For example:

if(PropertyEditor->ClassNameIs(“TMethodProperty”) &&

(CompareText(PropertyEditor->GetName(), “OnEvent1”) == 0))

{

inherited::EditProperty(PropertyEditor, Continue, FreeEditor);

}

else if(PropertyEditor->ClassNameIs(“TMethodProperty”) &&

(CompareText(PropertyEditor->GetName(), “OnEvent2”) == 0))

{

inherited::EditProperty(PropertyEditor, Continue, FreeEditor);

}

else if(PropertyEditor->ClassNameIs(“TMethodProperty”) &&

(CompareText(PropertyEditor->GetName(), “OnEvent3”) == 0))

{

inherited::EditProperty(PropertyEditor, Continue, FreeEditor);

}

Creating Custom Component Editors 359

07 0672324806 CH05 12/12/02 2:42 PM Page 359

It also could be replaced by a single if that ORs the possible event occurrences:

if((PropertyEditor->ClassNameIs(“TMethodProperty”) &&

(CompareText(PropertyEditor->GetName(), “OnEvent1”) == 0)

||

(PropertyEditor->ClassNameIs(“TMethodProperty”) &&

(CompareText(PropertyEditor->GetName(), “OnEvent1”) == 0)

||

(PropertyEditor->ClassNameIs(“TMethodProperty”) &&

(CompareText(PropertyEditor->GetName(), “OnEvent1”) == 0))

{

inherited::EditProperty(PropertyEditor, Continue, FreeEditor);

}

In either case, the first matching occurrence will be used.

The GetVerbCount() Method
Few methods are as easy to override as this. Simply return an integer that represents
the number of additional menu items that you want to appear in the component’s
context menu. Don’t forget that a separator bar constitutes a menu item. Sample
code for three custom menu items would be as follows:

int __fastcall TMyCustomEditor::GetVerbCount(void)

{

return 4;

}

The GetVerb() Method
Almost as straightforward as the GetVerbCount() method, this method requires that
the AnsiString text for each menu item be returned. Remember that returning a -
makes the menu item a separator bar. Sample code is

AnsiString __fastcall TMyCustomEditor::GetVerb(int Index)

{

switch(Index)

{

case 0 : return “&Edit Component...”;

case 1 : return “© 2000 Me”;

case 2 : return “-”;

case 3 : return “Do Something Else”;

default : return “”;

}

}

CHAPTER 5 Creating Property and Component Editors360

07 0672324806 CH05 12/12/02 2:42 PM Page 360

If you do not specify an accelerator key (using the & symbol), one is determined
automatically by the IDE. In fact, all predefined context menu items’ accelerator keys
are determined by the IDE at runtime. This will avoid clashes with user-defined
accelerator keys. Accelerator key definitions for user-defined menu items take prece-
dence over a predefined context menu item’s accelerator key definitions. If a clash
occurs, the predefined menu item’s accelerator key is reassigned to a different letter.
Finally, remember that a separator bar is automatically placed between the custom
menu items and the predefined menu items, so it is not necessary to add one as the
last item. However, doing so will not make any difference because the context
menu’s AutoLineReduction property is set to maAutomatic (refer to the C++Builder
online help for further details).

The PrepareItem() Method
This method, new to C++Builder, need not be implemented, and in fact it generally
isn’t. What it offers is the option to customize each menu item further. Most
notably, it allows custom rendering of a menu item, the capability to disable the
menu item (Enable = false), the capability to hide the menu item (Visible = false),
and the capability to add submenu items. This is possible because PrepareItem() has
two parameters. The first, Index, serves the same purpose as it does in the preceding
context menu functions, namely to indicate which menu item the function call
refers to. However, the second parameter is a pointer to the menu item (TMenuItem)
that will be used to represent the menu item in the context menu. This gives you
access to all the facilities that TMenuItem offers. There is a catch, however: The pointer
is to const TMenuItem, so it is not possible to modify the menu item through the
pointer passed. Instead, a non-const pointer of type TMenuItem should be pointed to
the same menu item and the menu item modified through that pointer. For
example, maintaining continuity with our previous examples, to custom render the
second menu item (the copyright item), we would write the code in Listing 5.22.

LISTING 5.22 Basic Code for the PrepareItem() Method

void __fastcall TMyCustomEditor::PrepareItem

(int Index, const Menus::TMenuItem* AItem)

{

switch(Index)

{

case 0 : break;

case 1 :

{

TMenuItem* MenuItem = const_cast<TMenuItem*>(AItem);

Creating Custom Component Editors 361

07 0672324806 CH05 12/12/02 2:42 PM Page 361

// Now that we have a pointer we can do what we like

// For example:

// 1. To Disable the menu item write -

// MenuItem->Enabled = false;

// 2. To Hide the menu item write –

// MenuItem->Visible = false;

// 3. To add a bitmap to the menu item write –

// MenuItem->Bitmap->LoadFromResourceName

// (reinterpret_cast<int>(HInstance),

// “BITMAPNAME”);

// or any other stuff, for example assign an event handler

// or even add menu sub-items...

}

break;

case 2 : break;

case 3 : break;

default : break;

}

}

Pay particular attention to this line:

TMenuItem* MenuItem = const_cast<TMenuItem*>(AItem);

This is where we obtain the pointer with which we can edit the TMenuItem. Also note
the third example of adding a bitmap to the menu item:

MenuItem->Bitmap->LoadFromResourceName(reinterpret_cast<int>(HInstance),

“BITMAPNAME”);

This assumes that a resource file has been imported into the package that contains
an image called BITMAPNAME. Otherwise, MenuItem will be unable to load the image. Not
being able to load the image is quite disastrous: The IDE will crash, so make sure
your names are right. Note also that reinterpret_cast is used to cast HInstance of type
void* to type int, as expected by the LoadFromResourceName member function.

Adding Custom Event Handlers to Context Menu Items
Adding custom event handlers to custom menu items involves a two-step process.

First, the required event handler must be written as a member function of the
component editor class. Its signature must match exactly that of the event it is to
handle. Second, when the PrepareItem() function is called and the non-const

CHAPTER 5 Creating Property and Component Editors362

LISTING 5.22 Continued

07 0672324806 CH05 12/12/02 2:42 PM Page 362

MenuItem pointer is obtained, the handler member function can be equated to the
appropriate MenuItem event. For example, to create a custom event handler for the
menu item’s OnAdvancedDrawItem event, declare a function with a name such as
AdvancedDrawMenuItem1() (because it refers to MenuItem 1) with the same parameters as
OnAdvancedDrawItem in the component editor’s class definition. You will probably want
to make it protected and virtual, just in case you want to derive another class from
this one. The code appearing in the class definition is as follows:

protected:

virtual void __fastcall AdvancedDrawMenuItem1(System::TObject* Sender,

Graphics::TCanvas* ACanvas,

const TRect& ARect,

TOwnerDrawState State);

The empty implementation for this would be

virtual void __fastcall

TMyCustomEditor::AdvancedDrawMenuItem1(System::TObject* Sender,

Graphics::TCanvas* ACanvas,

const TRect& ARect,

TOwnerDrawState State)

{

// Custom rendering code here

}

The second stage, to ensure that our event handler is called for this menu item, is to
set MenuItem’s OnAdvancedDrawItem event to this one. Add the following line of code to
that shown previously in Listing 5.22 (after MenuItem is obtained):

MenuItem->OnAdvancedDrawItem = AdvancedDrawMenuItem1;

Now, each time OnAdvancedDrawItem() is called, our custom rendering code will be
executed. The remaining TMenuItem events can also be overridden: OnMeasureItem,
OnDrawItem, and OnClick; removing the need for code in the ExecuteVerb() method for
this item. However, this is not advised because ExecuteVerb() conveniently centralizes
the code associated with clicking the context menu. That leaves only the
OnMeasureItem and OnDrawItem events. Essentially, OnDrawItem is a simpler (and older)
version of OnAdvancedDrawItem. It is called less often and contains less information.
Use the OnAdvancedDrawItem instead. However, OnMeasureItem is a useful event that
enables the size of the menu item as it appears in the context menu to be modified.
The code required in the class definition for this event is as follows:

protected:

virtual void __fastcall MeasureMenuItem1(System::TObject* Sender,

Creating Custom Component Editors 363

07 0672324806 CH05 12/12/02 2:42 PM Page 363

Graphics::TCanvas* ACanvas,

int& Width,

int& Height);

A typical implementation for this would be

virtual void __fastcall

TMyCustomEditor::MeasureMenuItem1(System::TObject* Sender,

Graphics::TCanvas* ACanvas,

int& Width,

int& Height)

{

Width = x - Height; // Where x is the required width subtracting Height

// allows for Flip Children’s sub-menu arrow

Height = y; // Where y is the required height

}

Adding the line of code that follows to the PrepareItem() method in Listing 5.22 in
the correct section for this item ensures the event will be called:

MenuItem->OnMeasureItem = MeasureMenuItem1;

One thing to remember is that modifying Width will have an effect on the size of the
menu item only if it is bigger than the current context menu width, which is most
likely controlled by other context menu items. In other words, the current context
menu width will be equal to the width of the widest item. Notice that if a value is
assigned to Width, perhaps because an image is going to be drawn inside the menu
item, the value that should be assigned will be the desired width minus the default
height. The reason for this is to allow for the submenu arrow symbol for the IDE’s
menu item Flip Children. See Figure 5.8.

CHAPTER 5 Creating Property and Component Editors364

FIGURE 5.8 Cropped view of the TImageComponentEditor context menu, showing
height and width.

07 0672324806 CH05 12/12/02 2:42 PM Page 364

The width required for the submenu arrow symbol is equal to the default Height of
the Flip Children menu item. This value is added to any Width value that you specify,
so to prevent having an unpainted strip down the right side of your context menu
item, you must account for it by subtracting it from the width that you specify.
Modifying the Height parameter will always have an effect on the height of the menu
item, and setting it to 0 will make the item disappear.

The motivation behind defining your own custom event handlers for any of the
menu items is so that the rendering of the item can be customized. There is
increased scope for this with the new OnAdvancedDrawItem event. The TOwnerDrawState
Set variable gives a lot of information about the current state of the item. For
example, if the menu item is selected, State will contain odSelected, allowing code
such as this to be placed in the event handler:

if(State.Contains(odSelected))

{

// Draw the item with a clRed background

}

else

{

// Draw the item with a clBtnFace background

}

Remember when you assign a handler to either OnAdvancedDrawItem or OnDrawItem that
you are responsible for the entire rendering process, including displaying the text on
the item’s canvas. You will need to use the TextRect method of TCanvas to do so. For
more information on this, refer to the “Using Images in Property Editors” section
earlier in this chapter or to the C++Builder online help. An example custom compo-
nent editor (TImageComponentEditor) that handles the OnAdvancedDrawItem and
OnMeasureItem events for editing the TImage class is shown in Figure 5.9. The compo-
nent editor also implements both Copy to Clipboard and Paste from Clipboard
methods.

The possibilities offered by customizing the menu items using these events are
endless. For example, it is possible to place your company logo as an image on one
of the menu items or make all your custom menu items appear larger with a nicer
background, making them stand out from the IDE-defined items. Incidentally, if you
place menu items that perform no function, consider placing them after those that
do. It can be very irritating after right-clicking a component to have to study the
menu for the item needed, especially if it is a common operation. Normally, items
used most often should be placed first in the menu.

Creating Custom Component Editors 365

07 0672324806 CH05 12/12/02 2:42 PM Page 365

FIGURE 5.9 The context menu for TImageComponentEditor.

Adding Submenu Items to Context Menu Items
Adding submenu items (which are TMenuItems themselves) to a custom context menu
item requires that you create the submenu items that you want to add at runtime.
The submenu items are then added to the appropriate menu item using the Add()
method. Typically, more than one submenu will be added, and the Add() method is
overloaded to accept an array of TMenuItems as well as single TMenuItems. Because the
added submenu items are also of type TMenuItem, they have all the functionality of
MenuItem and can be similarly customized. As an example, code to add submenu
items to the second menu item will be shown (remember that the index is zero-
based). The number added is arbitrary; this could be made a static const value in the
component editor class, for example. A symbolic name, NoOfSubMenusForItem1, is used
in the code snippets for greater clarity.

First, the submenu items must be declared. If more than one submenu is required (as
is the requirement here), it is simplest to declare an array of pointers to TMenuItems.
We must be able to access the submenu items throughout our component editor
class, so we’ll declare the pointer array as a private variable in the class definition:

TMenuItem* SubMenuItemsFor1[NoOfSubMenusForItem1];

The submenu items must be constructed. A good place to do this is in the compo-
nent editor’s constructor. Currently, the constructor is empty and inline. It needs to
be changed in both the class definition and the class implementation. The code
required is

CHAPTER 5 Creating Property and Component Editors366

07 0672324806 CH05 12/12/02 2:42 PM Page 366

// In “MyCustomEditor.h” change the constructor declaration to

// the following and remove the surrounding #pragma option push

// and pop directives

__fastcall virtual TCustomComponentEditor(Classes::TComponent* AComponent,

_DesignIntf::di_IDesigner ADesigner);

// The implementation for the constructor becomes:

__fastcall TCustomComponentEditor::

TCustomComponentEditor(Classes::TComponent* AComponent,

_DesignIntf::di_IDesigner ADesigner)

: TComponentEditor(AComponent, ADesigner)

{

for(int i=0; i<NoOfSubMenusForItem1; ++i)

{

SubMenuItemsFor1[i] = new TMenuItem(Application);

SubMenuItemsFor1[i]->Caption.sprintf(“Sub-Menu %d”, i);

// Other Sub-Menu initialisation

}

// Other Sub-Menu initialisation

}

If the submenus are created in the component editor’s constructor, they should be
deleted in the component editor’s destructor. It is also currently empty and inline, so
it must be changed as the constructor was. The code required is

// In “MyCustomEditor.h” change the destructor declaration to

// the following and remove the surrounding #pragma option push

// and pop directives

__fastcall virtual ~TCustomComponentEditor(void);

// The implementation for the destructor becomes:

__fastcall TCustomComponentEditor::~TCustomComponentEditor(void)

{

for(int i=0; i<NoOfSubMenusForItem1; ++i)

{

delete SubMenuItemsFor1[i];

}

}

Creating Custom Component Editors 367

07 0672324806 CH05 12/12/02 2:42 PM Page 367

With the code in place, it is trivial to add the submenus to menu item 1. Looking
back to Listing 5.22, an implementation of the PrepareItem() method, we simply add
the following line of code after the non-const pointer MenuItem is obtained:

MenuItem->Add(SubMenuItemsFor1, NoOfSubMenuItemsFor1-1);

From here the submenus can be used as any other menu items on the context menu.

WARNING

Be careful not to assign code to a menu item with submenus in the ExecuteVerb() method.
This can have unpredictable results.

The ExecuteVerb() Method
The ExecuteVerb() method is used to place the code that should be executed when
one of the custom context menu items is clicked. The basic structure is the same as
that for the GetVerb() method; that is, the code is wrapped inside a switch statement.
Sample code is as follows:

void __fastcall TMyCustomEditor::ExecuteVerb(int Index)

{

switch(Index)

{

case 0 : EditComponet();

break;

case 1 : break; // Do nothing - copyright info

case 2 : break; // Do nothing - Separator line

case 3 : // Do something else ...

break;

default : break;

}

}

This shows the basic structure required to implement the ExecuteVerb() method.
Typically, a menu item will show a dialog when it is clicked, unless the item is there
as a line separator or to present textual or graphical information. To that end, the
code that should be placed here depends very much on the features of the compo-
nent being edited. In our example, clicking the first menu item should invoke a form
through which to edit the component. This is typical and the most useful for users.
The code needed is identical to that shown previously for the Edit() method. If the
component editor is derived from TComponentEditor, and the Edit() method already
contains the code required to show the component editor form, it makes sense not

CHAPTER 5 Creating Property and Component Editors368

07 0672324806 CH05 12/12/02 2:42 PM Page 368

to repeat that code. The best approach is to place the necessary code in a separate
function, in this case EditComponent(), and call that function in both the
ExecuteVerb() and Edit() methods. In fact, if the first menu item is used for this
function, you need only ensure that the code is called from the ExecuteVerb()
method. This is because TComponentEditor already implements the Edit() method to
execute the code associated with the first menu item. Consequently, the Edit()
method need not be overridden. Regardless of whether code is duplicated, if the code
required to invoke a dialog is complex, it is better placed in a separate function.

All the necessary information regarding displaying forms has already been presented,
and you are referred there for further information. The fourth method has been left
undefined. Depending on the component, it could be anything. However, in all
probability it will display a form to the user. The code presented previously for the
Edit() method will also be applicable in this situation.

The Copy() Method
The Copy() method is used to copy additional Clipboard formats to the Clipboard, to
allow additional functionality that users might expect or find especially useful. This
might be something such as the capability to copy an image in a TImage component
to the Clipboard so that it can be pasted into a graphics package. The code required
to implement this method depends entirely on what data is to be copied, making
the implementation of this method highly variable. Therefore, it will not be dwelled
on. The principles are shown in the following sample code, which allows an image
from a TImage component to be copied to the Clipboard.

#include “Clipbrd.hpp”

void __fastcall TImageComponentEditor::Copy(void)

{

// Step 1 : Obtain a suitable pointer to the component

TImage* Image = dynamic_cast<TImage*>(Component);

// Step 2 : If successful then proceed

if(Image)

{

// Step 3 : Obtain the required data in a format the

// clipboard will recognize

WORD AFormat;

unsigned AData;

HPALETTE APalette;

Creating Custom Component Editors 369

07 0672324806 CH05 12/12/02 2:42 PM Page 369

Image->Picture->SaveToClipboardFormat(AFormat, AData, APalette);

// Step 4 : Obtain a pointer to the global instance

// of the clipboard

TClipboard* TheClipboard = Clipboard();

// Step 5 : Copy the data to the clipboard

TheClipboard->SetAsHandle(AFormat, AData);

}

}

The first stage is straightforward. A suitable pointer is obtained by dynamic_casting
the TComponent pointer returned by TComponentEditor’s Component property. If this
doesn’t work, something is wrong. The second stage involves presenting the data in
a way that the Clipboard will recognize. The data formats that the Clipboard
supports are listed in the online help (it is also possible to register custom Clipboard
formats; however, this is beyond the scope of this discussion). After this is done, a
pointer to the global instance of the Clipboard is obtained. Calling the global
Clipboard() function returns this pointer. A new instance of TClipboard should not be
created. Finally, the data can be copied to the Clipboard. A simpler implementation
of the function is as follows:

void __fastcall TImageComponentEditor::Copy(void)

{

TImage* Image = dynamic_cast<TImage*>(Component);

if(Image)

{

Clipboard()->Assign(Image->Picture);

}

}

The more complex approach was shown because it is more general, and the tech-
niques are transferable to other copy operations.

It is important to note that this Copy() function does not interfere with the IDE’s
copying and pasting of components on forms using the normal menu and key short-
cut methods. This function offers additional copying capabilities and must be
invoked manually. It could, therefore, be placed as a menu item on the component’s
context menu. It is also perfectly conceivable that a Paste() method be defined and
implemented. The definition for such a method would be

virtual void __fastcall Paste(void);

CHAPTER 5 Creating Property and Component Editors370

07 0672324806 CH05 12/12/02 2:42 PM Page 370

The corresponding implementation is

void __fastcall TImageComponentEditor::Paste(void)

{

TImage* Image = dynamic_cast<TImage*>(Component);

if(Image)

{

Image->Picture->Assign(Clipboard());

}

}

Registering Component Editors
Registering component editors uses RegisterComponentEditor() and is straightforward.
Its declaration is

extern PACKAGE void __fastcall

RegisterComponentEditor(TMetaClass* ComponentClass,

TMetaClass* ComponentEditor);

This must be called inside the package’s Register() function. Only two parameters
are required. Both parameters will be TObject descendants, so the __classid operator
can be used to obtain a TMetaClass pointer for each. The first parameter is the
component class for which the component editor is to be registered. The second
parameter is the component editor class itself. For example, to register a custom
TImage component editor called TImageComponentEditor, you would write the
following:

RegisterComponentEditor(__classid(TImage),

__classid(TImageComponentEditor));

Component editors are like property editors in that they are used from newest to
oldest. As a result, it is possible to override existing component editors in preference
to custom component editors offering greater capabilities.

Also as with property editors, it is possible to register component editor packages
without components. This has been done with the TImageComponentEditor component
editor discussed previously. It is included in the package containing the enhanced
property editors developed in the “Using Images in Property Editors” section, earlier
in this chapter.

Registering Component Editors 371

07 0672324806 CH05 12/12/02 2:42 PM Page 371

Summary
This chapter’s aim was to cover the main concerns and techniques associated with
the development of a component’s design time interface.

Creating property and component editors can be tricky, and many of the methods
required can easily be misunderstood. But, when you understand how to override
important methods of TPropertyEditor in your custom property editor class, you can
create property editors that can handle any level of complexity. These include
GetAttributes(), GetValue(), SetValue(), and Edit().

The same is true for ComponentEditors, where overriding GetVerbCount(), GetVerb(),
PrepareItem(), ExecuteVerb(), Edit(), EditProperty(), and Copy() enables you to
provide the necessary information to the IDE, so it can support the design time
needs of component editing.

The ability to create property and component editors makes it possible for you to
create components that are easy to use, even when they are complex.

CHAPTER 5 Creating Property and Component Editors372

07 0672324806 CH05 12/12/02 2:42 PM Page 372

PART II

Database Programming

IN THIS PART

6 Borland Database Component Architecture

7 Database Programming

8 The Borland Database Engine

9 Client Datasets and Client Dataset Enhancements

10 Interbase Express

11 ADO Express Components for C++ Builder

12 Data Access with dbExpress

13 XML Document Programming with XML Mapper

08 0672324806 PTII 12/12/02 2:41 PM Page 373

08 0672324806 PTII 12/12/02 2:41 PM Page 374

IN THIS CHAPTER

• Borland Database
Component Types Overview

• The Borland Database Engine

• BDE Single-Tier and dbGo

• BDE/SQL Links, IBExpress,
dbExpress, and dbGo (Two-
Tier)

• DataSnap Distributed
Databases (Multitier)

6

Borland Database
Component Architecture

C++Builder and the VCL were specifically designed to
make it easy to create elegant and functional database
systems of any scale, and to make those systems easily
maintainable. In this chapter you’ll be introduced to the
components available to be used for building database
applications with C++Builder.

Borland Database Component Types
Overview

This section offers an overview of the component sets
offered by Borland for database applications.

Component Sets
Borland provides a variety of component sets for accessing
databases.

• BDE—The Borland Database Engine components are
the original component set provided for Borland
products. It connects programs with the Borland
Database Engine and its database drivers. The BDE
provides a common abstraction layer across a variety
of database management systems (DBMS) (for more
information on these components, see Chapter 8,
“The Borland Database Engine.”)

• Interbase Express (IBExpress)—Components very
similar to the BDE component set, which are opti-
mized for Borland’s Open Source DBMS—Interbase,
and which don’t require the BDE to be installed on
the client system (for more information on these
components, see Chapter 10, “Interbase Express
Component Overview.”)

09 0672324806 CH06 12/12/02 2:39 PM Page 375

• dbExpress—A lightweight component set with lightweight drivers for widely
used client-server databases—no BDE required. (for more information on these
components, see Chapter 12, “Data Access with dbExpress.”)

• dbGo—A component set known as ADO Express prior to C++Builder 6. These
components provide an interface to Microsoft’s ActiveX Data Objects database
drivers (usually referred to as providers). Although dbGo doesn’t need the BDE,
it also cannot be run under Linux, and, therefore, shouldn’t be used in CLX
applications. (for more information on these components, see Chapter 11,
“ADO Express Components for C++Builder.”)

Database components are only as good as their user interface counterparts. Almost
every conventional user interface component has a “data aware” counterpart, which
can be hooked to a TDataSource. TDataSource components can connect to TDataSet
descendants, which, for all of the component sets, are the basic data access compo-
nents they provide.

Figure 6.1 shows the relationships between these major component subsets in the
UML (Unified Modeling Language) notation.

CHAPTER 6 Borland Database Component Architecture376

TCustomConnection and descendants

TDataSet and descendants TDataSource Data Aware Controls

Windows and CLX Controls

FIGURE 6.1 The major data components and their relationships.

In this diagram, the arrow with the diamond indicates that components at the
diamond end reference an instance of a component from the other end. The arrow
indicates a group of components that are derived from the group of components at
the arrow end.

Figure 6.2 shows the UML notation for how each component set specializes the
TCustomConnection class to provide a connection optimized for the database access
model provided by each specific component set.

In Figure 6.3 you can see the TDataSet descendants for each component class.

09 0672324806 CH06 12/12/02 2:39 PM Page 376

FIGURE 6.2 The connection components and their relationships.

Subsequent chapters will discuss this in some detail, but first, an overview.

The Borland Database Engine
The Borland Database Engine (BDE) is a layer directly beneath the VCL.
Inprise/Borland created it to allow various database formats to work seamlessly with
the VCL. The supported formats are ASCII delimited (text), xBase, Paradox, relational
model (also known as SQL/remote databases), and Open Database Connectivity
(ODBC). Note that ODBC leaves the door open for any other format (Access, for
instance). The first three are handled directly and are, therefore, BDE-native formats.
The others are handled through an additional layer.

As you can see, the BDE enables you to use very different database formats without
having to purchase and learn new components. In fact, it is often effortless to use
different database management systems without changes to the application.

Furthermore, the BDE hides the complexity of many powerful features such as trans-
actions, cached updates, and XML support. The bottom line is that it enables you to
concentrate on what data to fetch instead of how to fetch it.

The BDE also abstracts the complexity of connecting to a database by allowing BDE
components in the VCL to simply reference an alias. The alias is a name established
by the developer or installer by using the BDE administration tool (bdeadmin32.exe) to
associate the name with a database driver and its settings, including those that iden-
tify the location of the database itself.

As can be expected, there is a price to pay. The BDE can be expensive in terms of
memory and disk space. However, all C++Builder and Delphi applications share
the BDE.

The Borland Database Engine 377

TCustomConnection

TDatabase

BDE

TADOConnection

dbGo

TSQLConnection

dbExpress

TIBDatabase

IBExpress

09 0672324806 CH06 12/12/02 2:39 PM Page 377

FIGURE 6.3 The TDataSet descendant components and their relationships.

Accessing data through the BDE is standard when using C++Builder. All the database
and data-aware components included with the product are designed for it. This is
true for single-tier, two-tier, and even multitier architectures.

Note, however, that Borland has essentially frozen the BDE and is planning to phase
it out eventually.

CHAPTER 6 Borland Database Component Architecture378

TTable

TADOTable TADOQuery

TQuery

BDE

dbGo

BDE

TSQLTable TSQLQuery

TCustomCachedClientDataSet

TBDEClientDataSet

dbExpress

TSQLClientDataSet

IBExpress

TIBClientDataSet

TClientDataSet

dbExpress

TDataSet

TIBTable TIBQuery

IBExpress

TCustomClientDataSet

09 0672324806 CH06 12/12/02 2:39 PM Page 378

BDE Single-Tier and dbGo
Borland has always enjoyed an outstanding reputation for its compilers and has been
a leader in providing single-tier database engines for the PC. The BDE integrates
many of the database engines Borland owns, so it provides native access to these
various formats. They are ASCII delimited (text flat-file), xBase (dBase, Clipper, and
FoxPro), as well as Paradox. You can also use a client-only installation of Interbase
with the BDE in a single-tier configuration.

dbGo also provides access to these types of databases; usually, through ODBC (Open
Database Connectivity) drivers. And, of course, dbGo only works with Windows.

These components and drivers are great for small programs where performance and
price are more important than database-engine power or data security and integrity.

BDE/SQL Links, IBExpress, dbExpress, and dbGo
(Two-Tier)

The BDE deals with client-server relational databases through an additional layer
called SQL Links. You can think of it as a translator between the BDE API and the
database engine’s API (the SQL Links modules are often called drivers). The
Enterprise version includes SQL Links for Oracle, SQL Server, DB2, and InterBase.
The Professional version includes only SQL Links for InterBase.

This is also called a two-tier architecture, and it is one of the most popular for tradi-
tional database applications. It provides the most power, flexibility, and integration
for the price without adding the extra complexities of a multitier architecture.

Interbase is usually a client-server database, so the IBExpress components can be
used as part of a client-server installation.

This is also true for the dbExpress components, whose drivers provide access to
Interbase, DB2, Oracle, MySQL, and Informix.

ADO components in dbGo can also use client-server providers or ODBC drivers for
client-server databases.

DataSnap Distributed Databases (Multitier)
Distributed applications are also referred to as multitier applications. This means that
the program is split in two or more pieces that might reside on separate servers.
These pieces communicate using CORBA, DCOM, or HTTP. CORBA is open, multi-
platform, and considered easy to use, but it must be purchased separately. DCOM is
from Microsoft and is for Windows only. HTTP is open and multiplatform, but it is
less powerful and, therefore, has more limited use. DataSnap, formerly called MIDAS,

DataSnap Distributed Databases (Multitier) 379

09 0672324806 CH06 12/12/02 2:39 PM Page 379

is covered in Chapter 20, “Distributed Databases with DataSnap.” DataSnap provides
the mechanism for spreading your database applications across multiple servers.

The standard multitier model allows an application with a specific task to use other
program parts residing on other servers. This is so that the business logic can be
encapsulated and shared between any number of applications. As you can imagine,
there are many benefits in terms of data integrity, logistics, and maintenance (to
name a few).

This is also the architecture of choice if your project requires the thin-client model.
This is when only the interface part of the program runs on the client computer. All
the application logic and business rules are on another server. This is ideal for low-
bandwidth networks (such as the Internet), for network computers, when centralized
processing is required, or when the interface must run on many different operating
systems.

Another model is also supported by the multitier components—it’s called briefcase. It
enables the client part of the application to work even when it is not connected to
the network. The trick is that the components can use a cached copy of the data in a
local flat file. As a result, users can get the data they need from the server and take it
on the road or home with them. In this model, the client-side must also contain the
application logic and some business rules. When the mobile user returns, changes
can be automatically reconciled between the two separate databases, but such recon-
ciliation sometimes requires someone to identify the appropriate result of contradic-
tory changes.

The Remote Data Modules that Borland provides as part of DataSnap can use BDE
components, or any of the other component sets listed here.

NOTE

Sources for More Information on Borland’s Database Architectures are

Borland C++Builder 5 Developer’s Guide (the manual provided with C++Builder), Inprise
Corporation: Chapters 13–15, Chapter 23, and Chapter 25

Calvert, Charlie, Accessing Databases Using ADO and Delphi, Borland Community Web
site, http://community.borland.com/soapbox/techvoyage/article/
1,1795,10270,00.html

Cantù, Marco, Data Access Dilemma, Borland Community Web site, http://
community.borland.com/article/0,1410,20191,00.html

CHAPTER 6 Borland Database Component Architecture380

09 0672324806 CH06 12/12/02 2:39 PM Page 380

Summary
As you have seen, C++Builder offers many features for the database system developer,
including

• Support for single-tier, client/server, and multitier architecture.

• Components that offer a range of data access options including BDE, ADO,
specialized lightweight drivers, and Interbase-specific options.

• Use of DataSnap to make remote access to multitier data simple and conve-
nient; a briefcase mode is also supported.

The component sets provided with C++Builder make it an ideal platform for large or
small database applications, regardless of which architecture you choose.

Summary 381

09 0672324806 CH06 12/12/02 2:39 PM Page 381

09 0672324806 CH06 12/12/02 2:39 PM Page 382

IN THIS CHAPTER

• What Are Data Modules?

• Why Use a Data Module?

• How to Use a Data Module in
Applications, DLLs, and
Distributed Objects

• What Goes in a Data Module?

• How to Add Properties to a
Data Module?

• How to Use the Data Module
Designer

• The Data Diagram Editor

• Advanced Concepts in Data
Module Usage

7

Database Programming

by Mark Cashman

C++Builder Data Modules are the fundamental basis for
implementing the nonvisual side of your C++ Builder
application. This chapter covers the fundamentals and styl-
istic elements of using Data Modules in your implementa-
tions.

The C++Builder Data Module Designer does for data
modules what the Form Designer does for visual forms—it
enables you to place, select, modify, delete, and edit
components in data modules. But what are data modules,
and how are they useful?

What Are Data Modules?
Data modules enable you to separate access to your data
(and to nonvisual components) from the user interface
presented by your forms. This offers an extremely powerful
and visually oriented way to create the nonvisual portions
of your systems, especially when coupled with the
C++Builder capabilities provided by form inheritance.

A data module is a special kind of form, with its own form
designer. Any nonvisual component can be dropped into a
data module from the Component Palette. Most often,
these are database-oriented components such as TTable,
Tquery, and TDataSource, but the data module is not limited
to those components. Components such as TTimer and
TActionList are also frequently found in data modules.

You can add data modules to the Object Repository, just
like forms, and you can copy or inherit from the data
modules you put in the repository—also just like forms.

10 0672324806 CH07 12/12/02 2:42 PM Page 383

Why Use a Data Module?
For a simple system, and especially when you are just starting with C++Builder, it is
sufficient to place nonvisual components, such as timers, queries, and data sources,
right on the form. But this clutters the form with components, and, as the system
grows, it is more difficult to manage these nonvisual components so that they stay
out of the way of the visual components. Data modules enable you to group those
components outside the user interface form, in a central location of their own.

In addition, you will notice as you develop new applications around a specific data-
base that you have to duplicate nonvisual database components in each separate
application. This fails to take advantage of the ability to reuse, which is such an
important feature of object-oriented programming.

Data modules, on the other hand, can be shared with multiple projects, either
directly, or through inheritance from the Object Repository; thus, your database
logic implementations can be easily reused to provide consistency across applica-
tions. Indeed, the same data module can be used in a form application, a DLL, a
COM object, a CORBA object, or a Web application, making data modules the ideal
home for core program logic.

You might find a need to use databases that are similar to each other, where one
database extends another in important ways. When you use data modules, you can
use form inheritance to create a data module for the basic features of the database,
and then create an extended data module that inherits from the ancestor data
module, but adds components, handlers, fields, and extends event handlers from the
base data module.

Data modules also offer the ability to encapsulate validation and referential integrity
logic outside the database—which can be a good idea even when a DBMS does offer
referential integrity support because it offers an extra layer of protection.

And, when used with MIDAS, a special form of data module—the Remote Data
Module (RDM)—enables you to use data modules as one or more middle-tiers in a
multitier distributed database system.

Finally, data modules can reflect your database design. If you use Entity-Relationship
style modeling or similar methods, each data module can be an entity from the
diagram. For example, the Order data module in Figure 7.1 (which represents an
Order entity) contains a table for the orders (called simply Table), a product table
(called Product) for all the valid products that can be associated with an order, and a
status table (called Status) for all of the valid status values an order can have.

You can, of course, have as many data modules as you have entities, and you can
link the tables within or across data modules in master/detail or other relation-
ships—even regardless of differences in underlying DBMS.

CHAPTER 7 Database Programming384

10 0672324806 CH07 12/12/02 2:42 PM Page 384

FIGURE 7.1 An Order data module.

This style of data module development allows for easily read notation, such as

OrderStatus = Order->Table->FieldByName(“Status”)->AsString;

and also makes it easy to reuse consistent names, as in the following:

OrderStatus = Order->Table->FieldByName(“Status”)->AsString;

AccountStatus = AccountStatus ->Table->FieldByName(“Status”)->AsString;

How to Use a Data Module in Applications, DLLs, and
Distributed Objects

Data modules are just like forms in the sense that they are encapsulated in their own
.h and .cpp files, that they have a .dfm file that describes the components in the data
module, and that they can reference other forms or data modules. Data modules can
be autocreated (see the list in Project, Options, or edit the project source using
Project, View Source), or can be created with the new operator (as in SomeDataModule =
new TSomeDataModule(Application)). A data module also has an owner that takes
responsibility for freeing it. This is typically the application, in which case your data
module will be automatically freed by the application when the application termi-
nates. It can also be a form (in which case the form automatically frees the data
module when the form is freed), a component (which will automatically free the
data module when it is freed), or even NULL (in which case you must make sure the
data module is freed by your own code, usually in a destructor because there is no
owner to perform that action automatically).

How to Use a Data Module in Applications, DLLs, and Distributed Objects 385

10 0672324806 CH07 12/12/02 2:42 PM Page 385

To use a data module with a form, you typically need only two steps:

• Make sure the data module will be created before any form that uses it (by
altering the order of creation in changing the project source or the autocreate
list, if needed). Of course, if the form is not autocreated, it can simply be
created with new as needed, and deleted as needed.

• Use File, Include Unit Hdr on the form that will use the data module to ensure
that the data module is #included in the form .cpp file.

Using a Data Module with a DLL, COM, or CORBA object is actually just as simple.

If you are using a data module with a DLL and need the data module to remain open
across calls to the DLL for the duration of time the DLL is loaded, you can open the
data module in the DllEntryPoint(). The code in Listing 7.1 shows how this works.

LISTING 7.1 Creating a Data Module in a DLL

#include <vcl.h>

#include <windows.h>

#pragma hdrstop

#include <Forms.hpp>

#include <TestDataModuleUnit.h>

#pragma argsused

String InternallyMaintainedResultString;

int WINAPI DllEntryPoint(HINSTANCE hinst, unsigned long reason, void*

➥lpReserved)

{

// This is called on every process attach,

// so make sure we need to initialize by checking the global variable...

if (TestDataModule == NULL)

{

Application->Initialize(); // This is essential

Application->CreateForm(__classid(TTestDataModule),&TestDataModule);

};

return 1;

}

CHAPTER 7 Database Programming386

10 0672324806 CH07 12/12/02 2:42 PM Page 386

Similar procedures can be followed for COM (the data module must be instantiated
in the DllEntryPoint() function of the generated Active Server Library) and CORBA.
In CORBA, the server is itself a data module, so it is very easy to use data module
techniques with CORBA.

For more on multitier and distributed programming, see Part IV, “Distributed
Computing.”

What Goes in a Data Module?
The basic data module is one that is used to contain datasets and data sources. This
simple use of the data module enables you to encapsulate database objects, persistent
fields, and event handlers for referential integrity, data validation, and the propaga-
tion of changes across database tables. The resulting data module can be used with
any user interface, as long as there are no references to controls on any specific form.
Thus, when committing to the use of data modules, you also must commit to the
use of data-aware controls in your user interfaces. In most cases, the existing data-
aware controls are sufficient, but you might also need to be prepared to create your
own data-aware control classes from nondata-aware control classes, through the use
of the TDataLink and related classes.

Data modules also often contain a TCustomConnection descendant for use either by the
data components in the data module or by other data module data components.

The next type of data module contains nondatabase controls—controls such as
timers, custom nonvisual components, and so on. Developers often create special
custom components for things like registry access, access to devices such as the serial
and parallel ports, or to hardware modules. All of these components can also be at
home in the data module. This enables them to be shared across applications, just
like data components.

How to Add Properties to a Data Module?
As with all forms, data modules do not easily allow the addition of published proper-
ties. The best method for getting around this problem is to create a special TComponent
descendant with published properties that are the ones you would add to the data
module if you could. Such a component can then be manipulated, and its property
values set at design time or runtime. The component can be accessed by the code in
data module event handlers during program operation, or by forms that need to
make values (including pointers to controls) available to the data module without
having the data module be coupled to a specific form.

Naturally, you can also use public methods, variables, or properties, but then you
will be limited to setting values at runtime. This is more error prone and more diffi-
cult to verify because you cannot look at the component alone, but must also read

How to Add Properties to a Data Module? 387

10 0672324806 CH07 12/12/02 2:42 PM Page 387

the associated C++ statements in the .cpp file that uses the component. Nevertheless,
such methods have a place. For instance, you can have a user interface that needs to
register a control, such as a progress bar, with the data module. This cannot be done
at design time without coupling the data module to the form, so it must be done by
setting a public variable or property in your C++ code.

How to Use the Data Module Designer
The data module designer consists of two panes. To the left is a tree representation of
the components in the data module (such as datasets, data sources, and persistent
fields). To the right is a two-page interface. One page is for the components you drop
into the data module. The other page is for drawing data diagrams.

The Object Tree View and the Data Module Designer
The Data Module Designer window is where you drop your components. As you
work with your data module, spend some time making sure your components line
up with each other and are clustered together so that it is clear that they are related
to each other.

In versions of C++Builder prior to 6, there is a left pane that shows the components
in a tree-structured view. This allowed you to see the dependencies between data
components, such as TSession, TDatabase, TDataSet, TDataSource, and TField. In C++
Builder 6 and above, the Object Tree View, discussed in Chapters 1 and 2, is what
provides this capability, for a simple Data Module with a single table, as is shown in
Figure 7.2.

CHAPTER 7 Database Programming388

FIGURE 7.2 Component page and tree view.

10 0672324806 CH07 12/12/02 2:42 PM Page 388

You can see in the tree view that Table1 uses DBDEMOS as its alias. The persistent fields
for Table1 are also visible.

The Data Diagram Editor
Another way to view your data components is to use the Data Diagram page, which
is a subpage of the tab for the unit that represents the Data Module in the Source
Code Editor. This page is little known because its documentation is squirreled away
deep in the help. But a search in the Help index for Data Module Designer, followed
by double-clicking it, will give you a set of topics that include the Data Diagram
editor.

Figure 7.3 shows a sample diagram in that window.

The Data Diagram Editor 389

FIGURE 7.3 A data diagram.

This shows the table from the data module (added to the diagram by dragging it
from the tree view to the diagram view—note that this is the only way to add
components to the diagram), and its persistent fields. With a more complex data
module it can show their relationships (for instance, a lookup field and a
master/detail relationship are automatically generated in the diagram).

As you change components (adding or removing fields, changing properties, attach-
ing them to new data sources, or even deleting a component), those changes will be
reflected in the diagram—at least for the components that have been dragged into
the diagram.

10 0672324806 CH07 12/12/02 2:42 PM Page 389

Components can be removed from the diagram with Delete, and each object has a
pop-up menu that can be used for things like invoking the fields editor on a table or
running the SQL Explorer to see details about the table. Connections between
components also have a pop-up menu that can, among other things, be used to
remove the relationship represented by the connection.

Note that you are not limited to using data components in the diagram—components
such as TTimer and your own custom components can be dragged into the diagram.

The Data Diagram editor has several buttons on the top. From left to right, they are

• Select—Enables you to point at and select diagram objects.

• Comment—The yellow comment block enables you attach notes to any
diagram components. To edit the comment, simply double-click it and type.
Pressing Esc abandons any changes in progress. To complete the editing, just
click outside the comment.

• Allude Connector—Allows you to connect the comments to the relevant
components in the diagram. Drag between the comment and the component
receiving the comment or vice versa. Any number of components can share a
comment. A comment can also point to any number of components.

• Property Connector—Enables you to show a link between the property of one
component and the component that property references. If you use this
between two components not yet connected, the designer determines the
intended property assignment and automatically fills in the property with the
appropriate link. To use this, click the button and drag from the referencing
component to the referenced component.

• Master/Detail Connector—Enables you to connect two data sets in a
master/detail relationship. To use this, click the button and drag from the
master to the detail data set. The field link editor will appear and allow you to
specify the relationship.

• Lookup Connector—Enables you to set up a lookup field between two tables.
As with the Master/Detail, drag from the data set that will contain the lookup
field to the data set that contains the data to be looked up. The lookup field
editor dialog will appear and allow you to specify the lookup field.

Unfortunately, you cannot zoom out of a Data Diagram to see it as a whole.
However, you can print it, and you can scroll around in it as needed.

Finally, note that the data diagram does not participate in form inheritance, so when
you create a descendant data module, you do not get a copy of the ancestor’s
diagram. That means you must either recreate the diagram in the descendant or only
document the descendant’s components.

CHAPTER 7 Database Programming390

10 0672324806 CH07 12/12/02 2:42 PM Page 390

Advanced Concepts in Data Module Usage
After you get beyond using basic data modules, there are a number of advanced
design and development techniques that are available to you. These include the
following:

• Using specialized objects and event handlers to encapsulate application logic.

• Keeping data modules and user interfaces separate with data awareness and
interface objects.

• Using form inheritance to create trees of related data modules.

• Dealing with special issues of making sure linked components are found by
other data modules and forms when they are using a data module that is a
form-inheritance descendant, and when they refer to components in the
ancestor.

• Using data modules in packages.

Form Inheritance with Data Modules
Form inheritance works with data modules as it does with regular forms. Simply add
a data module to the repository, and you can then use File, New to use the data
module in a project (Use), create a copy in the current project (Copy), or create a
descendant (Inherit) of the data module. Figure 7.4 shows the File, New dialog.

Advanced Concepts in Data Module Usage 391

FIGURE 7.4 File, New inheriting from a data module previously added to the
repository.

Of the three ways to use data modules from the repository, Inherit is by far the
most useful. With it, you can extend the capabilities of a data module by adding

10 0672324806 CH07 12/12/02 2:42 PM Page 391

components, adding fields, adding or extending event handlers, or changing proper-
ties. (Note that you cannot remove a component derived from the ancestor.)

Data Module form inheritance can be used for several different purposes:

• Avoid commitment to a specific set of data set components by creating a base
data module with only data sources. Link forms to the data sources in the base
data module. Then, add actual data sets to the descendant. You can use this
technique to create a data module that supports both ADO and BDE compo-
nents. Note that you will need to create event handling member functions in
the base class that can be called by the descendants to implement the event
handling. The descendant data module actual event handlers can then call
these functions.

• Add capabilities to a data module to support a variety of product lines. The
core product can be supported with the base data module, and the descendants
can support capabilities added to that core product, including additional tables,
fields, and processing.

• Create lookup and editing descendants of the base data module. The editing
descendant can offer event handlers for validation of persistent fields and to
perform actions when data is changed. The lookup descendant can have data
sets with the same names to satisfy lookup fields and Locate() operations.

Handling Uneven Form Inheritance with Data Modules
When using form inheritance with data modules, there are several important
elements to keep in mind. First, if you intend to use a descendant data module with
a base class form that refers to the data module ancestor, you need to make it possi-
ble for the runtime component lookup system to find the descendant when it is
actually looking for the base data module. This can be handled by code similar to
Listing 7.2, where the base classes are Base1 and Base2 and the descendant classes are
Descendant1 and Descendant2.

LISTING 7.2 Helping C++Builder Find Inherited Data Modules at Runtime

TFindGlobalComponent OldFindGlobalComponent;

TComponent* __fastcall FindGlobalComponentExtended

(const System::AnsiString Name)

{

if (Name == “Base1”) return (TComponent *) (Base1 *) Descendant1;

if (Name == “Base2”) return (TComponent *) (Base2 *) Descendant2;

return OldFindGlobalComponent(Name);

}

CHAPTER 7 Database Programming392

10 0672324806 CH07 12/12/02 2:42 PM Page 392

WINAPI WinMain(HINSTANCE, HINSTANCE, LPSTR, int)

{

try

{

Application->Initialize();

OldFindGlobalComponent = FindGlobalComponent;

FindGlobalComponent = FindGlobalComponentExtended;

In addition, each data module’s constructor (base or descendant) must set the data
module global variable because the automatic initialization of that variable will not
occur in the ancestor. For instance, in Base1

Base1 = this;

and in Descendant1

Descendant1 = this;

How to Avoid Dependence on Specific User Interfaces
There are two ways to create data modules that avoid dependencies on specific user
interfaces. One, the most common and the safest, is to use data-aware controls for
that purpose. The second, which should only be used very carefully, involves making
available a variable, function, or property in the data module class definition that
the user interface can use to register a control with the data module. To safely imple-
ment the latter case, the constructor should set that reference to NULL, and every
reference to the control should be tested to verify that the pointer is not NULL. This
will enable the data module to work properly, even when there is no user interface,
or when the user interface does not contain a desired control.

How to Work with Application-Specific and Framework
Components in Data Modules
One important design strategy for working with data modules has to do with creat-
ing and using specialized generic and application-oriented components and their
event handlers to encapsulate application logic.

Most developers simply use the generic components that are part of the VCL or
third-party libraries. Event handlers, such as AfterPost(), are then used to enforce
application logic, such as forcing the refresh of related data sets when a new record
has been written.

Advanced Concepts in Data Module Usage 393

LISTING 7.2 Continued

10 0672324806 CH07 12/12/02 2:42 PM Page 393

But you can also create both generic and application-specific components with their
own event handlers and use those components to express complex application logic
in the context of a data module. For example, the generic nonvisual component
interface in Listing 7.3 offers a framework for undoable actions.

LISTING 7.3 An Application-Oriented, Generic, Nonvisual Component Interface

class TUndoableFramework: public TComponent

{

public:

void __fastcall (__closure *)

TExecuteHandler

(TUndoableFramework *theUndoableFramework);

void __fastcall (__closure *)

TRecordUndoHandler

(TUndoableFramework *theUndoableFramework);

void __fastcall (__closure *)

TUndoHandler

(TUndoableFramework *theUndoableFramework);

void __fastcall (__closure *)

TCleanupUndoHandler

(TUndoableFramework *theUndoableFramework);

private:

TExecuteHandler myToExecute;

TRecordUndoHandler myToRecordUndo;

TUndoHandler myToUndo;

TCleanupUndoHandler myToCleanupUndo;

protected:

virtual void __fastcall DoExecute(void);

virtual void __fastcall DoRecordUndo(void);

virtual void __fastcall DoUndo(void);

virtual void __fastcall DoCleanupUndo(void);

public:

virtual void __fastcall TUndoableFramework(void);

virtual void __fastcall ~TUndoableFramework(void);

virtual void __fastcall Execute(void);

// also invokes ToRecordUndo

virtual void __fastcall Undo(void);

virtual void __fastcall CleanupUndo(void);

__published:

__property TRecordUndoHandler ToRecordUndo =

{read=myToRecordUndo,write=myToRecordUndo};

__property TUndoHandler ToUndo =

CHAPTER 7 Database Programming394

10 0672324806 CH07 12/12/02 2:42 PM Page 394

{read=myToUndo,write=myToUndo};

__property TCleanupUndoHandler ToCleanupUndo =

{read=myToCleanupUndo,write=myToCleanupUndo};

};

This shows a component that provides event handlers for performing an action
(which invokes an additional handler to record the undo information as a side
effect); for undoing that action; and for cleaning up any special remnants of prepara-
tion for undo. For example, if undoing a delete actually involved changing the
marking on deleted records rather than deleting them, undo cleanup might include
performing a final, nonundoable delete of those records. It does not specify how to
perform those actions (which are managed by the handlers), only the available
actions and, in one case, constrains the order in which they can be performed.

Used in a data module, this component makes it easier to reflect the structure of a
system that involves undo. Descendants of the component class can offer specific
methods wrapping the calls to the handlers for executing, recording undo, undoing,
or cleaning up, or form inheritance can be used with the data module and handlers
can be augmented in the data module descendant. A combination of the two tech-
niques can be used—for example, a descendant can offer an event stack for recording
events, while descendants of the data module can augment the execution handler to
cope with additional requirements.

This is a generic nonvisual component for data module use, but you can also create
an application-specific nonvisual component for data module use. For example, the
interface to a component (shown in Listing 7.4) handles reservations. (Note that the
... indicates parts of the code not shown to keep the example brief.)

LISTING 7.4 A Completely Application-Specific Nonvisual Component

class TReservationDesk: public TComponent

{

…

public:

void __fastcall MakeReservation

(TReservation *theReservation);

void __fastcall UpdateReservation

(TReservation *theReservation);

void __fastcall RemoveReservation

(TReservation *theReservation);

__published:

__property TQuery *Reservations =

Advanced Concepts in Data Module Usage 395

LISTING 7.3 Continued

10 0672324806 CH07 12/12/02 2:42 PM Page 395

{read=myReservations,write=myReservations};

__property TAfterReservationAdded =

{read=myAfterReservationAdded,write=myAfterReservationAdded};

__property TBeforeReservationUpdated BeforeReservationUpdated…

__property TAfterReservationUpdated…

__property TBeforeReservationRemoved…

__property TAfterReservationRemoved…

};

This component offers the capability to use separate instances of the component for
different reservation tables (probably assuming a common field naming scheme),
and allows the developer to customize the component behavior with specific event
handlers keyed to the available member functions. Of course, such a component can
also be further specialized through its own inheritance tree, or its instances can be
specialized through the use of form inheritance.

Data Modules in Packages
Data modules, like forms, can be used in packages. However, a common problem
arises when you use the package modifier directly in the form class definition—in
that case, the data module suddenly looks like a regular form, and all of the data
module designer features disappear. This can be easily solved using the following
forward and actual definition:

class PACKAGE TMyDataModule;

class TMyDataModule…

Summary
Data modules are one of the most powerful features in C++Builder, second only to
components. A variety of design and implementation techniques can be used to take
advantage of data modules.

As you have seen, C++Builder offers database and nonvisual component visual
designers—data modules.

You can also use components in data modules to offer design time properties.

And you have seen that there are special data module–oriented patterns that can
make your work simpler and easier.

CHAPTER 7 Database Programming396

LISTING 7.4 Continued

10 0672324806 CH07 12/12/02 2:42 PM Page 396

IN THIS CHAPTER

• Introduction to the Borland
Database Engine (BDE)

• Component Overview

8

The Borland
Database Engine

by Mark Cashman

Of all the ways to access data through C++ Builder,
the Borland Database Engine (BDE) is one of the most
widespread. In addition, the architecture used for its
components remains the basis of almost every other
component set.

In this chapter you will learn about the capabilities of the
BDE and how they are accessed through BDE-based VCL
components.

Note that Borland has ceased development on the BDE,
and no new features or support for additional databases
will be added.

Introduction to the Borland Database
Engine (BDE)

The Borland Database Engine (BDE) is a language-
independent layer directly beneath the VCL. Borland
created it to allow various database formats to work
seamlessly with their programming tools.

Supported formats include

• Desktop databases: ASCII delimited (text), xBase,
Paradox

• Client/server databases: Oracle, Interbase, Sybase,
and others.

• Open Database Connectivity (ODBC): Note that
ODBC leaves the door open for many other formats
(Access, for instance) because, as a Microsoft stan-
dard, it has led to the creation of a wide variety
of drivers.

11 0672324806 CH08 12/12/02 2:39 PM Page 397

As you can see, the BDE enables you to use very different database formats without
having to purchase and learn new components. In fact, it is often effortless to use
different database engines with the same application. And a special feature of the
BDE, heterogeneous joins, enables you to join tables across different database
management systems—something still unavailable from any other commonly
available technology.

Furthermore, the BDE hides the complexity of many powerful features such as trans-
actions, cached updates, and XML. The bottom line is that it enables you to concen-
trate on what data to fetch instead of how to fetch it.

The BDE also abstracts the complexity of connecting to a database by allowing BDE
components in the VCL to simply reference an alias. The alias is a name established
by the developer or installer by using the BDE administration tool (bdeadmin32.exe) to
associate the name with a database driver and its settings, including those that iden-
tify the location of the database itself.

As can be expected, there is a price to pay. The BDE can seem expensive in terms of
memory and disk space. These issues might be less compelling, of course, as the
power of typical computers increases.

There are many different ways to use the BDE, including desktop (single tier),
client/server (two tier).

Single-Tier
This is great for small programs where performance and price are more important
than database-engine power or data security and integrity. Shared desktop databases
are not robust for multiuser access, but a single-user desktop database can add great
flexibility to a program at low cost.

Advantages
• Using any of these formats will yield the best performance while using

the VCL.

• Many of these formats are royalty free.

• xBase is a very popular format on PCs and is recognized by most applications
that allow importing.

• It is relatively easy to switch formats.

• There is no need to purchase and learn new components/libraries.

CHAPTER 8 The Borland Database Engine398

11 0672324806 CH08 12/12/02 2:39 PM Page 398

Disadvantages
• None of these formats provide good security or internal integrity. Use on a

network or in multiuser settings requires great care and is sometimes dangerous
because each application updates tables directly, and those updates are, there-
fore, capable of overwriting each other.

BDE/SQL Links (Client/Server)
This provides the most power, flexibility, and integration for the price without
adding the extra complexities of a multitier architecture.

Advantages
• All database engines (DBMS) supported by SQL Links use client/server

technology.

• All database engines supported by SQL Links are true relational databases.

• It is relatively easy to switch database engines.

• It performs better than ODBC.

Disadvantages
• Most of these database formats require royalties.

• SQL Links drivers are DBMS-specific and support only Oracle, Sybase, MS SQL
Server, Informix, DB2, Access, and InterBase.

• The BDE plus SQL Links puts two layers between the program and the database
engine, which can affect performance.

ODBC Using the BDE
Open Database Connectivity (ODBC) is a Microsoft initiative that has become an
industry-wide standard. Like SQL Links, you can think of it as a translator for DBMS
APIs. The difference is that any vendor can provide a driver for its database format to
become an ODBC data source. Thus, virtually all database engines have an ODBC
driver today.

ODBC achieves DBMS independence by inserting two layers before the database
engine. The first provides a standard API that applications can count on being
consistent. It is the ODBC client. The second is the driver that does the translation.

Introduction to the Borland Database Engine (BDE) 399

11 0672324806 CH08 12/12/02 2:39 PM Page 399

Advantages
• ODBC is an industry-wide standard.

• It can work with the BDE and no program changes are required when switch-
ing between native BDE, SQL Links, or ODBC drivers, which offers great
flexibility.

• It allows the same application to work with virtually any database, regardless of
its format (provided there is an ODBC driver for it).

• It can turn an otherwise single-tier application into a client/server application.

• There will be no need to purchase and learn new components/libraries.

Disadvantages
• The BDE and ODBC combined have large disk and memory requirements,

which can reduce performance. Furthermore, there are now three layers
between the program and the database engine.

• Some ODBC drivers are not robust. It is important to check the one you intend
to use before committing to this architecture.

• Upgrading is an issue. The application, the VCL, the BDE, the ODBC
manager/client, the ODBC driver, and the database engine must all be updated
independently.

Hedging Your Bets
It is a good idea to immediately create a thin layer between your system and the data
components you choose to use. You can do this by creating a descendant or facade
for each component you intend to use, and never using the raw components them-
selves in your system. You can then change the ancestor of the component, or the
type of its contained component, either directly or by conditional compilation, and
all the uses of the component will, hopefully without change, use the new compo-
nent set. If you must use specialized methods or properties of the underlying compo-
nents, try first to hide them in methods or properties of a more general nature in the
thin layer. If that cannot be done for some reason, bracket them with #ifdef, #else,
#endif commands keyed on a #define that identifies the underlying components
in use.

Component Overview
The BDE components form a cooperative framework within the data-aware compo-
nents of the VCL. And their design, being the first in the VCL, set the standard for
the other, subsequent component sets, as you will see in subsequent chapters.

CHAPTER 8 The Borland Database Engine400

11 0672324806 CH08 12/12/02 2:39 PM Page 400

Component Architecture
BDE components fall into several categories:

• Connection components: TSession, TDatabase

• Non-SQL data set component: TTable

• SQL data set component: TQuery

BDE components fit into the VCL through the standard data aware framework—that
is, data set components are linked to data sources, which are linked to data-aware
controls.

Connection Components
The BDE components connect with the BDE through two linked components—
TSession and TDatabase.

TSession is the representation of a database user or connection, and every thread in a
multithread program that wants to access a database needs one. Single-threaded
programs automatically get a default TSession object called Session, but you can also
drop a TSession object into a data module to use with a TDatabase object. Of course,
each TSession object typically uses up a database connection, which can be a
problem when your DBMS is licensed on a per connection basis.

If you use a TSession component, you must use a TDatabase component. As with
TSession, C++Builder automatically provides a default TDatabase object (which uses
the default TSession object). The default TDatabase, called Database, is the TDatabase
component used by TTable and TQuery objects that do not specify a particular
TDatabase object.

However, using a TDatabase component does not require use of a specific TSession
(except in a multithreaded program). Unless otherwise specified, TDatabase compo-
nents use the default TSession.

The TDatabase component typically refers to a DatabaseName or AliasName. The alias is
established in the BDE Administrator, which can be run from the Windows Control
Panel. A change to the alias can quickly switch from one database to another
without any change to your program—one of the particular advantages of the BDE.

To open a TSession, set Active to true or call Open(). To open a TDatabase, set
Connected to true. To close the TSession, call Close(). To close the database, set
Connected to false.

If the TDatabase is opened, its TSession will be opened. If the TSession is closed, all of
its databases will be closed. If the Database is closed, any database components (such
as TTable, described below) will be closed.

Component Overview 401

11 0672324806 CH08 12/12/02 2:39 PM Page 401

TTable—Non-SQL Dataset
TTable enables you to work with a database without knowing anything about the
SQL (Structured Query Language). All you need to do is specify the name of the data-
base alias (or the TDatabase object that represents the database in the program—take
your pick), and the name of the table.

You can create persistent field objects for TTable by right clicking the component and
picking the fields editor; then from the field editor, right click, and pick Add. Add all
the fields or just those you want.

If the table in the database has an index, you can pick that index in the IndexName
property of the TTable.

Naturally, a TTable can drive a TDBGrid or any other data-aware control, through a
TDataSource component.

TTable can be opened with Open() or by setting Active to true. It is closed with Close()
or by setting Active to false.

Adding and Editing Records in a TTable
TTable offers a very simple model for adding and changing records in a database
table. To insert a record, use the Append() function followed by setting field values as
needed; to edit the current record, use the Edit() function and follow by setting field
values as needed.

For either of these activities, the completion of the addition or edit is caused by a
call to Post(), which makes the change to the table effective.

For example:

Table1->Append();

Table1->FieldByName(“Somefield”)->AsString = “string of some sort”;

Table1->FieldByName(FieldNameInAVariable)->AsInteger = 3;

Table1->Post();

Transactions
The BDE supports transactions through the TDatabase component. Transactions have
a variety of characteristics, but the most important is that they protect the records
involved in a transaction from simultaneous changes, and they hide changes in
progress, even across tables, until they are complete.

The TDatabase component offers functions to

• StartTransaction()—Any subsequent Edit() or Append() will participate in this
transaction.

CHAPTER 8 The Borland Database Engine402

11 0672324806 CH08 12/12/02 2:39 PM Page 402

• Commit()—Make all the changes permanent and visible, and end the transaction.

• Rollback()—Undo all the changes which occurred under this transaction.

You can also set the degree to which changes made during a transaction are visible
to other users of the database, through the TransIsolation property.

One of the powerful aspects of this feature is its capability to use transactions with
desktop databases. Normally, transactions are only available for more powerful and
expensive client/server databases.

Master/Detail Tables
Many databases contain master/detail tables—for instance, a customer with orders,
or orders with a record for each order line. C++Builder makes it very easy to establish
such relationships between tables using the BDE.

The master table must have a TDataSource that is linked to it. Then, the detail table
must reference that component from its DataSource property. It also needs to specify
which field it contains and which fields from the master table need to match. For
instance, an order table might have a CUSTOMER_ID field that needs to match the
customer table ID field.

Both the master and the detail table linked TDataSource components can also be used
to link to TDBGrid or other data-aware components.

TQuery—SQL Dataset
SQL enables you to have much more control over your data set content than TTable.
You can select a subset of fields, you can join multiple tables, and you can even join
tables across different aliases, which can mean across different databases.

You code your SQL statement into the SQL property of the TQuery. As with TTable,
you need to provide a DatabaseName, which can be an alias or the name of a TDatabase
component.

Like TTable, TQuery can be opened with Open() or by setting Active to true. It can be
closed with Close() or by setting Active to false.

In addition to allowing you to specify a selection from one or more tables in a data-
base, you can use any other valid SQL statement in the SQL property—including
INSERT, UPDATE, DELETE, CREATE TABLE, and ALTER TABLE. However, you cannot use
Active = true or Open() for those types of SQL—instead, use the ExecSQL() function.

Finally, TQuery components, like TTable components, can participate in transactions.

Component Overview 403

11 0672324806 CH08 12/12/02 2:39 PM Page 403

TQuery Master/Detail
As with TTable, TQuery can participate in a master/detail relationship, but setting up
that relationship is a little more complex. First you need the normal basis for the
relationship—a common field between the two tables. You need to have a
TDataSource linked to the master TTable or TQuery (either can be used). But setting up
the relationship in a TQuery detail component is a little more complex because you
have to craft your SQL with a parameter string whose name matches the name of the
field from the master. Typically, this might look as follows:

SELECT * FROM ORDER WHERE CUSTOMER_ID = :ID

This assumes the master table is the previously mentioned customer table, with an
ID field named ID.

The BDE takes care of matching the type of the parameter, so if the ID were a string,
you would not have to write:

SELECT * FROM ORDER WHERE CUSTOMER_ID = ‘:ID’

In fact, if you do, you will experience an error, in the sense that the query will try to
find an order with a customer ID containing the string :ID—something that is
unlikely to be successful.

Parameters in General
Parameters are a powerful technique for driving TQuery components, and they are
not limited to master/detail relationships. You can establish a parameter and set it
from within your program. For instance, if you have a TEdit for entering an ID,
such as…

Query1->ParamByName(“ID”)->AsInteger = Edit1->Text.ToInt();

will set the query to use that as the parameter value.

When you reset a parameter such as this, it automatically closes the query, so you
need to follow this by setting Active = true or calling Open().

In this case, of course, you do not need a TDataSource to drive the TQuery.

Parameters are also useful in SQL statements other than SELECT; for instance, field
values for an INSERT or UPDATE can be provided.

Query1->SQL->Text = “INSERT INTO SOMETABLE(A,B,C) VALUES (:A,:B,:C)”;

Query1->ParamByName(“A”)->AsInteger = 34;

Query1->ParamByName(“B”)->AsString “Something else”;

Query1->ParamByName(“C”)->AsDouble = 564.32;

Query1->ExecSQL();

CHAPTER 8 The Borland Database Engine404

11 0672324806 CH08 12/12/02 2:39 PM Page 404

Constructing a Query in Your Program
Parameters only go so far—they are not a general macro facility. For instance, they
cannot appear as an attribute or table name, and cannot be used in any clause other
than the WHERE clause. But, because the SQL property is available to your program as
a TStringList, you can construct a query using values available in your program. For
instance, instead of a parameter for the ID, you might use…

Query1->SQL->Text =

“SELECT * FROM ORDER WHERE CUSTOMER_ID = ‘“ + IDEdit->Text + “‘“;

This can also be used for constructing a query for a variety of tables:

Query1->SQL->Text =

“SELECT * FROM “ + TableNameEdit->Text +

“ WHERE CUSTOMER_ID = ‘“ + IDEdit->Text + “‘“;

UpdateSQL and RequestLive
TQuery has one drawback—unlike TTable, it is not a component, where direct updates
of rows in the table are generally possible.

If a TQuery contains a simple SQL statement, the BDE can generally allow you to
update through the TQuery, just as you would with a TTable. This requires you to set
the TQuery property RequestLive to true. Setting RequestLive, however, is as the name
suggests, a request and does not guarantee success.

One way to ensure that a query can be updated is to use TUpdateSQL components. A
single TUpdateSQL component encapsulates the SQL needed to insert, update, and
delete from the underlying tables of an SQL SELECT. That SQL is generated from the
TQuery associated with the TUpdateSQL component. A double-click opens the
TUpdateSQL editor, as shown in Figure 8.1.

Component Overview 405

FIGURE 8.1 The TUpdateSQL component editor.

11 0672324806 CH08 12/12/02 2:39 PM Page 405

This editor enables you to specify key fields, even from joined tables, but a single
TUpdateSQL component only is allowed to update a single table. If a TQuery compo-
nent represents a SELECT statement that joins several tables, and you need to be able
to update them all, you need a TUpdateSQL component for each.

Unfortunately, the TQuery component only has one UpdateObject property that can
reference a single TUpdateSQL component. And, although TUpdateSQL has a DataSet
property, it isn’t available at design time for some reason. The answer is to program-
matically assign that property at runtime. A good place to do that is in your Data
Module’s constructor because its body is executed after all the components have
been loaded and their cross references assigned. Here’s what the assignment might
look like.

UpdateQuery1->DataSet = Query1;

Cached Updates and TUpdateSQL
The VCL takes care of making sure the TUpdateSQL is called when it is needed. But,
there are a couple of things you need to set up, as discussed in the next section.

Making TUpdateSQL work also requires that the TQuery have its CachedUpdates property
set to true. Applying the cached updates forces the VCL to invoke the appropriate
TUpdateSQL components.

Cached updates are a lot like transactions—they hide the changes made to records
until ApplyUpdates() is called. In most cases, however, you want to apply cached
updates right away. This is best done in the AfterPost event of the TQuery compo-
nent. Usually, you also want to follow ApplyUpdates() with CommitUpdates() to clear
the various caches.

Heterogeneous Joins
The BDE provides a special feature that can make some very difficult integration
projects easier—the capability to join tables across databases.

This can only be done in TQuery, and requires a special notation in your SQL to indi-
cate the alias name of each source table. For instance:

SELECT * FROM

:SomeOracleDatabase:ORACLETABLE AS O,

:SomeXBaseDatabase:XBASETABLE AS X

WHERE O.ID = X.ID

This notation leverages the BDE alias in the names surrounded by “:”. The BDE
handles the differences between the DBMS and performs the join in its own way,
without relying on the technology of the DBMS.

CHAPTER 8 The Borland Database Engine406

11 0672324806 CH08 12/12/02 2:39 PM Page 406

Summary
The BDE and its component set offer a tremendous package of power and value to
every developer and user. Although it is sometimes perceived as a burden to install
and upgrade the BDE across your software installation, the capabilities it offers are
often key to your application’s success.

In addition, understanding the BDE component set is critical to understanding any
of the database components in the various component sets in the VCL and available
from third parties.

You have seen the various features of the BDE including tables, queries, transactions,
and cached updates. Working with these features will help you understand all the
implementation alternatives they provide.

Summary 407

11 0672324806 CH08 12/12/02 2:39 PM Page 407

11 0672324806 CH08 12/12/02 2:39 PM Page 408

IN THIS CHAPTER

• Introduction to Client Dataset
Concepts

• Using Basic Client Datasets in
the Client/Server
Environment

• Improving Performance with
Client Datasets

• Using Client Datasets in a
Multitier Environment

• Specialized Types of Client
Datasets

9

Client Datasets and
Client Dataset
Enhancements

by Mark Cashman

Client data sets offer capabilities to improve the perfor-
mance of your client/server and multitier database. In this
chapter you will learn about how client data sets work,
and how you can use VCL database components to work
with them.

Introduction to Client Dataset Concepts
Typical client/server database applications obtain records
from a provider across the network (we usually call this a
database server). When the client is data intensive, display-
ing large numbers of records as you scroll back and forth
in a grid or other data-aware control, this can cause large
amounts of network traffic. Such network traffic can
involve transferring redundant records and can unneces-
sarily use up network bandwidth. It can also slow applica-
tion response time below tolerable levels.

The answer to the problem is to provide some sort of
buffering that is local to the client. The implementation of
that in the VCL is TClientDataSet and its descendants.

Client datasets are write-through caches. A write-through
cache acts as a buffer for records retrieved and also inter-
cepts and duplicates changes being sent back to the
provider. The application sees the changes immediately
when it next reads from the client dataset, without the
need to request changed records from the provider, thus,
eliminating unnecessary network traffic.

12 0672324806 CH09 12/12/02 2:37 PM Page 409

Figure 9.1 shows a diagram describing the relationship between the various elements
of the chain from database server to user interface.

CHAPTER 9 Client Datasets and Client Dataset Enhancements410

Network Network

Network

Client/Server Model

Multi-tier Model

Local Data Module

Local Data Module Remote Data Module

Data Aware
Control

Data
Source

Client Data
Set

Provider Data Set Database
Server

FIGURE 9.1 Client data set and provider in client/server and multitier configurations.

This diagram depicts the relationship between the database server, the datasets, the
provider, the client datasets, the data source, and, finally, the data-aware control. It
also shows the location of those components in two different models: the
client/server model and the multitier model.

In the client/server model, all components reside within a local data module, except
for the database server, which exists on its own, separate platform.

In the multitier model, some components reside on a separate platform within a
remote data module; others exist within the local data module.

In the case of the client/server model, there is a single transport of information
across the network. In the case of the multitier model, information is passed across
the network twice: once from the database server to the remote data module and
once from the remote data module to local data module. More information on the
multitier model can be found later in this chapter.

Generally, client datasets are located in the memory of the client. This optimizes
their performance in a way not possible with disk-located client/server buffers.

One other feature of client datasets can be useful. Client datasets enable your appli-
cation to work in a briefcase mode. Briefcase mode, similar to the briefcase mode on
the Windows desktop, enables you to be detached from the network on which the
client/server database is located and still work with records from that database. At
the time that you reconnect with the home network of the client/server database
server, the client/server dataset will attempt to propagate changes back to the server.
If errors occur during that resolution process, for instance, if fields have values that
were changed by applications during the time the briefcase was separated, excep-
tions will be thrown or events will be triggered that can enable you to provide alter-
natives to the user of your application.

12 0672324806 CH09 12/12/02 2:37 PM Page 410

Using Basic Client Datasets in the Client/Server
Environment

In the client/server environment, client datasets are used as a buffer for records
transferred from the provider to client. Typically, you have a TQuery or other TDataSet
descendant issuing SQL to the database server, which responds with the appropriate
records. Associated with that TDataSet descendant is a TDataSource, linked to various
data-aware controls, which, in turn, displays records in the client-user interface.

When using TClientDataSet the association is changed slightly. The TClientDataSet is
associated with a TProvider component. The TProvider connects the TClientDataSet
with the provider through the TDataSet descendant. The TDataSet descendant simply
retrieves records normally, as requested by the client data set. But the TClientDataSet
requests records much less frequently than would be the case otherwise.

Figure 9.2 shows a typical TDataModule containing such datasets, providers, client
datasets, and data sources.

Using Basic Client Datasets in the Client/Server Environment 411

FIGURE 9.2 Typical client data set usage in a client/server data module.

Figure 9.3 shows the user interface for a sample program that uses two
TDataModules—one with a client data set and one with a normal data set.

FIGURE 9.3 User interface for a program using the client data set and normal data
modules.

12 0672324806 CH09 12/12/02 2:37 PM Page 411

The program provides a user interface with a radio group from which you can select
whether to see the datasets from the point of view of the TQuery itself, or from that
of a TClientDataSet that uses TQuery through a provider.

Unfortunately, even TClientDataSet components cannot solve the problem of multi-
ple applications modifying the same record. But, when you attempt to post from the
TClientDataSet to the underlying dataset, the TClientDataSet sees differences and
generates an OnReconcileError. Note that this type of error might not be detected
when it occurs in a text blob.

Listing 9.1 shows a simple event handler to deal with a reconcile error. However,
keep in mind that this does not cover the various possible causes with their appro-
priate responses, and that significant experimentation would be needed to properly
manage these errors.

LISTING 9.1 Event Handler for OnReconcileError

void __fastcall TTestInterbaseClientDataSetWithCDS::ClientDataSetReconcileError(

TCustomClientDataSet *DataSet, EReconcileError *E,

TUpdateKind UpdateKind, TReconcileAction &Action)

{

ShowMessage(E->Context + “ / “ + String(E->ErrorCode) + “: “ + E->Message);

Action = raCancel;

}

Improving Performance with Client Datasets
Just using a TClientDataSet can improve performance, if your performance through-
put is affected by network bandwidth demands. However, you can do more.

There are a variety of options you can use to improve performance with client
datasets. Some of those options are available on the TProvider component. Others
appear on the TClientDataSet component.

On the TClientDataSet some of the properties that affect performance include

• PacketRecords—This indicates how many records should be passed across the
network from the provider. The default used for this is—1, which indicates that
as many records as necessary should be passed across the network at any given
time. How many records that might be, is controlled by the on demand
options of the client datasets.

• FetchOnDemand—This is an overall constraint on how frequently records are
fetched from the provider. As the user scrolls through a data-aware grid or uses
some other control to conduct a search, when FetchOnDemand is true, records are

CHAPTER 9 Client Datasets and Client Dataset Enhancements412

12 0672324806 CH09 12/12/02 2:37 PM Page 412

obtained as needed to fill the visible area of the grid. If false, the application
must explicitly fetch records as needed. False is generally not appropriate for
interactive applications.

On the TProvider, there are other properties that affect performance:

• Options—These include poFetchBlobsOnDemand and poFetchDetailsOnDemand. If
TClientDataSet’s FetchOnDemand property is true, the client will only request
blobs as needed. This means that blobs will not be unnecessarily passed over
the network. For instance, if you use a TDBMemo control to display text blobs,
you will only be displaying a single blob at a time. Your grid might normally
request 20 or 30 rows transferred to the network for a given page display,
despite only needing to display one. Obviously, this option can significantly
improve performance, particularly when your data set contains large blobs.

One other property can be useful in improving performance with client datasets. If
your application surfaces its user interface on the Web, it might require an XML
representation of its data. If that is the case, the XML data property of the
TClientDataSet, can be used to provide a copy of the client dataset’s local in-memory
data as an XML data packet. This can save you from having to assemble the XML
yourself programmatically.

Using Client Datasets in a Multitier Environment
Client datasets are useful in a client-server environment as well as in multitier envi-
ronments. In a multitier environment the client-user interface is separated from the
business logic, which is in turn separated from the database server. The relationship
between the business logic tier and the database tier is similar to that found in
client/server applications. Thus, TClientDataSet can play a role.

In multitier, or distributed, environments, TClientDataSet does not connect directly
with a local TQuery, but instead connects with a remote data module. A remote data
module is a TDataModule that acts as an independent executable running (potentially)
on a separate machine. Although the details of remote-data modules are best saved
for a later chapter (Chapter 20, “Distributed Applications with DataSnap,” and
Chapter 21, “DataSnap Multitier Connections”), here is a brief look to identify the
basic principles.

Figure 9.4 shows an image of a remote data module that surfaces a TQuery.

Figure 9.5 shows the image of the local data module that is used by the client to
contact the middle tier.

Using Client Datasets in a Multitier Environment 413

12 0672324806 CH09 12/12/02 2:37 PM Page 413

FIGURE 9.4 Remote data module.

CHAPTER 9 Client Datasets and Client Dataset Enhancements414

FIGURE 9.5 Local data module for a remote data module.

As you can see, the local data module contains a TClientDataSet for each TQuery in
the remote data module; which, in turn, contains a separate provider for each TQuery
it chooses to surface. The provider is contacted by the client data set on the client
side, and packets are exchanged containing data from each TQuery in the remote data
module, as needed.

Specialized Types of Client Datasets
Although the generic TClientDataSet component is usable in a wide variety of situa-
tions including client/server and multitier, client/server applications can use special-
ized descendants of TClientDataSet that contain not only client dataset capabilities,
but also a default provider. Such specialized TClientDataSet descendants include

• TBDEClientDataSet—which is usable with BDE components such as TQuery and
TTable.

• TSQLClientDataSet—which is usable with the dbExpress components such as
TSQLQuery and TSQLTable.

• TIBClientDataSet—which is usable with the IBExpress components such as
TIBQuery and TIBTable.

12 0672324806 CH09 12/12/02 2:37 PM Page 414

Of course, these components are only useful in a client/server environment. In a
multitier environment, where the client dataset is required to communicate with a
remote provider in a remote data module, TClientDataSet is the preferred method.
This is because TClientDataSet is provider neutral, and is unaware of the underlying
technology of the provider.

Summary
Client datasets offer the capability to easily optimize client/server and multitier
dataset performance. In conjunction with data modules and remote data modules
they offer the opportunity to share that optimization across multiple applications.

In this chapter you have had an opportunity to see many different ways of using
client datasets. You’ve also had an opportunity to see different parameters and prop-
erty settings that can impact performance when using client datasets in both the
client tier and multitier environment.

Summary 415

12 0672324806 CH09 12/12/02 2:37 PM Page 415

12 0672324806 CH09 12/12/02 2:37 PM Page 416

IN THIS CHAPTER

• Introduction to IBExpress
Components

• Setting Up a Schema

• Database Rules

• Generators, Triggers, and
Stored Procedures

• Debugging an InterBase
Application

• Database Creation and
Connection

• Using Transactions

• Accessing Interbase

• Setting Up Bug Tracker

• Bug Tracker Wrap Up

10

Interbase Express

by Mark Cashman

The IBExpress components are an extension of the BDE
components that support a special and optimized connec-
tion to the Interbase DBMS. Because Interbase is a compar-
atively inexpensive and powerful client/server database, it
can be an attractive alternative for commercial software
developers needing such a product. This chapter will show
you how to use these components in your application.

Introduction to IBExpress Components
This section will introduce the InterBase Relational
Database Manager System (RDBMS) and the InterBase
Express (IBExpress) components supplied with C++Builder.
Although originally designed as a commercial client/server
(C/S) database server, InterBase has joined the Open Source
movement with the introduction of version 6.0. This
development will benefit database application developers
around the world; it will combine a fast, powerful RDBMS
solution with a freely distributable license.

Starting with the release of C++Builder 5, Borland supplied
IBExpress components that enable the creation of powerful
C/S applications without having to distribute the BDE.
These applications directly access the InterBase client,
which in turn handles the communication with the data-
base server.

IBExpress components tend to look almost exactly like
their BDE equivalents. There are some changes in the
meaning of various properties as a consequence of the
specific nature of Interbase. For instance, it is possible, and
sometimes necessary, to specify the IP address of the server
on which Interbase is running.

13 0672324806 CH10 12/12/02 2:38 PM Page 417

To demonstrate IBExpress components in action, we will design and create a simple
database application that will incorporate many of them. The application will track a
number of programming projects, their revisions, and their known bugs. We will
name this application Bug Tracker. You can find the source code for this application
in the BugTracker folder on the CD-ROM that accompanies this book. The project
filename is BugTracker.bpr.

NOTE

If you have projects requiring C++Builder 4 or earlier that you want to convert to pure
InterBase, Jason Wharton’s InterBase ObjectsInterBase Objects (http://www.ibobjects.com) is
an excellent set of components to consider. This site also offers a replacement for ISQL, called
IB-WISQL, which provides many features that make the design and administration of InterBase
databases easier.

Setting Up a Schema
Bug Tracker uses three different tables: Program, Revision, and Bugs. As illustrated in
Figure 10.1, Program is the master table, and Revision and Bugs are detail tables. The
relationship among the tables is that Programs may have Revisions or Bugs. A Revision
must belong to a Program. A Bugs must belong to a Program and may belong to a
Revision.

Specifying these relationships in the creation of a database enables InterBase to
enforce referential integrity on the server. Listing 10.1 shows the SQL used to create
the Bugs table.

LISTING 10.1 SQL Used to Create the Bugs Table

/*Bugs Table*/

create table bugs (

bug_id integer not null,

bug_name varchar (80) not null,

bug_description varchar (255),

bug_resolved smallint not null,

bug_date date not null,

pro_id integer not null,

r_id integer,

primary key (bug_id),

constraint fk_bugs_pro_id foreign key (pro_id) references program (pro_id),

constraint fk_bugs_r_id foreign key (r_id) references revision (r_id));

CHAPTER 10 Interbase Express418

13 0672324806 CH10 12/12/02 2:38 PM Page 418

FIGURE 10.1 The tables used in Bug Tracker.

NOTE

At the end of each constraint declaration, the on update (cascade||set null) and on

delete (cascade||set null) statements can be added. These are executed when the
selected field in the table being referenced is modified or deleted and saves time by not
requiring triggers to make the changes needed to maintain referential integrity.

For example, if we changed to

constraint fk_bugs_pro_id foreign key (pro_id) references program

➥(pro_id) on update cascade on delete cascade,

when any Program table records were deleted, or when any of the Program tables pro_id
values were changed, any Bugs record would be deleted or modified automatically.

We can define foreign keys without a name and have InterBase name them, but it is
far easier to debug violation of FOREIGN KEY constraint “FK_BUGS_PRO_ID” on table
“BUGS” than constraint “INTEG_XX”. Unfortunately, the table’s primary key cannot be
assigned a name.

NOTE

The database supplied with the CD-ROM accompanying this book, BCB5BOOK6.GDB, was
designed under InterBase 6.0 and will not be accessible under any earlier InterBase version.

Setting Up a Schema 419

13 0672324806 CH10 12/12/02 2:38 PM Page 419

The Bugs table consists of fields that are used to describe the bug and foreign keys.
Each field has a name, a type, its length, and an indicator if it must have a value
assigned. If the field is identified as not null, InterBase will not allow a record to be
posted with that field as null.

Although this is useful, it is the foreign keys that specify referential integrity for
InterBase to enforce. The Bugs table has two foreign keys: one that identifies a
relationship to the Program table, and one that specifies a relationship to the
Revision table.

InterBase automatically enforces specified referential integrity. In our sample
program, a Bug record can reference a Program record. An attempt to delete a Program
record will return an error message such as Violation of FOREIGN KEY constraint
“FK_BUGS_PRO_ID” on table “BUGS”. Additionally, an attempt to insert a record into
either the Bugs or Revision table without a valid pro_id will return an error message.

As another example, we declared the r_id foreign key in the Revision table as permit-
ted to hold a null value. Any other value assigned to this key must correspond to a
valid revision record or a constraint error message will be returned.

Referential integrity rules protect a database from bad or invalid data sent by client
applications. To take full advantage of this protection, it is important to invest time
and care in designing and testing the database schema. After a database becomes
live, it is extremely difficult to change any of its relationships without deleting data.
In a recent application that was developed, one table’s primary key had to be
changed. The change would have taken a couple of minutes in the development
stage, but, because the database was live, it took several hours of programming to
create the large SQL script necessary to make the update without affecting any of the
existing data.

Database Rules
In addition to referential integrity, InterBase enables you to place server-side rules in
the database. This is one of the great strengths of C/S development. Database rules
that reside inside the database are enforced, regardless of the client that is accessing
the data. An added advantage is that internal rules can often be changed without
updating the client applications that are in use. For example, if it is decided that
deleting a Revision record should set the corresponding bug record’s bug-resolved
field to zero, a trigger can be created or modified to handle the event. This means
that for our earlier referential integrity problem (where we are trying to delete a
record from the Program table), we could create a database rule that will automatically
delete any Bugs table records that are assigned to that particular program.

There is no universally accepted standard concerning the placement of rules, and
there are many differing opinions as to which rule should be on the server and

CHAPTER 10 Interbase Express420

13 0672324806 CH10 12/12/02 2:38 PM Page 420

which should be in the client. We would recommend that any rule that involves
referential integrity or that operates on a large number of rows in the database
should be placed on the server. Other rules can be located on the server or in the
client, whichever seems best to you.

In multitier databases, on the other hand, the best place to keep database rules is
generally in the programs of the middle tier. The only rules kept in the database tier
are referential integrity rules, to ensure that even database administrators cannot
damage the integrity of the data. This scheme ensures scalability as the middle tier is
replicated, while still protecting the integrity of the underlying data.

Generators, Triggers, and Stored Procedures
Generators, triggers, and stored procedures (sprocs) can be used to create server-side
rules in InterBase. They are used in many operations, ranging from the simple imple-
mentation of an autoincrement field in a table to complex SQL operations involving
several tables and thousands of records. Because they reside in the database with the
data, they typically can perform an operation on the database faster than a similar
rule residing in the client.

Generators
Generators can be viewed as global integer variables for the database. They are not
tied to any table or field, but merely generate numbers in sequence through the use
of the GEN_ID() function. Although generators are not often used on their own, they
are extensively used for assigning values to unique keys in triggers and sprocs.

The following will create a generator and set its value:

CREATE GENERATOR PRO_ID_GEN;

SET GENERATOR PRO_ID_GEN TO 1;

This code creates the generator PRO_ID_GEN and sets its value to 1. We will use this
generator to supply the Program table with its unique key values.

It is important to realize that generators are not affected by transactions. For
example, if you start a transaction and call the GEN_ID() function, rolling back the
transaction will not change back the new value of the generator. The new value will
remain the same as if the transaction had been committed and retained.

Triggers
An InterBase trigger is similar to a component event. A trigger can be set to execute a
command or commands when a row in a table or view is inserted, deleted, or
updated. However, a trigger cannot be called directly.

Generators, Triggers, and Stored Procedures 421

13 0672324806 CH10 12/12/02 2:38 PM Page 421

Triggers have many uses: maintaining referential integrity, validating input informa-
tion, and creating logs of user activities involving the database. One common use of
triggers is the implementation of autoincrement fields. InterBase does not come with
an autoincrement field type, but this operation can be duplicated by using a normal
integer field, the PRO_ID_GEN generator seen earlier, and the trigger in Listing 10.2.

LISTING 10.2 SQL to Create One of the Program Table’s Triggers

CREATE TRIGGER SET_PRO_ID FOR PROGRAM

BEFORE INSERT AS

BEGIN

IF (NEW.PRO_ID IS NULL) THEN

BEGIN

NEW.PRO_ID = GEN_ID(PRO_ID_GEN,1);

END

IF (NEW.PRO_MADE IS NULL) THEN

BEGIN

NEW.PRO_MADE = ‘TODAY’;

END

END

This trigger is assigned to the Program table to execute before a record is inserted. The
NEW variable contains the fields to be inserted. If there is no pro id value supplied,
the GEN_ID() function takes the supplied generator, increases it by 1, and returns the
new value. This value is then assigned to the new record’s pro_id field. If there is no
value supplied for the pro_made field, it is assigned the current server date.

The one drawback to assigning the autoincrement field’s value in this way is that
C++Builder InterBase components don’t normally receive notification that the trigger
has incremented the field’s value. The table must be refreshed, the record must be
refreshed, or some other means must be found to make this information viewable to
the application. There are several methods of addressing this drawback.

In C++ Builder 6, the new property is provided on the TIBQuery or TIBTable compo-
nent. The TIBCustomDataset’s TIBGeneratorField type of property is GeneratorField.
GeneratorField identifies one of the TIBCustomDataset’s field objects as a field to be
refreshed directly from the table after insert. It is assumed that this field is updated
because of the execution of a generator in a stored procedure in the Interbase
database.

Prior to C++Builder 6 the only method of accomplishing this was through the use
of stored procedures. The following section discusses the method to introduce
the concept of stored procedures, and how they can interact with the IBExpress
components.

CHAPTER 10 Interbase Express422

13 0672324806 CH10 12/12/02 2:38 PM Page 422

Stored Procedures
A stored procedure (sproc) is a routine that resides in the database. Sprocs can be
created to perform operations on the database that return anything from a single
value to multiple rows of information. For example, Listing 10.3 shows a procedure
that takes the supplied name of a program to be created, generates a new record with
that information and the PRO_ID_GEN generator, and returns the program’s pro_id
field.

LISTING 10.3 SQL to Create the Create_Program Stored Procedure

CREATE PROCEDURE CREATE_PROGRAM /*name of procedure*/

(THE_PRO_NAME CHAR(80))/*supplied params*/

RETURNS (THE_PRO_ID INTEGER)/*returned params*/

AS

BEGIN

THE_PRO_ID = GEN_ID(PRO_ID_GEN,1);/*get the next program id*/

INSERT INTO PROGRAM(PRO_ID,PRO_NAME,PRO_MADE)

VALUES(:THE_PRO_ID,:THE_PRO_NAME,’TODAY’);/*insert the new record*/

END

This procedure is a better solution than the trigger we created previously because it
solves the problem of retrieving the newly created record’s PRO_ID. Like a trigger, this
procedure is stored in the database, and its internal workings can be changed
without having to update any of the clients. We will use both triggers and sprocs in
Bug Tracker.

NOTE

There might be times when you want to retrieve a generator’s value through a normal query
statement. To accomplish this, you would use a statement such as

SELECT GEN_ID(PRO_ID_GEN,1) NEXT_PRO_ID FROM RDB$DATABASE

When this statement is executed in a TIBQuery, it will return the field NEXT_PRO_ID, which will
contain the next PRO_ID_GEN generator’s value.

Another alternative to using stored procedures with triggers, or the GeneratorField
property, is to use the ForcedRefresh property of IBExpress. ForcedRefresh is an easy
way to bring back changes made by a trigger. The key to using ForcedRefresh is that
the client needs to have knowledge of a secondary key, and the lookup for the WHERE
clause of the RefreshSQL should be on the secondary key instead of the generated
primary key. This is explored in more detail in the “modify, delete, insert, refresh”
section, later in this chapter.

Generators, Triggers, and Stored Procedures 423

13 0672324806 CH10 12/12/02 2:38 PM Page 423

It is generally a good rule of thumb not to allow the client-side to modify primary
keys. If the client-side needs to modify a table’s primary key, that table is a
prime candidate for a generated primary key. The modifiable part should be a
secondary key.

Debugging an InterBase Application
In addition to the normal collection of forms and controls that the application
might have, this application must work with the InterBase server. This includes
providing connection information, starting transactions, executing search requests,
and obtaining any other information the client requires.

Many activities are the responsibility of the database server, which can make it diffi-
cult to debug them from the C++Builder IDE. To view these activities, IBExpress
supplies the TIBSQLMonitor component. This is a component that generates an event
for every InterBase activity that occurs. Events of interest should be specified in the
TraceFlags property of the TIBDatabase to which the TIBSQLMonitor component is
linked. If we take the information supplied in the generated event and add it to a
TMemo, we have a powerful tool for determining which InterBase activities occurred
and in what order. Although seemingly cryptic at times, this information can help
solve problems involving sequential interactions between multiple transactions
and queries.

Database Creation and Connection
The TIBDatabase component is used to establish connections to InterBase databases
using either the local host, TCP/IP, NetBEUI, or SPX protocol. However, parameters
for connecting to a database are different from those used for creating a database.
The server and the database to be connected to are specified in the DatabaseName
property. C++Builder’s help file has information on formatting the DatabaseName prop-
erty for different protocols. Listing 10.4 shows how to use an enum type and a func-
tion to create an appropriate string for each protocol.

LISTING 10.4 The CreateConnectionString Function

enum ConnectionType {ctLocal,ctTCPIP,ctNetBEUI,ctSPX};

AnsiString __fastcall TdmMain::CreateConnectionString(AnsiString Server,

➥AnsiString FileName, ConnectionType CType)

{

AnsiString ConnectionString = “”;

switch (CType)

{

case ctLocal : ConnectionString = FileName;break;

CHAPTER 10 Interbase Express424

13 0672324806 CH10 12/12/02 2:38 PM Page 424

case ctTCPIP : ConnectionString.sprintf(“%s:%s”,Server,FileName);break;

case ctNetBEUI : ConnectionString.sprintf(“\\%s\%s”,Server,FileName);break;

case ctSPX : ConnectionString.sprintf (“%s@%s”,Server,FileName);break;

}

return ConnectionString;

}

CAUTION

In certain instances, it might be necessary to use a server name in place of an actual IP
address when connecting to InterBase using TCP/IP connections. For example,
ibserver:c:\bugger.gdb will work, but 192.168.0.9:c:\bugger.gdb sometimes won’t, even
if the ibserver machine’s address is 192.168.0.9. This is frequently seen in machines that
have a version of Winsock earlier than version 2.0.

To overcome this anomaly, add an entry in the hosts file in Windows 95/98 (located under
the Windows folder) or the hosts file in Windows NT/2000 (located under
%SystemRoot%\System32\Drivers\Etc).

For example, if you want to connect to a server at 192.168.0.11, add the following line:

192.168.0.11 theserver

The following hosts file shows how this might look after the addition.

Copyright (c) 1993-1999 Microsoft Corp.

#

This is a sample HOSTS file used by Microsoft TCP/IP for Windows.

#

This file contains the mappings of IP addresses to host names. Each

entry should be kept on an individual line. The IP address should

be placed in the first column followed by the corresponding host name.

The IP address and the host name should be separated by at least one

space.

#

Additionally, comments (such as these) may be inserted on individual

lines or following the machine name denoted by a ‘#’ symbol.

#

For example:

#

102.54.94.97 rhino.acme.com # source server

38.25.63.10 x.acme.com # x client host

127.0.0.1 localhost

192.168.0.11 theserver

Database Creation and Connection 425

LISTING 10.4 Continued

13 0672324806 CH10 12/12/02 2:38 PM Page 425

After saving the file, either restart the system to effect the changes or run the following
command from the DOS prompt:

nbtstat –R

Note that the -R parameter must be capitalized. We can then access the server at
192.168.0.11 by using theserver:c:\bugger.gdb.

Also, when coding paths in C++ functions don’t forget that the \ is an escape character used
to indicate other characters and that to show an actual backslash requires two backslashes in
a row.

Having assigned the DatabaseName property, we must supply the username and pass-
word. This can be done in one of two different ways. The first is to set the
LoginPrompt property to true, which will open a window asking the user for the infor-
mation. The second is to assign the username and password in the Params property.
The following code shows a sample set of parameters for logging in:

user_name=SYSDBA

password=masterkey

Keep in mind that to avoid the login dialog is necessary to set the login prompt
property to false. Also, under C++Builder 6 to use the login prompt dialogue you
need to include a special unit in your project. The #include is DBLogDlg.hpp, which
should appear in your .cpp file. You also need to add DBLogDlg.pas from your C++
Builder installation Source\VCL directory, where project will not successfully link.

After these items are established, setting the Connected property to true will make the
connection to the database.

NOTE

If you have problems generating the proper connection string parameters at runtime, the
TIBDatabase component has an editor that will generate examples for you to use.

Although InterBase Express can create and drop databases, it does not currently
support SQL scripts. Therefore, you are unable to run an SQL script against a newly
created database to create the necessary tables, triggers, and so on. An empty data-
base of the correct format normally would be created and shipped and with a
product such as this, however, it is possible to repeatedly insert and execute appro-
priate CREATE TABLE and ALTER TABLE statements through a TIBQuery component using
the ExecSQL() function.

CHAPTER 10 Interbase Express426

13 0672324806 CH10 12/12/02 2:38 PM Page 426

Using Transactions
Transactions are an integral part of a client/server database. IBExpress provides the
TIBTransaction component to manage transactions. Each TIBTransaction component
handles one transaction on the database to which it is assigned.

A TIBTransaction component enables you to specify the properties of a transaction.
These are stored in the Params property of the component. TIBTransaction has a built-
in editor that enables you to use four predefined transaction settings. In Bug Tracker,
we will use the Read Committed setting. InterBase and IBExpress both default to the
transaction to Snapshot. Changing to Read Committed is a normal first step when
dropping a new TIBTransaction onto a data module or form.

CAUTION

Most problems involving disappearing data or incorrectly updated information can be traced
back to an error in implementing a transaction. With the version of IBExpress that we used for
this section (version 4.1), we were occasionally surprised by an unexpected commit that
occurred on a record post.

This problem was because of a known logic bug in IBExpress wherein a dataset will commit a
transaction that it autostarts if there are no other active datasets when it closes. This bug was
scheduled for repair in a later update of IBExpress, and might have been fixed in C++ Builder
6. In the meantime, it is a good idea not to allow datasets to autostart transactions, but
instead to start them yourself.

If you run across a problem such as this, the TIBSQLMonitor component is invaluable for
tracing the transaction events that are occurring.

Accessing Interbase
IBExpress offers many different ways of working with the information in a database.
These include TIBTable, TIBQuery, and TIBDataSet. If a TIBTable or TIBQuery is used, the
TIBUpdateSQL component can also be used.

TIBUpdateSQL

The TIBUpdateSQL component is designed for use with the TIBTable or TIBQuery

component. It provides SQL statements to be executed to perform the actions
needed for the four different operations you can perform on the database: deleting,
inserting, updating, and refreshing.

The component has an editor (as seen in Figure 10.2) to supply the creation of these
statements. The editor can only work when the component has been assigned to a
TIBTable or TIBQuery, and the TIBTable or TIBQuery has been set up for a specific table
or query. This is because otherwise it will not know the names of the fields involved
in the update, insert, or delete operations.

Accessing Interbase 427

13 0672324806 CH10 12/12/02 2:38 PM Page 427

The editor will automatically create a base statement for each of the four operations,
but it might be necessary to edit the automatically generated statements to take into
account triggers, stored procedures, or other database-specific considerations. To
accomplish this, the TIBUpdateSQL component supplies two sets of parameters to the
SQL statements. The first of these sets is simply the field names relevant to the
underlying table or query (such as :PRO_ID). The second set appends the prefix OLD to
the field name (such as :OLD_PRO_ID) and represents the value of a field as it was prior
to applying the cached updates.

CHAPTER 10 Interbase Express428

FIGURE 10.2 The TIBUpdateSQL dataset editor.

TIBTable

Just like the standard C++Builder data access components, TIBTable tries to create a
live (editable) dataset on a specified table or view. The tables available to the compo-
nent can include the database’s underlying system tables, if they are specified in the
TableTypes property.

TIBTable attempts to return a live dataset, but because this is an actual client-server
database rather than a desktop database, it might not be possible under certain
conditions. This is especially true when referring to views. For these conditions, or
when more flexibility is desired, TIBTable can use a TIBUpdateSQL component to
enable specific SQL statements to execute the changes to the underlying dataset.

TIBTable is rarely a good component for client/server clients. Because TIBTable polls
as much data to the client from the server as possible in a single try, it requires
much more network traffic than a similar select * from <table> in a TIBQuery or
TIBDataset.

The use of the Insert function of TIBTable is not recommended. Appending data to a
specific position in a SQL backend has no real meaning. In a file-based database,
such as Paradox, Insert occurs where indicated, but there is no natural meaning to
row position in a client/server database such as Interbase, Lulu move because the

13 0672324806 CH10 12/12/02 2:38 PM Page 428

table rows are spread out across multiple data pages and are rarely contiguous. If you
try to use Insert(), InterBase will place the data wherever it wants. Although
TIBTable will do a FetchAll and place the new record at the end of the internal record
buffer, it is highly inefficient because of the processing required of the client and the
network traffic generated.

TIBQuery

TIBQuery returns a read-only dataset based on any InterBase SQL statement. TIBQuery
offers a higher degree of control over what data is presented than TIBTable. By using
joins, you can specify SQL queries that combine information in several different
tables. TIBQuery should be used instead of TIBTable whenever possible.

If the TIBQuery needs to insert, edit, or delete information, a TIBUpdateSQL component
must be assigned to it. However, it is typically preferable to use a TIBDataSet, which
combines the capabilities of a TIBQuery and TIBUpdateSQL, to accomplish these tasks.

TIBDataSet

TIBDataSet combines the data-selection features of a TIBQuery component with
the data-editing features of a TIBUpdateSQL component. One difference between
TIBDataset and TIBQuery is that the Params for TIBDataset are not TParams, but
TIBExpressSQLDA instead. The TIBExpressSQLDA parameter type is required if you
are using InterBase version 6.0 and need Int64 parameters. For the Bug Tracker
application, we will make extensive use of TIBDataSets.

TIBSQL and TIBStoredProc

The TIBSQL component offers a fast, low-overhead means of executing InterBase data
operations. Descended from the TComponent object, the TIBSQL component does not
support any of the data-enabled objects, and, thus, is primarily designed to return a
quick value from a database or generator or to be used as a data pump.

TIBStoredProc can work with data-enabled objects, but a TIBQuery or TIBDataSet

should be used for stored procedures that return multiple rows or components.
Designed to simplify accessing stored procedures, TIBStoredProc enables you to
specify the procedure to execute and the parameters for that procedure. Note that
any values that are returned by the stored procedure will be accessible through the
corresponding parameter.

TIBEvents

Using InterBase and stored procedures or triggers, events can be set up to be
generated by the server. An example of a generated event is the command POST_EVENT
‘BUG_DELETE’, where BUG_DELETE is the name of the event fired.

Accessing Interbase 429

13 0672324806 CH10 12/12/02 2:38 PM Page 429

The TIBEvent component allows the client application to tell the server what events
it wants to be notified of, receive that notification, and generate an OnEventAlert()
event. Bug Tracker executes a simple ShowMessage() when a bug record is deleted, but
more complex functions could easily be included.

Events of this sort are one of the most powerful features of Interbase. It is one of the
few DBMS that enables you to register interest in particular internal database events.
Such notifications make it much easier to create client/server, or multitier applica-
tions. Such applications can register their interest, for instance, in updates or Row
insertions that might affect their user interface. This helps to alleviate a problem that
often plagues client-server systems with client side user interfaces. Such systems
usually do not know when another application or instance of the same application
has modified database, and, therefore, they are unable to modify their user inter-
faces, or refresh their datasets, to display newly inserted or modified records.

Setting Up Bug Tracker
IBExpress components simplify many of the procedures involved in accessing
InterBase data, but care must be taken in their use. If the components are set up
properly, the end user need not be concerned with referential integrity, supplying all
needed fields, transactions, or the like.

Bug Tracker is designed to isolate the user from these issues by presenting a clean,
simple interface.

We will begin the setup with the TIBDataSet for the Program table. We start by drop-
ping the component into our data module and assigning it to a connected
TIBDatabase and active TIBTransaction (to simplify the setup process). After this is
done, we need to specify our select statement. Because the component is attached
to a live connection, we can use the CommandText editor to easily create our select
statement, which in this case would be select * from PROGRAM.

update, delete, insert, refresh
Having specified the information the component will display, we need to establish
what it will do on update, insert, delete, and refresh. As discussed earlier, the
TIBUpdateSQL component can create base statements for these events. However, after
these statements are created, it’s critical that they be checked to ensure that they do
not present an opportunity for the user to input incorrect information. The follow-
ing code shows the IBExpress-provided modify statement.

update PROGRAM

set

PRO_ID = :PRO_ID,

PRO_NAME = :PRO_NAME,

PRO_MADE = :PRO_MADE

CHAPTER 10 Interbase Express430

13 0672324806 CH10 12/12/02 2:38 PM Page 430

where

PRO_ID = :OLD_PRO_ID

There is a problem with this statement in that it theoretically enables the user to
change the pro_id field, which is the primary key of the Program table. This should
not be allowed, so we will remove the PRO_ID = :PRO_ID statement from the query.

We will also edit the insert statement. Remembering that we assign a new program’s
pro_id field with a value from pro_id_gen, we can automatically include that value in
the insert statement. The following shows a sample of how we can do this:

insert into PROGRAM

(PRO_ID, PRO_NAME, PRO_MADE)

values

((select GEN_ID(PRO_ID_GEN,1) FROM RDB$DATABASE), :PRO_NAME,

:PRO_MADE)

This statement could also exclude specifying the pro_id field because we have a
“before insert” trigger for the Program table that will detect a NULL value for it and
assign it the appropriate generator value anyway.

The delete statement is adequate for Bug Tracker, but the following refresh
statement is not:

select

PRO_ID,

PRO_NAME,

PRO_MADE

from PROGRAM

where

PRO_ID = :PRO_ID

This statement creates a problem because the pro_id is not known on the client-side
when a user inserts a record. The pro_id field in the grid would remain blank if we
did an insert and refresh using this statement.

Using a secondary key, in this case the pro_name field, can solve this problem. The
refresh select statement must return only one row. We can change the refresh
statement to match up the pro_name field instead of the pro_id field because there is a
constraint on the pro_name field limiting it to a one-row return, and because the
pro_name field value is known to the client side. Duplication is prevented by the
unique constraint on the pro_name field. Consideration should be given to providing
secondary keys for use in refresh statements during the database design phase. For
example, in the Revision table, we created the following constraint:

add constraint con_rev_pro_id_r_number unique (pro_id,r_number)

Setting Up Bug Tracker 431

13 0672324806 CH10 12/12/02 2:38 PM Page 431

which enables us to use the following select statement and only return a singleton
result set.

where

PRO_ID = :PRO_ID

AND R_NUMBER = :R_NUMBER

Fields
Database fields for IBExpress TDataSet descendants are specified in the same way as
normal BDE components. However, we will make two changes to the pro_id field.
Set Required to false will enable the user to insert a record without specifying a
value for pro_id. Set ReadOnly to true will prevent users from changing the gener-
ated value. We will make similar changes to the Revision and Bugs tables.

It is important to make these changes. C++Builder takes no notice that a database
has a trigger that will populate a field when it is inserted. If a field is designated as
NOT NULL, the user will be forced to supply a value to insert the record, which will
cause confusion when that supplied value is replaced.

Cached Updates
InterBase Express components support cached updates through the CachedUpdates
property. Cached updates allow changes to the information contained in the dataset
without the changes being applied to the actual database. The changed information
in the dataset is not under transaction control until it is sent to the server by the
ApplyUpdates() method.

For Bug Tracker, we will not use cached updates, but will instead use normal transac-
tion control.

NOTE

As with BDE components, the use of the CachedUpdates property, and the ApplyUpdates(),
and CommitUpdates() functions overlaps with transactions, but is essential for the correct use
of TIBUpdateSQL components. Generally, it is a good idea to put code to ApplyUpdates()
and CommitUpdates() in the AfterPost event handler for the data set.

Transactions and Data-Aware Components
For most simple data forms, the method shown in Listing 10.5, when attached to the
TIBUpdateSQL’s AfterPost() event, will keep information on the client synchronized
with the information that is on the server. This method was created using the

CHAPTER 10 Interbase Express432

13 0672324806 CH10 12/12/02 2:38 PM Page 432

qrProgram component, and it can be used by any TIBUpdateSQL or TIBQuery compo-
nent. For refreshing after information has been posted, we set the ForcedRefresh
property to true in our datasets.

LISTING 10.5 The qrProgram Component’s AfterPost Event

void __fastcall TdmMain::qrProgramAfterPost(TDataSet *DataSet)

{

try

{

//commit the changes, and retain the transaction

trMain->CommitRetaining();

} catch (Exception &E)//if *any* error happens, we’ll rollback and restart

{

trMain->RollbackRetaining();

ShowMessage(“Error commiting changes. “+E.Message);

}

}

There is always an active transaction. When a change is made to the data covered by
a transaction, the updates are applied and the transaction is committed and retained.
The transaction immediately becomes active again, waiting for the next data entry or
change. This helps prevent the possibility of a deadlock caused by two clients editing
the same record. Also, after we change the information in a dataset that is used by
another (for example, the qrBugs dataset uses qrRevision as a lookup), we call the
qrProgramAfterPost() method and then refresh it in that dataset’s AfterPost event.
This is shown next. In this case, because grBugs uses grRevision, a change in the
grRevision dataset should initiate a refreshing of grBugs.

void __fastcall TdmMain::qrRevisionAfterPost(TDataSet *DataSet)

{

qrProgramAfterPost(DataSet);

if (!qrBugs->IsEmpty()){

qrBugs->Refresh();

}

}

NOTE

InterBase 6 provides another method for handling transactions. The RollbackRetaining()
method enables you to roll back the database, but keep the current transaction context. This
saves overhead in not having to start a new transaction, such as after a normal rollback.

Setting Up Bug Tracker 433

13 0672324806 CH10 12/12/02 2:38 PM Page 433

Bug Tracker Wrap Up
As Figure 10.3 shows, we have finished setting up a simple application that connects
to an InterBase server, views and edits information in a transaction-safe manner, and
maintains referential integrity. Although Bug Tracker is by no means a finished
product, it demonstrates how easily a thin InterBase client can be written using
familiar Data Control components.

CHAPTER 10 Interbase Express434

FIGURE 10.3 Bug Tracker in action.

InterBase is an exciting and powerful RDBMS development platform. It enjoys a
strong following of users, many of whom are willing to provide assistance or answer
questions in public forums or in chat rooms. With the release of the Open Source
InterBase 6, many developers will start using InterBase in their applications, and
many more will start working on strengthening this excellent RDBMS.

Summary
The Interbase Open Source DBMS is a powerful and inexpensive way for you to offer
client/server capabilities to users of your applications. You can use any of the
component sets offered by C++Builder, such as the BDE components, dbGo, or the
specialized IBExpress, to work with your Interbase database. Of those, the IBExpress
components are the most specialized to leverage the capabilities of Interbase.
Although this creates a complete dependency on Interbase as your DBMS, there are
situations where this is not a problem. If your application requires the use of every
feature of Interbase, this component set is Tisch the best alternative to achieve
that end.

13 0672324806 CH10 12/12/02 2:38 PM Page 434

IN THIS CHAPTER

• ADO Versus BDE

• Component Overview

• Database Connections

• Accessing Datasets

• Managing Transactions

• Using Component Events

• Creating Generic Database
Applications

• Performance Optimizations

• Error Handling Issues

• Multitier Applications and
ADO

11

ADO Express
Components for

C++Builder

by Mark Cashman

ADO stands for ActiveX Database Objects. ADO is
Microsoft’s replacement for the ODBC (the Open Database
Connectivity) standard and earlier data access technolo-
gies, such as DAO and RDO.

ADO is a COM (Component Object Model) API
(Application Programming Interface) that replaces the
C language-based ODBC API and makes it easier to use
object-oriented techniques with databases even in low-
level programming.

The ADO components hide most of the complexity of
dealing with the COM aspects of ADO behind an interface
much like that of normal Borland VCL database compo-
nents. In addition, they allow data from ADO to be used in
normal VCL data-aware controls, such as grids, edit boxes,
and charts. This is possible because the ADO components
descend from TDataSet, and because TDataSource can work
with any TDataSet descendant.

ADO can work with any database that has an ODBC driver.
In addition, ADO offers support for data stored in nonrela-
tional forms, such as XML (the successor to HTML) or
email message stores, so long as there is a data provider
that conforms to ADO standards. In theory, you can issue
SQL against any ADO data, but there might be specialized
forms of SQL needed to access nonrelational data.

ADO is a capable technology that offers complete access to
almost every database in use. This chapter shows how the

14 0672324806 CH11 12/12/02 2:43 PM Page 435

dbGo components provide you with the ability to access every feature of ADO,
through an interface similar to the powerful framework Borland established for use
with the BDE components.

ADO Versus BDE
There has always been a market for non-BDE components to be used with VCL
programs in Delphi and C++Builder. There are a number of reasons for this. First, the
BDE, rightly or wrongly, is perceived as being slow for some applications. Second,
the memory and disk footprint of the BDE is thought by some to be larger than they
prefer. Finally, even with installation programs such as Wise and InstallShield to
reduce the complexity of installing the BDE, it has remained complex to ensure a
safe BDE installation/upgrade, especially for releases of the BDE occurring between
releases of the installer.

Prior to ADO, most component sets targeted either specific DBMS, such as dBase or
InterBase, or database technologies, such as ODBC. Others implemented their own
replacements for the BDE. However, they all had a problem—their components had
a unique interface that was not the same as that offered by the BDE-oriented compo-
nents. This made it harder to change an application back to the BDE if that was
desired. Unfortunately, the ADO components share this drawback.

ADO has several other drawbacks in comparison to the BDE. For one, it requires an
explicit connection string that names a provider, server, and database, which makes
it more difficult to provide easy retargeting of ADO components to other databases
or DBMS without code changes. Secondly, unlike the BDE, SQL in ADO components
cannot be used to heterogeneously join tables across databases within the same
DBMS or across different DBMS.

One caution with the ADO components is that they do not eliminate the need to
worry about revisions of the underlying libraries—in this case, the ADO objects and
the facilities needed by the database you are using (such as the Jet database engine
required by Access).

Given all this, what are the advantages of the ADO components?

• Much of their supporting software is delivered with the operating system, so
you do not have to deploy it.

• With driver development for the BDE somewhat slower than previous versions
(though the BDE can use newer ODBC drivers, and those will continue to keep
pace with DBMS development for some time), ADO can be your ticket to access
unusual or advanced data technologies such as XML.

• The ADO components can ease the transition from Microsoft tools, such as
Visual C++ to C++Builder.

CHAPTER 11 ADO Express Components for C++Builder436

14 0672324806 CH11 12/12/02 2:43 PM Page 436

• TADOQuery components are always editable without recourse to cached updates,
UpdateSQL, or the complex conditions that allow a successful RequestLive.
Note that a form of cached update (called batch update) is available for ADO
components.

• The ADO components allow for SQL to be executed asynchronously and for
monitoring the progress of commands through event handlers. This can also
be used to provide the highly desirable progress meter to show how much of a
query or command operation is complete.

• Unlike the BDE components, it is fairly safe to halt a database program using
Program Reset (this usually provokes an out of memory error from the BDE on
the next run)—however, when it is not safe, it usually takes your system down
with it.

• Finally, though you should conceal as much of the “ADOness” of the ADO
components from your programs as you can, familiarity with the concepts of
ADO can be useful for future employment or projects where management
mandates the use of ADO.

Hedging Your Bets
It is a good idea to immediately create a thin layer between your system and the data
components you choose to use. You can do this by creating a descendant or facade
for each ADO component you intend to use, and never using the raw components
themselves in your system. You can then change the ancestor of the component or
the type of its contained component either directly or by conditional compilation,
and all the uses of the component will, hopefully without change, use the new
component set. If you must use specialized methods or properties of the underlying
components, try first to hide them in methods or properties of a more general nature
in the thin layer. If that cannot be done for some reason, bracket them with #ifdef,
#else, or #endif commands keyed on a #define that identifies the underlying compo-
nents in use.

Copying Records and Datasets
Unfortunately, TBatchMove will not work with the ADO components. You will have to
write your own generic mover to perform copies with these components. Consider a
thin layer class to replace TBatchMove.

Component Overview
The following list describes each of the ADOExpress components found on the ADO
tab of the Component Palette. It is important to learn about the components in an

Component Overview 437

14 0672324806 CH11 12/12/02 2:43 PM Page 437

order that makes sense. In this case, we will cover the components in an order that
both eases your transition from the BDE components (by showing the similar
components in ADOExpress first), and which also reflects the dependencies between
the components. Thus, we will first cover the TADOConnection component (used by all
other ADO components), followed by TADOTable and TADOQuery (both similar to their
BDE counterparts TTable and TQuery), and only then will we move on to the more
unusual components, such as TADODataSet and TADOCommand.

• TADOConnection Connects to the database, manages transactions; it is essen-
tially equivalent to TDatabase. Note that there is no TSession equivalent for the
ADO components. Some TSession capabilities are present in TADOConnection.

• TRDSConnection Connects to a database in such a way that allows multitier
access to an ADO recordset. Only usable with TADODataSet; supports the
Microsoft Remote Data Space facility, which enables an ADO recordset to be
passed across tiers of a multitier database application. Note that this is not the
same as MIDAS support for Remote Data Modules.

• TADOTable Accesses a single database table name by table name; essentially
equivalent to TTable.

• TADOQuery Accesses one or more tables in a single database using SQL
commands. Can perform any SQL including SELECT, INSERT, DELETE, ALTER TABLE,
and so on; essentially equivalent to TQuery.

• TADOStoredProc Executes a stored procedure from a particular database; essen-
tially equivalent to TstoredProc.

• TADODataSet Essentially the same as TADOQuery, except that you cannot execute
SQL that does not return a result set.

• TADOCommand Essentially the same as TADOQuery. You can execute any SQL with
TADOCommand, but to access the resultset, you need to provide a separate
TADODataset that will be connected to the command’s result set.

How Do They Fit into the VCL?
The inheritance of the ADO components is rooted in TDataSet. However, the imme-
diate descendant of TDataSet is not TADODataSet, which you might expect to provide
the root of the rest of the ADO components; instead, the hierarchy has the form
shown in Figure 11.1.

CHAPTER 11 ADO Express Components for C++Builder438

14 0672324806 CH11 12/12/02 2:43 PM Page 438

FIGURE 11.1 The ADO component class hierarchy.

Database Connections
Connecting to the database is necessary so that the components can reach out
through the driver to the actual database. Until a connection is made, no access to
the database is possible.

The TADOConnection Class
This class takes the place of a combination of TSession and TDatabase and is generally
used to establish the connection. As with TDatabase, it is not critical that this compo-
nent be used—each data component has the capability to form its own connection
and can contain its own connection string.

The Provider

ADO connects to a database via a Provider, which is a named OLE object that imple-
ments an OLE DB (Object Linking and Embedding Database) interface. The provider
is contacted by the ADO facility when ADO is given a connection string. Some of the
connection string is used by the ADO facility; the rest is passed on to the provider.

Database Connections 439

TCustomConnection TADOConnection

TComponent TADOCommand

TDataSet TCustomADODataSet

TRDSConnection

TADODataSet

TADOCommand

TADOQuery

TADOTable

TADOStoredProc

14 0672324806 CH11 12/12/02 2:43 PM Page 439

The Connection String
The connection string combines the features of a BDE alias and the more complex
information that stands behind the alias. It can also be identical to the ODBC
connection string, in which case, the standard ODBC data provider will be used.
That provider will access the specified installed ODBC driver to perform all
operations.

Connection strings can be specific to the provider, but usually look something like
the following (an example SQLServer connection string):

Provider=SQLOLEDB.1;Persist Security Info=False;

➥User ID=sa;Initial Catalog=mydatabase

The connection string has the following components:

• Provider is the name by which the provider COM object can be found in the
registry. In practice, you cannot necessarily know this name in advance. You
should instead prompt the user for the provider. The only method of determin-
ing available providers is to either use the rather complex OLE DB enumerator
technology in its raw form (that is, unsupported by components, see http://
msdn.microsoft.com/library/default.asp?url=/library/en-us/oledb/htm/

oledbroot_enumerator_object.asp) or to use the dialog box provided for
constructing connection strings (discussed in a following section).

• User ID and Password can be supplied as is usually done in the Login Prompt
property of BDE data components, except that under ODBC, the keywords are
usually uppercase, whereas they are proper case in ADO.

• Initial Catalog is the name of the database desired.

The Home of Transactions
The TADOConnection is the place to start, commit, or roll back transactions.

If you don’t specify a separate connection object, the documentation implies you
can use the Connection property of the TADOTable or TADOQuery object to access an
internal connection. This is just as you would use the Database property of a BDE
data component to access the default database object of a BDE TSession.
Unfortunately, it does not work for ADO components because the Connection prop-
erty remains NULL in an ADO object that has its own connection string, even once it
is opened. Therefore, if you want transactions, you must create a separate
TADOConnection object and use that as the connection for the TADOCustomDataSet
descendant.

CHAPTER 11 ADO Express Components for C++Builder440

14 0672324806 CH11 12/12/02 2:43 PM Page 440

Accepting the Defaults
There are many properties and methods supplied by TADOConnection. In most cases,
it is best to accept the defaults. Some instances where it is a good idea to change
the defaults are discussed next under topics such as transactions and performance
optimization.

Accessing Datasets
After connected to the database, you will want to access individual or joined
datasets. This can be done with several of the ADO components.

Accessing a Dataset with TADOTable
To access a dataset with TADOTable, you need to

1. Set a connection so that the database can be accessed.

2. Set a table name so the component knows what table in the database
you want.

3. Open the table.

After that, you will often need to connect the TADOTable through a TDataSource to
some data-aware components for display or editing.

Setting the Connection for TADOTable
As mentioned, you have two options for establishing a database connection for any
ADO object. The object can share a TADOConnection object, which it references by
design time or runtime assignment to the Connection property; or it can have one
created when it is opened, by providing a connection string. Again, this can be done
at design time or runtime. Note, however, that any TADOCustomDataSet descendant
must be inactive if you intend to change its Connection or ConnectionString. The
same is true for the TADOConnection when you are going to change its
ConnectionString.

Setting the Table Name for TADOTable
The next thing to do is establish which table will be opened. This is done using the
TableName property. Once again, this can be done at either design time or runtime
but, in either case, the TADOTable must be closed when a change is made.

Accessing Datasets 441

14 0672324806 CH11 12/12/02 2:43 PM Page 441

Opening TADOTable

As with BDE tables, you can either set the Active property or call Open() to activate
the table.

Using a Data-Source and Data-Aware Controls with TADOTable
TADOTable objects, like all TDataSet descendants, can be used with TDataSource objects
and can be referenced from components that have a TDataSet type property. Note
that this suggests that your components that may reference an ADO or BDE data set
should not be of type TADOTable * or TTable *, but TDataSet *, if you want maximum
compatibility.

Iterating Through the TADOTable
Like any TDataSet descendant, the TADOTable can use First(), Eof(), Next(), Prior(),
and Last() for navigation through the table.

Adding or Editing Records Through TADOTable
Use Append() or Insert() to create a new record and Edit() to prepare to change field
values. FieldByName, Fields->Field[Index], and other properties and methods with the
same names as their BDE component counterparts all work as they do with BDE
components. See the online help for the specifics.

Locating Specific Records in TADOTable
The same methods that work for BDE tables work for TADOTable and the other
TCustomADODataSet descendants. For instance, Locate and Lookup can be used to shift
the database cursor to a record and to return values from a record without moving
the cursor, respectively.

Using Filters with TADOTable
In general, filters can be used with the ADO components because they are used with
the BDE components. Filters are client-side, so records from the underlying table
must travel to the client for the filter to decide whether to pass or hide them. If you
can’t afford this, you will need to use a TADOQuery to include the filter condition in
the selection on the server-side (assuming you are using the ADO components to
access a client/server database, that is). Of course, this is not an issue for desktop
databases, such as dBase, Paradox, or Access.

There are some special considerations when using filters. First, although BDE compo-
nent filters are tolerant of contact between operators, field names and literal values,
the ADO components are not. They require a space on each side of an operator.
Thus, SomeField = ‘String’ is fine, but SomeField=’String’ is not.

CHAPTER 11 ADO Express Components for C++Builder442

14 0672324806 CH11 12/12/02 2:43 PM Page 442

Secondly, the BDE component filters allow for partial comparison of string fields
using * as a wildcard in the literal side of the expression. This also works with the
equals sign, as in SomeField=’String*’, which matches any value that starts with
‘String’. The ADO components allow this same form, except that you must use LIKE
in place of the equals sign. Note that you will receive no error (and no records) if
you use the BDE style of a * with the equals sign.

Accessing a Dataset with TADOQuery
A TADOQuery is the same as a TADOTable (or, for that matter, is largely the same as a
TQuery) in the properties and methods it offers. But there are a few differences
explained in the following list.

• Of course, you must supply explicit SQL. Keep in mind that, unlike the BDE
components, the ADO components do not offer a Local SQL to insulate you
from differences between provider’s SQL dialects, so you must make sure to
comply with any special requirements of the driver or DBMS. It is wise to care-
fully conceal such differences in a central location so that you can easily shift
between DBMSs in the future. Also, you cannot use SQL that references other
databases or DBMS—it is the BDE Local SQL that supports heterogeneous joins.

• The SQL you supply can, as with TQuery, contain parameters. However, there is
a small and annoying difference. Specifically, the parameters for a TADOQuery are
supplied through a property called Parameters (not Params), and the type of the
elements supplied to Parameters is TParameter, not TParam. Finally, you cannot
assign to AsString or AsFloat properties of a TParameter because they do not
exist. There is only one accessor property for the value of a TParameter, and that
is Value, which takes a Variant.

As with any query, insertions or changes will not be reflected in the query data set
until you refresh the query by closing and opening it. There are some special proper-
ties you can set to allow for better performance during a refresh—they will be
discussed in the “Performance Optimizations” section, later in this chapter.

Running a Stored Procedure with TADOStoredProc
Stored procedures are a staple of client/server database programming. Though not
supported by all DBMS (particularly desktop databases such as Access or dBase), these
SQL scripts can be useful for performing repeatable functions on the server-side of a
client/server connection, with the performance advantages that implies.

Setting Up TADOStoredProc
As with the other ADO components, you need to set up a connection, either
through the Connection or ConnectionString property.

Accessing Datasets 443

14 0672324806 CH11 12/12/02 2:43 PM Page 443

You need to set the stored procedure name through the ProcedureName property.
Because procedure name restrictions vary, consult your database documentation.
Note that the names of procedures in a database can be obtained through a
TADOConnection member function call.

Finally, establish any necessary parameters using the TParameter objects in the
TParameters class collection represented by the Parameters property. Note that para-
meters have a direction (input, output, and so on) as well as a type, but that values
can only be set with Value (as with TADOQuery).

Executing TADOStoredProc

Use ExecProc if the stored procedure is a command or set of commands, such as
UPDATE or DELETE, that do not return results. If the stored procedure returns a result
set, such as the results of a query, use Open or set the stored procedure to Active.

Getting Results from TADOStoredProc
A stored procedure can either return a result through the parameters or through a
special parameter with direction pdReturnValue. The latter allows the return of a result
set—that is, the results of an SQL select. However, the pdReturnValue parameter is
not examined; it is automatically linked to any TDataSource that references the
TADOStoredProcedure through its DataSet property. This enables you to display the
result set in a grid or to use any other data-aware controls.

Executing an Update with TADOCommand
The TADOCommand class is of limited additional utility and is provided primarily for
compatibility with ADO. It can be used for any SQL that does not return a result, but
because the TADOQuery can be used for such commands and for regular SQL, little
advantage comes from using TADOCommand instead.

Setting Up TADOCommand
TADOCommand offers the same properties as the other ADO components, and they are
set in the same fashion with the same types of values.

Executing TADOCommand

The Execute() method is used to perform the command. If the command is executed
with ExecuteOptions of one of the eoAsync types, the command in progress can be
interrupted with Cancel, as long as that call occurs before CommandTimeout passes. Note
that the capability to cancel a long-running command is the only advantage offered
by TADOCommand over TADOQuery. Though you can have an asynchronous TADOQuery and
can receive periodic events while it executes, you cannot interrupt it.

CHAPTER 11 ADO Express Components for C++Builder444

14 0672324806 CH11 12/12/02 2:43 PM Page 444

Using TADOCommand for Dataset Access
A TADOCommand can be used to execute SQL that returns a result set. However, to do
that, it must be associated with a TADODataSet. Executing the command, and then
assigning the resulting Recordset property to a TADODataSet object’s Recordset prop-
erty, will accomplish that association. For example

ADODataSet1->Recordset = ADOCommand->Execute();

The resulting TADOCommand can be used with a TDataSource and any data-aware controls
compatible with it.

Using TADODataset for Dataset Access
A TADODataSet is for use with SQL that produces a result set. Other than the capability
to work with the asynchronous and abortable TADOCommand, it offers no compelling
features. However, it is the component that must be used to work with the Microsoft
RDS (Remote Data Space) multitier data access capability. This is accomplished by
assigning a TRDSConnection object to the RDSConnection property. Of course, such a
connection is mutually exclusive of the Connection property.

Managing Transactions
The TADOConnection is used to manage transactions. Other than an annoying varia-
tion in the names used from those used with the BDE components, this is relatively
straightforward:

• BeginTrans equates to the TDatabase StartTransaction

• CommitTrans to commit

• RollbackTrans to roll back

Using Component Events
The ADO components offer a variety of events that are specific to their operation.
They also support the standard events used by other TDataSet descendant compo-
nents, such as AfterPost. Most of the ADO specific events have names that are self-
explanatory.

TADOConnection Events
• OnWillConnect() Notifies the application that the connection has been

accepted, but not yet made.

Using Component Events 445

14 0672324806 CH11 12/12/02 2:43 PM Page 445

• OnConnectComplete() Notifies the application that the connection has been
completed.

• OnInfoMessage() Notifies the application that the provider is offering an infor-
mational message; this should occur right after the connection is made.

• OnBeginTransComplete() Notifies the application that the transaction has
begun.

• OnCommitTransComplete() Notifies the application that the commit has
completed.

• OnRollbackTransComplete() Notifies the application that the rollback has
completed.

• OnWillExecute() Notifies the application that the command will be executed,
but has not yet started to execute. Note that this is fired for any components
that use the connection, as opposed to the same event on the individual
component, which only fires when that component is asked to execute a
command. Because TADOCommand offers no events, this is the only way to handle
a TADOCommand execution-related event.

• OnExecuteComplete() Notifies the application that the command execution is
complete.

• OnDisconnect() Notifies the application that the connection has been closed.

TADOCommand Events
TADOCommand does not have any events.

TADOCustomDataSet Descendant Events
• OnEndOfRecordset() Notifies the application that the end of the recordset (in

other words, EOF) has been reached.

• OnFetchComplete() Notifies the application when an asynchronously executed
SQL command has completed the production of a recordset.

• OnFetchProgress() Periodically notifies the application of the progress of an
asynchronously executed SQL command.

• OnFieldChangeComplete() Notifies the application that a change to the underly-
ing database field (not the VCL TField descendant) has completed.

• OnMoveComplete() Fires when the database cursor movement has completed
(similar to the TDataSource OnDataChange() event).

CHAPTER 11 ADO Express Components for C++Builder446

14 0672324806 CH11 12/12/02 2:43 PM Page 446

• OnRecordChangeComplete() Notifies the application that the record change has
been completed. This is separate from the completion of changes to the
recordset.

• OnRecordsetChangeComplete() Notifies the application that the recordset change
is complete.

• OnWillChangeField() Notifies the application that ADO is prepared to perform
a field change, but the change has not yet occurred.

• OnWillChangeRecord() Notifies the application that ADO is prepared to perform
a record change, but the change has not yet occurred.

• OnWillChangeRecordset() Notifies the application that ADO is prepared to
perform a recordset change, but the change has not yet occurred.

• OnWillMove() Notifies the application that ADO is prepared to move the
cursor, but the change has not yet occurred.

Creating Generic Database Applications
Many developers have had to deal with a requirement to create programs that work
on a database or table specified at runtime. Most of the techniques for doing this
with BDE programs are well known and well documented. Not so for the ADO
components, but it is fairly simple to do these things after you know where to look.

Getting a Connection String from the User
Because connection strings are so complex and vary greatly between providers, it is
fortunate that there is an undocumented function call that can help. This call is
PromptDataSource(), which can be found in the ADODB.hpp include file provided with
C++Builder, and it has the following signature:

WideString PromptDataSource

(int theWindowHandle,WideString theOriginalConnectionString);

This function presents the same dialog as displayed by the connection string prop-
erty editor—actually, it is the secondary dialog (from clicking Build) because the first
dialog simply displays the string for manual editing. If you provide an original
connection string, the dialog sets its controls accordingly so that the user is editing
the connection string rather than creating it. Note that this is not a TADOConnection
member—it is a standalone function.

Creating Generic Database Applications 447

14 0672324806 CH11 12/12/02 2:43 PM Page 447

Getting Table Names
TADOConnection::GetTableNames() works essentially the same as
TSession::GetTableNames(). It will update a supplied string list (that may, for instance,
be the Items property of a TComboBox or TListBox). Naturally, the connection must be
open for this to work.

Getting Field Names
Field names are obtained in the same fashion as for BDE components—by iterating
through the TDataSet descendant’s Fields property as follows:

for (int Index = 0; Index < ADOTable->FieldCount; Index++)

Field = ADOTable->Fields->Fields[Index]->FieldName;

Or, you can get a list of the names into a TStringList with the following:

TADOConnection::GetFieldNames(TStringList *theList).

Note that you must have previously allocated the list, or you can use a list such as
that from a TComboBox or TListBox.

Getting Stored Procedure Names
Again, a bit of a secret here—TADOConnection::GetProcedureNames(TStringList

*theList) is the method you need to get the list of stored procedure names. Note
that you must have previously allocated the list, or you can use a list, such as that
from a TComboBox or TListBox.

Performance Optimizations
The ADO components offer a variety of potential performance trade-offs. Obviously,
the success of these optimizations will depend on the nature of your database, such
as whether it is a client/server database or a local desktop database. Therefore, you
are encouraged to try to understand the performance implications of the various
component properties; even those not discussed here.

Query or Table
For client/server work, a query that will be executed on the server is preferable to a
table because a table-based component will typically transfer all the records from the
database server to the client system, consuming network bandwidth and taking extra
time. This is especially important when you intend to filter the records, because a
query can have the server apply the filter before the records are sent to the client.

CHAPTER 11 ADO Express Components for C++Builder448

14 0672324806 CH11 12/12/02 2:43 PM Page 448

Cursor Location
A cursor is basically the current state of the dataset—which record is current, the
means by which insertions and deletions are performed, and so on.

The ADO components enable you to have a cursor on the client- or the server-side. A
client-side cursor can initially be more expensive than a server-side cursor, but if the
data set is relatively unchanging, it can be a setting that offers greater throughput in
the long run. It will upload a copy of the selected data once to the client machine,
and all subsequent operations are performed on that local copy, but then reflected
back to the server. In this sense, it is much like the BDE ClientDataSet, except that no
special management is required. However, critical to making client-side cursors
perform well on inserts and updates is setting MarshalOptions to moMarshalModified

Only. The other setting, moMarshalAll, will transmit the entire client-side copy of the
data to the server on any change.

But a server-side cursor can be more efficient for a large dynamic dataset, especially
when you typically need only a small part of the data on the client side. Although a
thousand-row table might be suitable for a client-side cursor, a million-row table is
much more likely to perform well with a server-side cursor.

Note that a server-side cursor is more likely to be unidirectional (forward only) than
a client-side cursor according to the documentation.

Cursor Types
Cursors can also operate with different restrictions that have performance implica-
tions. The performance of various cursor types are described in the following list.

• A ctOpenForwardOnly cursor is very fast because it does not require the extra
overhead (whatever that may be, depending on the DBMS) that would enable
it to seek backward to an earlier portion of the dataset. Such a cursor must
always start from the beginning and move forward. Note that such a cursor is
read-only.

• A ctStatic cursor is nearly as fast, but it allows forward and backward move-
ment. Like the forward-only cursor, it is read-only and is isolated from changes
made by other users.

• A ctKeyset cursor is a read/write, any position, any direction cursor that
remains isolated from changes by other users.

• A ctDynamic cursor adds the capability to see changes from other users.

Buffering
The CacheSize property controls how many records are cached locally. A larger cache
can mean better performance, as long as you stay within the bounds of the cached

Performance Optimizations 449

14 0672324806 CH11 12/12/02 2:43 PM Page 449

records. But the larger the cache, the more expensive random movement or sequen-
tial traversal of the dataset might be because the cache must be refreshed with the
new region of the dataset. In addition, this is affected by the choice you make for
the location of the cursor. A larger buffer is probably more critical for a server-side
cursor than for a client-side cursor because the client-side cursor typically has the
entire data set locally anyway.

Error Handling Issues
The trouble with ADO error messages is that they are terrible and nonspecific. It is
not unusual to get an exception that says only “Errors occurred” or that claim a
problem with the type of a field without saying which field is at issue.

Unlike the EDBEngineError that returns detailed BDE error messages in series,
EADOError is your only source of error information from a thrown exception, and it
might be uselessly nonspecific. Be prepared for some frustration when dealing with
ADO component errors that are reported by ADO itself.

Note, however, that the TADOConnection offers an Errors property that can be indexed.
Sadly, it seems this seldom offers additional information. However, if you want to try
working with it, the following loop can access individual error messages from the
TADOConnection::Errors:

for (int Index = 0; Index < ADOConnection1->Errors->Count; Index++)

{

String Message = ADOConnection1->Errors->Item[Index]->Description;

};

See the file $(BCB)\source\vcl\ADOInt.pas (note: $(BCB) is the standard environment
variable referring to the C++Builder installation directory) for more information on
the Error properties, such as Description, but be aware that source is written in
Object Pascal (Delphi), not C++.

Multitier Applications and ADO
ADO can be used with Microsoft’s multitier RDS technology. You can use the
TRDSConnection in conjunction with TADODataSet to access RDS. However, a discussion
of that topic is beyond the scope of this book; for more information visit
http://msdn.microsoft.com/.

Borland Remote data modules can use the ADO components as their datasets. No
special provisions need to be made to implement a multitier implementation with
the ADO components.

CHAPTER 11 ADO Express Components for C++Builder450

14 0672324806 CH11 12/12/02 2:43 PM Page 450

You can also use ADO components in data modules to be used by CORBA, MTS,
socket-based, ISAPI, or ASP distributed objects.

Summary
ADO Express provides components that offer the closest mapping to Microsoft’s
ActiveX Data Objects technology. Fortunately, the same components match the VCL
component model and, thus, can easily be linked with data aware controls such as
TDBGrid and TDBMemo. For applications where a close coupling between ADO-
based data providers, and the application is an acceptable alternative, this can be
ideal. And for applications that need to use every capability of ADO, the only other
alternative is direct API calls to the underlying COM objects.

Summary 451

14 0672324806 CH11 12/12/02 2:43 PM Page 451

14 0672324806 CH11 12/12/02 2:43 PM Page 452

IN THIS CHAPTER

• dbExpress

• dbExpress Components

• Migrating from Borland
Database Engine (BDE)

12

Data Access with
dbExpress

by Bob Swart (a.k.a. Dr. Bob)

In this chapter, you will learn about (cross-platform) Data
Access with dbExpress in C++Builder.

In this chapter, we will cover database and data access
programming using dbExpress, the new cross-platform,
data-access layer from Borland for use with Delphi,
C++Builder, and Kylix. This chapter will cover all
dbExpress components and explain in detail why, how,
and where to use them, including some points on migrat-
ing to dbExpress from applications using the BDE or SQL
Links.

dbExpress
dbExpress is a cross-platform, lightweight, fast, and open
database access architecture. A dbExpress driver must
implement a number of interfaces to get metadata, execute
SQL queries or a stored procedure, and return a unidirec-
tional cursor. We get back to this in a moment.

C++Builder supports both the VCL (Visual Component
Library—native to Windows) and CLX (Component
Library for Xplatform—both Windows and Linux at this
time). Although dbExpress is classified as cross-platform, it
can be used in both VCL and CLX applications.

C++Builder 6 (as well as Delphi and Kylix) was released in
two major editions: Professional and Enterprise. The
Professional edition includes dbExpress drivers for
InterBase and MySQL. The Enterprise edition adds drivers
for DB2 and Oracle 8i (public betas for Informix and other
dbExpress drivers are also available).

15 0672324806 CH12 12/12/02 2:41 PM Page 453

NOTE

For a complete list of third-party drivers, check out John Kaster’s article on the Borland
Community Web site at http://bdn.borland.com/article/0,1410,28371,00.html.

Custom dbExpress
And that’s not all, because dbExpress was created as an Open Database Architecture,
meaning that anyone can write a dbExpress compliant driver—both on Linux for use
with Kylix, and on Windows for use with Delphi and C++Builder. A more detailed
article about the dbExpress internals by Ramesh Theivendran, the architect of
dbExpress, is published on the Borland Community Web site at http://bdn.borland.
com/article/0,1410,22495,00.html.

dbExpress Components
If you start C++Builder 6 and take a look at the Component Palette, you’ll notice a
tab called dbExpress (see Figure 12.1). Actually, most of the components are part of
DataCLX and wrap the dbExpress functionality.

CHAPTER 12 Data Access with dbExpress454

FIGURE 12.1 dbExpress Components in C++Builder 6.

The dbExpress tab contains seven components: TSQLConnection, TSQLDataSet,
TSQLQuery, TSQLStoredProcedure, TSQLTable, TSQLMonitor, and TSQLClientDataSet. Now,

15 0672324806 CH12 12/12/02 2:41 PM Page 454

we’ll examine these components in more detail and build a dbExpress example
application along the way. Note that the actual steps are repeated at the end of this
chapter, when I build a Borland Database Engine (BDE) application and a similar
dbExpress application, both connecting to an InterBase database. I’ll also discuss
how to migrate from the BDE to dbExpress.

TSQLConnection

The TSQLConnection component is literally the connection between the dbExpress
drivers and the other DataCLX components. If you drop this component on a
C++Builder form or data module, you’ll see only 12 properties. The DriverName prop-
erty shows you the dbExpress drivers that are available in your installation of
C++Builder. For instance, on my C++Builder 6 Enterprise machine the DriverName
property can be DB2, InterBase, MYSQL, or Oracle. However, instead of using the
DriverName property to set up a dbExpress connection, we should look at the
ConnectionName property, which points to a predefined connection. Entries for the
DriverName property can be found in the dbxDrivers.ini file, and entries for the
ConnectionName property can be found in the dbxConnections.ini file (both files are
located in the C:\Program Files\Common Files\Borland Shared\dbExpress directory and
can be edited manually as well as automatically as we’ll see in a moment).

You can open the Params string list editor to edit the values of the parameters. These
are also automatically filled in when you select a value for the ConnectionName prop-
erty. If you do not want this to happen, like when writing some nonvisual code to
access databases where you want to provide your own parameter values, you can set
the LoadParamsOnConnection property to false.

If you right-click the TSQLConnection component and select the Edit Connection
Properties pop-up menu option, you’ll see the Connection Settings for the different
Connection Names (there might be fewer connection names on your machine,
depending on the number of dbExpress drivers installed and connections specified in
the dbxConnections.ini file).

Note the Database property, which is set to database.gdb by default, should be set to a
real database instead. It is recommended to prefix the location of the actual database
with the machine name (or IP address) where the database is located. In my case,
that’s voyager:d:\data\employee.gdb (which can be seen in Figure 12.2), but it could
also be localhost:C:\Program Files\Common Files\Borland Shared\Data\Employee.gdb for
the default installation of the InterBase example (and the source code on CD-ROM).
Any changes that you make in the Connection Properties editor are saved to the
dbxConnections.ini file again, so you only have to make these changes once.

dbExpress Components 455

15 0672324806 CH12 12/12/02 2:41 PM Page 455

FIGURE 12.2 dbExpress Connections.

When you have specified all required parameters, and have made sure InterBase is
actually running, you can set the Connected property to true. This will show the
Login Prompt for which you must enter sysdba as user and masterkey as (not so
secret) password. To avoid seeing this login prompt, you must set the LoginPrompt
property to false, but must make sure to enter the User_Name and Password parameter
values in the Connection Properties dialog box.

CAUTION

If you get an error message about an “unavailable database,” you must check to make sure
InterBase is indeed running and that the database that you point to (in the Connection
Properties) actually exists.

TSQLDataSet

When you have a connected TSQLConnection component, you can use a number of
the other DataCLX components, such as the TSQLTable, TSQLQuery, TSQLStored
Procedure, or TSQLDataSet (which is the most flexible of these four components).
Because a TSQLDataSet can actually mimic the behavior of the TSQLTable, TSQLQuery,
and TSQLStoredProcedure, I always use a TSQLDataSet component and make sure it
behaves as required. In fact, the TSQLQuery, TSQLStoredProc, and TSQLTable components
can be seen as specialized versions of the TSQLDataSet component.

When using TSQLDataSet, you should start by specifying the SQLConnection property of
this component to (one of) the available TSQLConnection component(s) on your form
or data module. The two most important properties of the TSQLDataSet component
are the CommandType and CommandText properties. With these two properties you can
determine the specific type and behavior of the component. If you set the value of

CHAPTER 12 Data Access with dbExpress456

15 0672324806 CH12 12/12/02 2:41 PM Page 456

the CommandType property to ctQuery, the CommandText property is interpreted as SQL
query (and the component behaves like a TSQLQuery component). If on the other
hand you set the CommandType to ctStoredProc, the CommandText specifies the name of
the stored procedure (and the component behaves like a TSQLStoredProcedure compo-
nent). And finally, if you set CommandType to ctTable, CommandText contains the name of
the individual tables (and the component behaves like a TSQLTable component).

I just told you that the TSQLQuery, TSQLTable, and TSQLStoredProducedure are hardly
necessary in everyday use (the TSQLDataSet component is flexible enough). But the
purpose of these components might be to offer easier migration from existing BDE
code to dbExpress (where you can replace a regular BDE TTable component with a
new dbExpress TSQLTable component, for example).

In this case, using the general TSQLDataSet component, we can set the CommandType
property to ctTable, and the CommandText property to CUSTOMER to select the customer
table from the InterBase database. If you set the Active property to true, you get live
data at design time. Note, however, that there’s no way to see the data just yet (we
have only used nonvisual components so far), so in the next section we’ll add some
data-aware controls and discover how this new dbExpress dataset behaves.

Data-Aware Controls
We can now move to the Data Controls tab of the component palette, and start
using some of the data-aware controls to display the data we receive from the active
TSQLDataSet component. I should warn you beforehand that we cannot use these
components immediately. In fact, this is the biggest difference between the BDE and
the dbExpress architecture. TSQLDataSet (and the related TSQLQuery, TSQLStoredProc,
and TSQLTable components) returns a unidirectional cursor; meaning that you can
move forward, but not backward. This can be a problem if you try to connect a
TSQLDataSet component to data-aware components. For example, if you drop a
TDataSource and TDBGrid component next to the TSQLDataSet, connect the DataSet
property of the TDataSource to the TSQLDataSet component, and try to connect the
DataSource property of the TDBGrid to the TDataSource component, you will see exactly
what I mean. At that time, you will get an error message (assuming the TSQLDataSet
component is still active—otherwise you’ll see the error message when you set the
Active property of the TSQLDataSet component to true). The message indicates that
an Operation is not allowed on a unidirectional dataset—see Figure 12.3 for the
exact dialog.

Apparently, the TDBGrid component performs just like an operation (caused by
showing more than one record at the same time, expecting the DataSet to buffer
these records for it to walk through them). Note that you can get exactly the same
error message when using a TDBNavigator component and accidentally clicking the
Back or First button.

dbExpress Components 457

15 0672324806 CH12 12/12/02 2:41 PM Page 457

FIGURE 12.3 Unidirectional error message.

In short: It’s almost unworkable to connect data-aware controls directly to a
TSQLDataSet component because of the unidirectional nature of this dataset.

Why Unidirectional
So, why do we get (or need) a unidirectional cursor in the first place? Well, the
obvious advantage is speed. The Borland Database Engine (BDE) has never been our
best friend (let’s call it a friendly neighbor), but it has helped with the small and
simple database needs with the dBASE and Paradox local table formats, and the
InterBase connectivity. Unfortunately, the BDE footprint and overhead hasn’t been
small, and BDE tables have never been known for amazing speed. That’s an area
where Borland wanted to show some real improvements. The new cross-platform
data access architecture called dbExpress is designed with this in mind. Hence, it
provides unidirectional cursors as results, with no overhead for buffering data or
managing metadata. This, combined with the fact that Borland has announced that
development and support of the BDE has been frozen and SQL Links will even be
deprecated (in future versions of C++Builder), leads to the conclusion that dbExpress
will play an important role for data access with C++Builder.

A unidirectional cursor is especially useful when you really only need to see the
results once or need to walk through your resultset from start to finish (again once).
For example in a while-loop, processing the results of a query or stored procedure,
and converting the contents of the records on-the-fly. Real-world situations where
this is useful include reporting and Web server applications that produce dynamic
Web pages as output.

But, especially when combined with visual data-aware controls, we realize that the
user will want to go back one record, which is not supported directly. So, you need
to somehow cache the provided records to be able to show them in a DBGrid and to
browse back as well as forward. That’s where the TClientDataSet component comes
in, which you might remember from the MIDAS chapter of the C++Builder 5
Developer’s Guide. Chapter 20, “Distributed Applications with DataSnap,” of this book
addresses this issue as well. Using dbExpress, we can use a TDataSetProvider compo-
nent (from the Data Access tab of the C++Builder 6 component palette) to hook up
with the TSQLDataSet component, and then use a TClientDataSet component to
obtain the records from this TDataSetProvider. The result is a local ClientDataSet that

CHAPTER 12 Data Access with dbExpress458

15 0672324806 CH12 12/12/02 2:41 PM Page 458

gets its records (once) from a unidirectional source: the SQLDataSet. The
DataSetProvider is only used as a local transportation means, whereas the
ClientDataSet is used to cache the dataset locally (and feed it to TDBGrid and
TDBNavigator components without problems), see Figure 12.4 for an example.

dbExpress Components 459

FIGURE 12.4 TSQLDataSet–—TDataSetProvider–—TClientDataSet.

This combination of the three TSQLDataSet, TDataSetProvider, and TClientDataSet
components works very well, and in fact, ended up as a single TSQLClientDataSet
component in its own right. The only downside of using the integrated TSQLClient
DataSet component is that you can no longer access some of the (now hidden) prop-
erties of the internal TDataSetProvider and TSQLDataSet components.

TSQLClientDataSet

The TSQLClientDataSet component combines the speed and lightweight nature of the
new dbExpress architecture with the caching and speed capabilities of the TClient
DataSet component. There is another reason we have to use the TSQLClientDataSet (or
the TClientDataSet component) at certain times, namely when it comes to updates.
The unidirectional TSQLDataSet (and derived components) have an additional limita-
tion in that they cannot be used to update the data in the dataset. For that, you
have to use a TClientDataSet or TSQLClientDataSet component and call the
ApplyUpdates method.

As a regular ClientDataSet, all changes that are made locally are cached inside the
component. All changes are sent back and resolved to the actual database (via the
dbExpress driver) only by calling the ApplyUpdates method. The ApplyUpdates call will
use the DataSetProvider to send the so-called Delta dataset packet to the database
server, something a lone TSQLDataSet component can’t do, but a set of connected
TSQLDataSet-TDataSetProvider-TClientDataSet can call ApplyUpdates just fine, just as a
single combined TSQLClientDataSet component, of course. To implement an explicit
call to ApplyUpdates, we can drop a TButton component, call it btnApplyUpdates, point

15 0672324806 CH12 12/12/02 2:41 PM Page 459

its Caption property to Apply Updates, and write the following line of code in the
OnClick event handler (using the TSQLClientDataSet component to apply the updates):

void __fastcall TForm1::btnApplyUpdatesClick(TObject *Sender)

{

SQLClientDataSet1->ApplyUpdates(0);

}

The user of your application might wonder about the need to click this ApplyUpdates
button. Suppose the user changes a lot of data, but is surprised that other users don’t
see his changes because he never clicks the ApplyUpdates method. Clearly, this can be
a big problem, and at first sight the ClientDataSet layer seems only to add potential
confusion. But fortunately making sure the ApplyUpdates method is called on a
frequent or even automatic basis can solve this. In fact, you can easily use the
OnAfterPost event handler of the TClientDataSet or TSQLClientDataSet component to
call the ApplyUpdates method, which will make sure that the data is immediately sent
as an update packet to the database server after every (local) post to the
TClientDataSet component.

void __fastcall TForm1::ClientDataSet1AfterPost(TDataSet *DataSet)

{

dynamic_cast<TClientDataSet*>(DataSet)->ApplyUpdates(0);

}

Note that because the TSQLClientDataSet is derived from the TClientDataSet, we can
actually reuse the OnAfterPost event handler from the TClientDataSet as OnAfterPost

event handler for the TSQLClientDataSet.

TSQLMonitor

The TSQLMonitor component is the last component from the dbExpress tab of the
C++Builder 6 component palette that we need to cover. It’s actually more of a
supporting component, and mainly used when tracing or debugging dbExpress
applications. As such, TSQLMonitor can be used to literally monitor the SQL state-
ments and trace messages that are sent from the dbExpress application to the SQL
DBMS. This can be very helpful when you need to pinpoint problems in your
dbExpress application.

The TSQLMonitor component has a number of properties that we must work with.
First of all, we should assign a value to the SQLConnection property to specify the
TSQLConnection component that we want to monitor. After this, we can set the Active
property to true to activate the monitoring and to false to (temporarily) deactivate it
again. This toggle feature can be very helpful because you can actually turn the
TSQLMonitor on right before things start to go wrong, so you don’t have to watch

CHAPTER 12 Data Access with dbExpress460

15 0672324806 CH12 12/12/02 2:41 PM Page 460

everything going on as the application itself starts and the initial connection is
made. The monitor messages will end up in the TraceList property of type TStrings.

Two other related properties are the FileName property and the AutoSave property. If
you’ve set the FileName to a certain logfile and the AutoSave to true, the monitoring
messages will be saved in the logfile automatically (if the Active property is also
true). You can then view the logfile with the trace messages for details.

If you want to process the trace messages directly, you can also respond to the two
event handlers of the TSQLMonitor component, namely OnTrace and OnLogTrace. The
OnTrace event handler is called right before a message is added to the TraceList prop-
erty. Inside this event handler we can change this message or even prevent it from
being logged in the TraceList altogether by using the LogTrace argument, as shown
in the following code:

void __fastcall TForm1::SQLMonitor1Trace(TObject *Sender,

pSQLTRACEDesc CBInfo, bool &LogTrace)

{

if (CBInfo->eTraceCat == traceMISC) LogTrace = false;

else

LogTrace = true;

}

CAUTION

It seems that the dbExpress driver for InterBase doesn’t really use the CBInfo->eTraceCat field,
so the above code may result in no trace messages at all when using in our example project.
For that reason, the code is commented out in the source code on CD-ROM (until a better
dbExpress driver is found that uses this field).

Although the OnTrace event handler is called right before, the OnLogTrace event
handler is called right after a trace message has been added to the TraceList property.
OnLogTrace can be used to display the trace message somewhere else (for example, if
you always want to show the last trace message in the statusbar). Some not very effi-
cient C++ code in the OnLogTrace event handler to show the contents of the TraceList
property in a TMemo component is as follows:

void __fastcall TForm1::SQLMonitor1LogTrace(TObject *Sender,

pSQLTRACEDesc CBInfo)

{

Memo1->Lines->Clear();

Memo1->Lines->Add(SQLMonitor1->TraceList->Text);

Memo1->Lines = SQLMonitor1->TraceList;

}

dbExpress Components 461

15 0672324806 CH12 12/12/02 2:41 PM Page 461

The problem with this code is that the OnLogTrace event handler will be called quite
often, and clearing the TMemo->Lines property every time is a costly operation that
will slow down the overall performance of your application. It would be better to
add the individual trace messages in the OnTrace event handler. But, there’s an even
faster approach: directly pointing the TraceList property to the Lines property of the
TMemo component—both are of type TStrings. This means that updates to the
TraceList will be shared automatically by the Lines property of the TMemo component
because both point to the same memory space. The code for this is as follows:

__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)

{

Memo1->Lines->Clear();

Memo1->Lines = SQLMonitor1->TraceList; // pointing...

}

Finally, we can add a TCheckBox, call it cbTrace, and in the OnClick event handler set
the Active property of the TSQLMonitor component to true or false, so we can control
the trace messages from our own application. The implementation of this last
OnClick event handler is as follows:

void __fastcall TForm1::cbTraceClick(TObject *Sender)

{

SQLMonitor1->Active = cbTrace->Checked;

}

And the final dbExpress application (at design-time) can be seen in Figure 12.5.

CHAPTER 12 Data Access with dbExpress462

FIGURE 12.5 SQLMonitor at design time.

15 0672324806 CH12 12/12/02 2:41 PM Page 462

Running the application will show the log messages inside the Memo control as
expected (we can control the appearance of new trace messages with the Trace check
box), see Figure 12.6.

Migrating from Borland Database Engine (BDE) 463

FIGURE 12.6 SQLMonitor at runtime.

Now that we’ve covered all seven components from the dbExpress tab of the compo-
nent palette, it’s time to focus on the last topic—migrating C++Builder applications
from Borland Database Engine (BDE) to dbExpress.

Migrating from Borland Database Engine (BDE)
The first step in moving your BDE applications to dbExpress consists of converting
your data from a BDE format to a database format that can be used by dbExpress.
The BDE supports dBASE, Paradox, and InterBase, and for dbExpress we have drivers
for InterBase, among others. The one format that both share is InterBase, so if you
want to migrate existing BDE applications that are not in InterBase format, you
might consider moving the data to InterBase in the first place. This will solve half of
your migration problem; the rest consists of replacing BDE components with corre-
sponding dbExpress components.

The BDE components that you can migrate are TTable, TQuery, TstoredProc, and
TDatabase. The TSession component is only relevant for BDE-specific applications, so
it’s not needed in a dbExpress application.

The equivalent of the BDE TDatabase component is the dbExpress TSQLConnection
component. Both are used to make a connection to the actual database.
TSQLConnection has a number of predefined connections that can be found in the
drop-down list for the ConnectionName property, such as a DB2Connection, IBLocal,
MySQLConnection, or OracleConnection. You can also right-click the TSQLConnection
component and pick Edit Connections Properties to see the Connection Settings for
the different Connection Names, like we did earlier in this chapter.

15 0672324806 CH12 12/12/02 2:41 PM Page 463

The dbExpress TSQLTable, TSQLQuery, and TSQLStoredProcedure will all use a
TSQLConnection component to connect to the dbExpress database, just as the BDE
TTable, TQuery, and TStoredProc components use a TDatabase component to connect
to the BDE database.

The equivalent of the BDE TTable component is the dbExpress TSQLTable component.
The main difference is the fact that the TSQLTable component returns a read-only and
unidirectional dataset. This means that you can only navigate forward, to be used to
walk through once. If you try to move backward, an exception will be raised.

The equivalent of the BDE TQuery component is the dbExpress TSQLQuery component.
The main difference is the fact that the TSQLQuery component returns a read-only and
unidirectional dataset (just like the difference between the BDE TTable and the
dbExpress TSQLTable component).

A unidirectional dataset involves no caching or overhead. This is the main reason
why dbExpress data access components are much faster than their BDE equivalents.
On the other hand, dbExpress components such as TSQLTable and TSQLQuery turned
out to be a bit harder to use on a visual form connecting to a TDBGrid or TDBNavigator

component, therefore, we have to add an additional TDataSetProvider and
TClientDataSet component.

The equivalent of the BDE TStoredProc component is the dbExpress
TSQLStoredProcedure component. However, this is the place where you can possibly
encounter a number of problems if you migrate a local BDE application to dbExpress
because a stored procedure for use in one DBMS is likely to differ from a stored
procedure for use in another DBMS. InterBase, which is supported by both the BDE
and dbExpress (and runs on Windows as well as Linux) might be the exception
again.

Now that we’ve mapped four basic BDE dataset components, we still have two
dbExpress components left that can still play an important role while migrating BDE
applicatons: the TSQLDataSet and TSQLClientDataSet. The TSQLDataSet component is
capable of acting like a TSQLTable, TSQLQuery, or TSQLStoredProcedure component all in
one, with the CommandType property as main discriminator (the value of CommandType
determines how the value of the CommandText property is interpreted).

Finally, the TSQLClientDataSet component is the powerful combination of a
TSQLDataSet, a TDataSetProvider, and a TClientDataSet component to produce a bidi-
rectional caching dataset (remember that the TSQLTable, TSQLQuery, and
TSQLStoredProcedure all return a unidirectional read-only dataset, so if you want to
use them in a bidirectional way like the BDE datasets, you need to connect these
three components to a TClientDataSet component via a TDataSetProvider compo-
nent—or use the TSQLClientDataSet component instead).

CHAPTER 12 Data Access with dbExpress464

15 0672324806 CH12 12/12/02 2:41 PM Page 464

Migration Example
As a final example, I will list the steps to create an application that features a TDBGrid
and TDBNavigator connecting to a local InterBase table using the BDE first, and then
dbExpress. If you compare the steps, you can also see what is needed to remove the
BDE components and replace them with dbExpress components (assuming you have
migrated the database tables to a dbExpress compatible format as well).

Using BDE to Build an Application
Using the Borland Database Engine, the steps to build an application using the
InterBase CUSTOMER table are as follows (assuming we have started a new project):

1. Drop a TDatabase component; point its AliasName property to IBLocal, and its
DatabaseName property to IBL (this is just the name that we will use in our
application).

2. Drop a TTable component, point its DatabaseName property to IBL (which points
to the Database component from the previous step).

3. Open the drop-down combo box for the TableName property and select the
CUSTOMER table. This will pop-up the Database Login dialog with username
sysdba. The password is masterkey.

4. Drop a TDataSource component; point its DataSet property to the TTable
component.

5. Drop a TDBNavigator component; point its DataSource property to the
TDataSource component.

6. Drop a TDBGrid component; point its DataSource property to the TDataSource
component.

7. Set the Table, Active property to true to see the live data at design time.

Using dbExpress to Build an Application
Using dbExpress instead of the BDE, the steps to build an application using the
InterBase CUSTOMER table are as follows (again starting with a new application):

1. Drop a TSQLConnection component, and select IBLocal as the value for its
ConnectionName property (edit the Connection Properties to make sure the
Database points to a valid InterBase database).

2. Drop a TSQLClientDataSet component, point its DBConnection property to the
TSQLConnection component and set CommandType to ctTable (we want to select a
tablename).

Migrating from Borland Database Engine (BDE) 465

15 0672324806 CH12 12/12/02 2:41 PM Page 465

3. Open the drop-down combo box for the CommandText property and select the
CUSTOMER table. This will pop-up the Database Login dialog with username
sysdba. The password is masterkey.

4. Drop a TDataSource component; point its DataSet property to the
T(SQL)ClientDataSet component.

5. Drop a TDBNavigator component; point its DataSource property to the
TDataSource component.

6. Drop a TDBGrid component; point its DataSource property to the TDataSource
component.

7. Set the (SQL)ClientDataSet, Active property to true to see the live data at
design time.

The second and third steps can be replaced with the following four steps (replacing
the TSQLClientDataSet with the TSQLDataSet, TDataSetProvider, and TClientDataSet
combination):

1. Drop a TSQLTable component; point its SQLConnection property to the
TSQLConnection component.

2. Select a TableName (such as CUSTOMER).

3. Drop a TDataSetProvider component; point its DataSet property to the TSQLTable
component.

4. Drop a TClientDataSet component, point its ProviderName property to the
TDataSetProvider component.

Summary
In this chapter, we have examined the cross-platform data access layer dbExpress,
which consists of new, fast, and unidirectional DataSet components that can be
connected to ClientDataSets for caching and bidirectional cursor support. Especially
now that development and support of the BDE has been frozen and SQL Links will
even be deprecated in future versions of C++Builder, leads to the conclusion that
dbExpress will play an important role for data access with C++Builder.

CHAPTER 12 Data Access with dbExpress466

15 0672324806 CH12 12/12/02 2:41 PM Page 466

IN THIS CHAPTER

• XML Document
Programming

• XML Data Binding

• XML Mapping Tool

13

XML Document
Programming and XML

Mapper

by Bob Swart (a.k.a. Dr. Bob)

In this chapter, we will cover XML Document
Programming using the TXMLDocument component. The
capabilities from the TXMLDocument component will then be
enhanced using XML Data Binding and even further using
the XML Mapping Tool. All these techniques are part of
the BizSnap featureset of C++Builder 6 Enterprise, which
also includes support for SOAP and Web Services (see
Chapter 19, “SOAP and Web Services with BizSnap,” for
coverage of those BizSnap features).

XML Document Programming
The place to start the coverage of XML Document
Programming in C++Builder 6 is the TXMLDocument compo-
nent, which can be found on the Internet tab of the
Component Palette. But, before we can actually start to use
this component, we first need an actual XML document to
work with. While writing this chapter for the C++Builder 6
Developer’s Guide, I decided to write my own XML docu-
ment, which reflects the structure of this chapter (it also
helped me to focus on the topics to write about). The XML
document that will be used throughout the entire chapter
is stored in BizSnap.xml and defined as follows:rage of XML
Document Programming in C++Builder 6 is the

<?xml version=”1.0” standalone=’yes’ ?>

<Chapter Title=”XML Document Programming and XML Mapper”>

<Section Title=”XML Document Programming”>

16 0672324806 CH13 12/12/02 2:38 PM Page 467

<Components>TXMLDocument</Components>

<Wizards/>

</Section>

<Section Title=”XML Data Binding”>

<Components>TXMLDocument</Components>

<Wizards>XML Data Binding Wizard</Wizards>

</Section>

<Section Title=”XML Mapping Tool”>

<Components>TXMLDocument, TXMLTransform, TXMLTransformProvider, TXMLTransform

➥Client</Components>

<Wizards>XML Mapper</Wizards>

</Section>

</Chapter>

As you can see, the chapter is divided into three sections. Each section covers certain
components as well as, optionally wizards, which are all found in C++Builder 6
Enterprise (although in the appendix we will show how you can use the TXMLDocument
component also in the Professional version of C++Builder 6). We are currently in the
first section, which introduces XML document programming, using the previous
XML document and, as you can see, the TXMLDocument component. This component
can be found on the Internet tab of C++Builder 6 Enterprise (or Professional—if
you’ve followed the steps in the appendix). If you drop it on a form, there are a
number of important properties to examine.

XML Document Properties
First, we have the DOMVendor property, which is set to MSXML by default, but can
also be set to Open XML (at least on my machine). Apart from these two values
for DOMVendor, you are free to install and register other DOMs to be used by the
TXMLDocument component, such as one found in TurboPower’s XML Partner. You can
use the global variable DOMVendors for this task (refer to the online help for more
information about installing, registering, and using other DOM Vendors).

The FileName property should point to the XML document that we want to work
with. If the XML document is not stored in an external file, but rather received
directly as a stream of XML data, you can use the XML property (note that these prop-
erties are mutually exclusive—if you specify a value for one, the other is cleared).
The property editor for the XML property consists of a String list editor where you can
type (or paste) the XML directly. For our example, let’s use the BizSnap.xml file that is
also available on the CD-ROM in the directory for this chapter (or on my Web site at
http://www.drbob42.com/books/BizSnap.xml).

CHAPTER 13 XML Document Programming and XML Mapper468

16 0672324806 CH13 12/12/02 2:38 PM Page 468

NOTE

Note that after you’ve selected the Filename, the Object Inspector will prepend the path,
making it a fully qualified filename. This is nice, but a potential problem if you plan to move
your project (or just the .XML document) to another location (for example, when you load
the example project from the CD-ROM onto your own machine or deploy the final applica-
tion to another machine).

Personally, I always modify the FileName property to make sure it only holds a relative file-
name such as ..\xml\BizSnap.xml or just BizSnap.xml (to use an XML document that must
be in the same directory as the executable itself). The later (a single filename) will also help to
produce a cross-platform application, without worries about slashes and backslashes.

The NodeIndentStr property specifies the indentation level of the nodes in the XML
tree. Anything between one and eight spaces or a tab can be used. You are free to
enter your own indentation string, such as 12 spaces. The value of this property is
used if and only if the doNodeAutoIndent flag is set in the Options property. By default,
this property is set to false, so the value of NodeIndentStr is ignored.

Apart from the doNodeAutoIndent, the Options property contains flags for
doNodeAutoCreate, doAttrNull, doAutoPrefix, doNamespaceDecl, and doAutoSave. The last
flag, which is also set to false by default, is used to automatically save the contents
of the XML document in the FileName or the XML property (depending on which one
is used), whenever the TXMLDocument component is deactivated. If you want to explic-
itly save the contents of the XML document, you can always call the SaveToFile()
method, which has an optional FileName argument (if you omit this argument, it will
use the value of the FileName property). Let’s set the doAutoSave property to true in
our example.

Next, are the ParseOption flags, consisting of poResolveExternals, poValidateOnParse,
poPreserveWhiteSpace, and poAsyncLoad. All are set to false by default, and won’t be
used in this chapter.

XML Document Interfaces
The TXMLDocument component implements two different interfaces, although one is
only available through a property. To start with the latter, the DOMDocument property of
the TXMLDocument component implements the IDOMDocument Delphi interface (which
gets typecast into C++Builder _di_IDOMDocument interface), a low-level Document
Object Model (DOM) interface definition. The DOM consists of a tree-based API
(compared to SAX, which is an event-based API). The Delphi unit xmldom.pas
contains the definitions for IDOMDocument, IDOMNode, IDOMNodeList, IDOMAttr,
IDOMElement, and IDOMText for this purpose. The C++Builder imported header file
xmldom.hpp contains the typecasts of these interfaces into _di_IDOMDocument,
_di_IDOMNode, _di_IDOMNodeList, _di_IDOMAttr, _di_IDOMElement, and _di_IDOMText,
respectively.

XML Document Programming 469

16 0672324806 CH13 12/12/02 2:38 PM Page 469

Apart from the standard DOM interface, the TXMLDocument component also directly
implements the Delphi interface IXMLDocument (typecast into _di_IXMLDocument), a
more high-level approach to working with XML documents and data. This is still a
somewhat DOM-like interface, but a bit more powerful and easier to use, as I’ll show
in this section. The interfaces IXMLDocument, IXMLNode, IXMLNodeList, and IXMLNode
Collection are defined in the XMLIntf.pas unit (and typecast in XMLIntf.hpp to
_di_IXMLDocument, _di_IXMLNode, _di_IXMLNodeList, and _di_IXMLNodeCollection).

Although _di_IDOMDocument is also available through the DOMDocument property, the
_di_IXMLDocument is an easier and the preferred way (in C++Builder 6) to work with
the TXMLDocument component, so let’s examine the _di_IXMLDocument interface in some
more detail now.

Reading XML Documents
To put the XML document programming theory into practice, let’s now build an
example application using the TXMLDocument component. Start a new Application,
save the main form in the default Unit1, and the project in Project1. Drop a
TXMLDocument component next to a TMemo and TButton component. Set the Caption
property of the TButton component to XML Doc and its Name to btnXMLDoc (see
Figure 13.1).

CHAPTER 13 XML Document Programming and XML Mapper470

FIGURE 13.1 TXMLDocument component at design time.

Connect the FileName property of the TXMLDocument component to the BizSnap.xml file,
and set the doAutoSave flag of the Options property to true. Now, we can open the
TXMLDocument by setting the Active property to true as well. After the TXMLDocument is
active, we can access the root and traverse through the hierarchy of nodes, reading
and writing values, adding nodes, and more. Each node in the hierarchy is of type
_di_IXMLNode.

We can traverse through the nodes in this hierarchy and use the TMemo component to
display the nodes and their attributes we encounter along the way. First of all, the
root node can be obtained using the DocumentElement property. After we have the
root, we can get the attributes as well as child nodes. The following code for the
OnClick event handler of btnXMLDoc will get the root node, the attribute with name
Title, followed by the first child node with attributes Title, and child nodes
Components, and Wizards.

16 0672324806 CH13 12/12/02 2:38 PM Page 470

void __fastcall TForm1::btnXMLDocClick(TObject *Sender)

{

Memo1->Lines->Clear();

_di_IXMLNode Chapter = XMLDocument1->DocumentElement;

Memo1->Lines->Add(“Chapter: “ + Chapter->Attributes[“Title”]);

_di_IXMLNode Section = Chapter->ChildNodes->GetNode(0);

Memo1->Lines->Add(“Section: “ + Section->Attributes[“Title”]);

Memo1->Lines->Add(“Components: “ +

Section->ChildNodes->Nodes[

Section->ChildNodes->IndexOf(“Components”)]->GetText());

Memo1->Lines->Add(“Wizards: “ +

Section->ChildNodes->Nodes[

(AnsiString)”Wizards”]->GetText());

}

Note that the Nodes property can be indexed with a name or index. If you want to
use a name, however, you need to explicitly cast it to an AnsiString first.

The output of clicking the XMLDoc button can be seen in Figure 13.2.

XML Document Programming 471

FIGURE 13.2 XMLDocument Component at runtime.

Note that we have to make sure to give the exact names of the attributes and child
nodes. If we supply an incorrect name for an attribute, for example, we get an excep-
tion of class EVariantTypeCastError telling us that an invalid variant type conversion
was attempted. An incorrect name for a child node results in an empty node, and
hence, no value for the Text property. In other words, we should be careful not to
make accidental typing mistakes.

For each node, we can check the HasChildNodes property to make sure it indeed
contains any child nodes. The ChildNodes->Count property contains the number of
child nodes, just as the AttributeNodes->Count contains the number of attributes. And
finally, each node can return its Text as well as XML representation.

Writing XML Documents
Apart from browsing through an XML document, we can also modify and save the
updated XML document. In fact, it’s so easy to change the XML Document that
sometimes you’ve already done it without even knowing it. Remember how I told

16 0672324806 CH13 12/12/02 2:38 PM Page 471

you about the doAutoSave option; this will make sure the contents of the TXMLDocument
component is automatically saved whenever we make a change to it. Another
option, the doNodeAutoCreate, will make sure that if we try to access a node that
doesn’t exist yet, it will dutifully create one for us. This flag is set to true by default.
But the side-effect of this all is that if you make one typing mistake (for example, in
the first listing) and don’t search for the ChildNode->Nodes[(AnsiString)”Wizards”], but
the ChildNode->Nodes[(AnsiString)”Wizard”] instead, a new (empty) child node with
name Wizard will have been added to the XML Document without an error message
or warning of any kind.

Apart from changing the XML Document by accident, we can also use the
IXMLDocument methods that are made for this, such as AddChild (which will explicitly
add a child node) as well as SetAttribute, SetChildValue, SetNodeValue, and SetText. To
illustrate this, drop a second TButton component, call it btnNewSection and write the
following code in the OnClick() event handler:

void __fastcall TForm1::btnNewSectionClick(TObject *Sender)

{

_di_IXMLNode Chapter = XMLDocument1->DocumentElement;

Chapter->AddChild(“Section”);

_di_IXMLNode NewSection = Chapter->ChildNodes->GetNode(

Chapter->ChildNodes->Count-1);

NewSection->SetAttribute(“Title”, (AnsiString)”New Section Title”);

NewSection->AddChild(“Components”);

NewSection->AddChild(“Wizards”);

XMLDocument1->SaveToFile();

AnsiString XML;

XMLDocument1->SaveToXML(XML);

ShowMessage(XML);

}

Note the last few lines in the btnNewSectionClick() event handler, which were added
to illustrate the fact that we can always call the SaveToFile() method of the
TXMLDocument component (when called without arguments, it will use the value of the
FileName property), and we can also call the SaveToXML() method to save the current
contents of the TXMLDocument component as XML string.

Although we’ve seen some helpful methods, it’s always much easier to perform these
operations if you have some more design-time support from the C++Builder IDE.
Specifically with Code Insight based on the layout or semantics of the underlying
XML document, which will be available when using XML Data Binding—the topic of
the next section.

CHAPTER 13 XML Document Programming and XML Mapper472

16 0672324806 CH13 12/12/02 2:38 PM Page 472

XML Data Binding
In the previous section we worked with the _di_IXMLDocument interface as imple-
mented by the TXMLDocument component. And, although it’s useful, the downside is
that is doesn’t offer us semantic support for the XML document. One typing mistake
causes you to not find the value of a child node, but accidentally add a new child
node to the tree.

Fortunately, C++Builder 6 also contains a way to perform XML Data Binding,
whereby an XML Document is used to generate specific interfaces and C++ class defi-
nitions and implementations that will help us make fewer mistakes by offering
named methods as well as Code Insight support. You’ll get the idea when we look at
how it works.

The work is done by the XML Data Binding Wizard, which can be found in the
Object Repository after you do File, New, Other (see Figure 13.3).

XML Data Binding 473

FIGURE 13.3 XML Data Binding icon in Object Repository.

The XML Data Binding Wizard has three pages, although the first page is optional
(as I’ll explain in a moment). The fist page is used to specify the name of the XML
document, which is shown in Figure 13.4. Note that apart from an actual XML data
document, we can also specify an XML schema file because it’s the structure (and
not the actual contents) that counts at this time.

However, instead of starting the XML Data Binding Wizard from the Object
Repository, we can also start it by double-clicking the TXMLDocument component. This
will make sure the XML Data Binding Wizard is already loaded with the XML
Document that was specified by the TXMLDocument component itself, moving us to the
second page of the Data Binding Wizard automatically (see Figure 13.5).

16 0672324806 CH13 12/12/02 2:38 PM Page 473

FIGURE 13.4 First page of Data Binding Wizard.

CHAPTER 13 XML Document Programming and XML Mapper474

FIGURE 13.5 Second page of Data Binding Wizard.

On this second page of the XML Data Binding Wizard we get an overview that
shows how the Wizard will represent each XML element, and which source code
types or elements will be generated. As you can see in Figure 13.5, there are a
number of complex types (ChapterType, SectionType) as well as simple types (string)
used by our XML document.

A helpful feature of this second page is the fact that we can still modify everything,
including the access mode of attributed and child nodes, which is very useful. By
default set to Read/Write, we can change this to Read-Only, which means an
attribute value can be read, but not accidentally modified.

Before we move on to the last page, let’s click the Options button to view the possible
options you might want to change (see Figure 13.6).

16 0672324806 CH13 12/12/02 2:38 PM Page 474

FIGURE 13.6 Options page of Data Binding Wizard.

As you can see in Figure 13.6, we can change some of the code that will be gener-
ated, such as the Get_ and Set_ prefixes for the getter and setter routines. The Data
Type map is not useful for this example because we only use the String type, but it
might be convenient when you want to use custom types at a later time.

When you’re ready, close the XML Data Binding Wizard Options dialog, and click
the Next button to go to the third and last page of the XML Data Binding Wizard
(which can be seen in Figure 13.7).

XML Data Binding 475

FIGURE 13.7 Third page of Data Binding Wizard.

This third and last page of the XML Data Binding Wizard is only used as information
again, and in our case displays two generated interfaces: IXMLChapterType and
IXMLSectionType (and the C++Builder editions _di_IXMLChapterType and _di_IXML

SectionType). For both types, we can preview the generated interface definition, for
which the properties are most interesting. The IXMLChapterType contains a Title as
well as Section (array) property to access the Title attribute and the Section child
nodes. The IXMLSectionType will contain properties for Title, Components, and Wizards.

16 0672324806 CH13 12/12/02 2:38 PM Page 475

We can decide to store the binding settings for later use in the suggested file
BizSnap.xdb (this file can be reused at the first page of the Data Binding Wizard).
When we click the Finish button, the source code for the interfaces will be generated
in a new unit that will be added to the current project. Save this new unit as
BizSnap.cpp, so we know where it belongs. The definitions of the new interfaces and
classes can be read in the BizSnap.h file, and are as shown in Listing 13.1.

LISTING 13.1 XML Data Binding–Generated BizSnap.h

// *** //

//

// XML Data Binding

//

// Generated on: 2002-08-04 23:14:19

// Generated from: BizSnap.xml

// Settings stored in: BizSnap.xdb

//

// *** //

#ifndef BizSnapH

#define BizSnapH

#include <System.hpp>

#include <xmldom.hpp>

#include <XMLDoc.hpp>

#include <XMLIntf.hpp>

#include <XMLNodeImp.h>

// Forward Decls

__interface IXMLChapterType;

typedef System::DelphiInterface<IXMLChapterType> _di_IXMLChapterType;

__interface IXMLSectionType;

typedef System::DelphiInterface<IXMLSectionType> _di_IXMLSectionType;

// IXMLChapterType

__interface INTERFACE_UUID(“{2E7DECFE-0AD3-43BB-BEF7-24FAAF467567}”)

IXMLChapterType : public IXMLNodeCollection

{

public:

public:

CHAPTER 13 XML Document Programming and XML Mapper476

16 0672324806 CH13 12/12/02 2:38 PM Page 476

// Property Accessors

virtual WideString __fastcall Get_Title() = 0;

virtual _di_IXMLSectionType __fastcall Get_Section(int Index) = 0;

virtual void __fastcall Set_Title(WideString Value) = 0;

// Methods & Properties

virtual _di_IXMLSectionType __fastcall Add() = 0;

virtual _di_IXMLSectionType __fastcall Insert(const int Index) = 0;

__property WideString Title = { read=Get_Title, write=Set_Title };

__property _di_IXMLSectionType Section[int Index] = { read=Get_Section };

};

// IXMLSectionType

__interface INTERFACE_UUID(“{F85BA1A2-DB61-42AC-A95C-74F8710FA90C}”)

IXMLSectionType : public IXMLNode

{

public:

// Property Accessors

virtual WideString __fastcall Get_Title() = 0;

virtual WideString __fastcall Get_Components() = 0;

virtual WideString __fastcall Get_Wizards() = 0;

virtual void __fastcall Set_Title(WideString Value) = 0;

virtual void __fastcall Set_Components(WideString Value) = 0;

virtual void __fastcall Set_Wizards(WideString Value) = 0;

// Methods & Properties

__property WideString Title = { read=Get_Title, write=Set_Title };

__property WideString Components = { read=Get_Components, write=Set_Components };

__property WideString Wizards = { read=Get_Wizards, write=Set_Wizards };

};

// Forward Decls

class TXMLChapterType;

class TXMLSectionType;

// TXMLChapterType

class TXMLChapterType : public TXMLNodeCollection, public IXMLChapterType

{

__IXMLNODECOLLECTION_IMPL__

protected:

XML Data Binding 477

LISTING 13.1 Continued

16 0672324806 CH13 12/12/02 2:38 PM Page 477

// IXMLChapterType

virtual WideString __fastcall Get_Title();

virtual _di_IXMLSectionType __fastcall Get_Section(int Index);

virtual void __fastcall Set_Title(WideString Value);

virtual _di_IXMLSectionType __fastcall Add();

virtual _di_IXMLSectionType __fastcall Insert(const int Index);

public:

virtual void __fastcall AfterConstruction(void);

};

// TXMLSectionType

class TXMLSectionType : public TXMLNode, public IXMLSectionType

{

__IXMLNODE_IMPL__

protected:

// IXMLSectionType

virtual WideString __fastcall Get_Title();

virtual WideString __fastcall Get_Components();

virtual WideString __fastcall Get_Wizards();

virtual void __fastcall Set_Title(WideString Value);

virtual void __fastcall Set_Components(WideString Value);

virtual void __fastcall Set_Wizards(WideString Value);

};

// Global Functions

_di_IXMLChapterType __fastcall GetChapter(_di_IXMLDocument Doc);

_di_IXMLChapterType __fastcall GetChapter(TXMLDocument *Doc);

_di_IXMLChapterType __fastcall LoadChapter(const WideString FileName);

_di_IXMLChapterType __fastcall NewChapter();

#endif

As we can see from Listing 13.1, there are two new interface types: IXMLChapterType
and IXMLSectionType, which we saw earlier in the last page of the XML Data Binding
Wizard, together with their _di_IXMLChapterType and _di_IXMLSectionType C++Builder
interface typecasts.

CHAPTER 13 XML Document Programming and XML Mapper478

LISTING 13.1 Continued

16 0672324806 CH13 12/12/02 2:38 PM Page 478

What’s even more useful is the fact that the new unit also contains the class defini-
tions (in BizSnap.h) and implementations (in BizSnap.cpp) for TXMLChapterType and
TXMLSectionType. TXMLChapterType is derived from TXMLNodeCollection (it contains child
nodes), and TXMLSectionType is derived from TXMLNode. Both implement their similar-
named interface.

That’s not all, because the BizSnap unit also contains three global functions:
GetChapter() (overloaded), LoadChapter(), and NewChapter(). The first can be used to
extract a Chapter from an existing TXMLDocument component or _di_XMLDocument inter-
face. The second can be used to load a Chapter from an existing, compatible XML
file (such as the BizSnap.xml file), and the NewChapter() function can be used to start a
new, empty, Chapter. All three return a _di_IXMLChapterType interface, which can
then be used to work with C++Builder.

As an example, let’s use the GetChapter() function to extract the _di_IXMLChapterType
from the TXMLDocument component and work with it using the named methods and
properties. First, we must add the BizSnap header to the includes section of our main
form (in the header file of our main form), so we can use the interface types and
global functions. Then, to use the _di_IXMLChapterType interface during the lifetime of
the form, we can add a variable Chapter of type _di_IXMLChapterType to the form
(place it in the private section). Also, add a private field called CurrentSection of type
int, and a private method called DisplaySection(), as follows:

#include <BizSnap.h>

//————————————————————————————————
—————-
class TForm1 : public TForm

{

__published: // IDE-managed Components

TXMLDocument *XMLDocument1;

TMemo *Memo1;

TButton *btnXML;

TButton *btnFirst;

TButton *btnPrev;

TButton *btnNext;

TButton *btnLast;

void __fastcall btnXMLClick(TObject *Sender);

private: // User declarations

_di_IXMLChapterType Chapter;

int CurrentSection;

void DisplaySection(void);

public: // User declarations

__fastcall TForm1(TComponent* Owner);

};

XML Data Binding 479

16 0672324806 CH13 12/12/02 2:38 PM Page 479

Now, write the following code for the OnCreate() event handler of the Form, as well
as the private method DisplaySection():

void __fastcall TForm1::FormCreate(TObject *Sender)

{

Chapter = GetChapter(XMLDocument1);

CurrentSection = 0; // First Section

DisplaySection();

}

void TForm1::DisplaySection(void)

{

Memo1->Lines->Clear();

Memo1->Lines->Add(“Chapter: “ + Chapter->Title);

Memo1->Lines->Add(“Section: “ +

Chapter->Section[CurrentSection]->Title);

Memo1->Lines->Add(“Components: “ +

Chapter->Section[CurrentSection]->Components);

Memo1->Lines->Add(“Wizards: “ +

Chapter->Section[CurrentSection]->Wizards);

}

As you’ll find out when you type along, the Code Insight features of the C++Builder
6 IDE will now help us when writing code. Specifically, if you type GetChapter(), you
will be helped with the argument. When you want to use the Chapter (of type
_di_IXMLChapterType), Code Insight will show you a list of available properties and
methods. No more accidental typing mistakes resulting in modified XML documents
with nonsense child nodes.

Now, let’s add four TButton components, called btnFirst, btnPrev, btnNext, and
btnLast. Write the following code for their OnClick event handler (to display informa-
tion from the first, previous, next, and last section).

void __fastcall TForm1::btnFirstClick(TObject *Sender)

{

CurrentSection = 0;

DisplaySection();

}

void __fastcall TForm1::btnPrevClick(TObject *Sender)

{

if (CurrentSection)

{

CurrentSection—;

CHAPTER 13 XML Document Programming and XML Mapper480

16 0672324806 CH13 12/12/02 2:38 PM Page 480

DisplaySection();

}

}

void __fastcall TForm1::btnNextClick(TObject *Sender)

{

if (CurrentSection < Chapter->Count-1)

{

CurrentSection++;

DisplaySection();

}

}

void __fastcall TForm1::btnLastClick(TObject *Sender)

{

CurrentSection = Chapter->Count-1;

DisplaySection();

}

We can now view the contents of one item of the XML document inside the TMemo
control and use the Next and Prev buttons to navigate through the XML document
(see Figure 13.8 for the application in action).

XML Data Binding 481

FIGURE 13.8 XML Data Binding in action.

As a final enhancement, we can disable the First/Prev buttons if we are showing the
first section, and enable them otherwise. Similarly, we can disable the Last/Next
buttons if we are showing the last section, and enable them otherwise. This is done
by adding a few lines of code to the private DisplaySection() method.

void TForm1::DisplaySection(void)

{

Memo1->Lines->Clear();

Memo1->Lines->Add(“Chapter: “ + Chapter->Title);

Memo1->Lines->Add(“Section: “ +

Chapter->Section[CurrentSection]->Title);

Memo1->Lines->Add(“Components: “ +

16 0672324806 CH13 12/12/02 2:38 PM Page 481

Chapter->Section[CurrentSection]->Components);

Memo1->Lines->Add(“Wizards: “ +

Chapter->Section[CurrentSection]->Wizards);

// Enable/disable buttons

btnFirst->Enabled = CurrentSection > 0;

btnPrev->Enabled = CurrentSection > 0;

btnNext->Enabled = CurrentSection < Chapter->Count-1;

btnLast->Enabled = CurrentSection < Chapter->Count-1;

}

This concludes the XML Document Programming using Data Binding example. As
you might have experienced yourself, the generated interfaces and support classes
greatly enhance the functionality of the plain _di_IXMLDocument capabilities.

XML Mapping Tool
The last example in the previous section must have felt a bit like using a dataset
and/or data-aware controls, where we could navigate through the items of an XML
document. If you liked that, you’re in for more enjoyment because we’ll now start to
use the XML Mapping Tool (or XML Mapper for short). You can find it in the Tools
menu of the C++Builder 6 IDE, as well as with a separate icon in the Borland
C++Builder 6 Program Group. Whichever way you start it, you can do File, Open to
load the BizSnap.xml file, and it will display a treeview with the list of XML nodes.

The XML Mapper is divided into three areas. On the left side we have the XML docu-
ment, displayed in a treeview. We can also enable the Data View, which will display
the actual contents of the XML nodes and switch to the Schema view to see the
generated DTD as well as the XML Schema (you can even save the generated XML
Schema if you need one).

The right side will show the transformed (generated) DataSet, which we’ll see in a
moment. In the middle we can set some options, make some modifications, and so
on. In Figure 13.9, you can see the Node Options for the Title attribute of the
Chapter node. Note the value for Max Length, which is based on the actual values
present in the XML Document (in this case only the chapter title “XML Document
Programming and XML Mapper,” which is indeed 39 characters long). Similarly, the
Max Length for the Title of the Section node is 24, and the Max Length for Components

and Wizards is 71 and 32, respectively.

After you’ve loaded an XML document, you need to specify which nodes are
required to be transformed into a DataSet. You can do this with a right-click of the
mouse. For our example, I’ve selected all nodes, but there may be situations where
only a subset of the nodes are useful; for example, if you only want to work with the
section title and components.

CHAPTER 13 XML Document Programming and XML Mapper482

16 0672324806 CH13 12/12/02 2:38 PM Page 482

FIGURE 13.9 Loading BizSnap.xml in XML Mapper.

After we’ve selected one or more nodes, the information in the middle of the XML
Mapper changes to display the Selected Nodes, as shown in Figure 13.10.

XML Mapping Tool 483

FIGURE 13.10 Selecting All Nodes in XML Mapper.

To actually transform the selected nodes from the XML document into a datapacket,
we must right-click the left side and select the Create Datapacket from XML pop-up
menu choice (or press Ctrl+D). See Figure 13.11.

16 0672324806 CH13 12/12/02 2:38 PM Page 483

FIGURE 13.11 Create Datapacket from XML.

Figure 13.12 displays datapacket, which will be the result of the transformation. I
was surprised to notice a little unexpected discrepancy: The Title field of the nested
Section dataset is set to have a Length of 39 (instead of the required 24). This is most
likely caused by the fact that the Chapter also has a field with the name Title, which
had a Max Length of 39. This is a small bug in the XML Mapper, which should hope-
fully be fixed in an upcoming update of C++Builder 6. Fortunately, it’s not a big
problem in our case because the second Length field was originally supposed to be
smaller (24 characters) than the value that was assigned to it (39 characters). So we’re
fine in this case.

CHAPTER 13 XML Document Programming and XML Mapper484

FIGURE 13.12 Title Field with Length of 39.

16 0672324806 CH13 12/12/02 2:38 PM Page 484

If the size of the second Length field had to be longer than the first one (that is, if
it was clipped from its original length to the new value of 39), we would have a
problem. Unfortunately, in that case there is no place to modify the settings for
the generated datapacket. Therefore, no other option is available but to return to
the Title attribute of the Chapter node on the left side, change the Max Length to the
maximum of the two, and re-create the datapacket from XML again. This time,
the result will be as required, with both Title fields having a specified Length of the
maximum value of their original value. That’s okay, at least no field values will be
truncated or clipped.

Finally, to create and test the transformation and verify that this time nothing went
wrong, we should click the big Create and Test Transformation button. This will
show a form with the generated dataset (along with the contents from the XML
document inside the dataset). We could have noted from Figure 13.12 that the
Section dataset is actually a nested dataset (a field of type TDataSetField). So at first,
we only see the Title and Section of the chapter and have to click the ellipsis to get
a second form with a grid that shows the three sections from the chapter, see
Figure 13.13.

XML Mapping Tool 485

FIGURE 13.13 Create and Test Transformation.

After we’ve verified that the transformation is okay, we should save the current
transformation information in the suggested ToDp.xtr file. Next, if you also want to
be able to transform the dataset back to an XML document, you should click the
radio button to set the direction from XML to Datapacket to Datapacket to XML.
Then, click the Create and Test Transformation button, which will result in an XML
document this time, and save the transformation information again, this time in
ToXml.xtr. At this time you can close the XML Mapper, because it has performed
its task.

Transforming
Armed with the BizSnap.xml file and the two ToDp.xtr and ToXml.xtr transformation
information files, we can now convert the XML document to a dataset, make
changes to the data inside the dataset, and convert it back to an XML document
again.

16 0672324806 CH13 12/12/02 2:38 PM Page 485

We can use the same XML Document component: the BizSnap.xml file. Now we
should access it using the Transform components from the Data Access tab of the
component palette. From left to right, we have the TXMLTransform,
TXMLTransformProvider, and TXMLTransformClient components.

The TXMLTransform can be used to transform an XML document into a datapacket or
back. The TXMLTransformProvider can be used to transform an XML document into a
data packet that is provided to a TClientDataSet (or a TXMLBroker component) compo-
nent. It can be exported in a DataSnap application, as I’ll show in the last section of
this chapter. Finally, the TXMLTransformClient component converts the dataset from a
TDataSetProvider back into an XML document.

Transformation Demonstration
To demonstrate this transformation process, start a new application and drop a
TXMLTransformProvider component from the Data Access tab on the main form. Set
the TransformationFile subproperty of the TransformRead property to the ToDp.xtr
transformation file, which is used when XML information is read so it can be trans-
formed into a dataset data packet, which will be provided to a receiving
TClientDataSet component. If you also want to update the XML document again, we
must set the TransformationFile subproperty of the TransformWrite property to the
ToXml.xtr transformation file, which is used when the connecting TClientDataSet
calls the ApplyUpdates method back through the TXMLTransformProvider all the way
to the XML document. Apart from the transformation information, we should make
sure to set the XMLDataFile property to the BizSnap.xml document itself. I often use
.xtr and .xml files in the same directory as my executable, which means that I can
remove the directory information in front of each of these three filenames (leaving
only ToDp.xtr, ToXML.xtr, and BizSnap.xml). Therefore, I can easily move the applica-
tion and accompanying files around and to other machines.

Anyway, after we’ve specified the external files to use, we can drop a TClientDataSet
component on the main form as well, call it cdsChapter and point its ProviderName
property to the TXMLTransformProvider component. We can open cdsChapter, which
will request data from the XMLTransformProvider, and as a side-effect, start the XML
transformation. Right-click the cdsChapter component to start the Fields Editor, right-
click again and do Add All Fields to create a persistent Title field as well as the nested
dataset Section.

Now, drop another TClientDataSet component, and call it cdsSection. Obviously, this
one will be used to connect to the nested dataset Section, so make sure to assign the
DataSetField property to the cdsChapterSection field. To see the transformed data,
drop two TDataSource components (one for each ClientDataSet), a TDBEdit (for the
Title field of cdsChapter) and a DBGrid (for the entire cdsSection).

CHAPTER 13 XML Document Programming and XML Mapper486

16 0672324806 CH13 12/12/02 2:38 PM Page 486

FIGURE 13.14 XMLTransformProvider at design time.

We can now use this application to browse through the grid as if we were indeed
browsing through a regular dataset. If we make changes to the data, we can call the
ApplyUpdates methods of the (master) ClientDataSet cdsChapter to apply the updates
back to the original XML document (via the TXMLTransformProvider component,
hence, the need for the transformation back to an XML document).

A good technique is to update the XML document as soon as a change is made in
the cdsChapter or the cdsSection dataset, which can be done in the OnAfterPost event
handler of these ClientDataSets as follows:

void __fastcall TForm1::cdsChapterAfterPost(TDataSet *DataSet)

{

dynamic_cast<TClientDataSet*>(DataSet)->ApplyUpdates(0);

}

void __fastcall TForm1::cdsSectionAfterPost(TDataSet *DataSet)

{

cdsChapter->ApplyUpdates(0);

}

Note that I’m using two different approaches here: In the OnAfterPost of the
cdsChapter, I can take the DataSet argument, whereas in the OnAfterPost of the
cdsSection I just take the cdsChapter member of the TForm itself. In both cases, it’s the
master ClientDataSet that makes the call to ApplyUpdates because the detail is only
connected to the DataSetField cdsChapterSection.

Another option is to perform a final check at the FormClose event handler by looking
at the ChangeCount property of both the cdsChapter and cdsSection. If the sum of
them is bigger than zero (that is, if any change is made in either dataset), calling the
ApplyUpdates on the master table.

XML Mapping Tool 487

16 0672324806 CH13 12/12/02 2:38 PM Page 487

void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)

{

if ((cdsChapter->ChangeCount + cdsSection->ChangeCount) > 0)

cdsChapter->ApplyUpdates(0);

}

For more information about DataSetProviders, ClientDataSets, and calling
ApplyUpdates, see Chapter 20, “Distributed Applications with DataSnap.”

Summary
In this chapter, we have covered XML Document Programming with the
TXMLDocument component, as well as the XML Data Binding Wizard and the XML
Mapper, which can transform XML documents to data packets (and back).

CHAPTER 13 XML Document Programming and XML Mapper488

16 0672324806 CH13 12/12/02 2:38 PM Page 488

PART III

Windows Programming

IN THIS PART

14 Win 32 API Functional Areas

15 Graphics and Multimedia Techniques

16 DLLs

17 COM Programming

17 0672324806 PTIII 12/12/02 2:38 PM Page 489

17 0672324806 PTIII 12/12/02 2:38 PM Page 490

IN THIS CHAPTER

• Win32 API Background

• Windows Management

• System Services

• Graphical Device Interface

• Multimedia Services

• Common Controls and
Dialogs

• Shell Features

• International Features

• Network Services

14

Win32 API Functional
Areas

by Paul Gustavson

The Windows 32-bit (Win32) Application Programming
Interface (API) provides a wide set of C-language functions
and structures for developing and deploying Windows-
compliant applications. API calls often perform various
services for a Windows application such as providing a
common dialog box for opening and saving files or
sending a document to the printer.

In this chapter, we will examine the functional areas of the
Win32 API as identified in Figure 14.1. Examining these
functional areas provides the necessary insight into under-
standing the composition and capabilities the API provides
developers. For each key functional area, we will also
develop some useful examples with C++Builder that
demonstrate the application of the Win32 API.

18 0672324806 CH14 12/12/02 2:43 PM Page 491

FIGURE 14.1 Functional area block diagram.

Win32 API Background
The Win32 API provides numerous capabilities that are worth exploring. Allegedly,
there are over 10,000 API functions available within current versions of Windows
that are strewn across dozens of dynamic link libraries (DLLs). These Windows API
DLLs can be found in the Windows/System directory under 95, 98, and ME, or the
Windows/System32 directory under NT, 2000, and XP. Key DLLs that have been a part
of Windows since 95 and NT 3.5 include the Windows kernel library (kernel32.dll),
the user library (user32.dll), and the graphical device interface (GDI) library
(gdi32.dll).

Also important are some of the extensions and support libraries that have been
added by Microsoft as Windows has evolved. Examples include the multimedia
system library (mmsystem.dll), the Windows Shell library (shell32.dll), the Windows
Internet Extensions library (wininet.dll), Windows Sockets (winsock.dll and
wsock32.dll), DirectX libraries, and many more. Many of these extensions and
support libraries are not necessarily required for Windows to work, but provide
useful features that make programs more robust and powerful.

TIP

The Win32 API functions that are made natively available to the Borland developer reside in
an import library called import32.lib. This library is linked into each project that is built. To
view the functions contained in this import library use Borland’s TLIB command-line tool as
follows:

TLIB import32.lib, import32.txt

This will produce a file called import32.txt that contains a list of the Win32 modules and the
functions provided by each of those modules. Although it might appear to be lengthy when
you view import32.txt, it’s not an exhaustive list of the Win32 API. A number of other Win32
API modules and functions might never make it into the import32.lib, which is produced
with each release of C++Builder. To utilize other Win32 API modules, you must locate the DLL

CHAPTER 14 Win32 API Functional Areas492

18 0672324806 CH14 12/12/02 2:43 PM Page 492

that supports the desired feature and either use the implib command-line tool to create a
library that can be supported by the Borland compiler and linker, or dynamically load a DLL
using the LoadLibary() call.

To discover the list of available functions and services supported by a specific Win32 API
library, try using Borland’s impdef command-line tool to generate an interface definition
(.def) file of the DLL, as shown in the following example:

impdef –a user32.def user32.dll

When using this command-line utility, or any other one that requires a filename, be sure to
supply the full path to the dll file or position your active directory in the folder the dll resides.
The .def file, which can be viewed by any text editor, will contain a list of available functions
that can be used by application developers. Browsing the windows/system (95, 98, Me) or
windows/system32 (NT, 2000, XP) directory will reveal a plethora of DLLs, yet only a small
percentage of these DLLs are true Win32 API DLLs. Often, a Win32 DLL will contain a 32 tag
embedded within the filename. The Properties feature (see Figure 14.2) within Windows
Explorer can be used to reveal more information about the DLL. If it says Microsoft and says
API, you can be certain it’s a Win32 API module.

Win32 API Background 493

FIGURE 14.2 The DLL Properties dialog.

Alternatively, an example utility called “DLL LIB Util” is included on the book CD-ROM, which
automates the steps described previously in displaying information regarding a specified DLL
or LIB file (see Figure 14.3). The source code for this program is provided on the CD-ROM
and utilizes several Win32 API calls for discovering information regarding Windows files such
as a DLL.

18 0672324806 CH14 12/12/02 2:43 PM Page 493

FIGURE 14.3 DLL LIB utility.

Within C++Builder and Delphi, many of the common Win32 API features have been
wrapped within the core set of VCL components used to help construct a typical
Windows application. VCL Win32 examples include TEdit, TLabel, TMemo, TRichEdit,
TImageList, TTreeView, TOpenDialog, Ttimer, and much more. In fact, many of the
visual VCL components that are derived from TWinControl are simply wrappers to
Microsoft Windows screen objects. In addition, several other non-visual VCL compo-
nents provide other Win32 API support such as TTimer.

Although the VCL provides an object-oriented–based interface to the Win32 API, it is
not all inclusive. Many of the Win32 API functions and features have not made their
way into a VCL component. As a result, there are Win32 functions and features that
are often untapped by the C++Bulder (and Delphi) developer.

Let’s explore these capabilities by examining each of the Win32 API functional areas.

Windows Management
Let’s start off by examining the Windows Management functional area. Windows
applications are created and managed through a majority of the functions provided
by the user library (user32.dll). The user library interface includes services for
window and menu management, dialogs, messaging, message boxes, mouse and
keyboard access, and other built-in controls.

CHAPTER 14 Win32 API Functional Areas494

18 0672324806 CH14 12/12/02 2:43 PM Page 494

Before we dive any deeper, it’s important to first understand the concept of a
window. A window acts as the interface between the user and the application. At
least one window, called the main window, is created by a Windows application.
Applications can create additional windows as well. A window’s primary purpose is
to display information and receive input from a user.

Windows Management functions are used to control the aspect of the windows
created and used by an application. The main window receives mouse and keyboard
input through messages. These messages are passed between window resources
through Windows Management support. Windows Management functions also
provide the capability for an application to display icons, menus, and dialog boxes
that receive and display additional user information.

NOTE

Some type of handle identifies all window resources. Examples of entities with handles
include modules, processes, threads, frame windows, menus, bitmaps, icons, cursors, and
color space. A handle is always represented by a 32-bit unsigned value and is an extremely
important aspect of the Win32 API. Handles provide the means and mechanism to control
and manipulate objects, such as a window and children processes, and they provide the capa-
bility to pass input to other applications through message callbacks. You’ll find that a
number of the Win32 API examples provided in this chapter make use of handles.

The functions in Table 14.1 provide a sampling of some of the more popular
Windows Management API routines used to create and manage windows. These
routines are accessed simply by including the windows.h header file or Borland’s vcl.h
header file within your application’s source file.

TABLE 14.1 Common Windows Management Functions

Windows Management
Common Functions Description

CascadeWindows() Cascades the specified windows or the child windows of the specified

parent window.

CloseWindow() Minimizes, but does not destroy a specified window.

CreateWindow() Creates an overlapped, pop-up, or child window.

DestroyWindow() Destroys a window. The system responds by sending a WM_DESTROY

message to a specified window.

EnableWindow() Enables or disables mouse and keyboard input to a specified window

or control.

EnumWindows() Enumerates by looping through each top-level window on the display

and passing the handle of each window individually to an application-

defined callback function.

Windows Management 495

18 0672324806 CH14 12/12/02 2:43 PM Page 495

EnumWindowsProc() Used by the EnumWindows() function. This is the application-defined

callback function that EnumWindows() uses to pass the handles of top-

level windows.

FindWindow() Retrieves the handle to the top-level window in which the class name

and window name match the specified strings.

FindWindowEx() Retrieves the handles of available active windows. Similar to

FindWindow(), but also provides support for locating child windows.

GetWindowRect() Retrieves the screen coordinates of the specified window.

GetWindowText() Retrieves the title bar caption of the specified window.

MessageBeep() Plays a predefined waveform sound asynchronously.

MessageBox() Creates a small dialog box containing an application-defined title and

message.

MoveWindow() Moves the location and size of a specified window.

PostMessage() Directs a specified message to another window and returns immedi-

ately.

RegisterWindowMessage() Defines a new windows message that is guaranteed to be unique.

SetWindowText() Modifies the text of the title bar for the specified window.

SendMessage() Directs a specified message to another window and waits until the

message has been processed.

ShowWindow() Sets the show state of the specified window. Show states include

hiding, maximizing, minimizing, restoring, and activating a window.

TileWindows() Tiles the specified windows or the child windows of the specified

parent window.

WinMain() Called by the system as the initial entry point for a Win32-based appli-

cation.

Many other Windows Management routines exist that we have not identified. In
fact, there are more than 640 routines provided by the user32.dll within current
versions of Windows. Use Borland’s impdef command-line tool or the DLL LIB Util
utility, described in the Tip section earlier, to view the full list of available functions
within user32.dll.

Let’s now create an example application in C++Builder that uses some of the
Windows Management routines identified in Table 14.1.

Windows Management Example
In the Chapter 14 source directory on the CD-ROM, there is a project called
WinManUtil, which is illustrated in Figure 14.4. This project contains a comprehensive

CHAPTER 14 Win32 API Functional Areas496

TABLE 14.1 Continued

Windows Management
Common Functions Description

18 0672324806 CH14 12/12/02 2:43 PM Page 496

sample that utilizes the Windows Management API calls and messages to manage
and control other Windows applications.

Windows Management 497

FIGURE 14.4 Windows Management Utility screen shot.

We’ll take a look at five different aspects of the program that demonstrate the appli-
cation of the Windows Management API: Enumerating Windows, Controlling
External Windows, Message Handling Support for moving an external window,
Flashing a Window for user notification, and Window Animation Effects on open
and close.

Enumerating Windows
Listing 14.1 shows some of the source code used to enumerate active windows in the
system by using the EnumWindows() call and an application-defined callback function
called GetWinHandleAll(). The information gathered by the callback function is
displayed to the user within a tree view control.

LISTING 14.1 Windows Management Utility—Enumerating Windows Example

void __fastcall TFormWinMan::ButtonEnumWindowsClick(TObject *Sender)

{

TCursor Save_Cursor = Screen->Cursor;

Screen->Cursor = crHourGlass; // hourglass cursor

try

{

TreeView1->Items->Clear(); // clear tree

EnumWindows((WNDENUMPROC)GetWinHandleAll,0); // enumerate all windows

TreeView1->AlphaSort(); // sort tree which contains enum results

18 0672324806 CH14 12/12/02 2:43 PM Page 497

}

__finally

{

Screen->Cursor = Save_Cursor; // restore cursor

}

}

//---

BOOL CALLBACK TFormWinMan::GetWinHandleAll(HWND hwnd, unsigned long hproc)

{

int correlation = FormWinMan->GetCorrelationChoice();

FormWinMan->ProcessHandleInformation(hwnd,correlation);

if (hwnd != NULL) return true; // keep going (we want them all)

return false; //stop enumeration

}

//---

TTreeNode* __fastcall TFormWinMan::ProcessHandleInformation(HWND H_Window,

unsigned int correlation_type)

{

// get the handle of the application instance

HINSTANCE hAppInstance = (HINSTANCE)GetWindowLong(H_Window,GWL_HINSTANCE);

unsigned long dwProcessId = 0;

// find out who created window

unsigned long tempID = GetWindowThreadProcessId(

H_Window,

&dwProcessId); // address of variable for process identifier

int length = GetWindowTextLength(H_Window); // get the length

if ((CheckBoxIgnoreWindowsNoTitles->Checked) && (length == 0))

return NULL;

char classname[80];

char windowtitle[80];

GetWindowText(H_Window, windowtitle, 80);

GetClassName(H_Window, classname, 80);

CHAPTER 14 Win32 API Functional Areas498

LISTING 14.1 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 498

HWND hwndParent = (HWND)GetWindowLong(H_Window,GWL_HWNDPARENT);

if ((!CheckBoxIncludeParent->Checked) && (hwndParent == 0))

return NULL;

TAppInfo *appinfo = new TAppInfo();

appinfo->DeviceContext = GetWindowDC(H_Window);

appinfo->Title = AnsiString(windowtitle);

appinfo->Class = AnsiString(classname);

appinfo->WindowHandle = H_Window;

appinfo->ParentWindowHandle = hwndParent;

appinfo->InstanceHandle = (int)hAppInstance;

appinfo->ProcessID = dwProcessId;

TTreeNode* current_node = NULL;

// let’s double check to make sure we have a node for the parent.

if ((CheckBoxIncludeParent->Checked) && (appinfo->ParentWindowHandle != 0))

{

TTreeNode* parent_node = FormWinMan->GetNode_AppInfoValue(

FormWinMan->TreeView1->Items,

NULL,

WINHANDLE,

(unsigned long)appinfo->ParentWindowHandle);

if (!parent_node) // need to create node with parent info

current_node = ProcessHandleInformation(// recurse

appinfo->ParentWindowHandle,

correlation_type);

}

AnsiString treetext;

switch (correlation_type)

{

case PROCESS :

current_node =

FormWinMan->GetNode_AppInfoValue(

FormWinMan->TreeView1->Items,

NULL,

PROCESSID,

(unsigned long)appinfo->ProcessID);

Windows Management 499

LISTING 14.1 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 499

treetext = “PID=” + AnsiString(appinfo->ProcessID) + “ : “;

break;

case INSTANCE :

current_node =

FormWinMan->GetNode_AppInfoValue(

FormWinMan->TreeView1->Items,

NULL,

INSTANCEHANDLE,

(unsigned long)appinfo->InstanceHandle);

treetext = “INST=” + AnsiString(appinfo->InstanceHandle) + “ : “;

break;

case WINDOW :

current_node =

FormWinMan->GetNode_AppInfoValue(

FormWinMan->TreeView1->Items,

NULL,

WINHANDLE,

(unsigned long)appinfo->ParentWindowHandle);

treetext = “HWND=” + AnsiString((unsigned int)appinfo->WindowHandle) +

“ : “;

break;

default :

if (CheckBoxProcessRootNode->Checked)

current_node = FormWinMan->GetNode_Process(

FormWinMan->TreeView1->Items,

appinfo->ProcessID);

treetext = “”;

}

TTreeNode* node = NULL;

if (CheckBoxProcessRootNode->Checked) // user wants process IDs at 1st level

{

TAppInfo *processinfo = new TAppInfo();

processinfo->ProcessID = appinfo->ProcessID;

// make sure we have ProcessRootNode for this WindowHandle

node = FormWinMan->GetNode_Process(FormWinMan->TreeView1->Items,

appinfo->ProcessID);

if (!node) {

// need to create Process Node

AnsiString temptext = “PID=” + AnsiString(appinfo->ProcessID);

CHAPTER 14 Win32 API Functional Areas500

LISTING 14.1 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 500

node = FormWinMan->TreeView1->Items->AddObject(NULL,

temptext,

processinfo);

current_node = node; // reset current_node

}

}

node = FormWinMan->GetNode_AppInfoValue(FormWinMan->TreeView1->Items, NULL,

WINHANDLE,

(unsigned long)appinfo->WindowHandle);

if (!node) // make sure we don’t already have the WindowHandle

{

if (!current_node) // parent node

{

if (FormWinMan->TreeView1->Items->Count > 0)

current_node = FormWinMan->TreeView1->Items->Item[0];

node = FormWinMan->TreeView1->Items->AddObject(current_node,

AnsiString(treetext +

AnsiString(windowtitle) + “ (“ +

AnsiString(classname) + “)”),appinfo);

}

else // child node

{

node = FormWinMan->TreeView1->Items->AddChildObject(

current_node,

AnsiString(treetext +

AnsiString(windowtitle) + “ (“ +

AnsiString(classname) + “)”),appinfo);

}

}

return node; // make sure we pass back the node

}

node = FormWinMan->GetNode_AppInfoValue(FormWinMan->TreeView1->Items, NULL,

WINHANDLE,

(unsigned long)appinfo->

➥WindowHandle);

if (!node) // make sure we don’t already have the WindowHandle

{

if (!current_node) // parent node

Windows Management 501

LISTING 14.1 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 501

{

if (FormWinMan->TreeView1->Items->Count > 0)

current_node = FormWinMan->TreeView1->Items->Item[0];

node = FormWinMan->TreeView1->Items->AddObject(current_node,

AnsiString(treetext +

AnsiString(windowtitle) + “ (“ +

AnsiString(classname) + “)”),appinfo);

}

else // child node

{

node = FormWinMan->TreeView1->Items->AddChildObject(

current_node,

AnsiString(treetext +

AnsiString(windowtitle) + “ (“ +

AnsiString(classname) + “)”),appinfo);

}

}

return node; // make sure we pass back the node

}

//---

void __fastcall TFormWinMan::TreeView1Change(TObject *Sender, TTreeNode *Node)

{

TTreeNode* node = TreeView1->Selected;

if ((node->Level == 0) && (CheckBoxProcessRootNode->Checked)) return;

TAppInfo* info = (TAppInfo*)node->Data;

winhandle = info->WindowHandle;

UpdateAppInfo(winhandle);

}

Let’s examine what’s happening in this code. The ButtonEnumWindowsClick() method is
used to enumerate all the active windows in the system. The actual Win32 API call
used to initiate this enumeration is provided by the EnumWindows() call. As a parame-
ter to the EnumWindows() call, we passed a parameter to a callback function that we’ve
defined called GetWinHandleAll(). All callback functions provided to EnumWindows()
must take on this same form.

CHAPTER 14 Win32 API Functional Areas502

LISTING 14.1 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 502

The GetWinHandleAll() callback that we’ve created receives the windows handle to
each enumerated window. Calls used to process and display the windows handle
information is provided by the ProcessHandleInformation() method defined for this
sample. The GetWinHandleAll() also checks for a NULL window handle to determine
when all windows have been enumerated, and returns false after this condition
is met.

ProcessHandleInformation() examines each window handle using Windows
Management API calls and builds a tree of the enumerated data using objects. The
specific Win32 API calls used to collect the information for each node object include
GetWindowLong() with the parameter GWL_INSTANCE to determine the handle instance of
the window; GetWindowThreadProcessID() to determine the Process ID for the window
handle; GetWindowText() to determine the caption title of the specified window; and
GetClassName() to determine the class used to defined the window. This information
is used to organize and label the nodes within our tree view.

TreeView1Change() event handler is triggered when the user clicks or keys any of the
nodes within the tree view. When this occurs, the windows handle is retrieved from
the node object and additional information is provided to the user through
UpdateAppInfo().

Let’s take a look, for a moment, at the UpdateAppInfo() function created for this
example.

void __fastcall TFormWinMan::UpdateAppInfo(HWND winhandle)

{

EditWHandle->Text = (AnsiString)(int)winhandle;

int length = GetWindowTextLength(winhandle);

char * title = new char[length+1];

title[length] = 0;

GetWindowText(winhandle,title,length+1);

EditTitle->Text = AnsiString(title);

char classname[80];

GetClassName(winhandle, classname, 80);

EditClass->Text = AnsiString(classname);

RECT Rect;

GetWindowRect(winhandle,&Rect); // get the size for the current window

EditLeft->Text = AnsiString((unsigned int)Rect.left);

EditTop->Text = AnsiString((unsigned int)Rect.top);

EditWidth->Text = AnsiString((unsigned int)(Rect.right - Rect.left));

EditHeight->Text = AnsiString((unsigned int)(Rect.bottom - Rect.top));

Windows Management 503

18 0672324806 CH14 12/12/02 2:43 PM Page 503

unsigned long dwProcessId = 0; //(unsigned long)

➥GetWindowLong(H_Window,GWL_ID);

// find out who created window

unsigned long tempID = GetWindowThreadProcessId(

winhandle,

&dwProcessId); // address of variable for process identifier

EditProcessID->Text = AnsiString(dwProcessId);

// get the handle of the application instance

HINSTANCE hAppInstance = (HINSTANCE)GetWindowLong(winhandle,GWL_HINSTANCE);

EditIHandle->Text = AnsiString((unsigned int)hAppInstance);

HWND ParentWindowHandle= (HWND)GetWindowLong(winhandle,GWL_HWNDPARENT);

EditPWHandle->Text = AnsiString((unsigned int)ParentWindowHandle);

}

In this code, we again use several Win32 API calls to obtain and display information
regarding the windows handle that was passed in as a parameter.

GetWindowTextLength() and GetWindowText() are used in tandem to retrieve the window
text such as a title bar caption. In the next example, we’ll use SetWindowText() to
modify text of an external window.

GetClassName() is used to retrieve the class name associated to the window. For a
C++Builder application you might see TApplication, a TForm descendent, or a class
used to represent a subcomponent on the form. It really depends on the level of the
window being examined.

GetWindowRect() is then used to retrieve the screen coordinates of the window. Some
simple math is performed to determine the width and height of the window. In a
short bit, we will demonstrate how to move an external window. The code on the
CD-ROM also shows how to resize an external window.

GetWindowThreadProcessID() is used to find out what process is associated with the
window we use. Finally, we use GetWindowLong() twice to find out the Instance Handle
of the window by using the GWL_HINSTANCE flag, and, if it exists, the Window handle
of the parent using the GWL_HWNDPARENT flag.

Controlling External Windows
Let’s now take a look at some other code from this sample that uses the Windows
Management calls to control the external windows that have been enumerated (see
Listing 14.2).

CHAPTER 14 Win32 API Functional Areas504

18 0672324806 CH14 12/12/02 2:43 PM Page 504

LISTING 14.2 Windows Management Utility—Manipulating External Windows Example

void __fastcall TFormWinMan::ButtonChangeTitleClick(TObject *Sender)

{

SetWindowText(winhandle, EditTitle->Text.c_str());

}

//---

void __fastcall TFormWinMan::ButtonBringToFocusClick(TObject *Sender)

{

SendMessage(winhandle,WM_SYSCOMMAND,SC_RESTORE,0);

SetForegroundWindow(winhandle);

if (CheckBoxTop->Checked) SetForegroundWindow(Handle);

}

//---

void __fastcall TFormWinMan::ButtonMaximizeClick(TObject *Sender)

{

SendMessage(winhandle,WM_SYSCOMMAND,SC_MAXIMIZE,0);

}

//---

void __fastcall TFormWinMan::ButtonHideClick(TObject *Sender)

{

ShowWindow(winhandle, SW_HIDE);

}

This listing provides just a handful of some of the functions that manipulate other
windows through Windows Management API calls. Let’s examine some of these calls.

In ButtonChangeTitleClick(), the SetWindowText() API call is used to alter the text asso-
ciated to a window handle. This can be used to change the window’s title bar or the
text of window controls such as a button caption or menu item if we know its
window handle.

BOOL SetWindowText(

HWND hWnd, // handle to window or control

LPCTSTR lpString // title or text

);

Windows Management 505

18 0672324806 CH14 12/12/02 2:43 PM Page 505

In our example, we simply pass as parameters the active window handle of the
window currently being examined, and the text that we want to assign to the
control.

There are up to three Windows Management API Calls used in the
ButtonBringToFocusClick() event handler. The first call used is SendMessage(), which is
used to transmit a synchronous Windows message to a single window handle or to
all top-level windows. The message that is being passed in this example is the
WM_SYSCOMMAND windows message with the SC_RESTORE parameter as the command
being requested. Here we are requesting that the targeted application restore its
window to its normal position and size. The ButtonBringToFocusClick() then waits
until this message has been processed by the targeted window.

Following the SendMessage() call, ButtonBringToFocusClick() issues a
SetForegroundWindow() to activate and raise the targeted window into the foreground.
Additionally, if the user has checked the CheckBoxTop control, which indicates that
the user wants the WinManUtil app to not be masked by the targeted window, our
example app is raised one layer higher than the targeted window by using
SetForegroundWindow() again. This time, however, we pass its own windows handle.

NOTE

Windows messages provide the interaction mechanism used to pass input to various objects
represented by a handle. The two common API calls used to pass a specified message to a
window or windows are SendMessage() and PostMessage(). Although these calls perform a
similar action, there are some differences between the two. SendMessage() is used to pass a
message synchronously; the call waits until the message has been processed. PostMessage(),
however, is used to pass a message asynchronously; it does not bother to wait for the
message to be processed and returns immediately. The declaration for the PostMessage() is
provided below:

LRESULT PostMessage(

HWND hWnd, // handle of destination window

UINT Msg, // message to send

WPARAM wParam, // first message parameter

LPARAM lParam // second message parameter

);

Both SendMessage() and PostMessage() require four elements: a window handle indicating
the target window, a message identifier that describes the purpose of the message, and two
32-bit message parameters. The message parameters can be used to pass value information or
address information to the destination handle. The LRESULT value returned by the
SendMessage() or PostMessage() function specifies the result of the message processing. For
instance, a return value of nonzero indicates success for PostMessage().

CHAPTER 14 Win32 API Functional Areas506

18 0672324806 CH14 12/12/02 2:43 PM Page 506

In ButtonMaximizeClick() we again use SendMessage(), but this time requesting for the
target window to Maximize its window by using the SC_MAXIMIZE command in
connection with the WM_SYSCOMMAND message.

In ButtonHideClick() we are using another Windows Management routine called
ShowWindow() to change the state of the targeted window. In this case, we are request-
ing the window to be hidden and no longer active on the desktop by using the
SW_HIDE command.

Message Handling Support
Let’s take a look at a few more code excerpts from this sample that demonstrates
some practical ways of using the Windows Management calls for moving the display
location of an external window. Code to support this functionality is provided in
Listing 14.3.

LISTING 14.3 Windows Management Utility—Message Handling Support for Moving
an External Window

__fastcall TFormWinMan::TFormWinMan(TComponent* Owner)

: TForm(Owner)

{

// define custom messages

WM_MOVE_A_WINDOW = RegisterWindowMessage(“WM_MOVE_A_WINDOW”);

WM_STRETCH_A_WINDOW = RegisterWindowMessage(“WM_STRETCH_A_WINDOW”);

WindowProc = MyWndProc;

}

//---

void __fastcall TFormWinMan::MyWndProc(Messages::TMessage &Message)

{

// If the window receives a notification message then

// pass it to the appropriate windows messaging function. Otherwise

// let the default processing for the message take place.

if (Message.Msg == WM_MOVE_A_WINDOW)

wmMoveAWindow(Message);

else if (Message.Msg == WM_STRETCH_A_WINDOW)

wmStretchAWindow(Message);

else

WndProc(Message) ;

}

//---

Windows Management 507

18 0672324806 CH14 12/12/02 2:43 PM Page 507

void __fastcall TFormWinMan::ButtonMoveRightMouseDown(TObject *Sender,

TMouseButton Button, TShiftState Shift, int X, int Y)

{

ButtonDown = true;

PostMessage(Handle, WM_MOVE_A_WINDOW, (unsigned int)winhandle, MOVERIGHT);

}

//---

void __fastcall TFormWinMan::ButtonMoveRightMouseUp(TObject *Sender,

TMouseButton Button, TShiftState Shift, int X, int Y)

{

ButtonDown = false;

}

//---

void __fastcall TFormWinMan::wmMoveAWindow(TMessage Msg)

{

RECT rect;

HWND wh = HWND(Msg.WParam);

GetWindowRect(wh, &rect); // get the size for the current window

int width = rect.right - rect.left;

int height = rect.bottom - rect.top;

int direction = Msg.LParam;

while (ButtonDown)

{

switch (direction)

{

case MOVEUP : rect.top--; break;

case MOVEDOWN : rect.top++; break;

case MOVELEFT : rect.left--; break;

case MOVERIGHT : rect.left++; break;

}

MoveWindow(wh, rect.left, rect.top, width, height, true);

Application->ProcessMessages(); // process other messages

UpdateAppInfo(winhandle);

}

}

In this example, the effect that is desired is for the user to be able to hold the Move
Right button down, and for the targeted window to continually move horizontally

CHAPTER 14 Win32 API Functional Areas508

LISTING 14.3 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 508

to the right until the Right button is finally released—that is, the button comes back
up. To do this, however, we will need to use a custom windows message that will be
handled by our application. The custom windows message of interest is called
WM_MOVE_A_WINDOW, which has been declared as an integer property for TFormWinMan. To
set this up, we use the RegisterWindowMessage() API call in the constructor for
TFormWinMan. RegisterWindowMessage() will guarantee that the user-defined message
WM_MOVE_A_WINDOW will be unique throughout the system. The WindowProc property of
the form, which is inherited from TConrol, is also set to a new windows-handling
method called MyWndProc(). MyWndProc() will now intercept any incoming Windows
message calls for our application. If the method receives a specific message such as
WM_MOVE_A_WINDOW, it passes it to the appropriate windows messaging-handler func-
tion. Otherwise, the default processing for the message takes place through a call to
the form’s standard WndProc() method. In this example, after WM_MOVE_A_WINDOW is
intercepted, a call is made to another routine defined for our application called
wmMoveAWindow(). In a short bit, we will take a look at wmMoveAWindow() and how it is
applied to support the task of moving our targeted window. But next, let’s examine
how we trigger the move event.

The ButtonMoveRightMouseDown() function provides the desired processing after the
mouse-down event occurs. In our case, the ButtonDown property associated to the
form is set to true, indicating that we have a button down. Then, a PostMessage() call
is made to itself using our user-defined message WM_MOVE_A_WINDOW with parameters
identifying what window to move (a handle), and in what direction to move. The
code that receives and processes this specific message is contained within the
wmMoveAWindow() method. Although the Move Right button is down—remember we’re
keeping track of the status of that button through the ButtonDown property—we issue
a MoveWindow() API call passing the window handle of the target, and the new desired
desktop location in the form of a RECT structure. We continue to call MoveWindow()
until ButtonDown is false.

You may ask, “Why do you post a windows message to yourself? Why not put the
MoveWindow() looping code right into the event handler?” The reason why a
PostMessage() call is made, is because in Borland C++Builder (and in Delphi) the
insertion of any type of loop processing directly into a VCL event handler could
jeopardize the capability to capture other similar events. In our case, we’re looking
for two events associated to the same button: a mouse-down event and a mouse-up
event. If we put while loop type processing directly into the method handling the
first event, we risk missing the back-end event, which is the mouse release. If we
miss the mouse release, the target window we’re moving will keep moving forever.
Obviously, that’s not the desired effect, so we need some way to provide loop
processing for an event and still be able to field other events that might occur. The
easiest way to do that, short of threading, is to use the asynchronous PostMessage()
call with a custom windows message, just as we have done in our example. The

Windows Management 509

18 0672324806 CH14 12/12/02 2:43 PM Page 509

handler of that message provides the conditional looping. In our case, this condi-
tional looping is found in the wmMoveAWindow() routine. Notice also the use of the
Application->ProcessMessages() routine, which temporarily interrupts the looping
that is occurring so that other window message events can be processed and fielded.

The ButtonMoveRightMouseUp() method is simply used to process the mouse-up event
associated to the Move Right button by toggling the ButtonDown property to false.
After the ButtonDown property is set to false, the loop processing that has been occur-
ring within the wmMoveAWindow() routine finishes because the loop condition, while
(ButtonDown), has now failed.

Flashing a Window
Sometimes it’s helpful to notify the user that an application has completed its task
without being interrupted by an annoying message box. Microsoft has two API calls
that provide a nonobtrusive way of signaling a notification to the user: FlashWindow()
and FlashWindowEx(). Both of these routines can be used to alert a user that his atten-
tion is recommended, but not required. Whereas, a message box, which can be
generated by the Windows API MessageBox() call, requires that a user perform the
extra step of closing the window alert.

Let’s take a look at the code in our sample program that uses FlashWindowEx().

void __fastcall TFormWinMan::ButtonFlashClick(TObject *Sender)

{

FLASHWINFO flash_info;

flash_info.cbSize = sizeof(FLASHWINFO);

flash_info.hwnd = winhandle;

flash_info.dwFlags = FLASHW_TIMER | FLASHW_ALL;

flash_info.uCount = EditCount->Text.ToIntDef(10); // # times to flash

flash_info.dwTimeout = EditDur->Text.ToIntDef(100); // duration for each flash

FlashWindowEx(&flash_info);

}

In this code, FlashWindowEx() simply flashes the title bar of the application, and/or
the icon representing the application in the taskbar.

NOTE

You might have noticed the use of FlashWindow() or FlashWindowEx() in popular programs
such as America Online’s Instant Messenger, Yahoo Pager, and ICQ. This feature is used to
alert a user that something in a specific program has occurred and is in need of attention, or
to let the user know that that a window is ready to receive focus.

CHAPTER 14 Win32 API Functional Areas510

18 0672324806 CH14 12/12/02 2:43 PM Page 510

FlashWindowEx() requires a pointer to a structure containing the flash information.
The variable to this pointer is defined by FLASHWINFO, which is listed as follows:

typedef struct {

UINT cbSize;

HWND hwnd;

DWORD dwFlags;

UINT uCount;

DWORD dwTimeout;

} FLASHWINFO, *PFLASHWINFO;

The FLASHWINFO structure controls the way the FlashWindowEx() function is going to
execute. First, cbSize identifies the size of the FLASHINFO structure using sizeof
(FLASHWINFO). Hwnd is used to identify the handle of the window to be flashed. dwFlags
identifies how the flashes are going to be carried out. Table 14.2 shows the different
flags:

TABLE 14.2 FlashWindowEx() Flags

Flag Meaning

FLASHW_STOP Stop flashing. The system restores the window to its original state.

FLASHW_CAPTION Flash the window caption.

FLASHW_TRAY Flash the taskbar button.

FLASHW_ALL Flash both the window caption and taskbar button. This is equivalent to

setting the FLASHW_CAPTION and FLASHW_TRAY flags.

FLASHW_TIMER Flash continuously until the FLASHW_STOP flag is set.

FLASHW_TIMERNOFG Flash continuously until the window comes to the foreground.

In our example, we used the FLASHW_TIMER to identify that we want to use a timer,
and FLASHW_ALL flags to identify that we want both the title bar and taskbar icon to
flash. The uCount parameter identifies the number of times we want the window to
flash. In our example, we retrieve the flash count from a TEdit control with a default
of ten counts. The dwTimeout parameter contains the number of milliseconds the
window is to flash. Again, we retrieve a user entry from a TEdit control, this time
with a default duration of 100. Using these default values, the target app will flash
ten times with one flash every 100 milliseconds for a total duration of flashes at
approximately 1,000 milliseconds (or one full second).

CAUTION

FlashWindowEx() is a fairly new Win32 API that is not supported by Windows 95, so use it
cautiously. Its older sibling FlashWindow(), however, is supported by Windows 95. The differ-
ence is that FlashWindow() does not have the flexibility offered by FlashWindowEx() with
such features as a built-in timer and count support.

Windows Management 511

18 0672324806 CH14 12/12/02 2:43 PM Page 511

If you are developing applications that need to operate under Windows 95, you can mimic
FlashWindowEx() simply by creating your own function that uses a windows timer, a counter,
and FlashWindow(). However, be aware that FlashWindow() can have varying effects across
different versions of Windows, specifically between 9x and NT-based systems. Therefore, if you
add this capability, be sure to test your application under various Windows platforms before
you deploy your application.

Window Animation Effects
Within C++Builder, you can get some pretty interesting form effects for your apps
through the use of AnimateWindow(). This is one of the newer features introduced in
Windows 98 and Windows 2000. AnimateWindow() can be used in place of the stan-
dard ShowWindow() call used to show or hide a window. It provides window animation
effects including slides, blends, center expansions, and contractions of a window.
Let’s take a look at a short example that uses AnimateWindows().

void __fastcall TFormWinMan::Button1Click(TObject *Sender)

{

// hide it

AnimateWindow(Handle, 5000, AW_HIDE | AW_SLIDE | AW_VER_POSITIVE);

// show it

AnimateWindow(Handle, 5000, AW_ACTIVATE | AW_SLIDE | AW_HOR_POSITIVE);

}

In this example, we hide the window represented by the Form’s Handle property with
a five second (5,000 millisecond) animation using a slide effect in the upward verti-
cal direction. Then we reactivate the same window using a slide effect in the right
horizontal direction, also in five seconds. It’s simple, but can be quite impressive.

AnimateWindow() looks quite easy, but if you don’t use it correctly, you won’t get good
results. It has the following parameters:

BOOL AnimateWindow(

HWND hwnd, // handle to window

DWORD dwTime, // duration of animation

DWORD dwFlags // animation type

);

hwnd is a handle to the window in which you want to animate.

dwTime is the time in milliseconds to perform the animation.

dwFlags represents different flags and types of animation you can perform. Table 14.3
lists the flags from which to choose.

CHAPTER 14 Win32 API Functional Areas512

18 0672324806 CH14 12/12/02 2:43 PM Page 512

TABLE 14.3 AnimateWindow() Flags

Flag Value

AW_SLIDE Uses slide animation. By default, roll animation is used. This flag is

ignored when used with AW_CENTER.

AW_ACTIVATE Activates the window. Do not use this value with AW_HIDE.

AW_BLEND Uses a fade effect. This flag can be used only if hwnd is a top-level

window.

AW_HIDE Hides the window. By default, the window is shown.

AW_CENTER Makes the window appear to collapse inward if AW_HIDE is used. If

AW_HIDE is not used, the window appears to expand outward.

AW_HOR_POSITIVE Animates the window from left to right. This flag can be used with roll

or slide animation. It is ignored when used with AW_CENTER or

AW_BLEND.

AW_HOR_NEGATIVE Animates the window from right to left. This flag can be used with roll

or slide animation. It is ignored when used with AW_CENTER or

AW_BLEND.

AW_VER_POSITIVE Animates the window from top to bottom. This flag can be used with

roll or slide animation. It is ignored when used with AW_CENTER or

AW_BLEND.

AW_VER_NEGATIVE Animates the window from bottom to top. This flag can be used with

roll or slide animation. It is ignored when used with AW_CENTER or

AW_BLEND.

If AnimateWindow() doesn’t work, there are typically three reasons why it failed: you
are trying to show the window when it is already visible, you are trying to hide the
window when it is already hidden, or the thread or process calling AnimateWindow()
does not own the specified window. In the case of the sample program included on
the CD-ROM, the AnimateWindow() demo will only work on a window owned by the
sample program. If you try it on a window owned by a another process,
AnimateWindow() will do nothing.

NOTE

Using AnimateWindow() might not work for all users because the Animate Windows feature
can be disabled within the Windows Control Panel.

Message Identifiers
In our sample program earlier, we used the RegisterWindowMessage() API call to
dynamically define a unique user-defined Windows message. Our program also
issued several different types of predefined Windows Message Identifiers through the

Windows Management 513

18 0672324806 CH14 12/12/02 2:43 PM Page 513

SendMessage() and PostMessage() calls to affect the appearance of other applications.
This included WM_CLOSE and WM_SYSCOMMAND.

There are well over 200 predefined Windows Message Identifiers within current
versions of Windows that both the Windows system and applications can dispatch.
A majority of the predefined Windows Message Identifiers within Windows all begin
with the WM_ prefix. Windows Messages are used to signify input, system changes, or
direct information passed from one application or windows object to another. In
general, Windows Messages are used to perform interrupt handling between applica-
tions and/or the operating system. For instance, when a user left clicks the mouse,
the system generates a WM_LBUTTONDOWN message to the appropriate application indicat-
ing the action that occurred. If a user resizes the active screen, the system generates a
WM_SIZE message to the appropriate application indicating the type of resizing and
the size values to be applied. The key to making messaging work is to know the
windows handle for which the message is to be delivered.

Responding to Windows Messages
To respond to specific messages sent either by the SendMessage() or PostMessage()

routines, an application needs to have some type of message handling capability. In
our sample program, we created our own window message handling procedure,
temporarily overriding the form’s WndProc method so that it could respond to both
user-defined messages, which we created dynamically, and standard Windows
Messages.

However, the common way to field Windows Messages that are predefined is to use
an event response table. The most popular way to set up an event response table
within C++Builder is to declare callback routines and a message map within the
protected area of the main form’s class declaration. Here is an example:

protected: // User declarations

void __fastcall Process_wmMoveAWindow(TMessage &);

void __fastcall Process_wmQuit(TMessage &);

void __fastcall Process_wmXYZ(TMessage &);

BEGIN_MESSAGE_MAP

MESSAGE_HANDLER(WM_PAINT,TMessage,Process_wmPaint);

MESSAGE_HANDLER(WM_QUIT,TMessage,Process_wmQuit);

MESSAGE_HANDLER(WM_XYZ,TMessage,Process_wmXYZ);

END_MESSAGE_MAP(TForm);

Within the source code for an application, the callback routine would look some-
thing like the following:

void __fastcall TForm1::Process_wmXYZ(TMessage Msg)

{

CHAPTER 14 Win32 API Functional Areas514

18 0672324806 CH14 12/12/02 2:43 PM Page 514

int fromhandle = LOBYTE(LOWORD(Msg.WParam));

int infoid = Msg.LParam;

AnsiString StatusText =

“ Application sent message XYZ\nApplication Handle = “ + IntToStr(fromhandle) +

“\nInfo = “ + IntToStr(infoid);

MessageBox(Handle,StatusText,”Received Message Callback”,MB_OK);

}

In this example, Borland’s TMessage provides the structure for containing the
Windows message information, specifically the 32-bit WParam and LParam values that
were passed by the SendMessage() or PostMessage() call. As with most callback
routines, in our example we’ve examined and deciphered the WParam and LParam

values.

TIP

Either one of the 32-bit WParam or LParam values passed by SendMessage() or PostMessage()
(and contained within the TMessage structure) can also be used to represent a pointer to an
accessible address location, but only if the caller resides within the same process as the recipi-
ent. In the Win16 days, address space was accessible across multiple processes. Theoretically,
you could pass pointers anywhere in the system if you wanted. Win32, however, is much
more protected. But the same trick is applicable. If a pointer is passed using WParam or LParam
to a DLL resident in the same memory segment or to a local thread, more information than
just a 32-bit data value can be shared with other objects. Keep that in mind the next time you
need to pass a structure or character string to or from a DLL or thread.

System Services
System service functions allow an application to manage and monitor resources,
provide access to files, folders, input and output devices, as well as enable an applica-
tion to log events and handle errors and exceptions. Furthermore, system services
functions provide features that can be used to create other types of applications,
such as console applications and driver services.

The Windows kernel library (kernel32.dll) provides a majority of the low-level
system service support for the operating environment. This includes file access, inter-
process communication (IPC), memory and resource management, and multitasking
and multithreading support. All Windows applications use the Windows kernel to
operate. For instance, when an application needs memory (both at startup and
during execution), it requires the Windows kernel to allocate the necessary memory.

These key aspects of the system services are described in Table 14.4.

System Services 515

18 0672324806 CH14 12/12/02 2:43 PM Page 515

TABLE 14.4 Key System Services

Feature Description

Atoms Support for sharing strings with applications through 16-bit

integer identifiers. Functions include AddAtom() and

FindAtom().

Clipboard IPC support for transferring data between applications or within

an application. Common functions include

GetClipboardData() and SetClipboardData().

Communication support for communication resources, such as

serial ports, parallel ports, modems, and device driver I/O

within an application. Functions include DeviceIoControl(),

SetupComm(), and SetCommState().

Console Support Support of input/output management for character-mode (non-

GUI) applications. Involves the use of an input buffer for captur-

ing keyboard and mouse events, and one or more screen

buffers for character and color data output. Functions include

AllocConsole() and FreeConsole().

Debugging Provides event-driven support for application debugging.

Functions such as DebugActiveProcess() and

WaitForDebugEvent() enable an application to debug events,

cause breakpoint exceptions, and transfer execution control to

the debugger.

Dynamic Data Exchange (DDE) IPC support for transferring data between applications. DDE

functions such as DdeNameService() and DdeConnect() are

provided through the user library (user32.dll), but requires

access to the DDE Management Library (ddeml.dll).

Dynamic Link Library (DLL) Support for creating and managing libraries that can be loaded

by an application at runtime. Functions include LoadLibrary()

and FreeLibrary().

Error Message Support for handling messages such as MessageBeep() and

FlashWindow(). Error Message functions are actually supported

by the user library (user32.dll).

Event Logging Support for recording application events into a log such as

RegisterEventSource().

File Mapping IPC support for mapping a file’s contents to a virtual address

location, such as CreateFileMapping().

Files Support for file input and output of storage media such as

CopyFile() and CreateDirectory().

Handles and Objects Support for creating and managing handles and objects that

provide an abstract and secure access to Windows system

resources, such as SetHandleInformation().

CHAPTER 14 Win32 API Functional Areas516

18 0672324806 CH14 12/12/02 2:43 PM Page 516

Help Support Support routines used in conjunction with the Windows Help

application, such as WinHelp(). Help support is actually

provided by the user library (user32.dll), but Microsoft

considers help support to be a facet of system services.

Large Integer Operations Support for 64-bit integer operations. Functions include

Int32x32To64(), UInt32x32To64(), and MulDiv().

Mailslots Support for creating and managing one-way IPC (mailslots)

over a network. Functions include CreateMailslot(),

GetMailslotInfo(), and SetMailslotInfo().

Memory Management Support for allocating and using memory. Functions include

GlobalAlloc(), FillMemory(), and CopyMemory().

Pipes Support for creating, managing, and using pipes. Pipes are IPC

communication conduits that enable one process to communi-

cate with another process. Functions include CreatePipe() and

GetNamedPipeInfo().

Portable Execution Support for manipulating or accessing a portable

(PE) File Manipulation executable (PE) binary image, which is created by a compatible

Win32 linker. The IMAGEHLP DLL provides PE functions that

support image access, modification, integrity checking, plus

debugging services. Functions include BindImage(),

StackWalk(), and SymEnumerateModules().

Power Management Provides functions and messages that reveal the system power

status and notify of power management events. Functions

include GetSystemPowerStatus() and

SetSystemPowerStatus().

Process and Thread Support for multitasking, scheduling, creating, and

Management managing multiple threads and child processes within an

application. Functions include CreateProcess() and

CreateThread().

Registry Support for storing, accessing, and managing the Windows

system-defined database with application and system compo-

nent configuration data. Functions include RegOpenKey(),

RegEnumKey(), and RegSaveKey().

Security NT support for granting or denying application and user access

to an object. Many of the security routines are provided by the

Advanced API library (advapi32.dll). Functions include

SetFileSecurity() and GetFileSecurity().

Services Support for automated services in which an application (or

driver) can operate without user intervention (or user knowl-

edge). Support for these types of applications is controlled by

the Service Control Manager (SCM). The Advanced API library

System Services 517

TABLE 14.4 Continued

Feature Description

18 0672324806 CH14 12/12/02 2:43 PM Page 517

(advapi32.dll) provides many of the service routines.

Functions include CreateService() and StartService().

String Manipulation Support for copying, comparing, sorting, formatting, and

converting character strings and determining character types.

Provides Unicode support. Functions include lstrcat(),

CharLower(), and IsCharAlpha().

Structured Exception Provides compiler support for exception handling and

Handling termination. Functions include RaiseException() and

GetExceptionCode().

Synchronization Provides mechanisms that threads can use to synchronize

access to a resource. Functions include CreateMutex() and

WaitForSingleObject().

System Information Support for determining and retrieving system information such

as computer name, username, environment variables settings,

processor type, and system-color information. Functions include

GetSystemInfo() and GetSysColor().

System Messages Support for notifying applications and drivers of device change

events. System Message support is provided by the user library

(user32.dll). Functions include RegisterWindowMessage(),

SendMessage(), and PostMessage(), which are also used to

provide Windows Management support.

System Shutdown Support for logging off the current user or shutting down the

system. System Shutdown support is provided by both the

user32.dll and advapi32.dll. Functions include

ExitWindows() and InititateSystemShutdown().

Tape Backup Support for enabling backup applications to perform tape

read/write and initialization and retrieving tape and drive infor-

mation. Functions include CreateTapePartition() and

GetTapeParameters().

Time Support for retrieving and setting the date and the time for the

system, files, and the local time zone. Functions include

GetFileTime() and SetSystemTime().

Window Stations Service support for secured objects (called window stations

and Desktops and desktops) in making USER32 and GDI32 function calls,

regardless of the user logon status. Intended for developers of

services, not application developers. Functions include

CreateWindowStation() and CloseDesktop(), which is

provided by the user library (user32.dll).

CHAPTER 14 Win32 API Functional Areas518

TABLE 14.4 Continued

Feature Description

18 0672324806 CH14 12/12/02 2:43 PM Page 518

As you can see, there are vast amounts of system services provided by the Win32
API. In fact, there are more than 750 system service routines alone in the kernel
library (kernel32.dll), and more system service support provided by the user library
(usr32.dll) and ancillary libraries such as the imagehlp.dll and advapi32.dll. To view
the full list of the available functions provided by these libraries, use Borland’s impdef
command-line tool or the DLL LIB Util utility, described in the Tip earlier.

Let’s now look at some example code in C++Builder that uses a few of the System
Services routines mentioned in Table 14.4.

System Services Example
In the source code that’s provided on the CD-ROM for this chapter is a project called
WinSysUtil. This project contains sample code that utilizes several useful System
Services API calls for attaining system, memory, disk, and file information. The
WinSysUtil application is illustrated in Figure 14.5

System Services 519

FIGURE 14.5 Windows System Services Utility screen shot.

In this sample, we’ll examine four different aspects of the program that demonstrate
the application of System Services for retrieving system, memory, disk, and file infor-
mation.

System Information
System Information includes such things as determining login names, computer
names, and the Windows version. Listing 14.4 shows some of the source code used
to attain and display system information.

18 0672324806 CH14 12/12/02 2:43 PM Page 519

LISTING 14.4 System Service Utility—System Information

void __fastcall TFormSystemService::ButtonSystemInfoClick(TObject *Sender)

{

// get user

char name[MAX_PATH];

DWORD size = MAX_PATH;

GetUserName(name, &size); // Win32 API call

LabelUser->Caption = AnsiString(name);

// get computer name

char computername[MAX_COMPUTERNAME_LENGTH];

size = MAX_COMPUTERNAME_LENGTH;

GetComputerName(computername, &size); // Win32 API call

EditComputer->Text = ComputerName();

// let’s get the windows version

char os[MAX_PATH];

char version[MAX_PATH];

char patch[MAX_PATH];

bool NT = WindowsVersion(os,version,patch); // Win32 API “wrapper”

LabelOS->Caption = AnsiString(os);

LabelVersion->Caption = AnsiString(version);

LabelOther->Caption = AnsiString(patch);

// let’s get the processor info

char processor[MAX_PATH];

LabelNumProcessors->Caption =

ProcessorInfo(NT,processor); // Win32 API “wrapper”

LabelProcessor->Caption = AnsiString(processor);

LabelScreenSize->Caption = ScreenSize();

char dir[MAX_PATH];

dir[0] = ‘\0’;

GetWindowsDirectory(dir,MAX_PATH);

LabelWinDir->Caption = AnsiString(dir);

dir[0] = ‘\0’;

GetSystemDirectory(dir,MAX_PATH);

LabelSysDir->Caption = AnsiString(dir);

dir[0] = ‘\0’;

CHAPTER 14 Win32 API Functional Areas520

18 0672324806 CH14 12/12/02 2:43 PM Page 520

GetTempPath(MAX_PATH, dir);

LabelTempDir->Caption = AnsiString(dir);

}

//---

bool __fastcall TFormSystemService::WindowsVersion(char * os, char * version, char

* other)

{

bool NT = false;

OSVERSIONINFO version_info;

version_info.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); // initilize size

GetVersionEx(&version_info); // now let’s get version info - Win32 API call

if(version_info.dwMajorVersion < 4) // must be win nt 3.x

{

sprintf(os,”Windows NT “);

sprintf(version,”3.x”);

}

else

{

sprintf(version,”%d.%d.%04d”,version_info.dwMajorVersion,

version_info.dwMinorVersion,

version_info.dwBuildNumber);

}

switch (version_info.dwPlatformId)

{

case VER_PLATFORM_WIN32s:

sprintf(os,”%s”,”Microsoft Win32s”);

break;

case VER_PLATFORM_WIN32_WINDOWS:

sprintf(os,”%s”,”Microsoft Windows 95/98”);

break;

case VER_PLATFORM_WIN32_NT:

NT = true;

switch (version_info.dwMajorVersion)

{

case 4: sprintf(os,”%s”,”Microsoft Windows NT”); break;

case 5: sprintf(os,”%s”,”Microsoft Windows 2000”); break;

System Services 521

LISTING 14.4 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 521

case 6: sprintf(os,”%s”,”Microsoft Windows XP”); break;

default :

sprintf(os,”%s”,”Microsoft Windows ??”);

}

break;

default : // unknown

sprintf(os,”%s”,”Microsoft Windows ??”);

}

sprintf(other,”%s”,version_info.szCSDVersion);

return NT;

}

//---

int __fastcall TFormSystemService::ProcessorInfo(bool NT, char* processor)

{

SYSTEM_INFO sys_info;

AnsiString Processor;

AnsiString Level = “”;

GetSystemInfo(&sys_info); // determine processor type - Win32 API call

int value;

if (NT)

{

switch (sys_info.wProcessorArchitecture)

{

case PROCESSOR_ARCHITECTURE_INTEL :

Processor = “Intel”;

switch (sys_info.wProcessorLevel)

{

case 3 : Level = “80386”; break;

case 4 : Level = “80486”; break;

case 5 : Level = “Pentium”; break;

case 6 :

value = HIBYTE(sys_info.wProcessorRevision);

switch (value)

{

case 1 : Level = “Pentium PRO”; break;

case 3,5 : Level = “Pentium 2”; break;

case 6 : Level = “Celeron”; break;

case 7,8,10,11 : Level = “Pentium 3”; break;

CHAPTER 14 Win32 API Functional Areas522

LISTING 14.4 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 522

}

break;

case 15 : Level = “Pentium 4”; break;

default : Level = “unknown”;

}

break;

case PROCESSOR_ARCHITECTURE_ALPHA :

Processor = “ALPHA”;

switch (sys_info.wProcessorLevel)

{

case 21064 : Level = “21064”; break;

case 21066 : Level = “21066”; break;

case 21164 : Level = “21164”; break;

default : Level = “unknown”;

}

break;

case PROCESSOR_ARCHITECTURE_MIPS :

Processor = “MIPS”;

switch (sys_info.wProcessorLevel)

{

case 0004 : Level = “R4000”; break;

default : Level = “unknown”;

}

break;

case PROCESSOR_ARCHITECTURE_PPC :

Processor = “PPC”;

switch (sys_info.wProcessorLevel)

{

case 1 : Level = “601”; break;

case 3 : Level = “603”; break;

case 4 : Level = “604”; break;

case 6 : Level = “603+”; break;

case 9 : Level = “604+”; break;

case 20 : Level = “620”; break;

default : Level = “unknown”;

}

break;

default : Processor = “unknown”;

}

}

else // Win 9x

System Services 523

LISTING 14.4 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 523

{

switch (sys_info.dwProcessorType)

{

case PROCESSOR_INTEL_386 :

Processor = “Intel”; Level = “80386”; break;

case PROCESSOR_INTEL_486 :

Processor = “Intel”; Level = “80486”; break;

case PROCESSOR_INTEL_PENTIUM :

Processor = “Intel”; Level = “Pentium”; break;

default: Processor = “unknown”;

}

}

sprintf(processor,”%s %s”,Processor.c_str(),Level.c_str());

return sys_info.dwNumberOfProcessors;

}

//---

AnsiString TFormSystemService::ScreenSize()

{

AnsiString value;

RECT screen_coords;

SystemParametersInfo(SPI_GETWORKAREA,0, &screen_coords, 0); //Win32 API call

int width = screen_coords.right - screen_coords.left;

int height = screen_coords.bottom - screen_coords.top;

/*

// here’s another way, but width and height is obsurced by the tray

int height = GetSystemMetrics(SM_CYFULLSCREEN);

int width = GetSystemMetrics(SM_CXFULLSCREEN);

*/

value = AnsiString(width) + “ x “ + AnsiString(height) + “ pixels”;

return value;

}

//---

void __fastcall TFormSystemService::ButtonChangeComputerClick(TObject *Sender)

{

CHAPTER 14 Win32 API Functional Areas524

LISTING 14.4 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 524

SetComputerName(EditComputer->Text.c_str());

if (MessageBox(Handle,”You must reboot system for change to take affect.”,

“Reboot System?”,MB_YESNO) == IDYES)

{

bool success = ExitWindowsEx(EWX_REBOOT, 0);

if (!success)

MessageBox(Handle,

“Unable to shutdown system due to a system restriction.”,

“System Restriction”,MB_OK);

else

Close();

}

}

In this example, the ButtonSystemInfoClick() event handler initiates the system calls
in gathering the desired system information when the user clicks Get System Info.
The first Win32 API call made is to GetUserName(), which provides the name of the
user logged onto the system. A name buffer and the address to the size variable are
passed as parameters into the GetUserName() function.

The GetComputerName() API function is used next to retrieve the computer label name
identified within the Registry. As you can see in the code listing, GetComputerName()
behaves very similar to GetUserName().

Now, we want to retrieve the Windows version information and display it to the
user. The Win32 API call used to gain this information is provided by the
GetVersionEx(). However, because of the complexities associated to deciphering the
Windows version, we’ve placed the Windows version processing information inside a
custom wrapper function called WindowsVersion(). Our ButtonSystemInfoClick() event
handler makes a call to this custom function by passing three character strings: os,
version, and patch. In return, we will receive the os label, such as Microsoft Windows
2000; the version, such as 5.00.2195; and patch information, such as Service Pack 2.
Plus, a boolean result value will be returned indicating if the OS is of the NT genre or
not. This information will be important a little later.

Let’s take a closer look at the WindowsVersion() method we’ve created to handle this
version processing. As mentioned earlier, the GetVersionEx() call is used to collect the
system information. After this call is made within our custom wrapper function, we
need to start examining the fields associated to the version_info variable, which is
based on the OSVERSIONINFO structure. The version_info variable contains the follow-
ing fields:

System Services 525

LISTING 14.4 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 525

DWORD dwOSVersionInfoSize;

DWORD dwMajorVersion;

DWORD dwMinorVersion;

DWORD dwBuildNumber;

DWORD dwPlatformId;

TCHAR szCSDVersion[128];

As shown in the code listing, the WindowsVersion() wrapper function examines the
dwMajorVersion and dwPlatformId to determine the Operating System (OS). It then uses
dwMajorVersion, dwMinorVersion, and dwBuildNumber to annotate the OS version. And
finally, it uses the szCSDVersion character string to identify the latest patch update
applied to the OS. If the dwPlatformId value is equal to VER_PLATFORM_WIN32_NT, the
function returns a true result to identify that the OS is NT-based.

Let’s now step back into the ButtonSystemInfoClick() method and see how we deter-
mine the remaining System information. After retrieving the Windows Version infor-
mation, the next task for our method is to gather and display information regarding
the computer’s processor. Determining the type of processor is not a trivial task. Over
the course of the last decade, an assortment of processors have been introduced,
many of which can be supported using current versions of Windows. So, again, we
have created a custom method called ProcessorInfo() based on the GetSystemInfo()

Win32 API call, which serves as a wrapper for retrieving and dissecting system infor-
mation and returning a processor type. As one of the inputs, this method needs to
know whether the OS is part of the 9x family or if it is NT-based. Fortunately, we
determined that piece of information earlier with the WindowsVersion() wrapper. We
need it because the application of GetSystemInfo() and the extraction of data from
the sys_info variable, which is based on the SYSTEM_INFO structure, varies depending
on the OS. Let’s take a look at the SYSTEM_INFO structure.

typedef struct _SYSTEM_INFO { // sinf

union {

DWORD dwOemId;

struct {

WORD wProcessorArchitecture;

WORD wReserved;

};

};

DWORD dwPageSize;

LPVOID lpMinimumApplicationAddress;

LPVOID lpMaximumApplicationAddress;

DWORD dwActiveProcessorMask;

DWORD dwNumberOfProcessors;

DWORD dwProcessorType;

CHAPTER 14 Win32 API Functional Areas526

18 0672324806 CH14 12/12/02 2:43 PM Page 526

DWORD dwAllocationGranularity;

WORD wProcessorLevel;

WORD wProcessorRevision;

} SYSTEM_INFO;

If the OS is NT-based, the wProcessorArchitecture and wProcessorLevel is used to
determine the processor. Otherwise, the dwProcessorType is used for Windows 9x
systems. We also use dwNumberOfProcessors to determine the number of processors
within the system. If more than one processor exists, we can use the
dwActiveProcessorMask to identify the processor we want to examine.

After ButtonSystemInfoClick() receives and displays the processor information, we
calculate the available working space (also known as screen size) for the display.
Again, we have created a custom function called ScreenSize() that calculates the
screen dimensions based on the SystemParametersInfo() Win32 API call. There are
other routines, such as GetSystemMetrics() in combination with the SM_CYFULLSCREEN
and SM_CXFULLSCREEN flags, that can be used to determine screen space as well.
However, the SystemParametersInfo() call with the SPI_GETWORKAREA flag provides
screen dimensions not obstructed by the taskbar.

In many applications, it can be useful to know the location of both the Windows
and System directories. Sometimes it is also useful to store data or files in a tempo-
rary file location such as the Windows Temp directory. The location of these directo-
ries, however, can vary on each computer. Fortunately, the Win32 API provides the
functionality to obtain this information through the GetWindowsDirectory(),
GetSystemDirectory(), and GetTempPath(), respectively.

The last three activities performed by the ButtonSystemInfoClick() event handler
retrieves and displays the Windows, Windows System and temporary paths for the
OS and uses these API functions. Each of these calls requires two parameters: the size
and a string.

CAUTION

You might notice that the order of the parameters among these similar calls is not the same.
For some reason the implementer of GetTempPath() unintentionally selected a parameter
order that was reverse from the way GetWindowsDirectory(), GetSystemDirectory(), and
other routines such as GetUserName() and GetComputerName() were prototyped. Often the
assumption is that because these calls all have the first parameter as the address to a string,
and the second parameter identifying the string size, the same follows suite for
GetTempPath() or any other similar Win32 API function. This proves, once again, that it’s
good practice to double-check the Help file before going to code.

System Services 527

18 0672324806 CH14 12/12/02 2:43 PM Page 527

We have one more feature in this sample code manifested in the
ButtonChangeComputerClick() event handler. This handler gets kicked off when the
user has decided to change the computer name for the system. The SetComputerName()
Win32 API routine provides the capability to make this change happen. For it to take
effect, however, the computer needs to be restarted. The ExitWindowsEx() Win32 API
provides the capability to do this reboot. Yet, under Windows NT, the user might be
restricted in performing automated shutdown and reboots.

ExitWindowsEx() is an easy way to shut down or restart Windows, but you can do a
lot more than just shut down Windows. The ExitWindowEx() function has more flags
with which to work. The format is as follows:

BOOL ExitWindowsEx(

UINT uFlags, // shutdown operation

DWORD dwReserved // reserved

);

uFlags are flags to specify which shutdown type you wish to perform. Table 14.5
shows the values.

TABLE 14.5 System Shutdown Function Flags

Flags Value

EWX_FORCE Forces processes to terminate. When this flag is set, Windows does not

send the messages WM_QUERYENDSESSION and WM_ENDSESSION to the

applications currently running in the system. This can cause the appli-

cations to lose data, so you should use this flag only in an emergency.

EWX_LOGOFF Shuts down all processes running in the security context of the

process that called the ExitWindowsEx() function. Then, it logs the

user off.

EWX_POWEROFF Shuts down the system and turns off the power. The system must

support the power-off feature. Windows NT: The calling process must

have the SE_SHUTDOWN_NAME privilege. Windows 95: Security privileges

are not supported or required.

EWX_REBOOT Shuts down and restarts the system. Windows NT: The calling process

must have the SE_SHUTDOWN_NAME privilege.

EWX_SHUTDOWN Shuts down the system to a point at which it is safe to turn off the

power. All file buffers have been flushed to disk, and all running

processes have stopped. Windows NT: The calling process must have

the SE_SHUTDOWN_NAME privilege.

The dwReserved parameter is currently not used.

CHAPTER 14 Win32 API Functional Areas528

18 0672324806 CH14 12/12/02 2:43 PM Page 528

Memory Information
Let’s now take a look at a shorter example from this sample that uses the Win32
System Service calls to gather and display the memory information (see Listing 14.5).

LISTING 14.5 Windows System Service Utility—Memory Example

void __fastcall TFormSystemService::ButtonGetMemInfoClick(TObject *Sender)

{

MEMORYSTATUS memory ;

memory.dwLength = sizeof (memory) ;

GlobalMemoryStatus (&memory) ;

LabelPTotal->Caption = FormatSize((memory.dwTotalPhys/1024));

LabelPFree->Caption = FormatSize((memory.dwAvailPhys/1024));

LabelPgTotal->Caption = FormatSize((memory.dwTotalPageFile/1024));

LabelPgFree->Caption = FormatSize((memory.dwAvailPageFile/1024));

LabelVTotal->Caption = FormatSize((memory.dwTotalVirtual/1024));

LabelVFree->Caption = FormatSize((memory.dwAvailVirtual/1024));

double value1 = double(double(memory.dwAvailPhys*100.0)/memory.dwTotalPhys);

double value = 100.0-memory.dwMemoryLoad;

if (value1 > value)

value = long(value1);

LabelFree->Caption = AnsiString(value) + “ % free”;;

}

The ButtonGetMemInfoClick() event handler uses a special Win32 API function called
GlobalMemoryStatus(), which enables us to determine memory statistics such as avail-
able memory and page size. The MEMORYSTATUS structure used for the memory variable
provides the properties that are filled by the GlobalMemoryStatus() call. Let’s take a
quick look at the MEMORYSTATUS structure.

typedef struct _MEMORYSTATUS { // mst

DWORD dwLength; // sizeof(MEMORYSTATUS)

DWORD dwMemoryLoad; // percent of memory in use

DWORD dwTotalPhys; // bytes of physical memory

DWORD dwAvailPhys; // free physical memory bytes

DWORD dwTotalPageFile; // bytes of paging file

DWORD dwAvailPageFile; // free bytes of paging file

DWORD dwTotalVirtual; // user bytes of address space

DWORD dwAvailVirtual; // free user bytes

} MEMORYSTATUS, *LPMEMORYSTATUS;

System Services 529

18 0672324806 CH14 12/12/02 2:43 PM Page 529

In our example, each of the memory property values calculated by
GlobalMemoryStatus() are displayed to the user. Also, the percentage of physical
memory available to the system is calculated and displayed. These values and calcu-
lations can be extremely useful for your applications in determining performance
capabilities and resource restrictions. In fact, the performance between a Windows
9x box and a Windows NT-based box, such as 2000 or XP, can be very revealing
when using GlobalMemoryStatus().

Drive Information
Let’s now take a look at some other code from this sample that uses the Win32
System Service calls to provide drive information such as volume name, serial
number, and available diskspace (see Listing 14.6).

LISTING 14.6 Windows System Service Utility—Drive Information Example

void __fastcall TFormSystemService::ButtonGetDriveInfoClick(TObject *Sender)

{

AnsiString temp;

AnsiString Drive = AnsiString(DriveComboBox1->Drive) + “:\\”; //EditDrive->Text;

unsigned int drivetype = GetDriveType(Drive.c_str ());

switch (drivetype)

{

case 1 : temp = “No root directory”; return;

case DRIVE_REMOVABLE : temp = “Removable”; break;

case DRIVE_FIXED : temp = “Fixed”; break;

case DRIVE_REMOTE : temp = “Remote (network) drive”; break;

case DRIVE_CDROM : temp = “CD-ROM”; break;

case DRIVE_RAMDISK : temp = “RAM disk”; break;

default: temp = “Unknown”; return;

}

LabelDriveType->Caption = temp;

temp = “”;

DWORD VolumeSerialNumber = 0;

DWORD MaximumComponentLength = 0;

DWORD FileSystemFlags = 0;

char * volumeinfo = new char[255];

volumeinfo[0] = 0;

char* FileSystemNameBuffer = new char[255];

FileSystemNameBuffer[0] = 0;

GetVolumeInformation (Drive.c_str (), volumeinfo,

CHAPTER 14 Win32 API Functional Areas530

18 0672324806 CH14 12/12/02 2:43 PM Page 530

255, &VolumeSerialNumber,

&MaximumComponentLength, &FileSystemFlags,

➥FileSystemNameBuffer,255);

if (strlen(volumeinfo) != 0)

EditVolumeInfo->Text = volumeinfo ;

else

EditVolumeInfo->Text = “- no label -”;

//Translate integer to chars for serial number

char string1[35];

char string2[35];

if (VolumeSerialNumber > 0)

{

unsigned int bottom = (LOWORD(VolumeSerialNumber));

unsigned int top = (HIWORD(VolumeSerialNumber));

sprintf(string1,”%04X”,top);

sprintf(string2,”%04X”,bottom);

LabelSerialNum->Caption = AnsiString(string1) + “-” + AnsiString(string2);

}

else

LabelSerialNum->Caption = “- unknown -”;

if (MaximumComponentLength > 0)

LabelMaxComponentLength->Caption = AnsiString(MaximumComponentLength) + “

➥characters”;

else

LabelMaxComponentLength->Caption = “- unknown -”;

if (strlen(FileSystemNameBuffer) != 0)

LabelFileSystemNameBuffer->Caption = FileSystemNameBuffer;

else

LabelFileSystemNameBuffer->Caption = “- unknown -”;

LabelFileSystemFlags->Caption = “”; //AnsiString(FileSystemFlags);

if (FileSystemFlags & FS_CASE_IS_PRESERVED)

temp += AnsiString(“Filename case is preserved.\n”);

if (FileSystemFlags & FS_CASE_SENSITIVE)

temp += AnsiString(“Lookup is case-sensitive.\n”);

if (FileSystemFlags & FS_UNICODE_STORED_ON_DISK)

temp += AnsiString(“Supports Unicode in filenames.\n”);

if (FileSystemFlags & FS_PERSISTENT_ACLS)

temp += AnsiString(“Preserves and enforces ACLs.\n”);

if (FileSystemFlags & FS_FILE_COMPRESSION)

System Services 531

LISTING 14.6 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 531

temp += AnsiString(“Supports file-based compression.\n”);

if (FileSystemFlags & FS_VOL_IS_COMPRESSED)

temp += AnsiString(“Volume is compressed. (i.e., DoubleSpace).\n”);

LabelFileSystemFlags->Caption = temp;

DWORD spc = 0; //Sectors per cluster

DWORD bps = 0; //Bytes per cluster

DWORD cluster = 0; //clusters

DWORD freeclust = 0; //freeclusters

GetDiskFreeSpace (Drive.c_str (),&spc,&bps,&freeclust,&cluster) ;

unsigned long v1 = (unsigned long)cluster;

unsigned long v2 = (unsigned long) spc;

unsigned long v3 = (unsigned long) bps;

unsigned long volsize = (v1 * v2)/1024 * v3;

LabelVolumeSize->Caption = AnsiString(FormatSize(volsize));

unsigned long free_bytes = (freeclust * spc)/1024 * bps;

LabelFreeSpace->Caption = AnsiString(FormatSize(free_bytes));

if (volsize > 0)

LabelUsed->Caption = AnsiString(((volsize - free_bytes) * 100) / volsize) +

➥“ %”;

else

LabelUsed->Caption = “n/a”;

}

//---

void __fastcall TFormSystemService::DriveComboBox1Change(TObject *Sender)

{

ButtonGetDriveInfoClick(Sender);

}

//---

void __fastcall TFormSystemService::ButtonChangeVolumeLabelClick(TObject *Sender)

{

AnsiString Drive = AnsiString(DriveComboBox1->Drive) + “:\\”; //EditDrive->Text;

bool success = SetVolumeLabel(

CHAPTER 14 Win32 API Functional Areas532

LISTING 14.6 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 532

Drive.c_str(),

EditVolumeInfo->Text.c_str());

if (!success)

MessageBox(Handle,

“Unable to change volume label due to a system restriction.”,

“System Restriction”,MB_OK);

else

ButtonGetDriveInfoClick(Sender);

}

In this example, the ButtonGetDriveInfoClick() event handler uses three primary
Win32 API calls to gather disk information: GetDriveType(), GetVolumeInformation(),
and GetDiskFreeSpace().

GetDriveType() is simply used to determine the type of drive the user wants to
examine. Options include removable, fixed, and remote drives as well as CD-ROM,
which includes DVD drives, and RAM disks.

The GetVolumeInformation() provides even more revealing information including the
volume label, serial number, maximum allowable filename length (called component
length by Microsoft), and associated file system flags. The GetVolumeInformation()
function has the following parameters:

BOOL GetVolumeInformation(

LPCTSTR lpRootPathName, // address of root directory of the file system

LPTSTR lpVolumeNameBuffer, // address of name of the volume

DWORD nVolumeNameSize, // length of lpVolumeNameBuffer

LPDWORD lpVolumeSerialNumber, // address of volume serial number

LPDWORD lpMaximumComponentLength,// address of system’s maximum filename length

LPDWORD lpFileSystemFlags, // address of file system flags

LPTSTR lpFileSystemNameBuffer, // address of name of file system

DWORD nFileSystemNameSize // length of lpFileSystemNameBuffer

);

Each of these parameters that are returned by the GetVolumeInformation() function
provide something of interest that we can display to the user. For developers, a value
such as the lpVolumeSerialNumber could be found useful in supporting the licensing
and registration of software.

Finally, GetDiskFreeSpace() is used to determine the size and available space on a
drive. The GetDiskFreeSpace() function has the following parameters:

System Services 533

LISTING 14.6 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 533

BOOL GetDiskFreeSpace(

LPCTSTR lpRootPathName, // address of root path

LPDWORD lpSectorsPerCluster, // address of sectors per cluster

LPDWORD lpBytesPerSector, // address of bytes per sector

LPDWORD lpNumberOfFreeClusters, // address of number of free clusters

LPDWORD lpTotalNumberOfClusters // address of total number of clusters

);

By using a little math, we can determine the volume size and the available free space in
terms of bytes, which is a much more universally understood quantity than clusters.
Multiplying the lpBytesPerSector and pSectorsPerCluster with the
lpTotalNumberOfClusters for the volume size and the lpNumberOfFreeClusters for the
available free space does this.

In this example, we also have code in ButtonChangeVolumeLabelClick() that can change
the Volume label. This is accomplished using the SetVolumeLabel() API call.

File Information
Finally let’s take a look at some code from this sample that uses the Win32 System
Service calls to provide file information (see Listing 14.7). This information includes
file type, attributes, size, and the date and time the file was last modified.

LISTING 14.7 Windows System Service Utility—Final Information Example

void __fastcall TFormSystemService::ButtonGetFileInfoClick(TObject *Sender)

{

if(OpenDialog1->Execute())

{

EditFilename->Text = ExtractFileName(OpenDialog1->FileName);

LabelLocation->Caption = ExtractFilePath(OpenDialog1->FileName);

// clear out everything

LabelAttrib->Caption = “”;

LabelFileID->Caption = “”;

LabelDateTime->Caption = “”;

// let’s open the file

HANDLE FileHandle = CreateFile(OpenDialog1->FileName.c_str(),

GENERIC_READ, 0, NULL, OPEN_EXISTING, 0, NULL);

if (FileHandle == INVALID_HANDLE_VALUE)

{

CHAPTER 14 Win32 API Functional Areas534

18 0672324806 CH14 12/12/02 2:43 PM Page 534

MessageBox(Handle, OpenDialog1->FileName.c_str(),

“Unable to open file”, MB_ICONSTOP | IDOK);

return;

}

else // // get file type

{

DWORD FileType = GetFileType(FileHandle);

switch (FileType)

{

case FILE_TYPE_DISK:

LabelFileType->Caption = “Disk File”;

break;

case FILE_TYPE_CHAR:

LabelFileType->Caption = “Character”;

return; // can’t do much else

case FILE_TYPE_PIPE:

LabelFileType->Caption = “Anonymous Pipe”;

return; // can’t do much else

default : LabelFileType->Caption = “Unknown”;

}

}

// get more information

BY_HANDLE_FILE_INFORMATION FileInfo;

GetFileInformationByHandle(FileHandle, &FileInfo);

AnsiString temp;

if (FileInfo.dwFileAttributes & FILE_ATTRIBUTE_ARCHIVE)

temp += “Archive “;

if (FileInfo.dwFileAttributes & FILE_ATTRIBUTE_COMPRESSED)

temp += “Compressed “;

if (FileInfo.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)

temp += “Directory “;

if (FileInfo.dwFileAttributes & FILE_ATTRIBUTE_HIDDEN)

temp += “Hidden “;

if (FileInfo.dwFileAttributes & FILE_ATTRIBUTE_NORMAL)

temp += “Normal “;

if (FileInfo.dwFileAttributes & FILE_ATTRIBUTE_OFFLINE)

temp += “Offline “;

if (FileInfo.dwFileAttributes & FILE_ATTRIBUTE_READONLY)

temp += “Readonly “;

if (FileInfo.dwFileAttributes & FILE_ATTRIBUTE_SYSTEM)

System Services 535

LISTING 14.7 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 535

temp += “System “;

if (FileInfo.dwFileAttributes & FILE_ATTRIBUTE_TEMPORARY)

temp += “Temporary Storage “;

LabelAttrib->Caption = temp;

char string1[35];

char string2[35];

sprintf(string1,”%08X”,FileInfo.nFileIndexHigh);

sprintf(string2,”%08X”,FileInfo.nFileIndexLow);

LabelFileID->Caption = “0x” + AnsiString(string1) + AnsiString(string2);

➥//hex

LabelFileSize->Caption = FormatSize(double(FileInfo.nFileSizeLow / 1024.0));

SYSTEMTIME SysTime; // system time and date

FileTimeToSystemTime(&FileInfo.ftLastWriteTime, &SysTime);

char date[255];

char time[255];

sprintf(date,”%u/%u/%4u”,

SysTime.wMonth, SysTime.wDay, SysTime.wYear);

sprintf(time,”%2u:%02u.%02u”,

SysTime.wHour, SysTime.wMinute, SysTime.wSecond);

LabelDateTime->Caption = AnsiString(date) + “ “ + AnsiString(time);

CloseHandle(FileHandle);

}

}

The first Win32 API call made in the ButtonGetFileInfoClick() event handler routine
is CreateFile(). CreateFile() can be used for creating or opening the following types
of objects:

• files

• pipes

• mailslots

• communications resources

• disk devices (Windows NT only)

• consoles

• directories (open only)

CHAPTER 14 Win32 API Functional Areas536

LISTING 14.7 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 536

In this example, CreateFile() is used to obtain a handle to a common file, which
will be examined using other API calls within the event handler. The parameters of
interest passed into CreateFile() include the filename, which was obtained through
Borland’s TOpenDialog, a desired access of read-only established through the
GENERIC_READ flag, and an action to open an existing file through the OPEN_EXISTING
flag.

After the file handle is obtained, a call is made to the Win32 API routine
GetFileType() with the handle, which subsequently returns the type of file to be
examined. File types include disk file, character, or an anonymous pipe. We’re inter-
ested in the disk files in this example.

GetFileInformationByHandle() is then used to retrieve the bulk of the file information
desired. The GetFileInformationByHandle() function has the following parameters:

BOOL GetFileInformationByHandle(

HANDLE hFile, // handle of file

LPBY_HANDLE_FILE_INFORMATION lpFileInformation // address of structure

);

The second parameter, which points to a variable defined by the
LPBY_HANDLE_FILE_INFORMATION, is key for capturing the file information.

Let’s take a look at the LPBY_HANDLE_FILE_INFORMATION structure.

typedef struct _BY_HANDLE_FILE_INFORMATION { // bhfi

DWORD dwFileAttributes;

FILETIME ftCreationTime;

FILETIME ftLastAccessTime;

FILETIME ftLastWriteTime;

DWORD dwVolumeSerialNumber;

DWORD nFileSizeHigh;

DWORD nFileSizeLow;

DWORD nNumberOfLinks;

DWORD nFileIndexHigh;

DWORD nFileIndexLow;

} BY_HANDLE_FILE_INFORMATION;

For this example, the properties of interest provided include dwFileAttributes for
obtaining the attributes, nFileIndexHigh and nFileIndexLow for determining the file
ID, nFileSizeLow for determining the file size, and ftLastWriteTime for determining
the file modification date and time.

Finally, it’s important to clean up properly by closing the file handle that we’ve
examined. This is accomplished through the CloseHandle() Win32 API routine.

System Services 537

18 0672324806 CH14 12/12/02 2:43 PM Page 537

NOTE

We can also obtain the file size using the Win32 API routine GetFileSize(), which returns the
file size as an integer. GetFileSize() is declared as follows:

DWORD GetFileSize(

HANDLE hFile, // handle to file

LPDWORD lpFileSizeHigh // high-order word of file size

);

You might be asking, “If GetFileSize() returns the file size, what is the second parameter
lpFileSizeHigh for?” Well, back in the early days of Windows development Microsoft appar-
ently had the foresight to recognize that a single file could eventually get really, really big. In
this case, bigger than four gigabytes (GB), since the largest value an unsigned 32-bit integer
could represent is 4,294,967,296 (2^32 bytes). So, for those really big files that are greater
than four (GB), the Windows API provides another 32-bit word (called the high-order word)
that catches the overflow. If you do the math, you’ll realize that Windows is designed to
support files up to 17,179,869,184GB (2^64 bytes) in size. Of course, make sure your hard
drive is big enough, before creating a file of that magnitude. Seriously though, you can
normally leave the second parameter as null because most files today are well less than four
GB low-order value. But in the future, who knows, we might be requiring that high-order
word support for obtaining the file size.

Spawning Applications and Discovering Window Handles
Microsoft’s recommended way to launch an application within Windows is to use
the CreateProcess() method. Although it might be recommended, you should be
forewarned that it’s the most difficult. It does, however, provide some distinct advan-
tages over other methods.

Suppose that within an application it’s necessary to not only launch (spawn) other
applications, but also manage them (as we demonstrated in the Windows
Management example earlier). For example, suppose when the main application is
minimized, all other applications might need to be minimized as well. Or, when the
main application is closed, any other applications that were spawned need to be
closed as well. To support these specialized window management responsibilities, it
is important to determine (or discover) a handle of another application. The knowl-
edge of a target’s application handle enables either standard Windows messages or
custom Windows messages to be passed between applications. The CreateProcess()
function can be used to facilitate the retrieval of an application’s handle. The follow-
ing code snippet shows one way of executing an application and retrieving its appli-
cation handle:

void __fastcall TFormWinMan::ButtonLaunchAppClick(TObject *Sender)

{

if (ListBoxApps->ItemIndex >= 0) {

CHAPTER 14 Win32 API Functional Areas538

18 0672324806 CH14 12/12/02 2:43 PM Page 538

char * data = (char*)ListBoxApps->Items->Objects[ListBoxApps->ItemIndex];

AnsiString fullfilename = AnsiString(data);

EditFullFileName->Text = fullfilename;

EditWHandle->Text = “0”;

winhandle = 0;

processid = 0;

STARTUPINFO StartupInfo;

ZeroMemory(&StartupInfo, sizeof(STARTUPINFO));

PROCESS_INFORMATION ProcessInfo;

StartupInfo.cb = sizeof(STARTUPINFO);

if(CreateProcess(file, // Windows System Service Call

parameters,

NULL,

NULL,

TRUE,

NORMAL_PRIORITY_CLASS,

NULL,

NULL,

&StartupInfo,

&ProcessInfo))

{

// We must close the handles returned in ProcessInfo. We can

// close the handle at any time, might as well close it now

CloseHandle(ProcessInfo.hProcess); // Windows System Service Call

CloseHandle(ProcessInfo.hThread); // Windows System Service Call

processid = (unsigned long)ProcessInfo.dwProcessId;

}

if (processid != 0)

TimerGetHandle->Enabled = true; // use timer to get handle

SetForegroundWindow(Handle);

}

}

//---

void __fastcall TFormWinMan::TimerGetHandleTimer(TObject *Sender)

{

if (processid != 0)

{

System Services 539

18 0672324806 CH14 12/12/02 2:43 PM Page 539

winhandle = LookForWindowHandle(processid);

if (winhandle != NULL)

{

TimerGetHandle->Enabled = false;

UpdateAppInfo(winhandle);

}

}

}

//---

HWND TFormWinMan::LookForWindowHandle(unsigned long processid)

{

if (!EnumWindows((WNDENUMPROC)GetWinHandle_Specific,processid))

return swProcess;

else

return 0;

}

//---

BOOL CALLBACK TFormWinMan::GetWinHandle_Specific(HWND hwnd, unsigned long hproc)

{

unsigned long dwProcessId; // address of variable for process

➥identifier

GetWindowThreadProcessId(

hwnd,

&dwProcessId); // address of variable for process identifier

if (dwProcessId != hproc) return true; // keep enumerating

char windowtitle[80];

char classname[80];

GetWindowText(hwnd, windowtitle, 80);

if (windowtitle[0] == NULL) return true;

GetClassName(hwnd, classname, 80);

int ptr = strcmp(classname, “TApplication”);

if (ptr == 0) return true;

FormWinMan->swProcess=hwnd;

return false; //stop enumeration

}

CHAPTER 14 Win32 API Functional Areas540

18 0672324806 CH14 12/12/02 2:43 PM Page 540

In ButtonLaunchAppClick() event handler, we use the CreateProcess() call to launch an
external application and obtain the process ID for that application. After we clean up
some unneeded information through the CloseHandle() Win32 API call, we immedi-
ately start a timer, which calls a custom-function created for this example called
LookForWindowHandle(). LookForWindowHandle() iterates through the list of active appli-
cations and performs a process ID match. When a match is found, the application’s
handle can then be obtained. Both of these functions encapsulate several Win32 API
calls from various functional areas and are described in detail in the following para-
graphs.

Let’s step back for a moment and look at the CreateProcess() call used in the
ButtonLaunchAppClick() event handler. Appropriately named, the CreateProcess()
function creates a new application process and its execution thread by launching the
specified executable file. StartUpInfo is a variable passed into the CreateProcess()
function that specifies how the main window for the new application will appear.
StartUpInfo is initialized using the ZeroMemory() Win32 function, which simply fills
the structure with zeros. StartUpInfo is defined by the STARTUPINFO structure, as
described in the Win32 API Help reference.

CreateProcess() fills in the ProcessInfo variable with information about the newly
created process, and its primary thread. ProcessInfo is defined by the
PROCESS_INFORMATION structure shown in the following:

typedef struct _PROCESS_INFORMATION

{

HANDLE hProcess;

HANDLE hThread;

DWORD dwProcessId;

DWORD dwThreadId;

} PROCESS_INFORMATION;

The process ID returned by the CreateProcess() function is actually extracted from
the dwProcessId field of the structure. In the example we keep track of the process ID,
and kickoff the TimerGetHandle timer. The TimerGetHandleTimer() event handler will
then call LookForWindowHandle() each interval and pass the process ID as a parameter.

The process ID aides in determining the Windows handle of the spawned application
through the LookForWindowHandle() function.

LookForWindowHandle() is a custom function that uses the Win32 EnumWindows() func-
tion. As discussed in the Windows Management section, EnumWindows() enumerates
through all the top-level windows by utilizing a custom callback function. In this
example the callback faction is called GetWinHandle_Specific().

System Services 541

18 0672324806 CH14 12/12/02 2:43 PM Page 541

GetWinHandle_Specific() stakes in each enumerated handle and the processed ID that
we’re trying to find a match. It gathers other information regarding the window
handle using various Win32 Windows Management API calls. When a match is
found the callback returns false, and the enumeration process halts returning the
handle of the application that we spawned. The timer then populates the display
with information regarding the spawned application and is disabled.

Graphical Device Interface
The graphical device interface (GDI), supported by the gdi32.dll dynamic link
library, provides the capability for a window to draw and to print. This includes
drawing lines, text, font service, and color management.

One of the key elements to the GDI is the device context. A device context (DC)
represents a data structure defining a set of graphic objects, attributes, and output
modes. DCs are created using the CreateDC() and GetDC() functions. There is a myriad
of other DC functions that are commonly used as well. In all, seven types of GDI
objects can be selected into a device context (see Table 14.6).

TABLE 14.6 The Seven Types of GDI Object

Feature Description

Bitmap Used for copying or scrolling parts of the screen.

Brush Used for painting and filling the interior of polygons, ellipses, and paths.

Font Used for identifying type, size, and style of a type font.

Palette Used for defining the set of available colors.

Path Used for painting and drawing operations.

Pen Used for line drawing.

Region Used for clipping and other operations.

There are more than 330 GDI routines available in current versions of Windows. Use
Borland’s impdef command-line tool or DLL LIB Util, described in the Tip earlier, to
determine the full list of the available Windows GDI functions supported by the
gdi32.dll.

The Windows GDI can be extremely useful for providing 2D graphic rendering and
visualization for business applications. Borland’s VCL wraps much of the GDI func-
tionality within the TImage and TCanvas classes. Because the VCL provides a solid
encapsulation of the GDI, the benefit of using the raw Win32 GDI is not all that
substantial for the C++Builder developer.

The biggest debilitating factor with the GDI, whether used directly or through the
VCL, is that its performance is marginal at best. Using the GDI to display real-time,
high-speed graphic images often provides a lesson in frustration for both developers

CHAPTER 14 Win32 API Functional Areas542

18 0672324806 CH14 12/12/02 2:43 PM Page 542

and users. In regards to frames per second, it’s slow, even with the best hardware.
Fortunately, the DirectDraw API, which is part of Microsoft’s DirectX Game SDK,
provides a much-improved library alternative for 2D graphics display. For those
requiring high-performance 2D rendering, DirectDraw is the answer. Although
DirectX is considered an extension of the Win32 API because it is supported by
Windows 9x, 2000, and XP, it is not within the scope of this chapter.

Discussion and examples specific to the Windows GDI are provided in the Graphics
and Multimedia section, see Chapter 15. However, there are some other elements of
the GDI that we can explore, which can be used to affect the look of a windows
form.

Shaping Your Applications
Manipulating forms and making them do cool and interesting things like we did
earlier with animation can help applications be less boring. In this section, we will
explore the concept of regions and cover a handful of related functions such as
CombinRgn(), CreateEllipticRgn(), and GetClientRect(). These functions can control
how windows look. Instead of the same old rectangle window look, regions can
change the look of a window, which are part of the GDI. C++Builder makes combin-
ing the Win32 API functions to create regions on your system very easy. These and
other APIs are located in the WINGDI.H header file.

At this point you might be asking, ”What’s a region?” A region is an area that bounds
the window. Anything outside the region is not considered part of the window. The
window clips anything else outside the region, giving the window a different look.

Let’s now look at some of these special GDI region Win32 API calls.

CreateRoundRectRgn()

This function will create a rectangular window with rounded edges.

The CreateRoundRectRgn() function has the following parameters:

HRGN CreateRoundRectRgn(

int nLeftRect, // x-coordinate of the region’s upper-left corner

int nTopRect, // y-coordinate of the region’s upper-left corner

int nRightRect, // x-coordinate of the region’s lower-right corner

int nBottomRect, // y-coordinate of the region’s lower-right corner

int nWidthEllipse, // height of ellipse for rounded corners

int nHeightEllipse // width of ellipse for rounded corners

);

Graphical Device Interface 543

18 0672324806 CH14 12/12/02 2:43 PM Page 543

• nLeftRect specifies the x coordinate of the upper-left corner of the region.

• nTopRect specifies the y coordinate of the upper-left corner of the region.

• nRightRect specifies the x coordinate of the lower-right corner of the region.

• nBottomRect specifies the y coordinate of the lower-right corner of the region.

• nWidthEllipse specifies the width of the ellipse used to create the rounded
corners.

• nHeightEllipse specifies the height of the ellipse used to create the rounded
corners.

The following example illustrates how to create a round-edged window:

RECT R = GetClientRect();

HRGN MyRegion = CreateRoundRectRgn(0,0,150,110,15,10);

SetWindowRgn(Handle , MyRegion , true);

This is a relatively easy thing to do; The only difficult part is determining the coordi-
nates. It’s often necessary to play with them a bit to make the windows look the way
you want, but that is the only drawback.

CreateEllipticRgn()

If you want an even more different look, there’s another function called
CreateEllipticRgn() that gives your window an oval-shaped appearance. It will actu-
ally make a window round or oval, depending on the parameters to the function.
CreateEllipticRgn() has the following parameters:

HRGN CreateEllipticRgn(

int nLeftRect,

// x-coordinate of the upper-left corner of the bounding rectangle

int nTopRect,

// y-coordinate of the upper-left corner of the bounding rectangle

int nRightRect,

// x-coordinate of the lower-right corner of the bounding rectangle

int nBottomRect

// y-coordinate of the lower-right corner of the bounding rectangle

);

• nLeftRect specifies the x coordinate of the upper-left corner of the bounding
rectangle of the ellipse.

• nTopRect specifies the y coordinate of the upper-left corner of the bounding
rectangle of the ellipse.

CHAPTER 14 Win32 API Functional Areas544

18 0672324806 CH14 12/12/02 2:43 PM Page 544

• nRightRect specifies the x coordinate of the lower-right corner of the bounding
rectangle of the ellipse.

• nBottomRect specifies the y coordinate of the lower-right corner of the bounding
rectangle of the ellipse.

The parameters are somewhat similar to the CreateRoundRectRgn() function, except
that you only specify the whole width of the circle. The following example illustrates
the use of the CreateEllipticRgn() function:

HRGN HRegion

HRegion = CreateEllipticRgn(0,0,Form1->Width, Form1->Height);

SetWindowRgn(Handle , hRgn1 , true);

This example code changes your form to a semiround circle (an oval). We started at
Left(0) Top(0) and worked our way to the form’s width and height, yielding a result
that looks like an oval.

CombineRgn()

CombineRgn() function is a powerful function. CombinRgn() can actually take the
regions that you specify and merge them together. A number of the programs these
days that have the irregular window shapes usually use the CombineRgn() function.
Along with the CreateEllipticRgn(), CreateRoundRect(), and CreatePolygonRgn() func-
tions, you can specify regions to make your windows look even more glamorous.

CombineRgn() has the following parameters:

int CombineRgn(

HRGN hrgnDest, // handle to destination region

HRGN hrgn1, // handle to source region

HRGN hrgn2, // handle to source region

int fnCombineMode // region combining mode

);

• hrgnDest identifies a new region with dimensions defined by combining two
other regions. (This region must exist before CombineRgn() is called.)

• hrgn1 identifies the first of two regions to be combined.

• hHrgn2 identifies the second of two regions to be combined.

• fnCombineMode specifies a mode indicating how the two regions will be
combined. This parameter can be one of the values in Table 14.7.

Graphical Device Interface 545

18 0672324806 CH14 12/12/02 2:43 PM Page 545

TABLE 14.7 CombineRgn() Flags

Flags Values

RGN_AND Creates the intersection of the two combined regions.

RGN_COPY Creates a copy of the region identified by hrgnSrc1.

RGN_DIFF Combines the parts of hrgnSrc1 that are not part of hrgnSrc2.

RGN_OR Creates the union of two combined regions.

RGN_XOR Creates the union of two combined regions except for any overlapping areas.

The return value specifies the type of the resulting region. It can be one of the values
shown in Table 14.8.

TABLE 14.8 CombineRgn() Return Values

Return Value Description

NULLREGION The region is empty.

SIMPLEREGION The region is a single rectangle.

COMPLEXREGION The region is more than a single rectangle.

ERROR No region is created.

Interestingly enough, the regions do not need to be distinct. For example, if you pass
three regions (Region1, Region1, and Region2) as the parameters, you can see that
Region1, the original region already passed, will be destined to hold the final region,
which is completely okay. However, if you do pass another region separate from the
other declared regions, you must pass an already declared region before calling
this API.

The following is an example of using CombineRgn() function. Hopefully, the example
will clarify any issues you might have and give you a better understanding of how to
use the function.

HRGN Region1, Region2;

Region1 = CreateRectRgn(0, 0, 100, 100);

Region2 = CreateRectRgn(50, 50, 150, 150);

CombineRgn(Region1, Region1, Region2, RGN_XOR);

SetWindowRgn(Handle , hRgn1 , true);

Using this example, you will see your form turn into two boxes with a box hole in
the middle of it. The hole is there because the RGN_XOR flag was used. The two regions
overlap, but do not combine with the intersecting regions. If we use the RGN_OR flag,
you will see they now intersect and combine.

Also, we used Region1 as the destination and a created region. Why did we do this?
Well, remember that we need a destination region, and Region1 and Region2

CHAPTER 14 Win32 API Functional Areas546

18 0672324806 CH14 12/12/02 2:43 PM Page 546

combined will overwrite Region1. Because we passed the parameter, the function
knows the coordinates and sends them to the Region1 destination.

But let’s not stop here. Earlier, we mentioned something about the
CreatePolygonRgn() function. Let’s go over that because it’s another region function
that’s quite interesting.

CreatePolygonRgn() function has the following parameters:

HRGN CreatePolygonRgn(

CONST POINT *lppt, // pointer to array of points

int cPoints, // number of points in array

int fnPolyFillMode // polygon-filling mode

);

• lppt points to an array of POINT structures that define the vertices of the
polygon. The polygon is presumed closed. Each vertex can be specified only
once.

• CPoints specifies the number of points in the array.

• fnPolyFillMode specifies the fill mode used to determine which pixels are in the
region. This parameter can be one of the values shown in Table 14.9.

TABLE 14.9 Possible fnPolyFillMode Modes

Parameter Value

ALTERNATE Selects alternate mode (fills area between odd-numbered and even-numbered

polygon sides on each scan line)

WINDING Selects winding mode (fills any region with a nonzero winding value)

To pass the proper parameters to the CreatePolygonRgn() function, we can both use
the Win32 API and C++Builder’s POINT structure. This function relies on point pixel
locations to create a region. This is similar to connect the dots, where the function
will create the region based on these dots.

The POINT structure is a structure that defines the x and y coordinates of an object.
You simply fill it in. To create a multiple-point coordinate, simply declare a POINT
structure variable with an array.

We’ve only covered the basics of regions here to give you a better understanding of
how regions work with C++Builder. If you want to learn more about creating
windows with regions, visit Microsoft’s MSDN Web site at http://www.microsoft.com/
msdn. Perform a search for window regions or irregular windows.

Graphical Device Interface 547

18 0672324806 CH14 12/12/02 2:43 PM Page 547

Multimedia Services
A growing number of applications today incorporate multimedia elements, such as
sound and video, to enrich the experience of the user. Some of the extension
libraries Microsoft has provided for Windows include the Multimedia System Library
(mmsystem.dll), the Microsoft Video for Windows Library (msvfw32.dll), and the
Microsoft Audio Compression Manager Library (msacm32.dll). Originally, multimedia
features were not part of the Windows API. However, the Windows operating system
has evolved to support and promote multimedia. In fact, the modern Windows plat-
form is, for all practical purposes, a multimedia appliance similar to a TV or stereo.
Multimedia devices and data formats, such as MIDI, waveform audio, and video, are
supported by Windows. The MMYSTEM.DLL, MSVFW32.DLL, and MSACM32.DLL provide a
majority of the basic multimedia capabilities. Microsoft has also introduced a multi-
media API known as DirectX to better support games, music, and video. However,
this section primarily focuses on the capabilities provided by MMYSTEM.DLL,
MSVFW32.DLL, and MSACM32.DLL. The multimedia headers files for these DLLs are
DIGITALV.H, MCIAVI.H, MMSYSTEM.H, MSACM.H, VCR.H, and VFW.H.

Table 14.10 describes the various multimedia services provided by these libraries.

TABLE 14.10 Multimedia Services

Feature Description

Audio Compression Provides system-level support for audio compression,

Manager (ACM) decompression, filtering, and conversion (uses MSACM32.DLL).

Audio Mixers Provides services to control the routing of audio lines to a destina-

tion device for playing or recording. Also provides support for

manipulating volume and other effects (uses MMYSTEM.DLL).

AVICap Provides video capture capabilities including interface support for

acquiring video and waveform-audio hardware and support for

controlling streaming video capturing to disk (uses MSVFW32.DLL).

AVIFile Provides functions and macros for accessing audio-video inter-

leaved (AVI) files (uses MSVFW32.DLL).

DrawDib Provide GDI-independent functions used to transfer device-

independent bitmaps (DIBs) to video memory (uses MSVFW32.DLL).

Joysticks Provides support for managing joysticks and other ancillary input

devices that track positions within an absolute coordinate system

(touch screen, digitizing tablet, and light pen) (uses MMYSTEM.DLL).

MCIWnd Window Class Provides a window class for controlling multimedia devices.

Provides support for easily adding multimedia playback or record-

ing capabilities to an application (uses MSVFW32.DLL).

Media Control Provides device-independent support for playing multimedia

Interface (MCI) devices (waveform audio devices, CD player, MIDI sequencers, and

digital-video devices) and recording multimedia resource files (uses

MMYSTEM.DLL).

CHAPTER 14 Win32 API Functional Areas548

18 0672324806 CH14 12/12/02 2:43 PM Page 548

Multimedia File Provides buffered and unbuffered file I/O service and support for

Resource Interchange File Format (RIFF) files, such as wave files and

video files (uses MMYSTEM.DLL).

Multimedia Timers Provides support for scheduling periodic, high-resolution timer

events (uses MMYSTEM.DLL).

Music Instrument Provides the MIDI Mapper to translate and redirect the

Digital Interface incoming MIDI messages and other various MIDI services,

(MIDI) such as querying for devices and managing, streaming, and

recording MIDI message data. (Note: MCI services, which provide

a MIDI sequencer, can be used in conjunction with the MIDI

services.) (Uses MMYSTEM.DLL.)

Video Compression Provides video data compression and decompression support

Manager (VCM) (uses MSVFW32.DLL).

Waveform-Audio Provides utilities for adding (playing and recording) waveform-

audio sounds (uses MMYSTEM.DLL).

Among the three DLLs mentioned in Table 14.10, there are more than 240 functions
that support the multimedia services in current versions of Windows. Use Borland’s
impdef command-line tool or DLL LIB Util, described in the tip earlier, to determine
the full list of the available multimedia functions (contained in MMSYSTEM.DLL,
MSVFW32.DLL, and MSACM32.DLL). The import libraries for these DLLs are WINMM.LIB,
VFW32.LIB, and MSACM32.LIB, respectively.

Let’s now create some simple examples in C++Builder that use several of the
Multimedia Services. Later, we’ll dive into some deeper, more advanced examples in
the Graphics and Multimedia chapter (Chapter 15). Playback of media data and
multimedia timers are two useful capabilities that we’ll look at now.

Multimedia File Playback
Borland provides a VCL component known as TMediaPlayer that can be used to
manipulate and play multimedia clips. TMediaPlayer provides a wrapper to the MCIWnd
routines supported by the VFW32.DLL. Although TMediaPlayer is extremely useful,
leveraging the MCIWnd routines directly can provide a bit more flexibility and is really
not that difficult to use. For example, MCIWndCreate() provides a fairly simple routine
that can be used to play CD music, waveform-audio (wave) files, MIDI files, or video
clips (see Figure 14.6). The complete source-code example described in this section is
provided in the MMedia folder on the CD-ROM that accompanies this book.

Multimedia Services 549

TABLE 14.10 Continued

Feature Description

18 0672324806 CH14 12/12/02 2:43 PM Page 549

FIGURE 14.6 The multimedia player example using both TMediaPlayer and the
Windows MCI.

The following code snippet shows how the multimedia features provided by the
Win32 API can be used to play back a video clip:

void __fastcall TForm1::SpeedButtonPlayMMFileUsingWin32Click(TObject *Sender)

{

OpenDialog1->DefaultExt = “AVI”;

OpenDialog1->FileName = “*.avi”;

if (OpenDialog1->Execute())

MCIWndCreate(PanelMCI->Handle, // window handle to our panel

NULL, // instance handle

WS_VISIBLE | WS_CHILD | MCIWNDF_SHOWALL, // window styles

OpenDialog1->FileName.c_str()); // filename

}

In this example, MCIWndCreate() actually creates a VCR-like window (using the
MCIWND_WINDOW_CLASS) containing a play/stop control button, a trackbar, and uses a
panel we’ve placed on the form. If we didn’t use the WS_CHILD flag and we identified a
NULL window handle, the MCI would have created a brand-new panel for displaying
the video if it is a video clip.

Although the MCI can be used to play sound files, a less expensive way to play wave
files is to use the PlaySound() function as follows:

void __fastcall TForm1::SpeedButtonPlayWaveUsingWin32Click(TObject *Sender)

{

OpenDialog1->DefaultExt = “WAV”;

OpenDialog1->FileName = “*.wav”;

if (OpenDialog1->Execute())

PlaySound(OpenDialog->FileName.c_str(), NULL, SND_ASYNC);

}

CHAPTER 14 Win32 API Functional Areas550

18 0672324806 CH14 12/12/02 2:43 PM Page 550

PlaySound() is an extremely useful routine provided by the mmsystem.dll. Often,
sound files need to be played in the background of an application, to produce a
sound effect, for example. PlaySound does not provide the VCR-like controls or a
trackbar as MCIWndCreate() does. Furthermore, sounds are played instantaneously
when the PlaySound() function is called.

The DirectSound features supported by DirectX provide additional capabilities for
sound manipulation and management enabling multiple sounds to be played simul-
taneously. Also, DirectShow provides a mechanism to playback compressed sound
files such as MP3 and Windows Media Audio (WMA) files, and a wide range of video
files including MPEG and Windows Media Video (WMV) files. Discussion of
DirectSound and DirectShow, however, are not within the scope of this chapter.

Improved Accuracy with the Multimedia Timer
Borland provides a very simple and easy-to-use VCL timer component known as
TTimer. TTimer encapsulates the Win32 API Timer functions. It uses the SetTimer()
function to enable timer events, provides an event handler, OnTimer, to respond to
WM_TIMER message notifications, and uses the KillTimer() function to disable timer
events. When the SetTimer() routine is called, an application requests the Windows
System to notify the process (the application) of continual updates until the timer is
disabled via the KillTimer() routine. The frequency of these updates is based on the
interval provided within the SetTimer() interval timeout parameter (also known as
the Interval property value within TTimer). Although the interval frequency can be
identified in milliseconds, timers are not always that accurate. WM_TIMER message noti-
fications might occur more frequently than expected or, if other processes are tying
up the system, less frequently than expected. It’s never a sure bet. However, there is
one way to receive more accurate updates by using the multimedia timers. The
multimedia timer is an extension of the original Win32 API and provides better reso-
lution than the standard Windows timer.

Examination of the mmsystem.h file provided by Microsoft and Borland reveals the
functions that are available.

/* timer function prototypes */

WINMMAPI MMRESULT WINAPI timeGetSystemTime(LPMMTIME pmmt, UINT cbmmt);

WINMMAPI DWORD WINAPI timeGetTime(void);

WINMMAPI MMRESULT WINAPI timeSetEvent(UINT uDelay, UINT uResolution,

LPTIMECALLBACK fptc, DWORD dwUser, UINT fuEvent);

WINMMAPI MMRESULT WINAPI timeKillEvent(UINT uTimerID);

WINMMAPI MMRESULT WINAPI timeGetDevCaps(LPTIMECAPS ptc, UINT cbtc);

WINMMAPI MMRESULT WINAPI timeBeginPeriod(UINT uPeriod);

WINMMAPI MMRESULT WINAPI timeEndPeriod(UINT uPeriod);

Multimedia Services 551

18 0672324806 CH14 12/12/02 2:43 PM Page 551

In most cases, timeSetEvent() and timeKillEvent() are all that is required to use the
multimedia timer. A callback message needs to be defined within your program to
handle the multimedia timer event notifications. An example application that
compares the standard VCL timer with the multimedia timer is provided both in
Listing 14.8 and in the MMTimer folder on the CD-ROM that accompanies this book.
Figure 14.7 shows the application running and demonstrates the differences in
elapsed time between the two timers.

CHAPTER 14 Win32 API Functional Areas552

FIGURE 14.7 Difference in accuracy between the VCL timer and the multimedia timer.

LISTING 14.8 Timer Code

#include <vcl.h>

#pragma hdrstop

#include “mmtimer.h”

#include <mmsystem.h>

#include <time.h>

//---

#pragma package(smart_init)

#pragma resource “*.dfm”

TFormSystemService *Form1;

//---

__fastcall TForm1::TFormSystemService(TComponent* Owner)

: TForm(Owner)

{

MMTimerID = 0;

MMlasttime = 0;

STANlasttime = 0;

}

//---

18 0672324806 CH14 12/12/02 2:43 PM Page 552

void __fastcall TForm1::Timer1Timer(TObject *Sender)

{

unsigned int clocktime = clock();

EditStandardTimer->Text = AnsiString(clocktime - STANlasttime);

STANlasttime = clocktime;

}

//---

void __fastcall TForm1::HandleMMTimerEvent()

{

unsigned int clocktime = clock();

EditMMTimer->Text = AnsiString(clocktime - MMlasttime);

MMlasttime = clocktime;

//Refresh();

}

//---

void CALLBACK TForm1::TimerProc(unsigned int uID, unsigned int uMsg, DWORD dwUser,

DWORD dw1, DWORD dw2)

{

Form1->HandleMMTimerEvent();

}

//---

void __fastcall TForm1::SpeedButtonMMTimerClick(TObject *Sender)

{

if (SpeedButtonMMTimer->Down)

{

int Interval = EditInterval->Text.ToIntDef(0);

int Resolution = EditResolution->Text.ToIntDef(0); // 0 = greatest

➥possible accuracy

if (Timer1->Interval > 0)

{

MMlasttime = clock();

MMTimerID = timeSetEvent(Interval, Resolution, TimerProc,NULL,

➥TIME_PERIODIC);

}

}

else

{

Multimedia Services 553

LISTING 14.8 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 553

timeKillEvent(MMTimerID);

MMTimerID = 0;

}

}

//---

void __fastcall TForm1::SpeedButtonStandardTimerClick(TObject *Sender)

{

if (SpeedButtonStandardTimer->Down)

{

Timer1->Interval = EditInterval->Text.ToIntDef(0);

STANlasttime = clock();

if (Timer1->Interval > 0)

Timer1->Enabled = true;

}

else

{

Timer1->Enabled = false;

}

}

//---

void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)

{

if (MMTimerID) timeKillEvent(MMTimerID);

}

In this example, we kick off each timer with the push of a button; the VCL TTimer
and the Win32 API multimedia timer. To get the multimedia timer to work, we
provide a user-defined callback called TimerProc(), which is used to handle the timer
event as a parameter in the timeSetEvent() API call. Also included with the
timeSetEvent() call is the interval and resolution values, both in milliseconds. The
resolution is used to indicate the level of accuracy—the smaller the value, the greater
the accuracy. However, a larger value reduces system overhead.

The TimerProc() function behaves just like the Timer1 event handler. The difference is
that the multimedia timer will trigger the TimerProc() function closer to the expected
mark than the TTimer, expecially under Windows 9X and Windows Me. Finally, when
we’re done with the timer, a call to timeKillEvent() is made.

CHAPTER 14 Win32 API Functional Areas554

LISTING 14.8 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 554

Common Controls and Dialogs
A collection of predefined, common window controls is provided within Windows
through the common control library (COMCTL32.DLL). In addition to controls, a collec-
tion of common window dialogs are provided through the common dialog library
(COMDLG32.DLL). The idea behind providing common controls and dialogs is to allow
developers to quickly utilize common interface elements within a program rather
than spending lengthy time and effort writing custom window interfaces. For the
most part, Borland C++Builder provides a palette full of common controls and
dialogs through the Visual Component Library (VCL). However, it’s useful for devel-
opers to be aware of the Win32 API common controls and dialogs that are available.

Common Controls
There are at least 22 common controls for Windows in COMCTL32.DLL. Examination of
the commctrl.h file provided with C++Builder reveals the Win32 elements available
with the common control library. These controls are described in Table 14.11.

TABLE 14.11 Common Controls

Common Description Borland VCL
Control Equivalent

Animation Plays simple AVI (video) clips without TAnimate

Control sound.Use ANIMATE_CLASS flag.

ComboBoxEx* Provides support for item images None

within a combo box.Use

WC_COMBOBOXEX flag.

Date and Time Provides an interface for exchanging TDateTimePicker

Picker date and time information with the

user. Use DATETIMEPICK_CLASS flag.

Drag List Box Provides a list box that allows items None

to be dragged from one position

to another. Use MakeDragList()

routine.

Flat Scroll Bar* Provides a unique three- None

dimensional scrollbar, created using

the InitializeFlatSB() routine.

Header Controls Used to place resizable headers THeaderControl

above columns of text or numbers.

Use WC_HEADER flag.

Hot-Key Controls Allows entry of hotkey keystroke THotKey

combinations. Use HOTKEY_CLASS flag.

Common Controls and Dialogs 555

18 0672324806 CH14 12/12/02 2:43 PM Page 555

Image List Provides a collection of equal size TImageList

images referenced by an index.

Created using the ImageListCreate()

routine.

IP Address* Allows an IP address to be entered in None

an easily understood format. Use

WC_IPADDRESS flag.

List View Displays a collection of items as large TListView

icons, small icons, detailed list, or

report view within a window control.

Use WC_LISTVIEW flag.

Monthly Calendar Provides a graphical calendar interface TMonthCalendar

for viewing and selecting dates.Use

MONTHCAL_CLASS flag.

Page Scroller* Provides a scrollable window containing TPageScroller

a child window (such as a control) that

is too large to be seen entirely. Use

WC_PAGESCROLLER flag.

Progress Bars Used to provide graphical status TProgressBar

feedback for lengthy operations. Use

PROGRESS_CLASS flag.

Property Sheets Presents viewable and editable TPageControl

properties of an item in a tabbed

page form.

Rebar (Coolbar) Used to contain one or more bands TCoolBar

composed of any combination of

a gripper bar, bitmap, text label,

and a child window. Use

REBARCLASSNAME flag.

Status Bar Provides a panel control used to display TStatusBar

text and graphical information.Use

STATUSCLASSNAME flag.

Tab Controls Defines multiple pages within the TTabControl

area of a window (similar to dividers

in a notebook). Use WC_TABCONTROL

flag.

Toolbars Contains one or more selectable TToolBar

buttons within a panel bar. Use

TOOLBARCLASSNAME flag.

CHAPTER 14 Win32 API Functional Areas556

TABLE 14.11 Continued

Common Description Borland VCL
Control Equivalent

18 0672324806 CH14 12/12/02 2:43 PM Page 556

Tooltip Controls Used to display a small pop-up THintWindow

window displaying a text description.

Use TOOLTIPS_CLASS flag.

Trackbars Provides a slide indicator with TTrackBar

optional tick marks used for adjusting

an integer value within a specified

range. Use TRACKBAR_CLASS flag.

Tree View Controls Displays a hierarchical list of items TTreeView

and subitems within a window frame

consisting of a label and an optional

bitmapped image. Use WC_TREEVIEW

flag.

Up-Down Controls Provides an edit control consisting TUpDown

of a pair of arrow buttons used to

increase or decrease a value. Use

UPDOWN_CLASS flag.

* Introduced in Internet Explorer 4.0.

Unless otherwise noted, these controls are created by using the CreateWindowEx()
routine and by selecting the proper flags associated with each feature. Let’s take a
quick look at the example shown in Listing 14.9.

LISTING 14.9 Common Control Example

__fastcall TFormCommCtrl_Dlg::TFormCommCtrl_Dlg(TComponent* Owner)

: TForm(Owner)

{

InitCommonControls(); // make sure the the common control DLL is loaded.

ControlHandle = NULL;

}

//---

void __fastcall TFormCommCtrl_Dlg::ButtonMakeListViewClick(TObject *Sender)

{

HWND ListBox;

RECT Rect;

DWORD dwExStyle = 0;

Common Controls and Dialogs 557

TABLE 14.11 Continued

Common Description Borland VCL
Control Equivalent

18 0672324806 CH14 12/12/02 2:43 PM Page 557

Rect = GetClientRect();

HINSTANCE hInstance = (HINSTANCE)GetWindowThreadProcessId(

Handle, // handle of window

NULL // address of variable for process identifier

);

ControlHandle = CreateWindowEx(0L,

WC_LISTVIEW,

NULL,

WS_VISIBLE | WS_CHILD | WS_BORDER | TVS_HASLINES | TVS_HASBUTTONS |

➥TVS_LINESATROOT,

0, 180,

Rect.right - Rect.left, Rect.bottom-180,

Handle,

0,

hInstance,

NULL);

}

Before using a common control, be sure to call the InitCommonControlsEx() routine to
ensure that the common control dynamic-link library (DLL) is properly loaded. In
this example, this was done in the constructor for this form. The
ButtonMakeListViewClick() event handler provides the code for creating a common
control widget that is placed on our form. This is accomplished using the
CreateWindowEx() call with a WC_LISTVIEW flag.

In scanning through the table, you’ll notice a majority of the common control
features are supported by Borland’s VCL. There are more than 80 routines available
within the common control library (comctl32.dll) supporting these and possibly
other common controls. Use Borland’s impdef command-line tool or DLL LIB Util,
which was described earlier in a Tip, to determine the full list of the available
common control functions supported by the Win32 API. Also examine the latest
commctrl.h file for identifying the common control macro definitions.

Common Dialogs
In addition to common controls, Microsoft provides common dialogs for applica-
tions. There are currently eight common dialogs contained in recent versions of
COMDLG32.DLL. C++Builder, however, provides VCL wrappers for each of these dialogs,
as shown in Table 14.12.

CHAPTER 14 Win32 API Functional Areas558

LISTING 14.9 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 558

TABLE 14.12 VCL Equivalents for Microsoft API Common Dialog Functions

Common Dialog Microsoft API Call VCL Equivalent

Choose Color ChooseColor() TColorDialog

Choose Font ChooseFont() TFontDialog

Find Text FindText() TFindDialog

Open File GetOpenNameFile() TOpenDialog

Save File GetSaveFileName() TSaveDialog

Print Setup PageSetupDlg() TPrinterSetupDialog

Print PrintDlg() TPrintDialog

Replace Text ReplaceText() TReplaceDialog

Examination of the commdlg.h file provided with C++Builder reveals the Win32
elements available with the common dialog library. Creating the .def file for the
commdlg.dll will further reveal the available API routines.

To understand how to use one of these common dialogs, let’s look at an example
that demonstrates the use of the Choose Color dialog as shown in Figure 14.8.

Common Controls and Dialogs 559

FIGURE 14.8 Example application that uses the Color Common Dialog.

The code used to generate the Color Common Dialog is provided in Listing 14.10.

LISTING 14.10 Common Dialog Example

void __fastcall TFormCommCtrl_Dlg::ButtonChooseColorClick(TObject *Sender)

{

LPCHOOSECOLOR cc;

COLORREF initrgb, rgb;

BOOL res;

18 0672324806 CH14 12/12/02 2:43 PM Page 559

DWORD err;

initrgb= 0x0000FFFF; //yellow

char result[MAX_PATH];

HINSTANCE hInstance = (HINSTANCE)GetWindowThreadProcessId(

Handle, // handle of window

NULL); // address of variable for process identifier

DWORD mcolors[15];

mcolors[0] = 0x00FF0000; // blue

mcolors[1] = 0x00FF4040; // med blue

mcolors[2] = 0x00FF8080; // light med blue

mcolors[3] = 0x00FFFF00; // aqua

mcolors[4] = 0x0000FF00; // green

mcolors[5] = 0x0040FF40; // med green

mcolors[6] = 0x0080FF80; // light med green

mcolors[7] = 0x0000FFFF; // yellow

mcolors[8] = 0x000000FF; // red

mcolors[9] = 0x004040FF; // more pink

mcolors[10] = 0x008080FF; // pink

mcolors[11] = 0x00400040; // purple

mcolors[12] = 0x00808080; // gray

mcolors[13] = 0x00404040; // dk gray

mcolors[14] = 0x00000000; // white

mcolors[15] = 0x00FFFFFF; // black

cc = (LPCHOOSECOLOR)malloc(sizeof(CHOOSECOLOR));

cc->lStructSize = (DWORD) sizeof(CHOOSECOLOR);

cc->hwndOwner = Handle;

cc->hInstance = hInstance;

cc->rgbResult = initrgb;

cc->lpCustColors = mcolors;

cc->Flags = CC_ANYCOLOR | CC_FULLOPEN | CC_RGBINIT;

cc->lCustData = NULL;

cc->lpfnHook = NULL;

cc->lpTemplateName = NULL;

if (!(res = ChooseColor(cc)))

{

CHAPTER 14 Win32 API Functional Areas560

LISTING 14.10 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 560

err = CommDlgExtendedError();

sprintf(result,”Error: %d\n”,err);

}

else{

rgb=cc->rgbResult;

sprintf(result,”r g b: %d %d %d\n”, ((BYTE) (rgb)) ,((BYTE)

(((WORD) (rgb)) >> 8)),((BYTE) ((rgb) >> 16)));

}

MessageBox(Handle,result,”Result”,MB_OK);

}

In this example, we’re using the ChooseColor() API call to display the Color selection
dialog. Within the ButtonChooseClorClick() event handler, we set up an array identi-
fying the custom colors we want to load, and a pointer to the CHOOSECOLOR structure,
which is defined as follows:

typedef struct { // cc

DWORD lStructSize;

HWND hwndOwner;

HWND hInstance;

COLORREF rgbResult;

COLORREF* lpCustColors;

DWORD Flags;

LPARAM lCustData;

LPCCHOOKPROC lpfnHook;

LPCTSTR lpTemplateName;

} CHOOSECOLOR;

The mcolors array that we’ve defined and initialized is assigned to the lpCustColors
flag of the structure. We also identify the windows handle and instance of our appli-
cation, plus any flags we want associated to the dialog. The ChooseColor() call
returns the color value selected by the user. If the return is 0, we know that the user
opted out of selecting a color.

In addition to dialogs, the ComDlg32.dll also provides a couple of trivial functions
including GetFileTitle() and LoadAlterBitmap(). Plus, a useful function to help
isolate errors called CommDlgExtendedError().

GetFileTitle() is used to retrieve the display name for a specified file. For instance,
what is displayed to the user in Windows Explorer is considered the display name.
According to the Win32 API, “the display name includes an extension only if that is
the user’s preference for displaying filenames.”

Common Controls and Dialogs 561

LISTING 14.10 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 561

LoadAlterBitmap() function is a bit of a mystery. There is no known documentation
on this call, but it’s presumably made to load an alternate bitmap, such as an icon,
associated to the file within its resource file.

CommDlgExtendedError() is used to retrieve an error code for a failed dialog call. The
Win32 API help file provides more details on each of the error codes, which begin
with a prefix of CDERR_.

Shell Features
The term Shell is used within Windows to describe an application that enables a user
to group, start, and control other applications or files. Shell features include drag-
and-drop file support, file association support for starting and finding other applica-
tions, and the capability to extract icons from other files. The Shell aspect of the
Win32 API is a very powerful feature set and is contained within the Shell32.dll.
The principal header file included within the source code of an application that
provides the Shell features is the SHELLAPI.H. The basic features of the Shell API are
described in Table 14.13.

TABLE 14.13 Basic Features of the Shell API

Shell Feature Description

Drag-and-Drop Enables a user to select one or more files in Windows Explorer

(or even the old File Explorer provided with Win 3.x) that can

be dragged and dropped into an open application that has

previously used the DragAcceptFiles() Shell function. A

WM_DROPFILES message is received by the open application,

which is used to retrieve the filenames and display the position

at which the files were dropped. This is accomplished using the

DragQueryFile() and DragQueryPoint() Shell functions.

File Association Back in the Win 3.x days, Microsoft provided the Associate

Support for dialog box within File Explorer. This allowed a user to

Starting and/or associate a filename extension with a particular application.

Finding Other Since Windows 95, a more detailed Associate dialog box is

Applications provided within Windows Explorer called the Open With dialog.

The Registry provides an automated association of filename

extensions and applications. Within Windows Explorer, a file

that is double-clicked and has an association with a specific

application will cause the application to load and open the

selected file. The FindExecutable() and ShellExecute()

routines contained within the Shell API make use of this file

association. The FindExecutable() function is used to retrieve

CHAPTER 14 Win32 API Functional Areas562

18 0672324806 CH14 12/12/02 2:43 PM Page 562

the name and handle to the application associated with a speci-

fied file. ShellExecute()and ShellExecuteEx() are used to

open or print a specified file. The application required to open a

file is launched based on the file association.

Extracting Icons Applications, dynamic link libraries, and icon files are typically

represented by one or more icons. The handle of an icon can

be retrieved easily by using the ExtractIcon() Shell routine.

There are more than 120 Shell routines available in current versions of Windows,
many of which are undocumented. Use Borland’s impdef command-line tool or the
DLL LIB Util application, which was described in the previous Tip, to view the full
list of the available Shell library functions.

Shell functions are a big thing in Windows 98/2000/XP programming. Newer Shell
functions are best known as SHx functions because many of them have the SH prefix.
A few common ones and new ones supported in Windows 2000 and XP are
described later in this section. Several newer Shell functions have replaced the older
Win32 API routines because they are more versatile. Although the older API routines
can still be used for simple transfers or manipulation, the new API routines provide
more flexibility, yet sometimes are very hard to use. We will identify the newer ones
from the older ones within our examples.

Using ShellExecute() to Open a Browser
With much of today’s data available via the World Wide Web, it is often practical for
an application to interface with the platform’s default Web browser. The Win32 API
Shell extensions make it possible to provide this type of interface.

The following code example in Listing 14.11 demonstrates how to use the
ShellExecute() function to open a browser with a specified address (URL).

LISTING 14.11 Opening the Browser with ShellExecute()

void __fastcall TForm1::ButtonBrowserClick(TObject *Sender)

{

if (EditURL->Text.Length() > 0)

{

if (! ShellExecute(Handle, “open”, EditURL->Text.c_str(),

NULL, NULL, SW_SHOW))

{

char data[100];

Shell Features 563

TABLE 14.13 Continued

Shell Feature Description

18 0672324806 CH14 12/12/02 2:43 PM Page 563

sprintf(data,”Could not run browser with URL ‘%s’”,EditURL->Text);

MessageBox(NULL,data,”Operation Error!”,MB_OK);

}

}

else

MessageBeep(MB_OK);

}

Let’s look at the parameters used for ShellExecute() in this example. The first para-
meter identifies a handle to the parent. We can actually leave this NULL if we want.
The second parameter used for ShellExecute() indicates a desire to “open” a file.
Other choices include “print” a file, and “explore” a folder. The third parameter
provides information about where that file or folder is located. In this example, our
“file” is actually a Universal Resource Locator (URL) address commonly used for Web
browsing. The Shell library deciphers URL descriptors and will use the registered
browser that supports URLs.

Using ShellExecuteEx() to Spawn an Application
An easy way to launch an external application is by using the slightly more powerful
ShellExecuteEx() function, which is illustrated by example in Figure 14.9.
ShellExecuteEx() is considered easier to use than the CreateProcess() API routine that
we discussed earlier. Unfortunately, it doesn’t provide a way to retrieve the handle of
the application being spawned like CreateProcess() does.

CHAPTER 14 Win32 API Functional Areas564

LISTING 14.11 Continued

FIGURE 14.9 Shell example for launching an application.

Listing 14.12 demonstrates how ShellExecuteEx() can be used to launch an applica-
tion within C++Builder.

18 0672324806 CH14 12/12/02 2:43 PM Page 564

LISTING 14.12 Launching an Application with ShellExecuteEx()

void __fastcall TForm1::ButtonLaunchAppClick(TObject *Sender)

{

char temp[MAX_PATH];

char params[MAX_PATH];

sprintf(temp,”%s\0”,EditFile->Text.c_str());

sprintf(params,”%s\0”,EditParams->Text.c_str());

// Select the program and how it will be run.

SHELLEXECUTEINFO execinfo ;

memset (&execinfo, 0, sizeof (execinfo)) ;

execinfo.cbSize = sizeof (execinfo) ;

execinfo.lpVerb = “open” ;

execinfo.lpFile = temp;

execinfo.lpParameters = params;

execinfo.fMask = SEE_MASK_NOCLOSEPROCESS ;

execinfo.nShow = SW_SHOWDEFAULT ;

// Run the program.

if (! ShellExecuteEx (&execinfo))

{

char data[100];

sprintf(data,”Could not run program ‘%s’”,EditFile->Text.c_str());

MessageBox(NULL,data,”Operation Error!”,MB_OK);

}

}

In this example, the execinfo structure, defined by SHELLEXECUTEINFO, is filled and
passed as a parameter to the ShellExecuteEx() function. The two key attributes of
execinfo structure are the open flag and the file. Command-line arguments can also
be passed as parameters. Based on these values, ShellExecuteEx() will open the appli-
cation. In general, the ShellExecute() and ShellExecuteEx() functions use file associa-
tion (examine the file extension) to determine how files are opened. If it is an exe
file representing a standalone application, it will launch, but if it’s a file such as a txt
file, a registered application such as Notepad will launch and open the txt file.

Backing-Up Directories and Files
SHFileOperation() is a versatile file operation that supports multiple directory trans-
fers. The SHFileOperation() is significantly more powerful than the system service
MoveFile() API call because it can transfer files and directories over to a new volume.
It can also transfer children files within a directory. The SHFileOperation() is widely
used in Windows 95 and later and can be seen in Figure 14.10.

Shell Features 565

18 0672324806 CH14 12/12/02 2:43 PM Page 565

The example code, shown in Listing 14.13, demonstrates how to copy files and
subdirectories all at once from one location to another.

CHAPTER 14 Win32 API Functional Areas566

FIGURE 14.10 Shell example for backing-up directories and files.

LISTING 14.13 Using the SHFileOperation() to Copy a Folder

void __fastcall TForm1::ButtonCopyDirClick(TObject *Sender)

{

LabelMoveResults->Caption = “”;

//Declare the SHFILEOPSTRUCT structure to fill in information for use

//of SHFileOperation function.

SHFILEOPSTRUCT op;

//Clear out any thing within the structure

ZeroMemory(&op, sizeof(op));

char source[MAX_PATH];

memset(source, 0, MAX_PATH);

char dest[MAX_PATH];

memset(dest, 0, MAX_PATH);

op.hwnd = Handle; //This is a handle to the main window, used 0 for ours

op.wFunc= FO_COPY; //Tell SHFileOperation to COPY files

sprintf(source,”%s\0”,LabelSourceDir->Caption.c_str()); //Source directory

18 0672324806 CH14 12/12/02 2:43 PM Page 566

op.pFrom = source;

sprintf(dest,”%s\0”,LabelTargetDir->Caption.c_str()); //Destination directory

op.pTo = dest;

op.fFlags= FOF_NOCONFIRMATION + FOF_ALLOWUNDO;

TCursor Save_Cursor = Screen->Cursor;

Screen->Cursor = crHourGlass; // Show hourglass cursor

try

{

if (SHFileOperation(&op) == 0) // so far looks good

{

if (op.fAnyOperationsAborted)

LabelMoveResults->Caption = “Copy process halted!”;

else

LabelMoveResults->Caption = “Copy operation successful!”;

}

else // had a problem

LabelMoveResults->Caption = “Copy process unsuccessful.”;

}

__finally

{

Screen->Cursor = Save_Cursor; // always restore the cursor

}

DirectoryListBoxTarget->Update();

}

When this example is executed, all files and subdirectories within the directory iden-
tified by LabelSourceDir->Caption will be copied over to the directory identified by
LabelTargetDir->Caption.

You’ll notice that one of the first things done in the ButtonCopyDir() event handler is
the declaration of a variable, op, based on the SHFILEOPSTRUCT structure and that its
values are initialized. The variable op is used by the SHFileOperation() function to
carry out the file move operation. The structure SHFILEOPSTRUCT has the following
format:

typedef struct _SHFILEOPSTRUCT { // shfos

HWND hwnd;

UINT wFunc;

LPCSTR pFrom;

LPCSTR pTo;

Shell Features 567

LISTING 14.13 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 567

FILEOP_FLAGS fFlags;

BOOL fAnyOperationsAborted;

LPVOID hNameMappings;

LPCSTR lpszProgressTitle;

} SHFILEOPSTRUCT, FAR *LPSHFILEOPSTRUCT;

At first glance, there seems to be many items to fill out, however, not all fields are
necessary. For instance, the only properties used in our example include wFunc, pFrom,
pTo, and fFlags. Let’s examine each of these properties.

wFunc indicates the operation to perform. The operation selections are shown in
Table 14.14.

TABLE 14.14 Possible Operations

Member Value

FO_COPY Copies the files specified by pFrom to the location specified by pTo. You can copy

files from one location to another location even across volumes.

FO_DELETE Deletes the files specified by pFrom. The pTo is ignored because we are just

deleting the files. See flags under this parameter for Recycle Bin operations.

FO_MOVE Moves the files specified by pFrom to the location specified by pTo. This will

physically move the source files to another location. It does support over-the-

volume transfers.

FO_RENAME Renames the files specified by pFrom.

In our example, we are copying one directory to another (making a backup), using
FO_COPY. Use caution when using FO_MOVE or FO_DELETE.

pFrom represents a pointer to a buffer specifying one or more source filenames or a
folder. Multiple names must be null-separated. The list of names must be
double–null-terminated. If you have many files in a list, you could use a regular \0,
which is the separator for those files. At the end of the list, use double-null termina-
tion. In our example, we’re identifying a complete directory and any subfolders.

pTo represents a pointer to a buffer that contains the name of the destination file or
folder. The buffer can contain multiple destination filenames if the fFlags member
specifies FOF_MULTIDESTFILES (see Table 14.14). Multiple names must be null-separated,
and the list of names must be double–null-terminated.

In our example, we use the C function sprintf() to set up our null-terminated
strings used for pFrom and pTo. This is where we transfer the value from our TEdit
controls representing the folders and tack on an additional null terminator.

CHAPTER 14 Win32 API Functional Areas568

18 0672324806 CH14 12/12/02 2:43 PM Page 568

CAUTION

Not tacking an additional null terminator at the end of the string used for pFrom or pTo is a
common miss. Forgetting to do so, will likely cause an error in the SHFileOperation() opera-
tion.

Next, fFlags identifies the flags that control the file operation. This member can be
any combination of the values shown in Table 14.15.

TABLE 14.15 File Operation Flags

Flag Value

FOF_ALLOWUNDO Preserves undo information, if possible.

FOF_FILESONLY Performs the operation only on files if a wildcard filename (*.*)

is specified.

FOF_MULTIDESTFILES Indicates that the pTo member specifies multiple destination

files (one for each source file) rather than one directory where

all source files are to be deposited.

FOF_NOCONFIRMATION Responds with Yes to All for any dialog box that is displayed.

FOF_NOCONFIRMMKDIR Does not confirm the creation of a new directory if the opera-

tion requires one to be created.

FOF_RENAMEONCOLLISION Gives a new name to the file being operated on (such as Copy

#1 of...) in a move, copy, or rename operation, if a file of the

target name already exists.

FOF_SILENT Does not display a progress dialog box. Nothing will appear

while this function is in operation.

FOF_SIMPLEPROGRESS Displays a progress dialog box, but does not show the file-

names.

FOF_WANTMAPPINGHANDLE Fills in the hNameMappings member. The handle must be freed

by using the SHFreeNameMappings() function.

In our example, we are using the FOF_NOCONFIRMATION and FOF_ALLOWUNDO to support
our folder copy. To enable a list of files (rather than the contents and subdirectories
of a folder), you would use the FOF_MULTIDESTFILES flag. An example is provided in
the sample program contained on the CD-ROM.

These are the only properties we’re interested in within our example because they
relate to SHFILEOPSTRUCT. Be sure to check out the other structure properties, which
are explained in the Win32 API Help file.

Shell Features 569

18 0672324806 CH14 12/12/02 2:43 PM Page 569

NOTE

You might have noticed the function ZeroMemory() used in the example. After declaring the
SHFILEOPSTRUCT record variable op, we want to NULL out the structure information so that
we can start with a blank canvas. The reason is that we don’t want any dirty values at the
memory location associated to op because there are a wide number of properties that are
examined by the SHFileOperation() function and could affect its operation.

Sending Files to the Recycle Bin
One novel way of using the SHFileOperation() function is to delete files and place
them in the Recycle Bin. The code example in Listing 14.14 illustrates how to
perform a directory deletion.

LISTING 14.14 Deleting All Files in a Directory

void __fastcall TForm1::ButtonSendToRecycleBinClick(TObject *Sender)

{

// initialize

MemoFilesToMove->Clear();

ListBoxFilesToMove->Clear();

LabelMoveResults->Caption = “”;

AnsiString DelDir; //Our directory handle

int index = DirectoryListBoxSource->ItemIndex; //keep track of index

//Get the CURRENTLY selected item in the list...

DelDir = DirectoryListBoxSource->Directory;

AnsiString alert;

alert = “Are you sure you wish to remove the folder \”” + DelDir + “\” “

“and all its contents?”;

int response =

Application->MessageBox(alert.c_str(), “Remove Folder”, MB_YESNO);

if (response == ID_NO)

return; // get out

DelDir.SetLength(DelDir.Length() + 1);

DelDir[DelDir.Length()] = ‘\0’;

DelDir.SetLength(DelDir.Length() + 1);

DelDir[DelDir.Length()] = ‘\0’;

CHAPTER 14 Win32 API Functional Areas570

18 0672324806 CH14 12/12/02 2:43 PM Page 570

// before we send the folder and it’s contents to the recycle

// bin, lets drop back one folder. This keeps from having a sharing

// violation

DirectoryListBoxSource->Directory = DirectoryListBoxSource->Items

➥->Strings[index-1];

DirectoryListBoxSource->Update();

SHFILEOPSTRUCT op; //Declare structure variable

//Clear out memory

ZeroMemory(&op, sizeof(op));

//Set up structure for SHFIleOperation for source and destination...

op.hwnd = 0;

op.wFunc= FO_DELETE; //Delete files flag

op.pFrom = DelDir.c_str();

op.fFlags=FOF_ALLOWUNDO;

int copy_done = SHFileOperation(&op);

if (copy_done == 0)

{

if (op.fAnyOperationsAborted)

LabelMoveResults->Caption = “You have halted the removal of the folder.”

“Some files may have been moved to the Recycle Bin. “

“Go to Recycle Bin to restore those files.”;

else

LabelMoveResults->Caption = “Folder removal successful!”;

}

else

LabelMoveResults->Caption = “Folder removal failed.”;

//Update DirectoryListbox

DirectoryListBoxSource->Update();

}

When this code runs, it will go through the directory selected by the user and delete
all files and children files within that directory. All the files are transferred to the
Recycle Bin. To set up SHFileOperation(), it’s important to use the FOF_ALLOWUNDO flag
for the fFlags attribute in combination with FO_DELETE flag for the wFunc attribute.

The last two examples provided thus far have demonstrated how powerful and flexi-
ble the SHx functions can be. You might find other SHx functions useful, such as
SHEmptyRecycleBin(), SHQueryRecycleBin(), and SHBrowseForFolder().

Shell Features 571

LISTING 14.14 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 571

It would take a whole book to cover Shell programming. It’s recommended that you
refer to C++Builder’s Win32 API Reference Guide for more information and experi-
ment with some of the undocumented Shell features contained in the SHELL32.DLL,
but, of course, use extreme caution. If not used properly, the Shell API can cause
some serious problems such as deleted or misplaced files.

International Features
The Win32 API provides support for non-English development and deployment to
international markets. For example, languages other than English and technical
symbols are best represented using the 16-bit Unicode character set that is supported
by Windows. National Language Support (NLS) functions help target an application
for specific international markets. The various internal features are described in
Table 14.16.

TABLE 14.16 National Language Support Functions

International Feature Description

End-User-Defined Provides support for customized characters that are not

Characters (EUDC) available in standard screen or printer fonts. EUDC includes Far

Eastern language syntax, such as Japanese and Chinese.

Input Method Provides a collection of functions, messages, and structures

Editor (IME) used to support Unicode and double-byte character sets. IME

functionality is provided by imm32.dll.

National Language Provides support for adapting and transitioning applications

Support to various language-specific and location-specific environments.

Unicode and Provides support for character encoding, including the Unicode

Character Sets standard. Character encoding, such as Unicode, enables appli-

cations to support multilingual text processing.

Some of these capabilities such as the EUDC and IME require foreign versions of the
Windows operating system. Asian versions, for example, use a totally different char-
acter set than the English version does. Software being developed for these cultures
would benefit from the specific functionality provided by this API functional area.
However, providing an example is not within the scope of this book.

Network Services
Network services allow communication between applications on different computers
on a network. The network functions are used to create and manage connections to
shared resources, such as directories and network printers, on computers in the
network. The Win32 network interfaces include Windows Networking, Windows
Sockets, NetBIOS, RAS, SNMP, and Network DDE and are described in Table 14.17.

CHAPTER 14 Win32 API Functional Areas572

18 0672324806 CH14 12/12/02 2:43 PM Page 572

TABLE 14.17 The Win32 Network Interfaces

Network Interface Description

Windows Networking (WNet) Provides a set of network-independent functions for

implementing networking capabilities within an applica-

tion. Functionality is provided by the Win32 Network

Interface DLL (mpr.dll). WNet prefixes all network func-

tions.

Ported LAN Manager Functions Provides functionality for a network operating system

and was originally designed for OS/2-based servers. Now

it is no longer considered to be part of the Win32 API.

However, much of the functionality is still provided by

Windows through the netapi32.dll.

NetBIOS Interface Used to communicate via a network with applications on

other computers. The Network Basic Input/Output

System (NetBIOS) functionality is provided by the

netapi32.dll.

Network Dynamic Data Exchange Enables DDE to work over a network. Functionality is

provided by the WFW DDE Share Interface (nddeapi.dll).

All network DDE functions are prefixed by NDde.

Remote Access Service (RAS) Allows users at remote locations to connect directly to a

computer network, accessing one or more RAS servers.

Supports dial-up networking. RAS functionality is

provided by the rasapi32.dll. All RAS functions are

prefixed by RAS.

Simple Network Management Used for exchanging network management

Protocol (SNMP) information through the SNMP Internet standard proto-

col. See Windows Help for more information.

Windows Sockets (WinSock) Used for TCP and UDP network data exchange. WinSock

is based on the Berkeley Software Distribution (BSD) Unix

sockets paradigm. Windows Socket functionality is

provided by wsock32.dll (WinSock version 1.1) or by

ws2_32.dll (WinSock version 2.0).

By far, the most utilized network component of the Win32 API is Window Sockets
(WinSock). WinSock provides the basis for all Internet activity and applications:
email, Web browsers, udp broadcasting, ftp, and so on. Let’s look at a useful example
pertaining to the WinSock library.

Getting Network Info
One of the things that can be really helpful is to know the IP address of the local
computer (see Figure 14.11).

Network Services 573

18 0672324806 CH14 12/12/02 2:43 PM Page 573

FIGURE 14.11 Network Info Example Using WinSock.

One of the easiest ways to determine the IP address for your primary network card or
modem is to use the WinSock library. Other useful information might include the
WinSock version, maximum size, and host name. The code example in Listing 14.15
illustrates how we can obtain this information.

LISTING 14.15 Getting Network Info

void __fastcall TFormWinSockIPInfo::ButtonGetInfoClick(TObject *Sender)

{

WSADATA localWSA;

if (WSAStartup ((MAKEWORD(1,1)), &localWSA) != 0)

{

MessageBox (NULL, “Sorry - Unable to load Windows Sockets - “

“Please close other applications and try again.”,

“UDP Network Interface”, MB_OK | MB_ICONASTERISK);

WSACleanup ();

return;

}

LabelMaxSize->Caption = localWSA.iMaxUdpDg;

LabelVersion->Caption = AnsiString(localWSA.szDescription);

char szHost[MAX_PATH]; // should be big enough.

memset(szHost, 0, MAX_PATH); // clear it

gethostname(szHost, MAX_PATH);

struct hostent *hp;

hp = gethostbyname(szHost);

if(! hp)

return;

LabelName->Caption = hp->h_name;

CHAPTER 14 Win32 API Functional Areas574

18 0672324806 CH14 12/12/02 2:43 PM Page 574

char szIpAddress[96];

sprintf(szIpAddress, “%d.%d.%d.%d”,

UC(hp->h_addr[0]), UC(hp->h_addr[1]),

UC(hp->h_addr[2]), UC(hp->h_addr[3]));

LabelIPAddress->Caption = AnsiString(szIpAddress);

// clean-up

WSACleanup ();

}

The first WinSock call made in this example is WSAStartup(). This call initiates the
use of the Windows Sockets DLL by our program. The first parameter passed into the
WSAStarup() call indicates the version of WinSock we need to perform our query of
information. In this case, version 1.1 is enough to get the information we need. That
is to say that no calls or features require anything newer than WinSock version 1.1.
The second item passed into the WSAStartup() call is a pointer to the WSADATA structure
defined by the variable localWSA. This is the first nugget of information that we
receive. Let’s take a look at the WSADATA structure definition.

typedef struct WSAData {

WORD wVersion;

WORD wHighVersion;

char szDescription[WSADESCRIPTION_LEN+1];

char szSystemStatus[WSASYS_STATUS_LEN+1];

unsigned short iMaxSockets;

unsigned short iMaxUdpDg;

char FAR * lpVendorInfo;

} WSADATA, FAR * LPWSADATA;

The information displayed on the form within our example includes the descriptive
version using the character array szDescription, the maximum size of a UDP packet
using iMaxUdpDg, and the maximum number of sockets that can be established using
iMaxSockets.

After we gather this information using WSAStartup(), we use the gethost() call to
determine the host name for the local machine. This information is displayed to the
user. Finally, we retrieve the IP address using this host name through a call to geth-
ostbyname(), which returns a pointer to the hostent structure. The hostent structure is
defined as follows:

struct hostent {

char FAR * h_name;

Network Services 575

LISTING 14.15 Continued

18 0672324806 CH14 12/12/02 2:43 PM Page 575

char FAR * FAR * h_aliases;

short h_addrtype;

short h_length;

char FAR * FAR * h_addr_list;

};

Each IP byte is contained in the list for h_addr, which we can access by index.
However, this data is contained in an integer. Again, all we care about for each index
is the first byte. So, as demonstrated in our example, we apply the following macro,
which clears all the values greater than 255 to give us one byte.

define UC(b) (((int)b)&0xff)

Using sprintf(), we format the IP address value in its normal notation so that it can
be displayed to the user.

Adding System Support
It’s sometimes useful to add system-support capabilities to an application, such as
the capability to quickly lock an NT workstation, disable Ctrl+Alt+Delete, or shut
down (and reboot) a machine. The Win32 API provides many useful routines to help
perform these types of tasks. However, it’s important to note the danger of providing
these types of capabilities. If you’re going to implement these types of functionality
(and debugging in the process), be sure to save early and often, or you might just
wish you had selected another hobby or profession.

Locking an NT Workstation
It’s time to introduce you to another new Win32 API named LockWorkStation(),
which is used to automatically lock an NT system. LockWorkStation() takes no para-
meters, and it’s automatic. Locking workstations or servers couldn’t be easier. The
function mimics the well-known Ctrl+Alt+Delete keys and selects Lock Workstation.
The system is then locked until later use. This function is in the WINUSER.H header
file.

With the following one line of code, you can automate what used to be a manual
operation under NT. Unfortunately, Windows 9x does not support this function:

LockWorkStation();

System Shutdown
A lot of beginners often ask how to automate the shutdown of a Windows PC. By
using the ExitWindowsEx() or ExitWindows() function, you can properly shut down the
system. The following code demonstrates how to use the ExitWindowsEx() API func-
tion:

CHAPTER 14 Win32 API Functional Areas576

18 0672324806 CH14 12/12/02 2:43 PM Page 576

ExitWindowsEx(EWX_SHUTDOWN,0);

This routine is not new like the LockWorkStation() function, but it sure has a lot of
power in manipulating your system—by turning it off. If your PC has power conser-
vation methods in the BIOS, ExitWindowEx() will automatically shut down your PC’s
power, too.

ExitWindowsEx() is an easy way to shut down Windows, but you can do a lot more
than just shut down Windows. The ExitWindowEx() function has more flags with
which to work. The format is as follows:

BOOL ExitWindowsEx(

UINT uFlags, // shutdown operation

DWORD dwReserved // reserved

);

uFlags are flags to specify which shutdown type you wish to perform. Table 14.18
shows the values.

TABLE 14.18 System Shutdown Function Flags

Flags Value

EWX_FORCE Forces processes to terminate. When this flag is set, Windows does not

send the messages WM_QUERYENDSESSION and WM_ENDSESSION to the

applications currently running in the system. This can cause the appli-

cations to lose data, so you should use this flag only in an emergency.

EWX_LOGOFF Shuts down all processes running in the security context of the

process that called the ExitWindowsEx() function. Then it logs the

user off.

EWX_POWEROFF Shuts down the system and turns off the power. The system must

support the power-off feature. Windows NT: The calling process must

have the SE_SHUTDOWN_NAME privilege. Windows 95: Security privileges

are not supported or required.

EWX_REBOOT Shuts down and then restarts the system. Windows NT: The calling

process must have the SE_SHUTDOWN_NAME privilege.

EWX_SHUTDOWN Shuts down the system to a point at which it is safe to turn off the

power. All file buffers have been flushed to disk, and all running

processes have stopped. Windows NT: The calling process must have

the SE_SHUTDOWN_NAME privilege.

The dwReserved parameter is currently not used.

Network Services 577

18 0672324806 CH14 12/12/02 2:43 PM Page 577

Summary
The functional areas of the Win32 API described in this chapter provide an initial
foundation for understanding the composition and capabilities of the API. This
chapter has provided a hand full of examples associated within these functional
areas illustrating how to use Win32 API calls, callbacks, and structures. It has armed
you with the essentials, but it has only scratched the surface of what the API can
provide.

You are encouraged to explore, experiment, and use the Win32 API to create better
applications and components, resulting in greater choice and satisfaction for
Windows users. When either a desired capability is not provided by a VCL, or when
performance can be vastly improved by using the Win32 API, look to see what the
API offers. Keep in mind that each Windows release and Internet Explorer update
potentially introduces even more capabilities and features that you can easily take
advantage of with C++Builder.

CHAPTER 14 Win32 API Functional Areas578

18 0672324806 CH14 12/12/02 2:43 PM Page 578

IN THIS CHAPTER

• The Graphical Device
Interface (GDI)

• Working with Images

• Working with Multimedia

15

Graphics and
Multimedia Techniques

by Paul Gustavson

Many applications require some type of graphics or
multimedia support to reflect visual or audio information
to the user. In fact, a growing number of applications are
designed specifically for creating, managing, displaying, or
playing multimedia files. Contrary to popular belief, appli-
cations developed with C++Builder can easily incorporate
these types of features and capabilities.

In the last chapter we examined the functional areas of the
Win32 API. Two of the things we touched on were the
graphics and multimedia capabilities provided by the
Win32 API. In this chapter, we will discuss several tech-
niques for supporting graphics and multimedia in an
application. On the graphics end, we’ll take a deeper look
at the Windows GDI, the image support provided by the
VCL, and techniques for image processing. Then, we’ll take
a hard look at the multimedia capabilities and techniques
supported by C++Builder for playing audio files, video files,
and CD music.

NOTE

Even though this chapter focuses on Windows graphics and
multimedia concepts, Linux can support many of the tech-
niques described here through Borland’s CLX components. In
particular, discussion regarding the VCL elements such as
TCanvas, TBrush, TPen, TFont, TBitmap, and TImage can be
matched through the equivalent CLX elements.

19 0672324806 CH15 12/12/02 2:41 PM Page 579

The Graphical Device Interface (GDI)
The visible aspect of a C++Builder application is built using forms and controls.
Some aspects of the application’s GUI may consist of graphics and pictures. The
display of these graphics and pictures is where the GDI subsection of Windows API
comes into play. The GDI is one of the core parts of the Windows operating system
and is housed in GDI.DLL and GDI32.DLL. It encompasses hundreds of functions (in
recent versions of Windows there are more than 400 exports in GDI32.DLL).
Everything that draws in Windows uses the GDI, including Windows itself.

The GDI exists for one main reason: device independence. When you draw using
GDI functions, you do not need to know the specifics of programming every video
card and printer on the market today and tomorrow. The GDI provides a layer of
abstraction between your application code and the hardware, so you don’t have to
worry about hardware issues.

Borland provides another layer of abstraction between the application code and the
GDI, with the TCanvas, TBrush, TPen, and TFont classes. We will examine these shortly,
but first it’s important to understand some GDI essentials.

NOTE

Unfortunately, there is not enough space to cover all the features available within the GDI. For
more information, see the Win32 API help on GDI, or the VCL help starting at TCanvas.

The Windows API and the Device Context
As with just about every other part of Windows programming, a handle is needed to
interface with the GDI. This handle is known as the Device Context (DC). In the stan-
dard Windows API, we can retrieve a DC using the GetDC() routine. After we get the
DC, we can use a number of GDI functions to draw within the client area of that
window. Let’s take a look at an example:

void __fastcall TForm1::ButtonDrawGDIClick(TObject *Sender)

{

HDC hDC = GetDC(Handle);

Rectangle(hDC,10,10,100,100);

ReleaseDC(Handle, hDC);

}

In this example, we pass the window handle of our application’s form as a parameter
into the GetDC() function. In return, we receive a DC for the client area associated to
that window. The Rectangle() function is a GDI routine that will draw a rectangle
using the current pen and brush at the specified location. After we have finished
drawing, we release the DC using ReleaseDC().

CHAPTER 15 Graphics and Multimedia Techniques580

19 0672324806 CH15 12/12/02 2:41 PM Page 580

TIP

To draw anywhere on the desktop, pass NULL as the hWindow argument to GetDC() or
GetWindowDC().

Using TCanvas

When programming using C++Builder, it is preferable to use object-oriented classes
and components over C structured API code to improve efficiency and reuse. This is
the advantage VCL provides over the Windows API. Support for drawing lines and
filled areas is provided by the TCanvas component.

TCanvas is a wrapper around the GDI functionality and is available as a property on
the TForm, TPrinter, TImage, TBitmap, and TToolbar components as well as on a number
of custom control components. You access Canvas as a property of these compo-
nents. With TCanvas, we can draw the same rectangle we demonstrated earlier as
follows:

void __fastcall TForm1::ButtonDrawCanvasClick(TObject *Sender)

{

Canvas->Rectangle(10, 10, 100, 100);

}

In this example, we have used only one line of code to draw a rectangle within the
form, whereas previously it took three lines of code when using the Win32 GDI
functions directly.

TCanvas provides an object-oriented interface to the Windows API. The biggest advan-
tage is that it handles resources for you. There are some fairly complex rules concern-
ing how to manage GDI resources when using the raw API, whereas TCanvas handles
these rules for you seamlessly. Also, TCanvas provides the standard VCL property
system for getting and setting many of the attributes of the underlying Device
Context, which simplifies your code and makes it much easier to read and under-
stand.

Key Properties
TCanvas has several key properties you should know about:

• TPen Pen—The currently selected pen for drawing

• TBrush Brush—The currently selected brush

• TFont Font—The currently selected font

• TPoint PenPos—Positions the pen for drawing

The Graphical Device Interface (GDI) 581

19 0672324806 CH15 12/12/02 2:41 PM Page 581

It is important to mention that the canvas will use the current pen, brush, font, and
position as appropriate when drawing. Properties to these elements should be
changed before any canvas drawing function is called. We’ll look at the classes
behind some of these properties in a short bit, but first let’s take a look at how we
can effectively use TCanvas.

Mixing TCanvas with the GDI
TCanvas and its associated classes are coded in the file graphics.pas, but they do not
wrap all the GDI functions. Borland has implemented only the most commonly used
functions. Although the VCL could be even more helpful, keep in mind that with
C++Builder the Windows API is just a function call away.

Because TCanvas provides a Handle property to a device context, we can interweave
GDI function calls with our VCL-based code. Going back to our original rectangle
example, this could be coded using both the Canvas interface and the GDI as
follows:

void __fastcall TForm1::ButtonDrawCanvasGDIClick(TObject *Sender)

{

Rectangle(Canvas->Handle, 10, 10, 100, 100);

}

In this example, we are using the standard Win32 GDI function Rectangle() and
passing the handle to the Form’s Canvas, which is a Device Context. You’ll find that
this example code achieves exactly the same results as the previous examples.

Drawing Lines, Curves, and Other Shapes
Drawing lines and curves is easy with a TCanvas: Just set up the relevant pen, and
then call the appropriate function. There are many functions in TCanvas for line
drawing, which are readily available in the C++Builder documentation. A simple
line, for example, is drawn using two commands:

Canvas->MoveTo(1, 1);

Canvas->LineTo(9, 1);

In this example, MoveTo() sets the pen location, and LineTo() draws a straight line
from that initial location up to, but not including, the last point specified, which is
the position (9,1). This is illustrated in Figure 15.1.

To draw a series of connected curves, such as a sine wave, you can use the
PolyBezier() function as shown in Listing 15.1:

CHAPTER 15 Graphics and Multimedia Techniques582

19 0672324806 CH15 12/12/02 2:41 PM Page 582

FIGURE 15.1 LineTo(9,1) does not fill in the last pixel.

LISTING 15.1 Drawing a Sequence of Curved Lines (a Sine Wave)

void __fastcall TForm1::ButtonDrawSineWaveClick(TObject *Sender)

{

Canvas->Pen->Color = TColor(EditColor->Text.ToIntDef(0)); //clBlue;

Canvas->Pen->Style = psSolid; // solid line

Canvas->Pen->Width = EditPenWidth->Text.ToIntDef(1);

const int maxpts = 19;

TPoint pts[maxpts];

double pi_3 = 3.1415926535897932384626433832795 / 3.0;

for (int i = 0; i<maxpts; i++)

{

pts[i].x = (i+1)*10;

pts[i].y = (sin(i*pi_3)*200) + 300; // axis (pi) every 3rd one

}

Canvas->PolyBezier(EXISTINGARRAY(pts));

/* Show the points as well as the curve */

for (int i = 0; i<maxpts; i++)

{

Canvas->Rectangle(pts[i].x-3,pts[i].y-3,pts[i].x+3,pts[i].y+3);

}

}

When using PolyBezier(), you need to identify at least four points, which identifies a
single curve. The first and fourth points identify the start and end location of the
initial curve; the second and third points identify control points for manipulating
the curve. Any subsequent curves in the sequence, if they are to be included, require

The Graphical Device Interface (GDI) 583

0

0

1

2

1 2 3 4 5 6 7 8 9 10

19 0672324806 CH15 12/12/02 2:41 PM Page 583

exactly three points per curve. The first two points after the first curve identify
control points for the new curve, and the third point identifies the end location for
the existing curve and the start location for the next curve if there is to be one.

NOTE

Many of the examples listed in this chapter are designed to point out the API call that’s
needed to perform the necessary task. There are other elements not shown, such as variables
and the identification of header files within the include section. These elements are needed for
the code to properly compile. However, all the source described in this chapter can be found
on the accompanying CD-ROM.

To draw various polygon shapes, use the Polygon() function. A hexagon, for example,
can be drawn as shown in Listing 15.2:

LISTING 15.2 Drawing a Polygon Shape (a Hexagon)

void __fastcall TForm1::ButtonDrawHexagonClick(TObject *Sender)

{

TPoint points[5];

points[0] = Point(80,140);

points[1] = Point(140,196);

points[2] = Point(116,260);

points[3] = Point(44,260);

points[4] = Point(20,196);

Canvas->Brush->Color = clTeal; // fills hexagon with teal

Canvas->Polygon(points, 4);

}

A hexagon contains five points. In this example, we identify each of those points
within a Point array, which is passed in as parameter to the Polygon() function.

Drawing Filled Areas
Filled images use both a pen and a brush. The pen is used for the outline of a shape,
and the brush is used to fill in the interior of a shape. For example, a yellow-filled
rectangle with a blue outline could be drawn as shown in Listing 15.3.

LISTING 15.3 Drawing a Filled Rectangle

void __fastcall TForm1::ButtonDrawRectClick(TObject *Sender)

{

TRect MyRect(50,50,100,100);

Canvas->Pen->Color = clBlue;

CHAPTER 15 Graphics and Multimedia Techniques584

19 0672324806 CH15 12/12/02 2:41 PM Page 584

Canvas->Pen->Style = psSolid; // solid line

Canvas->Pen->Width = 2;

Canvas->Brush->Color = clYellow;

Canvas->Brush->Style = bsSolid;

Canvas->Rectangle(MyRect);

}

Notice how we adjust the Pen and Brush attributes before drawing the rectangle.
Also, identifying a boundary rectangle is required for other functions such as the
Ellipse() function.

Canvas->Ellipse(MyRect);

In this example, the system draws the ellipse so that it just touches the boundaries of
the rectangle.

Drawing Text
There are several ways to draw text using TCanvas. The easiest is to use TextOut(),
which starts at a specified (x,y) position. On return, this function positions the
PenPos to the end of the drawn text (top right), allowing for easy continuation.
Listing 15.4 provides an example.

LISTING 15.4 Writing Out Text Using TextOut()

void __fastcall TForm1::ButtonTextOutClick(TObject *Sender)

{

Canvas->Font->Color = clNavy;

Canvas->TextOut(20,20,”Here’s how you write text “);

Canvas->TextOut(Canvas->PenPos.x,Canvas->PenPos.y,

“and how you continue to write text.”);

}

Another way to write out text is to use TextRect(). TextRect() will draw the text
within a rectangle and clip any text that does not fit. A simple example is provided
in Listing 15.5.

LISTING 15.5 Writing Out Text Using TextRect()

void __fastcall TForm1::ButtonTextRectClick(TObject *Sender)

{

Canvas->Font->Color = clNavy;

TRect MyRect(10,10,250,100);

The Graphical Device Interface (GDI) 585

LISTING 15.3 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 585

Canvas->TextRect(MyRect,10,10,

“Here’s how you write text within a rectangle.”);

}

The size of the text for either of these functions depends on the font. For a fixed-
pitch font, such as Courier, each letter takes up the same amount of space, whether
it is an i or a w. With a variable-pitch font, each letter is a different width, so the i
takes up less space than the w. To calculate the width and height a given string will
take up, TCanvas provides the function TextExtent(), which returns a TSize that can
be used for positioning the text as appropriate.

As an example, in the analog clock example code, the text is drawn using the follow-
ing:

AnsiString text = “Right Click for Menu...”;

TSize textSize = Canvas->TextExtent(text);

int x = (Width - textSize.cx) / 2;

int y = Height - textSize.cy - 2;

Canvas->TextOut(x, y, text);

The math performed to calculate x and y in this example ensures that the text is
centered at the bottom of the canvas object.

Using TPen

When you draw a line or a lined object, such as an empty circle, on a TCanvas object,
the current pen is used to define the color, style, and thickness mode. The Color
property identifies the color used to draw lines on the canvas. The Style property
determines how the line is drawn: solid, dotted, dashed, and so on. The thickness of
line is controlled by the Width property. If the Width is greater than 1, the line will
automatically be solid. Therefore, if you need a thick dotted line, one approach is to
draw multiple lines next to each other (each line being one pixel apart).

TPen also has a property called Mode, which defines how the pen’s color is affected by
the underlying color already on the canvas. Of particular interest is the pmNotXor
mode, which will perform a “not xor” of the pen’s color with the underlying canvas
color. This is particularly useful for drawing temporary lines over an image when the
line will be erased shortly afterward. The line can then be erased by redrawing the
line over the first line because the pmNotXor mode will cancel out the two lines,
leaving the original image displayed. This can be used, for example, to paint a
zooming region or a crop region within a graphics program. This is shown in
Figure 15.2.

CHAPTER 15 Graphics and Multimedia Techniques586

LISTING 15.5 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 586

FIGURE 15.2 Painting a crop region over an image.

Let’s take a look at the example in Listing 15.6 that shows how to display a crop
region in C++Builder.

LISTING 15.6 Displaying a crop region

void __fastcall TForm1::FormMouseDown(TObject *Sender, TMouseButton Button,

TShiftState Shift, int X, int Y)

{

if (Button == mbLeft)

{

oX = X; // anchor point

oY = Y;

lX = X;

lY = Y;

Canvas->Pen->Color = clBlack;

Canvas->Pen->Style = psDash; // dashed line

Canvas->Pen->Width = 1;

Canvas->Pen->Mode = pmNotXor;

Canvas->Brush->Style = bsClear;

DrawSelectRegion = true;

}

}

//—————————————————————————————————————-

The Graphical Device Interface (GDI) 587

19 0672324806 CH15 12/12/02 2:41 PM Page 587

void __fastcall TForm1::FormMouseMove(TObject *Sender, TShiftState Shift,

int X, int Y)

{

TRect MyRect;

if (DrawSelectRegion)

{

MyRect = TRect(oX,oY,lX,lY);

Canvas->Rectangle(MyRect);

lX = X;

lY = Y;

MyRect = TRect(oX,oY,lX,lY);

Canvas->Rectangle(MyRect);

}

}

//—————————————————————————————————————-

void __fastcall TForm1::FormMouseUp(TObject *Sender, TMouseButton Button,

TShiftState Shift, int X, int Y)

{

TRect MyRect;

if (DrawSelectRegion)

{

MyRect = TRect(oX,oY,lX,lY);

Canvas->Rectangle(MyRect);

DrawSelectRegion = false;

}

}

In this example, when the left mouse button is clicked, an anchor is made at the X,
Y point, and the canvas properties are set up for displaying a dashed rectangle.
When the mouse moves with the left button still down, the rectangle making up the
zoom area changes appropriately in size, and the original picture and objects are still
displayed. When the mouse button is released, one last rectangle is drawn to erase
the previous crop region. The key to making this work is having the pen Mode prop-
erty set for pmNotXor, which we set when the mouse button was pressed. Additionally,
the brush style set for bsClear, ensures that the existing objects on the Canvas are
not masked by the drawn rectangle. Let’s take a look at the aspects of TBrush.

Using TBrush

A brush is used to determine how to fill-in the selected region of the canvas. TBrush
has the properties Color, Style, and Bitmap. Color is a TColor property used to

CHAPTER 15 Graphics and Multimedia Techniques588

LISTING 15.6 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 588

identify the color to be used by the brush. Style determines whether to fill in the
object or use a pattern of lines to shade the area. The Style property takes the values
bsSolid, bsCross, bsClear, bsDiagCross, bsBDiagonal, bsHorizontal, bsFDiagonal, and
bsVertical. These should be self-explanatory. In the last example we used bsClear to
keep the background information visible. The effect of these styles can also be seen
in the analog clock program example provided on the CD-ROM and described later.
The Bitmap property can also be used to identify an external bitmap image that, like
Style, defines a pattern for the brush. This is illustrated in Figure 15.3.

The Graphical Device Interface (GDI) 589

FIGURE 15.3 Placing an image on the canvas of a C++Builder application.

Let’s take a look at Listing 15.7, which provides an example on assigning a bitmap
brush to the Form Canvas.

LISTING 15.7 Tiling and Stretching a Bitmap onto a Form

void __fastcall TForm1::ButtonAssignBitmapToCanvasClick(TObject *Sender)

{

OpenDialog1->Filter = “Bmp files (*.bmp)|*.BMP”;

if (OpenDialog1->Execute())

{

Graphics::TBitmap *BrushBmp = new Graphics::TBitmap;

try

{

BrushBmp->LoadFromFile(OpenDialog1->FileName);

Canvas->Brush->Bitmap = BrushBmp;

TRect rect;

rect.Left = 0;

rect.Top = 0;

19 0672324806 CH15 12/12/02 2:41 PM Page 589

rect.Right = ClientWidth;

rect.Bottom = ClientHeight;

if (CheckBoxStretch->Checked)

Canvas->StretchDraw(rect, BrushBmp);

else

Canvas->FillRect(rect);

}

__finally

{

Canvas->Brush->Bitmap = NULL;

delete BrushBmp;

}

}

}

In this example, a bitmap is loaded that is either tiled to the form, or stretched to fit
across the whole form depending on the value of the CheckBoxStretch control. This
capability might be useful for providing skin support in an application. In a short
while, we’ll look more in depth at working with TBitmap objects.

Using TFont

The current font is used in text functions such as TextOut(). A TFont object has all the
attributes that you would expect, such as Color, Name, Style, Height, and Size. The
Color property, of course, is used to identify the color of the text to be displayed.
The Name property is used to set the type of font, such as Arial, or Courier. The Style
property is used to identify whether the text should be bold, underlined, and/or
italicized. Let’s take a look at the example code in Listing 15.8:

LISTING 15.8 Adjusting the Font of a Canvas

void __fastcall TForm1::ButtonFontClick(TObject *Sender)

{

if (FontDialog1->Execute())

{

EditFont->Text = FontDialog1->Font->Name;

Canvas->Font->Name = FontDialog1->Font->Name;

Canvas->Font->Style = FontDialog1->Font->Style;

Canvas->Font->Size = FontDialog1->Font->Size;

Canvas->Font->Color = FontDialog1->Font->Color;

}

CHAPTER 15 Graphics and Multimedia Techniques590

LISTING 15.7 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 590

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonApplyTextClick(TObject *Sender)

{

Canvas->TextOut(100,100,EditText->Text);

}

In the ButtonFontClick() event hander, we use a TFontDialog object to obtain the
desired font attributes of the user. These attributes are assigned to the property
values of the Font property for the Canvas. Next, the ButtonApplyTextClick() event
hander is used to write out the text contained within EditText using the Font proper-
ties that were previously assigned.

The size of the font can be set in two ways: Height in pixels or Size in points. In
general, most users will want to set the font size in points, not in pixels. The
TFontDialog, for example, requests a font height from the user, not a pixel size.
However, programmatically, it’s useful to know the pixel height when placing text
on a canvas or image. Fortunately, if you set one, the other is automatically calcu-
lated and can be used accordingly.

Using TColor

One of the commonly modified properties of the Brush, Pen, and Font elements
associated to a TCanvas object is the Color. The color of a graphics object in the VCL
is set using the TColor property. TColor is a VCL mapping of the Windows API
COLORREF value, which uses a 32-bit number to specify the color. The color is divided
into the constituent components Red, Green, and Blue, so Red is (255,0,0), and
White is (255,255,255). The following code snippet provides an example of how to
set the color:

void __fastcall TForm1::ButtonFontColorClick(TObject *Sender)

{

if (ColorDialog1->Execute())

{

Canvas->Font->Color = ColorDialog1->Color;

}

}

In this example, we use a TColorDialog object to provide the user with a dialog to
select the color. After the color is selected it is assigned to the Canvas Font color.

The Graphical Device Interface (GDI) 591

LISTING 15.8 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 591

Not all displays attached to a Windows computer are capable of displaying the full
spectrum of colors. The number of colors that can be displayed might be 16, 256,
65536, or 16 million. The number of colors available is also known as the color depth.
Table 15.1 lists the possible colors and a description.

TABLE 15.1 Representation of Colors at Different Color Depths

Number of Colors Description

16 colors With a 16-color VGA display, the colors are fixed and are listed in the help for

TColor.

256 colors A 256-color display is palette-based. This means that only 256 colors can be

displayed at one time, but the choice of which colors can be set from the full

range of colors.

65,536 colors The Red, Green, Blue (RGB) values are stored in a 16-bit value. When you

choose a color, Windows applies the value closest to the one selected.

16 million colors All colors are available for display.

NOTE

There is not enough space in this section for us to cover palette management for 256-color
displays. For more information, look at a good Windows API reference text such as Petzold’s
Programming Windows, Microsoft Press, ISBN: 157231995X.

To determine the number of colors available on your machine, use the Win32 GDI
function GetDeviceCaps().This will identify the number of color planes and the
number of bits per pixel. The following code snippet will calculate the number of
colors that can be supported:

int BitsPerPixel = GetDeviceCaps(Canvas->Handle, BITSPIXEL);

int NumberOfPlanes = GetDeviceCaps(Canvas->Handle, PLANES);

int NumberofColors = 1 << (NumberOfPlanes * BitsPerPixel);

An Analog Clock Example
To demonstrate these ideas, an analog clock project, clock.bpr, is provided in the
GDIClock folder on the CD-ROM that accompanies this book. This clock is based on
an old Borland C++ OWL example, aclock, and shows a simple clock with hour,
minute, and second hands. This is shown in Figure 15.4.

This example program is intended to show the use of the Canvas for drawing. The
important functions in this example are the form’s InitializeImage(),
DrawClockToHiddenImage(), and FormPaint().

CHAPTER 15 Graphics and Multimedia Techniques592

19 0672324806 CH15 12/12/02 2:41 PM Page 592

FIGURE 15.4 The analog clock example program.

All drawing is done to the canvas of a hidden TImage that is copied onto the form’s
Canvas in the OnPaint() event handler. We draw to a hidden image that’s the same
size of the form to speed up the display update. On each OnPaint() event call for the
form, hidden canvas is simply copied to the form canvas.

void __fastcall TForm1::FormPaint(TObject *Sender)

{

// copy the information on the hidden canvas onto the form’s canvas.

Canvas->CopyRect(ClientRect, HiddenImage->Canvas, HiddenImage->ClientRect);

}

The result of this processing has the advantage of speeding up the display over the
common approach, which is to draw directly on to the canvas during a TForm’s
OnPaint event. CopyRect() improves performance.

The example program also demonstrates the use of the Font, Brush, and Pen properties
of the canvas, along with the drawing of lines for the hands and an ellipse for the
clock face. Using a pop-up menu, the brush style of the clock face can be changed to
show the different effects, along with the style of the hands.

Working with Images
The Windows GDI provides native support for the bitmap file format and presents
many GDI functions that are specifically designed for use with bitmap objects.
However, if you are interested in displaying other image formats, you will need to
use other mechanisms. Specifically, you’ll have to provide a conversion routine so
that you can construct a bitmap object from the information contained from the
nonbitmap image (that is, a JPEG, GIF, or PNG file).

Before diving into nonbitmap image formats, we’ll first concentrate on the bitmap
object and discuss some of the techniques that can be used. After a few bitmap

Working with Images 593

19 0672324806 CH15 12/12/02 2:41 PM Page 593

examples, we’ll look at how other image file formats can be supported. Our inten-
tion here is not to get into the specifics of each image file format, but to provide a
general overview of the most common file formats and how to use them.

The Windows Bitmap Object
The GDI presents two types of bitmaps: device-dependent bitmaps (DDBs) and
device-independent bitmaps (DIBs). The former is a type of GDI graphic object,
defined by the Win32 API BITMAP structure, which can be used in much the same
way as most other graphic objects. Namely, you can select a DDB into a memory-
device context and use any of the applicable GDI functions to perform rendering.
Unfortunately, the GDI does not provide a direct means by which the bits of a DDB
can be accessed. In contrast, a DIB is defined by the information contained in a
BITMAPINFO structure and an array of pixels. In this way, you always have direct
access to the bits of a DIB. There is a catch, however: DIBs cannot be selected into
a memory device context, so rendering a DIB is generally slower than rendering
a DDB.

To overcome the limitations imposed by DDBs and DIBs, Microsoft engineers devel-
oped the hybrid DIB section bitmap. This is simply a composite of the former two
types, defined by the DIBSECTION structure.

typedef struct tagDIBSECTION {

BITMAP dsBm;

BITMAPINFOHEADER dsBmih;

DWORD dsBitfields[3];

HANDLE dshSection;

DWORD dsOffset;

} DIBSECTION;

Unlike a true DDB, the bits of a DIB section bitmap are readily accessible. Unlike a
true DIB, DIB section bitmaps can be selected into a memory-device context. These
two complementary aspects are particularly important when both efficient pixel
manipulation and efficient rendering are required. In fact, the VCL TBitmap class is
based on the DIB section bitmap.

Understanding and Using TBitmap
The TBitmap class is the VCL’s encapsulation of the Windows bitmap object. The class
descends from the abstract TGraphic base class, and it dynamically adapts to use
either a DDB or a DIB section bitmap. This functionality is presented by the internal
VCL CopyBitmap() function. It is from within this function that either a DDB is
created via the GDI functions CreateBitmap() (for monochrome bitmaps) and
CreateCompatibleBitmap(), or else a DIB section bitmap is created via the CreateDIB
Section() GDI function. While it is beyond the scope of this text to discuss the

CHAPTER 15 Graphics and Multimedia Techniques594

19 0672324806 CH15 12/12/02 2:41 PM Page 594

specifics of the CopyBitmap() VCL function, let’s examine those properties and
member functions of the TBitmap VCL class that provide support for other
image types.

The TBitmap class relies heavily on the TBitmapCanvas and TBitmapImage classes. The
former, a descendant of the TCanvas class, expands its parent class to encapsulate the
GDI memory device context. The latter, a descendant of the TSharedImage class,
handles the resource counting and destruction of the DDB or DIB section bitmap.
This latter task is accomplished via the DeleteObject() GDI function.

For image rendering support, the TBitmapCanvas class inherits the Draw(),
StretchDraw(), and CopyRect() member functions from its parent class. The
TBitmapCanvas::CreateHandle() function performs the task of selecting the bitmap
(and palette, when appropriate) into the underlying memory device context. Thus,
when the Draw(), StretchDraw(), or CopyRect() member function is used, the TCanvas
class can rely solely on the StretchBlt() or TransparentStretchBlt() GDI function.

Aside from the rendering member functions presented by the TCanvas class, the
TBitmap class provides the ScanLine property. This property uses the internal
TBitmap::GetScanLine() member function, which simply returns an offset pointer to
the bits of the DIB section bitmap. When you convert from other formats, you’ll
need access to these bits so that you can directly manipulate the pixels of the image.
In this way, the ScanLine property significantly eases the task of pixel manipulation.

Let’s now look at some code examples that demonstrate some TBitmap techniques.
Much of the image-processing code to be demonstrated in this section is built into
the IPro.bpr sample image-processing application project, available in the
ImageProcessing folder on the CD-ROM that accompanies this book.

Essential TBitmap Operations
Let’s take a look at the example shown in Listing 15.9, which demonstrates how to
load a bitmap image. We’ll use a TImage component dropped on our form to perform
the activities with its AutoSize property set to true. We set it to true so that the
TImage object can automatically adjust to different image sizes that could be loaded.

LISTING 15.9 Loading a Bitmap Image

void __fastcall TForm1::ButtonLoadClick(TObject *Sender)

{

OpenDialog1->Filter = “Bmp files (*.bmp)|*.BMP”;

if (OpenDialog1->Execute())

{

Image1->Picture->Bitmap->LoadFromFile(OpenDialog1->FileName);

}

}

Working with Images 595

19 0672324806 CH15 12/12/02 2:41 PM Page 595

In this example, we use a TOpenDialog object, called OpenDialog1, to browse for and
select a BMP file. Then, we use the LoadFromFile() method provided by the TBitmap
class of the Image1 object to load the selected bitmap.

After we have the bitmap displayed within Image1, we can begin to manipulate this
image using its canvas. Let’s take a look at a simple example (Listing 15.10) that
paints a border around the image.

LISTING 15.10 Placing a Border Around an Image

void __fastcall TForm1::ButtonBorderClick(TObject *Sender)

{

// let’s draw a border around the image

TRect MyRect(0,0,Image1->Width,Image1->Height);

Image1->Canvas->Pen->Color = TColor(EditColor->Text.ToIntDef(0)); //clBlue;

Image1->Canvas->Pen->Style = psSolid; // solid line

Image1->Canvas->Pen->Width = EditPenWidth->Text.ToIntDef(1);

Image1->Canvas->Brush->Style = bsClear;

Image1->Canvas->Rectangle(MyRect);

}

Let’s now take a look at Listing 15.11, which demonstrates how to save this bitmap,
including the border around the original image.

LISTING 15.11 Saving a Bitmap

void __fastcall TForm1::ButtonSaveClick(TObject *Sender)

{

SaveDialog1->Filter = “Bmp files (*.bmp)|*.BMP”;

if (SaveDialog1->Execute())

{

Image1->Picture->Bitmap->SaveToFile(SaveDialog1->FileName);

}

}

In this example, we allow the user to select a filename to save the image, and use the
SaveToFile() method provided by the TBitmap class to physically save the file to disk.
If a border, text, or anything else was painted on the image, that information will
now be saved with the image.

Flicker-Free Bitmap Manipulation
To perform image-processing operations, it’s important to know how to access the
individual pixel values of the image. The easiest way to obtain individual pixel value

CHAPTER 15 Graphics and Multimedia Techniques596

19 0672324806 CH15 12/12/02 2:41 PM Page 596

is to use the Pixels property of TCanvas. The following code shows how the mouse
position and pixel value can be accessed and displayed to the user when the mouse
is moved across the image.

void __fastcall TForm1::Image1MouseMove(TObject *Sender, TShiftState Shift,

int X, int Y)

{

EditX->Text = X;

EditY->Text = Y;

Edit PixelValue->Text = Image1->Canvas->Pixels[X][Y];

}

The current coordinate of the mouse is passed into the Image1MouseMove() event
handler as X and Y. The pixel value is a TColor, and its interpretation depends on the
PixelFormat. For grayscale images, the gray level is given by the lowest-order byte of
the pixel value. For 24-bit color images, the lower three bytes represent RGB color
intensities for blue, green, and red, respectively. The value $00FF0000 represents pure
blue, $0000FF00 is pure green, and $000000FF is pure red.

You can also change a pixel value using TCanvas->Pixels[][]. For example, adding the
following line to the Image1MouseMove() event handler will mark the movement of the
mouse over the image with the color white:

Image1->Canvas->Pixels[X][Y] = clWhite;

Using Canvas->Pixels[X][Y] is straightforward, but extremely slow. Therefore, it
should be used only for infrequent or causal access to pixel values. A more efficient
method to track and display the movement of the mouse is as shown in
Listing 15.12:

LISTING 15.12 Tracking and Displaying a Moving Mouse

void __fastcall TForm1::Image1MouseDown(TObject *Sender,

TMouseButton Button, TShiftState Shift, int X, int Y)

{

if (Button == mbLeft)

{

DoubleBuffered = true;

Image1->Canvas->MoveTo(X,Y);

MouseDown = true;

}

}

//—————————————————————————————————————-

Working with Images 597

19 0672324806 CH15 12/12/02 2:41 PM Page 597

void __fastcall TForm1::Image1MouseMove(TObject *Sender, TShiftState Shift,

int X, int Y)

{

EditX->Text = X;

EditY->Text = Y;

EditPixelValue->Text = Image1->Picture->Bitmap->Canvas->Pixels[X][Y];

if (MouseDown) // follow movement of the mouse

{

Image1->Canvas->Pen->Color = clWhite;

Image1->Canvas->LineTo(X,Y);

}

}

//—————————————————————————————————————-

void __fastcall TForm1::Image1MouseUp(TObject *Sender, TMouseButton Button,

TShiftState Shift, int X, int Y)

{

MouseDown = false;

DoubleBuffered = false;

}

In this example, we are using the MoveTo() method to initialize the pen position
when the mouse is pressed, and the LineTo() method is used to reflect the mouse
movement.

To reduce the flicker that’s often associated with bitmap manipulation, the form’s
DoubleBuffered property is set to true when the mouse-dragging begins. When the
mouse is released, the DoubleBuffered property returns to false. When it’s false the
control’s image is rendered directly to the window, when it’s true the control’s image
is first painted to an in-memory bitmap. Keep in mind that although DoubleBuffered
reduces the amount of flicker it is still more memory intensive. That is why we set it
back to false on the release of the mouse button.

Rotating a Bitmap
The ability to rotate an image is one of the common requests when working with
Bitmap images. Digital cameras, for example, are often used in a vertical position to
take a portrait picture. When this portrait picture is pulled off the camera, it will be
brought into an application, such as a paint program, sideways. The user often needs
the capability to rotate the image 90 degrees. Let’s take a look at how that can be
done in Listing 15.13.

CHAPTER 15 Graphics and Multimedia Techniques598

LISTING 15.12 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 598

LISTING 15.13 Rotating an Image

void __fastcall TForm1::ButtonRotate90Click(TObject *Sender)

{

//create and setup a temporary source bitmap

Graphics::TBitmap *source = new Graphics::TBitmap;

source->Assign(Image1->Picture->Bitmap);

source->PixelFormat = Image1->Picture->Bitmap->PixelFormat;

// create and setup a temporary destination bitmap

Graphics::TBitmap *dest = new Graphics::TBitmap;

dest->Width = source->Height;

dest->Height = source->Width;

dest->PixelFormat = source->PixelFormat;

if (RadioButtonPixelsArray->Checked) //Rotate one pixel at a time

{

for (int x=0;x<source->Width;x++)

for(int y=0;y<source->Height;y++)

dest->Canvas->Pixels[y][source->Width-1-x] =

source->Canvas->Pixels[x][y];

}

else // uses the faster scanline method

{

RGBTRIPLE* pixels;

TColor color;

for(int y=0;y<source->Height;y++)

{

pixels = (RGBTRIPLE*)source->ScanLine[y];

for (int x=0;x<source->Width;x++)

dest->Canvas->Pixels[y][source->Width-1-x] =

TColor(RGB(pixels[x].rgbtRed,

pixels[x].rgbtGreen,

pixels[x].rgbtBlue));

}

}

//now assign destination bitmap back to Image1 & cleanup

Image1->Picture->Bitmap = dest;

delete dest;

delete source;

}

Working with Images 599

19 0672324806 CH15 12/12/02 2:41 PM Page 599

In this example we use two methods to rotate a color image 90 degrees. The first
method, based on the value of RadioButtonPixelsArray, walks through all the pixels
in the source image row by row and transfers those pixels to the destination image
column by column. It’s fairly simple, but it is not the most effective way to accom-
plish the rotation. A better way is provided through the ScanLine() function, which
is used for the second method. With ScanLine() we can grab a whole row at one time
and transfer the color pixels to each column of the destination image.

WARNING

The scanline example, as provided in Listing 15.13, works only for color images. We used the
RGBTRIPLE data type for each pixel anticipating it would contain a red, green, and blue value.
The Pixel format for a black and white image is much different. If you try to rotate a black and
white image without adding the code to black and white, an access violation will occur.

One of the things that needs to be done before either rotation method is applied, is
to properly assign the Height, Width, and PixelFormat of both the destination and
source bitmap. When the rotation processing is complete, we need to assign the
Canvas with the new rotated image, and then delete the temporary bitmaps that we
used.

Cropping a Bitmap
Suppose your application is capable of bringing in an image, but the user is inter-
ested in displaying a smaller region of the image in view. In this situation, we need
code to be able to crop the image to a selected region. Let’s take a look at the
example in Listing 15.14.

LISTING 15.14 Crop to Selection

void __fastcall TForm1::ButtonCropToSelectionClick(TObject *Sender)

{

if (lX == -1) return; // no zoom window to work with

// create and setup a temporary destination bitmap

Graphics::TBitmap *dest = new Graphics::TBitmap;

dest->Width = abs(lX - oX);

dest->Height = abs(lY - oY);

TRect OldOne = Rect(oX,oY,lX,lY);

TRect NewOne = Rect(0,0,dest->Width, dest->Height);

FreeZoomWindow(); // frees crop region

CHAPTER 15 Graphics and Multimedia Techniques600

19 0672324806 CH15 12/12/02 2:41 PM Page 600

//create and setup a temporary source bitmap

Graphics::TBitmap *source = new Graphics::TBitmap;

source->Assign(Image1->Picture->Bitmap);

source->PixelFormat = Image1->Picture->Bitmap->PixelFormat;

dest->PixelFormat = source->PixelFormat;

dest->Canvas->CopyRect(NewOne,source->Canvas,OldOne);

//now assign destination bitmap back to Image1 & cleanup

Image1->Picture->Bitmap->FreeImage();

Image1->Picture->Bitmap->Assign(dest);

delete dest;

delete source;

}

In this example, we take the coordinates from our crop region and use the CopyRect()
function to transfer the area of interest into a new bitmap. The new bitmap is then
assigned to the Canvas of the TImage object.

NOTE

All the examples provided on working with bitmaps are applicable to support similar effects
for other images such as JPEG, GIF, and PNG. The key thing to remember is that within the
confines of the VCL and Windows GDI, nonbitmap images should be internally transformed to
a bitmap image during the execution of a program. When managed as a bitmap image
within memory, the techniques described for manipulating a bitmap can be applied.

JPEG Images
A majority of images used by consumers are not Bitmap images, they are mostly
JPEG images (pronounced “jaypeg”). JPEG is an image compression protocol devel-
oped by the Joint Photographic Experts Group. Digital cameras, picture CDs, Web
images, scanners all often produce or provide JPEG images. So, more than likely, if
you’re interested in supporting image viewing or manipulation in your applications,
you want to be able to support JPEG images.

Unlike bitmap images, JPEG images are compressed in a lossy fashion, meaning that
some information is discarded during compression. Although the decompressed
image is not identical to the original, for most natural images there is little or no
degradation in visual quality. Moreover, the degree of compression can be adjusted,
allowing for decompressed images of varying quality.

Working with Images 601

LISTING 15.14 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 601

NOTE

The JPEG compression process consists of three stages: reduction of pixel redundancy via a
Discrete Cosine Transform (DCT), quantization of transform data (DCT coefficients), and
reduction of data redundancy. It is in the second stage (quantization) that information is
discarded. Typically, this is where human visual system (HVS) characteristics are taken into
account, although there is no strict specification for the type of quantization that should be
performed. For more information on the JPEG image format specifics, refer to
http://www.jpeg.org/.

The VCL provides support for JPEG images through the TJPEGImage class. The main
compression and decompression routines are handled via the JPEG image compres-
sion library of the Independent JPEG Group (IJG). Like the TBitmap class, TJPEGImage
is a descendant of the TGraphic class.

The TJPEGImage class implements the TPersistent::Assign() and AssignTo() member
functions so that you can easily convert between instances of TJPEGImage and TBitmap.
Moreover, because the TJPEGImage class is designed for use with the Windows GDI
and the rest of the VCL, the class maintains an internal bitmap representation of the
underlying image such that rendering via the GDI is possible. The JPEG data itself is
maintained via the TJPEGData class.

Loading a JPEG
Let’s take a look at how to load a JPEG image onto a TImage control, as demonstrated
in Listing 15.15.

LISTING 15.15 Loading a JPEG Image onto a TImage Control

void __fastcall TForm1::ButtonLoadClick(TObject *Sender)

{

//This code requires “jpeg.hpp” to be included in the source file

OpenDialog1->Filter =

“Bmp files (*.bmp)|*.BMP| JPEG images (*.jpg) | *.jpg; “ ;

if (OpenDialog1->Execute())

{

if (!FileExists(OpenDialog1->FileName))

return; // make sure it exists, else get out.

AnsiString temp2 = ExtractFileName(OpenDialog1->FileName);

AnsiString temp = ExtractFileExt(OpenDialog1->FileName);

AnsiString Ext = temp.LowerCase();

if (Ext.AnsiPos(“jpg”) > 0) // it’s a jpg

{ //— Decompress the jpeg image into a bitmap.

TJPEGImage *myjpeg = new TJPEGImage();

CHAPTER 15 Graphics and Multimedia Techniques602

19 0672324806 CH15 12/12/02 2:41 PM Page 602

myjpeg->LoadFromFile(OpenDialog1->FileName);

myjpeg->DIBNeeded(); // used when jpeg image needs bitmap rep

Image1->Picture->Bitmap->Assign(myjpeg);

delete myjpeg;

}

else if (Ext.AnsiPos(“bmp”) > 0)

{

Image1->Picture->Bitmap->LoadFromFile(OpenDialog1->FileName);

}

EditFile->Text = OpenDialog1->FileName;

EditWidth->Text = Image1->Width;

EditHeight->Text = Image1->Height;

EditPixelFormat->Text = Image1->Picture->Bitmap->PixelFormat;

}

}

In this example we examine the file extension after a file has been selected from the
Open dialog. If it is a JPEG image, a TJPEGImage object is created, which loads the file
using the LoadFromFile() method. We use DIBNeeded() to reassign the JPEG image
internally into a bitmap representation. We can actually leave this call off, however,
as soon as we assign a JPEG image to a bitmap. This processing will be performed
automatically by the Assign() routine if a DIB had not yet been created. After we
assign the JPEG image to our TImage object, the JPEG image is deleted to free up
memory.

Saving an Image as a JPEG
We can also save bitmap images as JPEG images. An example is provided in Listing
15.16.

LISTING 15.16 Saving an Image as a JPEG

void __fastcall TForm1::ButtonSaveClick(TObject *Sender)

{

//This code requires “jpeg.hpp” to be included in the source file

SaveDialog1->Title = “Save Image”;

SaveDialog1->DefaultExt = “jpg”;

SaveDialog1->Filter =

“JPEG images (*.jpg) | *.jpg; | Bmp files (*.bmp)|*.BMP” ;

SaveDialog1->FilterIndex = 1;

if (SaveDialog1->Execute())

{

Working with Images 603

LISTING 15.15 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 603

AnsiString temp2 = ExtractFileName(SaveDialog1->FileName);

AnsiString temp = ExtractFileExt(SaveDialog1->FileName);

AnsiString Ext = temp.LowerCase();

if (Ext.AnsiPos(“jpg”) > 0) // it’s a jpg

{ //— Decompress the jpeg image into a bitmap.

TJPEGImage *jp = new TJPEGImage();

try

{

jp->Assign(Image1->Picture->Bitmap);

jp->SaveToFile(SaveDialog1->FileName);

}

__finally

{

delete jp;

}

}

else if (Ext.AnsiPos(“bmp”) > 0)

{

Image1->Picture->Bitmap->SaveToFile(SaveDialog1->FileName);

}

}

}

In this example, if the user chooses to save the image as a JPEG, we simply Assign()
the bitmap contained within the TImage object to TJPEGImage object. The SaveToFile()
method for the TJPEGImage object is then called to save the image to disk. Finally, we
delete the TJPEGImage object to free up memory.

JPEG Performance Properties
The TJPEGImage class provides several properties designed to manage the quality and
performance of JPEG data. These properties include CompresionQuality, Performance,
Scale, ProgressiveDisplay, ProgressiveEncoding, and Smoothing.

The CompressionQuality property can be used to adjust the amount of degradation
incurred during compression for an image being saved. Values range from 1 to 100.
A lower value will result in a smaller file size, but poorer picture quality. Conversely,
a higher value will result in better image quality, but a larger file size.

The Performance property is used for decompressing the JPEG data on load, which
affects the display of the internal bitmap image. There are two choices: jpBestQuality

CHAPTER 15 Graphics and Multimedia Techniques604

LISTING 15.16 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 604

and jpBestSpeed. Setting Performance to jpBestSpeed can lead to some dithering in the
internal bitmap image, but it will be faster. The Scale property determines the resolu-
tion (size) of the image to be displayed during decompression. Choices include full-
size down to an eighth-size image.

The ProgressiveDisplay and ProgressiveEncoding properties allow for support of
progressive decompression, where the currently decompressed portion of the image
can be viewed before the entire image is decompressed. These properties, along with
the Smoothing property, are ideal for situations in which a progressive transmission
scheme is employed.

JPEG I/O Operations
Support for file, stream, and Clipboard operations is provided via the
LoadFromClipboardFormat(), LoadFromStream(), LoadFromFile(), SaveToClipboardFormat(),
SaveToStream(), and SaveToFile() member functions. These are inherited from the
TGraphic class, and their use is entirely straightforward. Note that for Clipboard oper-
ations, the TJPEGImage class uses internal bitmap representation.

GIF Images
Another popular image format is the Graphics Interchange Format (GIF, pronounced
“jiff”), which was created in 1987 by CompuServe Corporation. Unlike JPEG images,
GIF images are compressed in a lossless fashion, meaning no information is lost
during compression. That is, the decompressed image is identical to the original. GIF
images also support progressive display (interlacing), multiple images (animated
GIF), and transparency as of the latest format revision (GIF89a). More information
on GIF can be found at http://www.geocities.co.jp/SiliconValley/3453/gif_info/.

Many developers are reluctant to support the GIF format, the use of which has been
shrouded by licensing issues. In fact, it is not the format itself that is in question;
rather it is the specification for the use of the LZW (Lempel-Ziv-Welch) compression
algorithm. Unisys Corporation holds the patent for this modification of the Lempel-
Ziv 78 (LZ78) compression algorithm. CompuServe has publicly granted a royalty-
free license to use the GIF format, but Unisys requires that developers purchase a
license.

The VCL does not provide native support for the GIF format. To display GIF images,
you’ll need to convert the (decompressed) data to the bitmap format. Although this
can be done manually through the ScanLine property, there is still the issue of
decompressing the data and reading or writing the data to or from a file. There are
several third-party libraries available to handle this task. Of particular interest is the
TGIFImage VCL component effort from Project JEDI, which can be found at
http://www.delphi-jedi.org/ and also http://www.torry.net/gif.htm.

Working with Images 605

19 0672324806 CH15 12/12/02 2:41 PM Page 605

PNG Images
An image format that seems to be growing in popularity is the Portable Network
Graphics (PNG, pronounced “ping”) format. PNG was designed to expand upon and
relieve the patent hassle of the GIF format. Like its predecessor, a PNG image is
compressed in a lossless manner. Unlike the GIF format, PNG does not rely on the
LZW algorithm. Instead, a variation of the Lempel-Ziv 77 (LZ77) compression algo-
rithm is employed. This is the same compression algorithm used by the major file
compression applications such as WinZIP.

Like the GIF format, the PNG format allows for transparent pixels. However, through
the use of an Alpha channel, PNG images may also contain pixels of variable trans-
parency (alpha blending). Moreover, in contrast to the GIF format, PNG images are
not limited to 256 colors. To compensate for display monitor variations, the PNG
specification allows for encoded gamma information. There is also support for
progressive display, accomplished via a two-dimensional interlacing scheme.
Unfortunately, the PNG format does not allow for multiple images (animation).

To provide support for display of PNG images, you’ll need a means by which to
convert the PNG format to a DIB. As always, you can perform this conversion manu-
ally; in that case, the latest PNG format specifications are needed. You can find them
at http://www.libpng.org/pub/png/spec/PNG-Contents.html.

As with many image formats, there are several third-party libraries that can perform
this conversion for you. For example, the freePNGDIB conversion library by Jason
Summers, found at http://home.mieweb.com/jason/imaging/pngdib/, provides the
read_png_to_dib() function that can read a PNG image file and yield a DIB
(BITMAPINFO, color table, and bits). It also presents the write_dib_to_png() function
for writing a PNG file from a DIB.

Using this library, to initialize a TBitmap object with information contained in a PNG
file, you first call the read_png_to_dib() function to create a DIB from the PNG, and
then use the SetDIBits() GDI function (or the ScanLine property) to fill the TBitmap
object. This is demonstrated in Listing 15.17.

LISTING 15.17 Converting a PNG Format Image to a TBitmap

if (OpenDialog1->Execute())

{

TCHAR filename[MAX_PATH];

lstrcpyn(filename, OpenDialog1->FileName.c_str(), MAX_PATH);

// declare and clear the PNGD_P2DINFO structure

PNGD_P2DINFO png2dib;

memset(&png2dib, 0, sizeof(PNGD_P2DINFO));

CHAPTER 15 Graphics and Multimedia Techniques606

19 0672324806 CH15 12/12/02 2:41 PM Page 606

// initialize the structure size and filename

png2dib.structsize = sizeof(PNGD_P2DINFO);

png2dib.pngfn = filename;

// convert from PNG to DIB

if (read_png_to_dib(&png2dib) == PNGD_E_SUCCESS)

{

Graphics::TBitmap* Bitmap = Image1->Picture->Bitmap;

Bitmap->Width = png2dib.lpdib->biWidth;

Bitmap->Height = png2dib.lpdib->biHeight;

HBITMAP hBmp = Bitmap->ReleaseHandle();

HDC hDC = Canvas->Handle;

try

{

//

// TODO: add palette support...

//

// convert from DIB to TBitmap

SetDIBits(

hDC, hBmp, 0,

png2dib.lpdib->biHeight, png2dib.bits,

reinterpret_cast<LPBITMAPINFO>(png2dib.lpdib),

DIB_RGB_COLORS

);

}

catch (...)

{

Bitmap->Handle = hBmp;

GlobalFree(png2dib.lpdib);

}

Bitmap->Handle = hBmp;

GlobalFree(png2dib.lpdib);

}

}

Similarly, to create a PNG file from information contained in a TBitmap object, you
first construct a DIB from the TBitmap via the GetDIBSizes() and GetDIB() VCL utility
functions (from graphics.pas), and then use the write_dib_to_png() function to write
the PNG file. This is demonstrated in Listing 15.18.

Working with Images 607

LISTING 15.17 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 607

LISTING 15.18 Converting a TBitmap Image to PNG Format

if (SaveDialog1->Execute())

{

TCHAR filename[MAX_PATH];

lstrcpyn(filename, SaveDialog1->FileName.c_str(), MAX_PATH);

BITMAPINFO bmi;

Graphics::TBitmap* Bitmap = Image1->Picture->Bitmap;

//

// determine the size of the DIB info

// (BITMAPINFOHEADER + color table) and the

// size of the bits (pixels)

//

unsigned int info_size = 0, bits_size = 0;

GetDIBSizes(Bitmap->Handle, info_size, bits_size);

// allocate memory for the bits

unsigned char *bits = new unsigned char[bits_size];

try

{

// get the BITMAPINFOHEADER + color table and the bits

if (GetDIB(Bitmap->Handle, Bitmap->Palette, &bmi, bits))

{

// declare and clear the PNGD_D2PINFO structure

PNGD_D2PINFO dib2png;

memset(&dib2png, 0, sizeof(PNGD_D2PINFO));

// initialize the structure

dib2png.structsize = sizeof(PNGD_D2PINFO);

dib2png.flags = PNGD_INTERLACED;

dib2png.pngfn = filename;

dib2png.lpdib = &bmi.bmiHeader;

dib2png.lpbits = bits;

// convert the DIB to PNG, then save to file

if (write_dib_to_png(&dib2png) != PNGD_E_SUCCESS)

{

throw EInvalidGraphic(“Error Saving PNG!”);

}

}

}

CHAPTER 15 Graphics and Multimedia Techniques608

19 0672324806 CH15 12/12/02 2:41 PM Page 608

catch (...)

{

delete [] bits;

}

delete [] bits;

}

Included on the companion CD-ROM is a project (PROJ_PNGDIB_DEMO.CPP in the
PNGDemo folder) that demonstrates the use of the PNGDIB library.

Working with Multimedia
The Windows multimedia system provides a standard means by which multimedia
devices can be controlled. This system simply delegates the communication between
an application and a particular device driver. The Media Control Interface (MCI)
adds even more flexibility by providing a common means by which applications can
communicate with all supported audio and video devices. From the developer’s point
of view, the specifics of the device are irrelevant; oftentimes, even the type of device
is of no concern.

In this section, we’ll first discuss the use of the MCI for creating general-purpose
audio and video applications. In Chapter 14, we touched on the MCI capabilities
provided by the Win32 API. Now, we will dig a little deeper. As you will soon
discover, the MCI is perhaps the easiest multimedia interface to work with. Next,
we’ll examine the use of the waveform-audio interface and how it can be used for
increased audio-based functionality. Finally, we’ll tackle the issue of audio streams,
and examine how to read and write waveform-audio files.

The Media Control Interface (MCI)
In the same way that the GDI offers a generic means by which you can communi-
cate with graphics-based devices, the Windows MCI enables you to program multi-
media devices in a device-independent manner. Before the advent of the MCI,
developers were required to write code that targeted specific devices. Often this
process involved using procedures specific to a particular device driver. It’s not hard
to imagine the hassle that such a scheme would present, where the consumer base
would be limited to a specific range of legacy device types. For example, many of the
early DOS-based games required that the sound card be compatible with the original
Sound Blaster standard. Otherwise, the game would not generate any audible sound
or music from the sound card.

Working with Multimedia 609

LISTING 15.18 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 609

Using Command Messages and Strings
Applications communicate with the MCI via a set of predefined messages and string
constants. In much the same way that window messages are used with the user inter-
face services, the MCI provides a set of command messages and strings that can be
used to manipulate MCI devices. Many of these messages offer corresponding
command strings that can be used for a more intuitive (and readable) approach.
Here, we will limit our discussion to the MCI command messages; the message
constants are defined in the mmsystem.h header file available with C++Builder.

Similar to the SendMessage() API function that is used to send messages to Windows,
the mciSendCommand() function is used to send command messages to MCI devices.

MCIERROR mciSendCommand(

MCIDEVICEID IDDevice,

UINT uMsg,

DWORD fdwCommand,

DWORD dwParam

);

When using the mciSendCommand() function, oftentimes a device identifier is specified
as the IDDevice parameter. This serves the same purpose as the hWnd parameter of the
SendMessage() function. Namely, the function needs to know to which MCI device to
send the message. A device identifier is returned when a device is opened via the
MCI_OPEN message.

Decoding Error Constants
The mciSendCommand() function returns a 32-bit value indicating the success or failure
of the operation. If successful, this value is set to MMSYSERR_NOERROR, defined in the
mmsystem.h header file as identically zero. If an error does occur, the return value is set
to one of the predefined error constants. Because these values have little meaning to
the user (or the developer), the MCI presents the mciGetErrorString() function,
which can be used to translate these error codes into meaningful messages
(compared with FormatMessage). Listing 15.19 demonstrates the use of this function.

LISTING 15.19 Decoding MCI-Related Errors Via the mciGetErrorString() Function

bool mciCheck(DWORD AErrorNum, bool AReport = true)

{

if (AErrorNum == MMSYSERR_NOERROR) return true;

if (AReport)

{

char buffer[MAXERRORLENGTH];

mciGetErrorString(AErrorNum, buffer, MAXERRORLENGTH);

MessageBox(NULL, buffer, “MCI Error”, MB_OK);

CHAPTER 15 Graphics and Multimedia Techniques610

19 0672324806 CH15 12/12/02 2:41 PM Page 610

}

return false;

}

Working with MCI Devices
The first step to working with an MCI device is to open or initialize the device; as
previously stated, you accomplish this task via the MCI_OPEN message. Because you are
interested in retrieving a device identifier, you send this message with a NULL IDDevice

parameter. If successful, the identifier of the opened device is returned in the
wDeviceID data member of the corresponding MCI_OPEN_PARMS structure; this is the
MCI_OPEN_PARMS that was specified as the dwParam argument.

typedef struct tagMCI_OPEN_PARMS {

DWORD dwCallback;

MCIDEVICEID wDeviceID;

LPCSTR lpstrDeviceType;

LPCSTR lpstrElementName;

LPCSTR lpstrAlias;

} MCI_OPEN_PARMS, *PMCI_OPEN_PARMS, *LPMCI_OPEN_PARMS;

Typically, the lpstrDeviceType data member is set to NULL, and the lpstrElementName
data member is assigned a filename. This is the most robust approach because it
enables the MCI to perform automatic type selection. That is, the appropriate device
will be selected according to the type of file specified. In cases where the
lpstrDeviceType data member is explicitly specified, it is oftentimes assigned a string
value corresponding to the type of device requested. For example, to open the CD
audio device, you can specify it as cdaudio. Other string identifiers include avivideo,
dat, digitalvideo, mmmovie, other, overlay, scanner, sequencer, vcr, videodisc, and
waveaudio. However, it should be stressed that unless support for a specific device is
intended, it is best to let the MCI perform automatic type selection. This is especially
important when a new technology is presented that has no predefined type identi-
fier (for example, the MP3 format). Listing 15.20 demonstrates the use of the
MCI_OPEN message via a simple wrapper function.

LISTING 15.20 Using the MCI_OPEN Command Message

bool mciOpen(MCIDEVICEID& ADevID, const char* AFileName,

const char* ADevType = NULL)

{

MCI_OPEN_PARMS mop;

memset(&mop, 0, sizeof(MCI_OPEN_PARMS));

Working with Multimedia 611

LISTING 15.19 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 611

mop.lpstrElementName = const_cast<char*>(AFileName);

mop.lpstrDeviceType = const_cast<char*>(ADevType);

DWORD flags = 0;

if (AFileName) flags = flags | MCI_OPEN_ELEMENT;

if (ADevType) flags = flags | MCI_OPEN_TYPE;

if (mciCheck(mciSendCommand(NULL, MCI_OPEN, flags,

reinterpret_cast<DWORD>(&mop))))

{

ADevID = mop.wDeviceID;

return true;

}

return false;

}

After the MCI device is open and an identifier is retrieved, your next task is to set the
time format of the device. This aspect of the MCI is rather specific to the device type
because certain types of devices can support only certain time formats. For example,
specifying a track number is valid for CD audio devices, but it is clearly invalid for
wave-form audio devices.

You can set the time format for a device via the MCI_SET command message.
Whenever applicable, it is best to use the MCI_FORMAT_MILLISECONDS format, which is
supported by all devices. An example wrapper function that uses the MCI_SET message
is provided in Listing 15.21.

LISTING 15.21 Using the MCI_SET Command Message

bool mciSetTimeFormat(MCIDEVICEID ADeviceID, DWORD ATimeFormat)

{

MCI_SET_PARMS msp;

memset(&msp, 0, sizeof(MCI_SET_PARMS));

msp.dwTimeFormat = ATimeFormat;

return mciCheck(mciSendCommand(ADeviceID, MCI_SET,

MCI_SET_TIME_FORMAT, reinterpret_cast<DWORD>(&msp)));

}

After the time format is set correctly, you’re free to work with the device in much the
same way as you would its physical counterpart. For example, to play the device, you
use the MCI_PLAY message. To rewind or fast-forward the device, you use the MCI_SEEK

CHAPTER 15 Graphics and Multimedia Techniques612

LISTING 15.20 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 612

message. To pause the device, you use the MCI_PAUSE message. Similarly, the MCI_STOP
message is used to stop the device, and the MCI_CLOSE message closes the device.

NOTE

For a complete list of messages, refer to http://msdn.microsoft.com.

The wrapper functions presented in Listing 15.22 demonstrate the use of these
messages.

LISTING 15.22 Use of the MCI_PLAY, MCI_SEEK, MCI_PAUSE, MCI_STOP, and MCI_CLOSE
Command Messages

bool mciPlay(MCIDEVICEID ADeviceID, DWORD AStart, DWORD AStop)

{

MCI_PLAY_PARMS mpp;

memset(&mpp, 0, sizeof(MCI_PLAY_PARMS));

mpp.dwFrom = AStart;

mpp.dwTo = AStop;

DWORD flags = 0;

if (static_cast<int>(AStart) >= 0 && static_cast<int>(AStop) >= 0)

flags = MCI_FROM | MCI_TO;

return mciCheck(mciSendCommand(ADeviceID, MCI_PLAY | flags,

NULL, reinterpret_cast<DWORD>(&mpp)));

}

bool mciSeek(MCIDEVICEID ADeviceID, DWORD APos)

{

MCI_SEEK_PARMS msp;

memset(&msp, 0, sizeof(MCI_SEEK_PARMS));

msp.dwTo = APos;

return mciCheck(mciSendCommand(ADeviceID, MCI_SEEK, MCI_TO,

reinterpret_cast<DWORD>(&msp)));

}

bool mciPause(MCIDEVICEID ADeviceID)

{

return mciCheck(mciSendCommand(ADeviceID, MCI_PAUSE, 0, 0));

}

Working with Multimedia 613

19 0672324806 CH15 12/12/02 2:41 PM Page 613

bool mciStop(MCIDEVICEID ADeviceID)

{

return mciCheck(mciSendCommand(ADeviceID, MCI_STOP, 0, 0));

}

void mciClose(MCIDEVICEID ADeviceID)

{

mciCheck(mciSendCommand(ADeviceID, MCI_CLOSE, 0, NULL));

}

Illustrated in Figure 15.5, is a sample project included on the companion CD-ROM
that demonstrates the use of these MCI messages. See the Proj_mp3Demo.bpr project in
the MP3Demo folder, and specifically the MCIManip.cpp source file.

CHAPTER 15 Graphics and Multimedia Techniques614

LISTING 15.22 Continued

FIGURE 15.5 MP3 player project.

Retrieving the Status of a Device
Often it is necessary to provide feedback to the user about the status of a device. For
example, if you want to create a CD player, you’ll most likely want to inform the
user of the current track, the track length, and the current position within the track.
More generally, you need to indicate the operating mode of the device (playing,
paused, stopped, and so on) to inform the user as to what functionality is available.
This information is retrieved via the MCI_STATUS message, as demonstrated in
Listing 15.23.

LISTING 15.23 Use of the MCI_STATUS Command Message

bool mciStatus(MCIDEVICEID ADeviceID, DWORD AQueryGroup, DWORD AQueryItem,

DWORD AQueryTrack, DWORD& AResult)

{

MCI_STATUS_PARMS msp;

memset(&msp, 0, sizeof(MCI_STATUS_PARMS));

msp.dwItem = AQueryItem;

msp.dwTrack = AQueryTrack;

if (mciCheck(mciSendCommand(ADeviceID, MCI_STATUS, AQueryGroup,

reinterpret_cast<DWORD>(&msp))))

19 0672324806 CH15 12/12/02 2:41 PM Page 614

{

AResult = msp.dwReturn;

return true;

}

return false;

}

The project Proj_CDDemo.bpr in the CDDemo folder on the CD-ROM that accompanies
this book is a sample CD player that demonstrates all the techniques shown in these
sections. This is illustrated in Figure 15.6.

Working with Multimedia 615

LISTING 15.23 Continued

FIGURE 15.6 CD demo program.

A wide variety of constants can be specified as the AQueryGroup parameter, each with
a corresponding set of constants that can be assigned to the AQueryItem and
AQueryTrack arguments. For example, to retrieve the total number of tracks present
on the media of a CD audio device, you specify MCI_STATUS_ITEM as the AQueryGroup
parameter and MCI_STATUS_NUMBER_OF_TRACKS as the AQueryItem parameter. To determine
the current track number, you set the AQueryGroup parameter to MCI_STATUS_ITEM and
the AQueryItem parameter to MCI_STATUS_CURRENT_TRACK. Also, note that when retrieving
length, position, track, or frame information, the format of the returned data
depends on the device’s current time format. For a complete listing of status flags,
refer to http://msdn.microsoft.com.

Polling a Device and MCI Notifications
Although you now have a means of retrieving information about a device, you still
need to know when to perform this interrogation. Unfortunately, the MCI presents a
limited notification scheme in which only two notification messages, MM_MCINOTIFY
and MM_MCISIGNAL, are defined. The latter is useful only for digital video devices.
Although the former message sounds promising, it is posted only after a command
operation has completed. For example, if you use the mciPlay() wrapper function (of
Listing 15.22) to begin the playback of a waveform audio file, the MM_MCINOTIFY
message will be posted only when the file has finished playing or playback has
otherwise been manipulated. Specifically, this message is posted to the window
whose handle is specified via the dwCallback data member of the structure specified

19 0672324806 CH15 12/12/02 2:41 PM Page 615

as the dwParam argument of the mciSendCommand() function. As such, you need to
modify the wrapper functions to accept an hWnd parameter. The sample project
Proj_mp3Demo.bpr, in the MP3Demo folder on the CD-ROM that accompanies this book,
demonstrates handling the MM_MCINOTIFY message.

In most cases, receipt of the MM_MCINOTIFY message is a sufficient indication of when
to determine the status of the operating mode. For example, you can provide a
handler for the MM_MCINOTIFY message in which you update the enabled state of your
play, pause, and stop buttons. Yet, when retrieving information about a frequently
updated attribute such as current position, the MM_MCINOTIFY message is not suitable.
Instead, you need to poll the device at a regular interval. This task is typically
performed in response to timer messages. In some cases, it is sufficient to use system
timer messages; in others it is recommended to use the multimedia timer services.
See Chapter 14 or visit http://msdn.microsoft.com for more information on multime-
dia timer services.

Concluding Remarks About the MCI
Just what types of files does the MCI support? This depends on the audio/video
codecs that are installed on the target platform. Many of these codecs are installed
when a newer version of Microsoft Media Player is installed. A good rule of thumb is
that if Media Player can support a specific file format, so can the MCI. In fact, Media
Player itself relies heavily on the MCI.

Included on the companion CD-ROM are two MCI-related demonstration projects:
Proj_MP3Demo.bpr in the MP3Demo folder and Proj_VideoDemo.bpr in the VideoDemo folder.
The former is a simple MP3 audio player, illustrated previously in Figure 15.5, which
can actually support waveform audio (RIFF-based) files as well. The latter, illustrated
in Figure 15.7, demonstrates the use of the MCI for displaying video files (AVI,
MPEG). Again, the actual supported file formats of both of these demonstration
projects are limited by the currently installed codecs. Refer to the comments
included at the beginning of the source code for more information.

CHAPTER 15 Graphics and Multimedia Techniques616

FIGURE 15.7 Video player project.

19 0672324806 CH15 12/12/02 2:41 PM Page 616

Although the MCI is perhaps the easiest of all multimedia interfaces to work with, it
is quite limited in its functionality. For example, when playing a media file through
the MCI, you are never given access to the file’s associated data stream. This is espe-
cially detrimental if your application is to perform any type of signal processing or
format conversion. In this case, you need to go beyond the MCI and work with
other multimedia interfaces. For extended audio functionality, this is typically
accomplished via the Waveform Audio Interface.

The Waveform Audio Interface
The Windows multimedia service provides the Waveform Audio Interface (waveform
API) to allow applications to control the input and output of waveform audio. This
interface gives an application direct access to the sound buffer, so in cases where
other audio formats must be supported, a simple conversion is all that is necessary.
For example, many of the commercial applications that provide support for the MP3
format do so through the waveform API. Moreover, in situations where signal
processing is due, direct access to the sound buffer is crucial. For example, if you’re
interested in creating an audio player with graphic equalization capabilities, you’ll
need to process the sound buffer before sending it to the output device.

Recall that the lpstrElementName data member of the MCI_OPEN_PARMS structure is typi-
cally assigned the name of a media file that is to be played. In this case, the MCI
automatically handles the task of opening and loading the file. However, the wave-
form API does not present such a structure, and thus you’re forced to use other
measures for file I/O. For example, one potential solution is to open the file manu-
ally using the TFileStream VCL class. In this case, you’d need to be sufficiently versed
with the waveform audio file format specification (RIFF). An alternative approach is
to use the multimedia file I/O services, which is indeed completely valid for many
situations. However, because these services are so generalized, working with wave-
form audio files proves nearly as difficult as the manual solution. Fortunately,
Windows provides the AVIFile services, a set of functions and macros specifically
designed for use with waveform audio and AVI files. As such, let’s now digress from
the waveform API and examine the AVIFile services.

Opening and Closing Waveform Audio Files
A waveform audio file is a type of RIFF (Resource Interchange File Format) file that
contains time-based audio content. In fact, that’s really all you need to know. As
mentioned, you do not need to concern yourself with the specifics of the file format
itself; instead, you can use the AVIFile functions and macros. These functions and
macros, presented in the VFW.H header file and the AVIFIL32.DLL dynamic link library,
provide a convenient means of working with waveform audio files and streams.

Before you can use the AVIFile services, you need to initialize the AVIFIL32.DLL library
via the AVIFileInit() function. Similarly, when you’re finished with the library, you
release it via the AVIFileExit() function.

Working with Multimedia 617

19 0672324806 CH15 12/12/02 2:41 PM Page 617

The AVIFile functions rely on OLE for handling file and stream-based operations, so
you need to provide a means of error checking. For those functions that return the
standard STDAPI type, you can use the SUCCEEDED macro as in the following wrapper
function:

bool wavCheck(HRESULT AErrorCode)

{

return SUCCEEDED(AerrorCode);

}

Let’s begin our examination of the AVIFile services by performing the simplest of
tasks, opening a waveform audio file. This is accomplished via the AVIFileOpen()
function:

bool wavOpenFile(PAVIFILE& ApFile, const char* AFileName,

unsigned int AMode)

{

return wavCheck(AVIFileOpen(&ApFile, AFileName, AMode, NULL));

}

The AMode parameter specifies the access mode and can be assigned the same access-
related constants that are used with the OpenFile() API function (OF_READ, for
example). The ApFile argument receives a pointer to an AVIFILE structure that simply
holds the address of the filehandler interface. Because this filehandler interface is
released only when its reference count drops to zero, it is important that you decre-
ment its reference count when the interface is no longer needed. This is accom-
plished via the AVIFileClose() function:

void wavCloseFile(PAVIFILE& ApFile)

{

AVIFileClose(ApFile);

ApFile = NULL;

}

Working with Audio Streams
Although opening and closing a waveform audio file is rather trivial, you’ll need to
work with the stream handler interface to obtain any useful information. This task
proves slightly more complicated. Recall that the PAVIFILE type holds a pointer to the
filehandler interface. Similarly, a pointer to the stream handler interface is stored in a
variable of type PAVISTREAM. You can retrieve a pointer to this latter interface via the
AVIFileGetStream() function. You release the interface via the AVIStreamRelease()
function. The wrapper functions presented in Listing 15.24 demonstrate the use of
these AVIFile functions.

CHAPTER 15 Graphics and Multimedia Techniques618

19 0672324806 CH15 12/12/02 2:41 PM Page 618

LISTING 15.24 Using the AVIFileGetStream and AVIStreamRelease Functions

bool wavOpenStream(PAVISTREAM& ApStream, PAVIFILE ApFile)

{

return wavCheck(AVIFileGetStream(ApFile, &ApStream, streamtypeAUDIO, 0));

}

void wavCloseStream(PAVISTREAM& ApStream)

{

AVIStreamRelease(ApStream);

ApStream = NULL;

}

Working with the stream handler interface is not unlike working with the
TMemoryStream class or one of the basic_streambuf descendant classes. However, you
have at your disposal several functions specifically designed for use with waveform
audio and AVI files. For example, the AVIStreamInfo() function can be used to
retrieve information about the content of the stream. This function fills an
AVISTREAMINFO structure with information specific to its media content:

bool wavGetStreamInfo(PAVISTREAM ApStream, AVISTREAMINFO& AStreamInfo)

{

return wavCheck(AVIStreamInfo(ApStream, &AStreamInfo,

sizeof(AVISTREAMINFO)));

}

When working with an audio stream, you’ll need to know the format of the data
itself. For waveform audio files, this information is conveyed via the data members
of a WAVEFORMATEX structure. This structure is simply used to describe how audio
samples are stored in the corresponding waveform audio data. As such, a particularly
useful function when working with waveform audio streams is the
AVIStreamReadFormat() function. It is the role of this function to fill the data members
of the WAVEFORMATEX structure based on information in the stream. The
AVIStreamFormatSize() macro complements this function by reporting the size of the
contained structure. Listing 15.25 demonstrates the use of the AVIStreamReadFormat()
function and the AVIStreamFormatSize() macro.

LISTING 15.25 Using the AVIStreamReadFormat() Function and the
AVIStreamFormatSize() Macro

long wavCalcFormatStructSize(PAVISTREAM ApStream)

{

long required_bytes = 0;

Working with Multimedia 619

19 0672324806 CH15 12/12/02 2:41 PM Page 619

AVIStreamFormatSize(ApStream, 0, &required_bytes);

return required_bytes;

}

bool wavReadFormatStruct(PAVISTREAM ApStream, WAVEFORMATEX& ApFormatStruct)

{

memset(&ApFormatStruct, 0, sizeof(WAVEFORMATEX));

long size = wavCalcFormatStructSize(ApStream);

return wavCheck(

AVIStreamReadFormat(ApStream, 0, &ApFormatStruct, &size)

);

}

Like the TMemoryStream::Read() or the basic_ifstream::read() member function, the
AVIFile services provide a means by which an application can read media content
from a stream. This is the audio data buffer that you’re interested in and, as you will
see later, access to this buffer is essential to producing audio output via the wave-
form API. The AVIStreamRead() function is used to read media content from a stream
into an application-defined buffer. Similarly, the AVIStreamWrite() function is used to
write data from a buffer into a stream. Listing 15.26 demonstrates the use of these
functions.

LISTING 15.26 Reading and Writing Audio Data to and from a Stream

long wavCalcBufferSize(PAVISTREAM ApStream)

{

long required_bytes = 0;

AVISTREAMINFO StreamInfo;

if (wavGetStreamInfo(ApStream, StreamInfo))

{

required_bytes = StreamInfo.dwLength * StreamInfo.dwScale;

}

return required_bytes;

}

long wavReadStream(PAVISTREAM ApStream, long AStart, long ANumBytes,

char* ABuffer)

{

long bytes_read = 0;

CHAPTER 15 Graphics and Multimedia Techniques620

LISTING 15.25 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 620

AVISTREAMINFO StreamInfo;

if (wavGetStreamInfo(ApStream, StreamInfo))

{

long num_samples = static_cast<float>(ANumBytes) /

static_cast<float>(StreamInfo.dwScale);

AVIStreamRead(ApStream, AStart, num_samples, ABuffer, ANumBytes,

&bytes_read, NULL);

}

return bytes_read;

}

long wavWriteStream(PAVISTREAM ApStream, long AStart, long ANumBytes,

char* ABuffer)

{

long bytes_written = 0;

AVISTREAMINFO StreamInfo;

if (wavGetStreamInfo(ApStream, StreamInfo))

{

long num_samples = static_cast<float>(ANumBytes) /

static_cast<float>(StreamInfo.dwScale);

AVIStreamWrite(ApStream, AStart, num_samples, ABuffer, ANumBytes,

AVIIF_KEYFRAME, NULL, &bytes_written);

}

return bytes_written;

}

The wavCalculateBufferSize() wrapper function is comparable to the
TMemoryStream::Size property. It uses the wavGetStreamInfo() wrapper function to
calculate the size of the audio buffer. Also note that, as the stream handler interface
is intrinsically linked to the filehandler interface, any data that you write to the
stream will automatically be written to the file once the stream is closed. As such, if
you’re interested in manipulating only the content of the stream, you’ll need to
create a secondary stream that is not associated with a particular file. For more infor-
mation on this task, see http://msdn.microsoft.com.

Now that you have a framework by which you can manipulate waveform audio files,
let’s return to our examination of the waveform API and investigate the means by
which you can output waveform audio sound. As with the MCI, the functions and
structures of the waveform API are declared and defined, respectively, in the
MMSYSTEM.H header file.

Working with Multimedia 621

LISTING 15.26 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 621

Opening and Closing Waveform Audio Devices
The waveform API provides the waveOutOpen() function for use in opening a wave-
form audio output device. This function requires an initialized WAVEFORMATEX structure
and, if successful, assigns an HWAVEOUT variable the handle to the open device.
Similarly, the waveOutClose() function is used to close the waveform audio device.
The wrapper functions of Listing 15.27 demonstrates the use of these functions.

LISTING 15.27 Opening and Closing a Waveform Audio Device

bool wavPlayOpen(HWAVEOUT& AHWavOut, long ACallback, DWORD ANotifyInstance,

DWORD AOpenFlags, WAVEFORMATEX& AFormatStruct)

{

return wavCheck(

waveOutOpen(&AHWavOut, WAVE_MAPPER, &AFormatStruct, ACallback,

ANotifyInstance, AOpenFlags)

);

}

void wavPlayClose(HWAVEOUT AHWavOut)

{

waveOutReset(AHWavOut);

waveOutClose (AHWavOut);

}

The ACallback, ANotifyInstance, and AOpenFlags parameters can be used to specify a
means of notification; we will return to this issue shortly. For the AFormatStruct para-
meter, you can use the wavReadFormatStruct() wrapper function of Listing 15.25.

After an output device is open, you use the waveOutWrite() function to initiate play-
back. Specifically, you pass this function a pointer to a buffer of audio data that the
function will send to the opened output device driver. However, the audio output
device must know the size of the audio block that it’s going to receive. For this
reason, the waveOutWrite() function cannot accept a plain data buffer; instead, the
function requires the address of a WAVEHDR structure.

Among other things, a WAVEHDR structure stores a pointer to the audio data buffer in
its lpData data member and the length of this buffer in its dwBufferLength data
member. To ensure compatibility with the output device, you must allow the driver
to prepare your WAVEHDR structure before you can pass it to the waveOutWrite() func-
tion. This task is accomplished via the waveOutPrepareHeader() function. Similarly,
after the device driver has finished playing the audio block, you must unprepare the
header using the wavOutUnprepareHeader() function before you can free the associated
memory. Listing 15.28 demonstrates the use of these functions.

CHAPTER 15 Graphics and Multimedia Techniques622

19 0672324806 CH15 12/12/02 2:41 PM Page 622

LISTING 15.28 Initiating and Ending Waveform Audio Playback

bool wavPlayBegin(HWAVEOUT AHWavOut, WAVEHDR& AWavHdr)

{

if (wavCheck(waveOutPrepareHeader(AHWavOut, &AWavHdr, sizeof(WAVEHDR))))

{

return wavCheck(

waveOutWrite(AHWavOut, &AWavHdr, sizeof(WAVEHDR))

);

}

return false;

}

void wavPlayEnd(HWAVEOUT AHWavOut, WAVEHDR& AWavHdr)

{

waveOutReset(AHWavOut);

waveOutUnprepareHeader(AHWavOut, &AWavHdr, sizeof(WAVEHDR));

}

Let’s solidify these concepts with a simple example that demonstrates how to play a
waveform audio file. An example project called Proj_DSPDemo.bpr, can be found on
the companion CD-ROM in the DSPDemo folder, which is illustrated in Figure 15.8.

Working with Multimedia 623

FIGURE 15.8 DSP demonstration.

Recall that, because the waveform API presents no native means of loading the audio
data from disk, we will first need to use our AVIFile wrapper functions. After we read
the audio data block from the stream into our buffer, we can then use our waveform
API wrapper functions to control playback. The code for this example is presented in
Listing 15.29.

LISTING 15.29 Playing a Quantized Waveform Audio File

const long MAX_BLOCK_SIZE = 6000 * 1024;

if (!OpenDialog1->Execute()) return;

const char* filename = OpenDialog1->FileName.c_str();

19 0672324806 CH15 12/12/02 2:41 PM Page 623

PAVIFILE pFile = NULL;

if (wavOpenFile(pFile, filename, OF_READ))

{

PAVISTREAM pStream = NULL;

if (wavOpenStream(pStream, pFile))

{

long block_size = wavCalcBufferSize(pStream);

if (block_size < MAX_BLOCK_SIZE)

{

char* buffer = new char[block_size];

if (wavReadStream(pStream, 0, block_size, buffer)

== block_size)

{

QuantizeBuffer(buffer, block_size);

WAVEFORMATEX FormatStruct;

if (wavReadFormatStruct(pStream, FormatStruct))

{

HWAVEOUT HWavOut;

if (wavPlayOpen(HWavOut, NULL, NULL, NULL,

FormatStruct))

{

WAVEHDR WavHdr;

memset(&WavHdr, 0, sizeof(WAVEHDR));

WavHdr.lpData = buffer;

WavHdr.dwBufferLength = block_size;

if (wavPlayBegin(HWavOut, WavHdr))

{

ShowMessage(“Playing: “ +

AnsiString(filename));

wavPlayEnd(HWavOut, WavHdr);

}

wavPlayClose(HWavOut);

}

}

}

delete [] buffer;

}

wavCloseStream(pStream);

}

CHAPTER 15 Graphics and Multimedia Techniques624

LISTING 15.29 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 624

wavCloseFile(pFile);

}

void QuantizeBuffer(char* ABuffer, long ABufferLength)

{

short int min_val = 0, max_val = 0;

for (int index = 0; index < ABufferLength; ++index)

{

if (ABuffer[index] < min_val) min_val = ABuffer[index];

if (ABuffer[index] > max_val) max_val = ABuffer[index];

}

for (int index = 0; index < ABufferLength; ++index)

{

if (ABuffer[index] < 0) ABuffer[index] = min_val;

if (ABuffer[index] > 0) ABuffer[index] = max_val;

}

}

Notice in Listing 15.29 that we placed a limit on the size of the audio data block.
Indeed, we would not want to load too large of a file so that we deplete system
resources. When working with large audio data blocks, small segments of the media
content are read from the stream, then sent to the driver in an iterative fashion. That
is, after the driver has finished with the current buffer, we continually supply it with
new information. However, for such a method to be successful, we will need a means
by which we can determine when the driver has finished with the buffer. That is, the
waveOutWrite() function returns immediately, so we have no way of knowing when
the driver has completed playback. This is where the ACallback parameter of our
wavPlayOpen() wrapper function comes in. Specifically, we can assign this argument
the handle of a window or an event, an identifier of a thread, or even the address of
a specific callback function. In this way, we can establish a crucial means of notifica-
tion. See http://msdn.microsoft.com for information on the MM_MON_DONE message.

Concluding Remarks on the Waveform Audio Interface
We have covered a wide variety of multimedia functions, structures, messages, and
macros, but there are still more to explore. For example, the Windows multimedia
system also provides specific interfaces for controlling MIDI and AVI playback.
Moreover, each of these interfaces, including the Waveform Audio Interface and the
MCI, provides services for sound input as well as output. There is even an interface

Working with Multimedia 625

LISTING 15.29 Continued

19 0672324806 CH15 12/12/02 2:41 PM Page 625

for working with audio mixer devices. See http://msdn.microsoft.com for more infor-
mation. This latter area is particularly opportune when the volume of specific audio
channels needs to be controlled.

Summary
In this chapter, we have examined several methods by which an application can
provide graphics or multimedia support. First, we took a closer look at the Windows
GDI and how many aspects of this interface are abstracted by the VCL. We looked at
the TCanvas, TBrush, TPen, TFont, and TColor classes and their use in rendering graphi-
cal output. We also examined several image file formats and discussed techniques for
using TBitmap and TJPEGImage objects.

Finally, we investigated how multimedia files are supported through use of the MCI.
We examined the various MCI-related command messages and discussed their
generic use in controlling multimedia devices. We also looked at the AVIFile services
and Waveform Audio Interface and how these interfaces are used to manage and
affect playback of waveform audio files.

Although we covered a lot of ground for supporting graphics and multimedia, there
are additional components and libraries available for Windows that you should be
made aware. This includes DirectX, which contains DirectShow, DirectSound, and
DirectDraw for providing high-performance graphics and multimedia. Unfortunately,
a discussion of DirectX is not in the scope of this chapter; however, a lot of material
is available on the Web and within the newsgroups that you might find useful.
Despite the lack of DirectX discussion, the information provided to you in this
chapter is quite extensive and should help you develop interesting and innovative
multimedia applications.

CHAPTER 15 Graphics and Multimedia Techniques626

19 0672324806 CH15 12/12/02 2:41 PM Page 626

IN THIS CHAPTER

• Creating a DLL Using
C++Builder

• Packages Versus DLLs

• Shared Memory Support in
a DLL

• Loading a DLL

• Using Microsoft Visual C++
DLLs with C++Builder

• Using C++Builder DLLs with
Microsoft Visual C++

16

DLLs

by Paul Gustavson

Windows provides a powerful mechanism for support-
ing application reuse at the binary level through Dynamic
Link Libraries (DLLs). A DLL typically represents a collec-
tion of common utilized functions, capabilities, and/or
resources packaged into a linkable module that can be
leveraged by other programs. This linkable module typi-
cally has the extension .dll.

There are many practical uses for a DLL. For instance,
suppose you have a common set of math models and
calculations that need to be used within several applica-
tions you develop and maintain. Rather than repetitively
copying or linking the code for these models and calcula-
tions into each program, you can create and compile a
single DLL that each program can load and use as if the
code was already embedded within each program. This has
several advantages identified as follows:

• A DLL minimizes code re-write since it can be shared
and used by multiple applications.

• Applications will be smaller in size because the code
in the DLL is isolated from the applications that use
the code.

• Applications can be updated without recompilation
simply through DLL updates.

This chapter focuses on DLLs. We’ll discuss how to build
them and how to use them. We’ll look at some of the
things to watch out for when you build and use them,
and we’ll examine interesting DLL techniques that you
can use with both C++Builder applications and Visual C++
applications.

20 0672324806 CH16 12/12/02 2:43 PM Page 627

NOTE

Within Linux, we can use something comparable to a DLL called a Data Shared Object (DSO).

Creating a DLL Using C++Builder
In this first section, we’ll look at how to create a DLL using C++Builder. The simplest
way to create a DLL is with the C++Builder’s DLL Wizard. You can also create a DLL
from scratch almost as easily, simply by starting with a blank header and c or cpp

source file.

The primary function that needs to be included in the source of a DLL file is a main
entry function. Within the world of Microsoft (specifically Visual C++), this function
is called DLLMain().

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fwdreason, LPVOID lpvReserved)

{

return 1;

}

Within the world of Borland (specifically C++Builder and its precursor C++), this
function is called DLLEntryPoint().

int WINAPI DllEntryPoint(HINSTANCE hinst,

unsigned long reason,

void* lpReserved)

{

return 1;

}

Borland C++Builder Version 6 now also supports the DLLMain() entry function.

TIP

If you’re a developer who uses both C++Builder and Visual C++, the DLLMain() entry point
function will allow greater compatibility between these two development environments.

At this point, after a main entry function is in place, you can begin to add the func-
tionality you want to share through a DLL. We’ll develop an example shortly, but
let’s first look at the DLL Wizard, which will shed some light on the different types
of DLLs that can be created and supported by C++Builder.

CHAPTER 16 DLLs628

20 0672324806 CH16 12/12/02 2:43 PM Page 628

Using the DLL Wizard
The DLL Wizard can be brought up within C++Builder by selecting File, New, and
Other from the main menu, and then selecting the DLL Wizard from the New tab of
the New Items dialog. The DLL Wizard provides several options for you to choose
from (see Figure 16.1).

Creating a DLL Using C++Builder 629

FIGURE 16.1 The following options are presented on the DLL Wizard dialog box.

Source Type:

C This specifies that the C language will be used as the source type, which allows access to

the Multi Threaded, and VC++ Style DLL options. The Use VCL and Use CLX options are

disabled because VCL and CLX are object-oriented classes and can only be included in a C++

project.

C++ This specifies that the C++ language will be used as the source type, which enables

access to the Use VCL, Use CLX, Multi Threaded, VC++ Style DLL options, as well as the use of

object-oriented classes. If this option is chosen, the compiler will use C++ to compile the code

in the main module of the DLL, thus enabling you to use C++ code in your DLL.

Options:

Use VCL This option creates a DLL that can contain VCL components and classes. This

causes C++Builder to include the VCL.h file in your main module, and changes the startup

code and linker options for compatibility with VCL objects. You will also notice that the Multi

Threaded option becomes checked and disabled. The reason for this is because the VCL needs

to have multithreading capabilities.

Use CLX This option creates a DLL that can contain CLX components and classes. This

causes C++Builder to include the clx.h file in your main module and changes the startup

code and linker options for compatibility with CLX objects. You will also notice that the Multi

Threaded option becomes checked and disabled. The reason for this is because the CLX

needs to have multithreading capabilities.

Multi Threaded This option specifies that the DLL will have more than one thread of

execution, so if you plan to have multiple threads in your DLL, it would be a good idea to

choose this option. Remember that the VCL and CLX need to have this capability, so if you

manually try to add components into the DLL later and didn’t check this, you may run into a

problem. To avoid this, always make sure that this option is checked.

20 0672324806 CH16 12/12/02 2:43 PM Page 629

VC++ Style DLL This option specifies what type of entry point the DLL is going to have. If

you want the DLL entry point to be DLLMain(), the Visual C++ style, check the VC++ style

option; otherwise, DLLEntryPoint() is used for the entry point function. The choice is up

to you.

After you have made your selections and clicked OK, C++Builder will automatically
generate a skeleton DLL application. The only function that it creates in the source
file, however, is an empty entry point function, DLLMain() or DLLEntryPoint(), which
depends on the selection of VC++ Style DLL.

When you use the Wizard, it will create several files for you. A source file that ends
in either *.c or *.cpp, a Resource file that ends in *.res, and a Borland Project File
called a *.bpf. This is illustrated in Figure 16.2. In most cases, the only file that really
matters is the source file. In fact, when you build a DLL from scratch, not using the
Wizard, you’ll often create a source file and an associated header file. Because the
Wizard doesn’t create the header file, you might need to create it as well. Typically,
we use a header file to expose the functionality of the DLL to other applications.

CHAPTER 16 DLLs630

FIGURE 16.2 A project generated from the DLL Wizard.

Filling in DLL Code
Let’s go ahead and fill in some code for our entry point function so that we can
begin to fully understand how a DLL works, as shown Listing 16.1.

LISTING 16.1 The DLL Entry Point Function

bool WINAPI DllMain(HINSTANCE hinstDLL, DWORD fwdReason, LPVOID lpvReserved)

{

switch(fwdreason)

{

case DLL_PROCESS_ATTACH:

if (lpvReserved)

MessageBox(NULL,”Process has attached to DLL (Static Load)”,

“DLLMain”,MB_OK);

else

20 0672324806 CH16 12/12/02 2:43 PM Page 630

MessageBox(NULL,”Process has attached to DLL (Dynamic Load)”,

“DLLMain”,MB_OK);

break;

case DLL_THREAD_ATTACH:

MessageBox(NULL,”Thread has attached to DLL”,”DLLMain”,MB_OK);

break;

case DLL_THREAD_DETACH:

MessageBox(NULL,”Thread has detached to DLL”,”DLLMain”,MB_OK);

break;

case DLL_PROCESS_DETACH:

MessageBox(NULL,”Process has detached to DLL”,”DLLMain”,MB_OK);

break;

}

return 1; // always return true;

}

In this example, our DLL examines the activity associated to the application loading
(or unloading) the DLL. Three parameters can be examined within the main entry
function. The first parameter, hinstDLL, identifies the handle of the DLL. The second
parameter, fwdReason, identifies the type of activity associated to the process or
thread loading or unloading. The third parameter, lpvReserved, is NULL if the DLL was
dynamically loaded or non-NULL if the DLL was statically loaded (we will discuss
DLL loading in a moment). The value we’re most interested in is fwdReason. By
knowing the action, whether a process or thread is coming or going, we can have
the DLL initialize its variables on entry, and destroy existing pointers and threads on
exit.

We need to add some functionality to our DLL so that the DLL is useful to outside
applications. For starters, let’s add a function to the simple.c file that identifies the
version of the DLL, and provides some metric conversion, as shown in Listing 16.2.

LISTING 16.2 Examples of DLL Functions

const double version = 1.1;

double simpleGetLibVersion() //the current library version of the DLL.

{

return version;

}

//—————————————————————————————————————-

double feet_to_meters(double feet)

Creating a DLL Using C++Builder 631

LISTING 16.1 Continued

20 0672324806 CH16 12/12/02 2:43 PM Page 631

{

return (feet * 0.3048);

}

//—————————————————————————————————————-

double meters_to_feet(double meters)

{

return (meters * 3.2808);

}

Notice a constant identifying the version is included, which is used by the
simpleGetLibVersion() function. When an application calls this DLL function, the
DLL version as identified by the version variable will be returned. When an applica-
tion calls the feet_to_meters() function, the value identified by the feet parameter
will be converted and returned as meters. Inversely, when an application calls
meters_to_feet() function, the value identified by the meters parameter will be
converted and returned as feet.

Adding a DLL Header File
To make the function available to an application that loads the DLL, we need to
create a header file that exposes the function. This is shown in Listing 16.3.

LISTING 16.3 The DLL Header File

#ifndef __SIMPLE_H

#define __SIMPLE_H

#if defined(__cplusplus)

extern “C”

{

#endif

__declspec(dllexport) double simpleGetLibVersion();

__declspec(dllexport) double feet_to_meters(double feet);

__declspec(dllexport) double meters_to_feet(double meters);

#if defined(__cplusplus)

}

#endif

#endif // __SIMPLE_H

CHAPTER 16 DLLs632

LISTING 16.2 Continued

20 0672324806 CH16 12/12/02 2:43 PM Page 632

This header file provides the basis for the DLL interface. The _cplusplus constant is
defined if C++Builder is compiling C++ code. In this example, we are compiling C
source code because our source file has a c extension, therefore the extern “C” clause
will be ignored on compilation. Otherwise, if we were compiling C++ code, the
extern keyword tells C++Builder to use the C calling convention. Any compiler that
supports C-type exports will be able to import this function.

In this example, we also use the declspec(dllexport) storage class specifier preceding
each function. This clause enables you to export functions, data, and objects from a
DLL. In our example, we export a function that we want to be able to call from any
application that loads the DLL. Furthermore, this clause provides compatibility of
our DLL with Microsoft C/C++ applications and eliminates the need for a module-
definition (.DEF) file.

Building a DLL
A DLL is built much the same way an EXE application is built within the C++Builder
IDE. For example, the simple.dll example, provided on the CD-ROM that accompa-
nies this book, is built by selecting Project, Build simple, as illustrated in Figure 16.3.

Creating a DLL Using C++Builder 633

FIGURE 16.3 Building the simple.dll project using C++Builder.

When the DLL is compiled and linked, C++Builder will generate not only a DLL file,
but also a LIB file. The LIB file makes it convenient for a C++Builder application to
utilize a DLL by simply identifying the LIB file as part of the application’s project.
This is discussed further in the “Loading a DLL” section.

20 0672324806 CH16 12/12/02 2:43 PM Page 633

Loading a DLL
It was mentioned earlier that a DLL can be loaded statically or dynamically; it’s
important to understand the difference. A statically linked DLL is linked to the
executable when the executable is built if the LIB is identified as part of the applica-
tion’s project. The DLL will then be loaded into memory when the executable is run
(on start up). A dynamically linked DLL can be loaded and unloaded as needed by
the application after start up, which can lessen the amount of resources the program
needs to run. Another difference is that with static linking, a program will not run
without the DLL, whereas a dynamically linked DLL doesn’t have to be present.
However, if the application makes a call to a function or attempts to utilize a
resource contained within the DLL, but the DLL is not present, an error will occur.
Now that we have an example DLL titled simple.dll, let’s look at how we can load
the DLL both statically and dynamically.

Linking DLLs Statically
To understand how to statically link a DLL, let’s create a project that links the LIB
file generated when simple.dll was built. The project that we will use as an example
can be found on the CD-ROM in the SimpleDLL folder titled AppStatic.bpr. In this
example, a Button and Edit control are placed on the main form. The Button, when
triggered will call the simpleGetVersion() function of the DLL and fill in the Edit
control with the version. The example for this code is provided in Listing 16.4.

LISTING 16.4 Application Example That Uses the DLL Functions

#include <vcl.h>

#pragma hdrstop

#include “AppStaticForm.h”

#include “simple.h”

//—————————————————————————————————————-

#pragma package(smart_init)

#pragma resource “*.dfm”

TForm1 *Form1;

//—————————————————————————————————————-

__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)

{

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonGetVersionClick(TObject *Sender)

{

CHAPTER 16 DLLs634

20 0672324806 CH16 12/12/02 2:43 PM Page 634

EditVersion->Text = AnsiString(simpleGetLibVersion());

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonConvertToMetersClick(TObject *Sender)

{

double meters = feet_to_meters(EditFeet->Text.ToDouble());

EditMeters->Text = AnsiString(meters);

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonConvertToFeetClick(TObject *Sender)

{

double feet = meters_to_feet(EditMeters->Text.ToDouble());

EditFeet->Text = AnsiString(feet);

}

In this example, we need to include the header file of the DLL.

#include “simple.h”

This header file identifies the functions that we want to access from the DLL. The
ButtonGetVersionClick() event-handler within our application code will call the DLL
function simpleGetLibVersion(). Whereas, the ButtonCovertToMetersClick() event-
handler calls feet_to_meters(), and ButtonConvertToFeetClick() calls meters_to_feet().

If we compile and build the application without identifying the DLL library (LIB file)
in the project we will receive the following error:

[Linker Error] Unresolved external ‘_simpleGetLibVersion’

referenced from APPSTATICFORM.OBJ

Therefore, in this example, we need to include the .lib file, as shown in Figure 16.4.

Loading a DLL 635

LISTING 16.4 Continued

FIGURE 16.4 AppStatic project listing.

20 0672324806 CH16 12/12/02 2:43 PM Page 635

After we include the .lib file, we can then build and run our application. In this
example, when the application launches, a message appears that is generated by the
DLL, as illustrated in Figure 16.5.

CHAPTER 16 DLLs636

FIGURE 16.5 DLL entry point Message Box displayed by simple.dll.

Following this message, the application GUI appears, and the user can press the
buttons labeled Get DLL Version, Convert To Meters, and Convert To Feet, as illus-
trated in Figure 16.6. The event-handler for these buttons calls the exported DLL
functions.

FIGURE 16.6 Screen shot of the AppStatic application.

That’s all it takes to link and statically load a DLL. As long as you include the proper
header file that identifies the DLL functions or classes to be used and include the
.lib file in the project, everything else is the same as calling any other function. Be
aware, however, that if the DLL is not physically present when the application
launches an error occurs, as illustrated in Figure 16.7.

FIGURE 16.7 Unable to locate DLL error.

Loading DLLs Dynamically
The other way to use a DLL is to dynamically load it during execution. There are a
few basic steps to dynamically link and use the functionality provided by a DLL:

20 0672324806 CH16 12/12/02 2:43 PM Page 636

• Load the DLL and obtain a pointer to it.

• Get a pointer to the function you want to call.

• Call the function.

• Free the DLL.

To load a DLL dynamically, we can use either the LoadLibrary() or LoadLibraryEx()

provided by the Win32 API. To understand how to dynamically link a DLL, let’s
create a project that loads simple.dll using the LoadLibrary() call. The project that
we will use as an example can be found on the CD-ROM in the SimpleDLL folder
titled AppDynamic.bpr. A screen shot of the application is provided in Figure 16.8.

Loading a DLL 637

FIGURE 16.8 Screen shot of the AppDynamic application during execution.

First, to make this application work, we need to declare a variable within our
program to receive an instance handle to the DLL. Within C++Builder, we can place
the declaration of the DLL handle as a property within the class of our main form as
follows:

private: // User declarations

HINSTANCE dllhandle;

The following code in Listing 16.5 demonstrates how the LoadLibrary() call is made
for loading simple.dll.

LISTING 16.5 Using LoadLibrary()

void __fastcall TForm1::ButtonLoadLibraryClick(TObject *Sender)

{

dllhandle = LoadLibrary(“simplex.dll”); // keep track of the handle

EditDLLHandle->Text = AnsiString((int)dllhandle);

if (dllhandle)

20 0672324806 CH16 12/12/02 2:43 PM Page 637

{

ButtonUnloadLibrary->Enabled = true;

ButtonProcAddress->Enabled = true;

}

else

{

ShowMessage(“Unable to load the DLL”);

}

}

LoadLibrary() attempts to load the DLL identified by its filename. In this example,
we used “simple.dll”. You can also include a full path here. If just the name is
provided, Windows will use the search paths to try and load it. If the DLL cannot be
loaded, LoadLibrary() will return NULL.

After we load the DLL, the next step is to get a pointer to the function we want to
call. There are two steps for importing functions from DLLs that are dynamically
linked:

• Create a new typedef using the exported functions prototype.

• Cast each call to GetProcAddress() to the exported functions prototype.

We need to declare a variable to retrieve the process address of the desired function.
However, preceding this variable declaration we need to identify its anticipated func-
tion format using a typedef such as this:

typedef float (*SIMPLEGETLIBVERSION)();

SIMPLEGETLIBVERSION simpleGetLibVersion;

typedef double (*METERS_TO_FEET)(double);

METERS_TO_FEET meters_to_feet;

typedef double (*FEET_TO_METERS)(double);

FEET_TO_METERS feet_to_meters;

Typically, this code is placed in the header file defined for our application, the top of
the source file, or within an independent header file that we can include (link) in
our code. The use of typedef identifies the format structure for the DLL function. The
actual pointer to the DLL Function is then defined based on this type of definition.

In our code we want to cast the result from the GetProcAddress() call to the
simpleGetLibVersion, meters_to_feet, and feet_to_meters function pointers. The code
in Listing 16.6 demonstrates how the GetProcAddress() call can be used.

CHAPTER 16 DLLs638

LISTING 16.5 Continued

20 0672324806 CH16 12/12/02 2:43 PM Page 638

LISTING 16.6 Using GetProcAddress()

void __fastcall TForm1::ButtonProcAddressClick(TObject *Sender)

{

if (dllhandle)

{

simpleGetLibVersion =

(SIMPLEGETLIBVERSION)GetProcAddress(dllhandle,

“_simpleGetLibVersion”);

if (simpleGetLibVersion) ButtonGetVersion->Enabled = true;

meters_to_feet =

(METERS_TO_FEET)GetProcAddress(dllhandle, “_meters_to_feet”);

if (meters_to_feet) ButtonConvertToMeters->Enabled = true;

feet_to_meters =

(FEET_TO_METERS)GetProcAddress(dllhandle, “_feet_to_meters”);

if (feet_to_meters) ButtonConvertToFeet->Enabled = true;

}

}

As shown in this example, the Windows API function GetProcAddress()returns a
pointer to the exported functions provided by the DLL. In the first instance, the
resultant is cast into the format identified by SIMPLEGETLIBVERSION type definition and
assigned to the simpleGetVersion pointer. This is repeated for each of the other two
functions provided by the DLL. For all these cases, an instance handle of a DLL and
the title of the exported function we desire is required by the GetProcessAddress()
call.

TIP

The preceding underscores for simpleGetLibVersion, meters_to_feet, and feet_to_meters
in the GetProcAddress() functions are required because C++Builder adds them to the begin-
ning of the functions exported in the DLL.

TIP

C++Builder by default adds an underscore to the beginning of the functions it exports. There
is an option under Project, Options on the Advanced Compiler tab called Generate
Underscores. If you uncheck this option within the project for your DLL, the function will
export without the underscore, as shown in Figure 16.9.

CAUTION

Always be sure to check to make sure that the GetProcAddress() function succeeded before
using the pointer. If the pointer is NULL, the GetProcAddress() call failed. Trying to use an
invalid pointer will result in an access violation.

Loading a DLL 639

20 0672324806 CH16 12/12/02 2:43 PM Page 639

FIGURE 16.9 The Project Options, Advanced Compiler tab.

After you have a valid pointer, you can use it just like you would any other function.
This is shown in Listing 16.7.

LISTING 16.7 Making a Call to a DLL Function Based on a Pointer Retrieved Using
GetProcAddress()

void __fastcall TForm1::ButtonGetVersionClick(TObject *Sender)

{

if (dllhandle)

{

EditVersion->Text = AnsiString(simpleGetLibVersion());

}

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonConvertToMetersClick(TObject *Sender)

{

double meters = feet_to_meters(EditFeet->Text.ToDouble());

EditMeters->Text = AnsiString(meters);

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonConvertToFeetClick(TObject *Sender)

{

double feet = meters_to_feet(EditMeters->Text.ToDouble());

EditFeet->Text = AnsiString(feet);

}

CHAPTER 16 DLLs640

20 0672324806 CH16 12/12/02 2:43 PM Page 640

You might notice that this piece of code is exactly the same as the previous applica-
tion that statically loaded simple.dll. The ButtonGetVersionClick() event-handler
makes a call to the function simpleGetLibVersion() contained in simple.dll to retrieve
and display the DLL version.

After we’re done using this DLL, we want to free it. DLLs can be freed using the
Win32 API function FreeLibrary(), which requires the parameter, the HINSTANCE Dll

that we obtained earlier from the LoadLibrary() call. This is shown in Listing 16.8.

LISTING 16.8 Using FreeLibrary()

void __fastcall TForm1::ButtonUnloadLibraryClick(TObject *Sender)

{

if (dllhandle)

{

FreeLibrary(dllhandle);

ButtonUnloadLibrary->Enabled = false;

ButtonProcAddress->Enabled = false;

ButtonGetVersion->Enabled = false;

ButtonConvertToMeters->Enabled = false;

ButtonConvertToFeet->Enabled = false;

EditDLLHandle->Text = “”;

}

Those are the basic steps for loading a dynamic DLL.

Perhaps you might be thinking that the static DLL is much easier to use, which is
true, but remember that the static DLL loads when your program starts and stays
around until your program closes. Keep in mind if the static DLL is missing for some
reason, your program won’t run at all.

Exporting and Using DLL Classes
Now that you know how to export a simple function from a DLL and use it in an
application, let’s look into how to export an entire class.

By modifying the SimpleDll project slightly, we’ll use a class to provide equivalent
functionality to external applications. This example can be found in the
SimpleClassDLL folder within the simple.bpr project on the accompanying CD-ROM.
The code declarations associated to the header file for our new simple.dll is provided
in Listing 16.9.

Exporting and Using DLL Classes 641

20 0672324806 CH16 12/12/02 2:43 PM Page 641

LISTING 16.9 The Header File for a DLL Class

#ifndef __SIMPLE_H

#define __SIMPLE_H

enum Tlast_set { meters=0, feet };

__declspec(dllexport) class TDistance

{

private:

double FVersion;

double FMeters;

double FFeet;

void __fastcall SetMeters(double value);

void __fastcall SetFeet(double value);

double __fastcall feet_to_meters();

double __fastcall meters_to_feet();

Tlast_set last_set;

public :

__fastcall TDistance();

__fastcall ~TDistance();

double GetLibVersion();

__property double Version = {read = FVersion};

__property double Meters = {read = feet_to_meters, write = SetMeters};

__property double Feet = {read = meters_to_feet, write = SetFeet};

};

#endif // __SIMPLE_H

Notice that we’re using the same export technique used to export the functions
earlier, except we’re not using the extern C clause. Also notice how our class within
our DLL looks much like a class used in a standard executable.

The code to our source file, which now has a .cpp extension, that is associated to this
class is provided in Listing 16.10.

LISTING 16.10 DLL Class Methods

__fastcall TDistance::TDistance()

{

FVersion = 1.1;

FFeet = 0.0;

FMeters = 0.0;

CHAPTER 16 DLLs642

20 0672324806 CH16 12/12/02 2:43 PM Page 642

}

//—————————————————————————————————————-

__fastcall TDistance::~TDistance()

{

}

//—————————————————————————————————————-

double TDistance::GetLibVersion() //current library version of the DLL.

{

return FVersion;

}

//—————————————————————————————————————-

void __fastcall TDistance::SetMeters(double value)

{

FMeters = value;

last_set = meters;

}

//—————————————————————————————————————-

void __fastcall TDistance::SetFeet(double value)

{

FFeet = value;

last_set = feet;

}

//—————————————————————————————————————-

double __fastcall TDistance::feet_to_meters()

{

if (last_set == meters)

return FMeters;

else

return (FFeet * 0.3048);

}

//—————————————————————————————————————-

double __fastcall TDistance::meters_to_feet()

{

if (last_set == feet)

Exporting and Using DLL Classes 643

LISTING 16.10 Continued

20 0672324806 CH16 12/12/02 2:43 PM Page 643

return FFeet;

else

return (FMeters * 3.2808);

}

Note that although it’s not provided in the listing, we still use the same DLL Entry
Point function as the previous example.

This is all we need to save and build the DLL. Let’s now test it out with a new appli-
cation that statically loads the DLL. The header file for this application is provided in
Listing 16.11 and can be found under the SimpleClass folder and AppStatic.bpr
project on the accompanying CD-ROM.

LISTING 16.11 The Header File for a Sample Application That Uses the DLL Class

#ifndef AppStaticFormH

#define AppStaticFormH

//—————————————————————————————————————-

#include <Classes.hpp>

#include <Controls.hpp>

#include <StdCtrls.hpp>

#include <Forms.hpp>

#include “simple.h”

//—————————————————————————————————————-

class TForm1 : public TForm

{

__published: // IDE-managed Components

TButton *ButtonGetVersion;

TEdit *EditVersion;

TButton *ButtonGetVersion2;

void __fastcall ButtonGetVersionClick(TObject *Sender);

void __fastcall ButtonGetVersion2Click(TObject *Sender);

private: // User declarations

TDistance *distance;

public: // User declarations

__fastcall TForm1(TComponent* Owner);

};

//—————————————————————————————————————-

extern PACKAGE TForm1 *Form1;

//—————————————————————————————————————-

#endif

CHAPTER 16 DLLs644

LISTING 16.10 Continued

20 0672324806 CH16 12/12/02 2:43 PM Page 644

Because our header file now has a property that is defined by the class contained
within the DLL, we need to be sure to include the DLL header file inside the
application header file.

#include “simple.h”

The property we declare can be found in the private section of our form’s class.

TDistance *distance;

The application source file is provided in Listing 16.12.

LISTING 16.12 The Source File for a Sample Application That Uses the DLL Class

#include <vcl.h>

#pragma hdrstop

#include “AppStaticForm.h”

//—————————————————————————————————————-

#pragma package(smart_init)

#pragma resource “*.dfm”

TForm1 *Form1;

//—————————————————————————————————————-

__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)

{

distance = new TDistance();

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonGetVersionClick(TObject *Sender)

{

EditVersion->Text = AnsiString(distance->GetLibVersion());

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonGetVersion2Click(TObject *Sender)

{

EditVersion->Text = AnsiString(distance->Version);

}

//—————————————————————————————————————-

void __fastcall TForm1::EditMetersChange(TObject *Sender)

Exporting and Using DLL Classes 645

20 0672324806 CH16 12/12/02 2:43 PM Page 645

{

double meters = EditMeters->Text.ToDouble();

distance->Meters = meters;

}

//—————————————————————————————————————-

void __fastcall TForm1::EditFeetChange(TObject *Sender)

{

double feet = EditFeet->Text.ToDouble();

distance->Feet = feet;

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonConvertToMetersClick(TObject *Sender)

{

EditMeters->Text = AnsiString(distance->Meters);

}

//—————————————————————————————————————-

void __fastcall TForm1::ButtonConvertToFeetClick(TObject *Sender)

{

EditFeet->Text = AnsiString(distance->Feet);

}

In this example, the form constructor class initializes the simple property to the
TDistance class declared within the DLL header file. This class provides two mecha-
nisms to retrieve the version number: the function GetLibVersion() and the class
property Version. To retrieve the distance in meters or feet, we simply examine the
Meters or Feet property within the TDistance class. The class will perform the appro-
priate conversion if required. Within the application, we use button event-handlers
to demonstrate the capability to access the class members (function and properties),
as illustrated in Figure 16.10.

CHAPTER 16 DLLs646

LISTING 16.12 Continued

FIGURE 16.10 Screen shot of the AppStatic application using the Distance class
contained within Simple.dll.

20 0672324806 CH16 12/12/02 2:43 PM Page 646

The example illustrated in Figure 16.10 demonstrates how to use properties and
methods contained within a DLL class. You may notice the coding style is very
similar to how we would use a VCL class contained within a VCL Package. In fact,
Packages used by C++Builder and Delphi are actually DLLs; there are just a few subtle
differences.

Packages Versus DLLs
A Package guarantees that extensions, such as __published and protected property
members and the __property keyword for a property, can be supported by the class.
These specific extensions are what turn classes into components and, through regis-
tration, allow components to be leveraged by the C++Builder IDE at design time;
allowing property values to be tweaked using the Object Inspector. The bottom line
is that within C++Builder and Delphi (and Kylix), a Package can be more desirable
than a DLL due largely to the flexibility a VCL provides.

NOTE

To dynamically load a Package at runtime, you would use LoadPackage() instead of
LoadLibrary() and FreePackage() instead of FreeLibrary().

Although there are many advantages to using a Package within C++Builder and
Delphi, a disadvantage is that other development tools cannot use a VCL Package
because its constructs are specific to C++Builder or Delphi. A Visual C++ application,
for instance, will not be able to load and use a Package because it doesn’t understand
published and protected members of a class. Packages are good for making custom
components that are available through the IDE as well as at runtime. Standard DLLs
are good for providing reusable functionality that can be used by almost any applica-
tion, no matter what development tool was used to build it.

Therefore, if you’re thinking of supporting applications that might be developed
under Visual C++ as well as C++Builder, you should choose to develop a DLL with an
interface (header file) that doesn’t use and require the VCL. Note that this doesn’t
preclude developing a DLL that uses a VCL component, such as TForm, within the
source code. It’s just that the VCL elements cannot be exposed or required by the
header file, which is the interface often used by the calling application.

Steps for Creating a Package
Assuming you’re developing a component to be used only by C++Builder applica-
tions, let’s quickly examine how to build a Package. The easiest way to create a
Package is to select File, New. Then, choose Package from the New Items dialog, and
then press OK (see Figure 16.11).

Packages Versus DLLs 647

20 0672324806 CH16 12/12/02 2:43 PM Page 647

FIGURE 16.11 The New Items dialog box.

Following these steps, a Package project dialog will be displayed showing the files
that were generated associated to the project as illustrated in Figure 16.12.

CHAPTER 16 DLLs648

FIGURE 16.12 Package project dialog box.

If you open the Package1.cpp file identified in the dialog box, you’ll see a familiar
code skeleton for the package. This is shown in Listing 16.13.

LISTING 16.13 The DLL Entry Point Function for a Package

#include <basepch.h>

#pragma hdrstop

#pragma package(smart_init)

//—————————————————————————————————————-

20 0672324806 CH16 12/12/02 2:43 PM Page 648

// Package source.

//—————————————————————————————————————-

#pragma argsused

int WINAPI DllEntryPoint(HINSTANCE hinst, unsigned long reason, void*lpReserved)

{

return 1;

}

Notice the DLL entry point function within this code? It looks exactly like a DLL!
The only difference is that instead of windows.h or vcl.h included at the top of the
source, the basepch.h header file is included instead. This header file points to the
core header file that includes VCL and CLX headers, which is what’s needed to
construct a Package. Also, when we compile and build the package, a .bpl file will be
generated instead of a .dll file. This is as far as we really need to go regarding
Packages. Any further discussion would center on VCL-component development,
which is not in the scope of this chapter. For more information on how to build and
use Packages featuring VCL components see Chapter 4, “Creating Custom
Components.”

Using Forms in a DLL
One of the unique things you can do with C++Builder is to put forms and other
visual controls into your DLLs. These controls can be used so that they appear to be
a part of the application that loads the DLL, even though they are not. This can help
make a project more modular and also provides the basis for plug-in support allow-
ing an application to be enhanced and extended independently.

Let’s look at the sample project titled MDIChild_DLL.bpr, which can be found in the
MDIDLL folder on the CD-ROM that accompanies this book. Listing 16.14 provides the
header for the example, and Listing 16.15 provides the source code.

LISTING 16.14 The MDIChild_DLL Header File

#ifndef MDIChild_DLL

#define MDIChild_DLL

extern “C” void __declspec(dllexport)ShowMDIChildForm(HWND CallingApp);

extern “C” void __declspec(dllexport)ShowSDIFormModal(void);

#endif

Using Forms in a DLL 649

LISTING 16.13 Continued

20 0672324806 CH16 12/12/02 2:43 PM Page 649

LISTING 16.15 The MDIChild_DLL Source File

#include <vcl.h>

#include <windows.h>

#pragma hdrstop

#include “MDIChild_DLL.h”

#include “MDIChildForm.h”

#include “SDIForm.h”

#pragma argsused

TApplication *ThisApp = NULL;

HWND Handle;

BOOL WINAPI DllMain(HINSTANCE hinstDLL, DWORD fwdreason, LPVOID lpvReserved)

{

// If the DLL is being unloaded then we need to reset its

// Application instance to what it originally was.

if (fwdreason == DLL_PROCESS_DETACH)

{

if (ThisApp) // any MDIs

Application = ThisApp;

}

return 1;

}

//—————————————————————————————————————-

void ShowMDIChildForm(HWND CallingApp)

{

if (!ThisApp)

{

ThisApp = Application;

Application->Handle = CallingApp;

}

FormMDIChild = new TFormMDIChild(Application);

FormMDIChild->Show();

}

//—————————————————————————————————————-

void ShowSDIFormModal(void)

{

FormSDI = new TFormSDI(NULL);

CHAPTER 16 DLLs650

20 0672324806 CH16 12/12/02 2:43 PM Page 650

FormSDI->ShowModal();

delete FormSDI;

}

Basically, this DLL provides the capability for an application to create a child
window or a modal form. It’s very simple in nature, but provides an example of
some of the effects a DLL can provide for an application. The two principle functions
provided by this DLL are ShowMDIChildForm() and ShowSDIFormModal(). In a moment
we’ll look at an example application that utilizes these functions, but first let’s look
at what is required to embed a form into a DLL.

You’ll notice that in the ShowMDIChildForm() function created for this DLL the
TFormMDIChild class that is used. Likewise, in ShowSDIFormmmodal(), the TFormSDI class is
used. These two classes are identified in the header files listed at the top of our
source code.

#include “MDIChildForm.h”

#include “SDIForm.h”

Using C++Builder, two forms were created; one to represent an MDI child window,
and the other to represent an SDI window. These forms are created just like any
other C++Builder form. Our project file for the DLL links these forms so that they are
contained within the DLL, as illustrated in Figure 16.13. These forms can only be
activated when an application calls either ShowMDIChildForm() or ShowSDIFormModal().

Using Forms in a DLL 651

LISTING 16.15 Continued

FIGURE 16.13 Project Manager dialog for MDIChild_DLL.

Let’s now take a look at some example code that makes use of this DLL functionality.

20 0672324806 CH16 12/12/02 2:43 PM Page 651

Modal SDI Windows
It’s often useful to provide a Single Document Inferface (SDI) form that can appear to
the user to display information or provide a mechanism for input. In our DLL
example, ShowSDIChild() requires no parameter. We simply call the DLL function
within our application, as shown in Listing 16.16.

LISTING 16.16 Code Example Using ShowSDIForm, Which Is Contained Within
MDIChild_DLL

void __fastcall TParent::ShowSDIFormModalClick(TObject *Sender)

{

typedef void __declspec(dllimport)SHOWSDIFORM(void);

SHOWSDIFORM *ShowSDIForm;

// See if the DLL is loaded already.

if (!Dll)

Dll = LoadLibrary(“MDIChild_DLL.dll”);

// Check and make sure the Dll loaded

if (Dll)

{

// Get the address of the function.

ShowSDIForm = (SHOWSDIFORM *)GetProcAddress(Dll, “_ShowSDIFormModal”);

// Make sure we have the address then call the function.

if (ShowSDIForm)

ShowSDIForm();

else

{

ShowMessage(SysErrorMessage(GetLastError()));

// If we couldn’t get the address of the function

// we want to free the Dll.

FreeLibrary(Dll);

}

}

else

{

ShowMessage(SysErrorMessage(GetLastError()));

ShowMessage(“Unable to load the DLL”);

}

}

CHAPTER 16 DLLs652

20 0672324806 CH16 12/12/02 2:43 PM Page 652

When ShowSDIForm() is called, the DLL will then use the ShowModal() method to
display a single instance of the form embedded within the DLL, which will be placed
on top of the calling application. This is illustrated in Figure 16.14.

Using Forms in a DLL 653

FIGURE 16.14 The MDI parent form displaying a modal SDI form.

A more practical example might be a DLL that generates an About box for an appli-
cation. We could simply create an About form with generic fields and text, and
provide a function with enough parameters to alter the form so that it works for a
wide variety of applications. This way, we wouldn’t have to re-create a new About
form for every application. We can just use the DLL that contains the generic about
box. This specific example is demonstrated later in the Using C++Builder DLLs with
Microsoft Visual C++ section.

MDI Child Windows
Let’s now look at how we can support a multiple document interface (MDI) for an
application through our DLL. We might want to us an MDI feature when displaying
multiple windows of similar information to the user. The code used to utilize this
functionality within our example DLL is provided in Listing 16.17.

LISTING 16.17 Code Example Using ShowMDIChild, Which Is Contained Within
MDIChild_DLL

void __fastcall TParent::New1Click(TObject *Sender)

{

typedef void __declspec(dllimport)SHOWMDICHILD(HWND);

SHOWMDICHILD *ShowMDIChild;

20 0672324806 CH16 12/12/02 2:43 PM Page 653

// See if the DLL is loaded already.

if (!Dll)

Dll = LoadLibrary(“MDIChild_DLL.dll”);

// Check and make sure the Dll is loaded

if (Dll)

{

// Get the address of the function.

ShowMDIChild = (SHOWMDICHILD *)GetProcAddress(Dll,

“_ShowMDIChildForm”);

// Make sure we have the address then call the function.

if (ShowMDIChild)

ShowMDIChild(Handle);

else

{

ShowMessage(SysErrorMessage(GetLastError()));

// If we couldn’t get the address of the function

// we want to free the Dll.

FreeLibrary(Dll);

}

}

else

{

ShowMessage(SysErrorMessage(GetLastError()));

ShowMessage(“Unable to load the DLL”);

}

}

//—————————————————————————————————————-

For ShowMDIChild(), we simply provide the Handle to our application as the lone para-
meter. The DLL uses this window handle to associate the application with the MDI
window that will be created. Basically, we trick the DLL into thinking the child form
is part of the application that contains the parent. This is accomplished by switching
the Application instance for the DLL to the Application instance of the calling appli-
cation (but, we keep track of the DLL Application instance for clean up). The end
result is that the MDI child is fully aware of its parent form. The affect of this capa-
bility is illustrated in Figure 16.15.

CHAPTER 16 DLLs654

LISTING 16.17 Continued

20 0672324806 CH16 12/12/02 2:43 PM Page 654

FIGURE 16.15 The MDI parent form with three MDI child forms open within it.

That’s all there is to it. We call these functions containing visual controls, such as
forms, much the same way we would call any other functions within a DLL. What’s
appealing about this approach is that the functionally is totally contained within the
DLL, and our application can hijack and use this functionality at runtime.

Shared Memory Support in a DLL
Another unique capability that we can provide through a DLL built using C++Builder
is support for shared memory between multiple applications.

When a DLL is loaded by an application within Windows, it’s designed to be
protected within the memory space allocated for the application. If two different
applications load and use the same DLL they will not impact each other. In other
words, a separate instance of the DLL would exist for both applications. This is part
of the protection provided by the Windows 32-bit operating system.

There’s a trick, however, that can be applied to create a DLL that can share the same
memory segmentation between multiple applications. This can be really useful if you
have an application that requires data from other applications during its execution
(and you don’t want to use COM, pipes, or mail slots). This capability is a form of
Interprocess Communications (IPC). The specific IPC technique that we’ll look at in
this section is often referred to as shared segmentation.

Over the course of the past several years, a handful of books and magazine articles
focused on the Win32 API have provided examples of DLL shared segmentation that
appear to be exclusive for Visual C++ developers. Within Visual C++, the pragma
data_seg() clause is used to isolate code to be shared across multiple applications

Shared Memory Support in a DLL 655

20 0672324806 CH16 12/12/02 2:43 PM Page 655

that load the same DLL. A Visual C++ code snippet is provided in Listing 16.18 that
demonstrates how to use these pragmas.

LISTING 16.18 Shared Segmentation Area of a Visual C++ DLL Source File

#pragma data_seg(“.sdata”) // start of section — must initialize!

int numAutoDealers = 0;

SAuto AllDealers = {0,0,0,0};’

SAuto Factory = {100, 100, 100, 100};

int NextDealerID = 0;

SDealer Dealer[MaxDealers] = {false, NULL};

Bool DealerLock = false;

#pragma data_seg()

// these will NOT be global/shared to all modules

// (important only to attached component).

SAuto LocalDealer = {0, 0, 0, 0};

int DealerID;

The code block that follows the .sdata segment identifies shared data variables.
These must be initialized in this section to be effective. The code block that follows
the empty data_seg() reverts back to local data, which is not shared across processes.

Also required within Visual C++ is a .def file identifying the shared segmentation
area, which is included as part of the project and used by the linker. An example DEF
file is shown in Listing 16.19.

LISTING 16.19 Shared Segmentation Declaration in a Visual C++ DLL Definition
(DEF) File

LIBRARY SharedSeg ; name of DLL module (output file name)

SECTIONS

.sdata READ WRITE SHARED ; shared data

Unfortunately, C++Builder does not support these techniques that apply for Visual
C++. Fear not though, there is a way.

To fully understand how shared segmentation works, we need a simple example that
illustrates the effectiveness of multiple applications that are able to share data. A
project called Inventory.bpr has been provided in the SharedSegCode folder on the

CHAPTER 16 DLLs656

20 0672324806 CH16 12/12/02 2:43 PM Page 656

CD-ROM. This project provides the basic constructs for a DLL that maintains inven-
tory information among applications that either represent an automobile factory or
an automobile dealer. The files included for this DLL project are illustrated in
Figure 16.16.

Shared Memory Support in a DLL 657

FIGURE 16.16 The Inventory DLL project.

The principal source file in the project is InventoryUnit.cpp. This file is quite lengthy
and it’s best if we don’t get bogged down with the details of each function, therefore,
you are encouraged to examine the file on your own to fully understand the func-
tionality provided by the DLL. However, some interesting code elements are unique
to supporting shared segmentation under C++Builder. They are provided in
Listing 16.20.

LISTING 16.20 Source File of a C++Builder DLL, Which Identifies Variables That Will Be
Shared Among Multiple Instances of the DLL

#include <windows.h>

#pragma hdrstop

#include <stdio.h>

#include <time.h>

#include “InventoryUnit.h”

#include “InventoryDataTypes.h”

SAuto LocalDealer = {10, 10, 10, 10};

int DealerID;

extern int numAutoDealers;

extern SAuto AllDealers;

extern SAuto TotalSold;

extern int NextDealerID;

extern SDealerFactory DealerFactory[MaxDealers];

extern SAuto Factory;

extern bool InventoryLock;

20 0672324806 CH16 12/12/02 2:43 PM Page 657

This is just the top few lines of the DLL code (right before the DLLMain()). You’ll
notice several header files included in the code such as InventoryUnit.h and
InventoryDataTypes.h followed by two variables local only to the DLL, and finally a
number of extern variables. These extern variables are the variables within our shared
segmentation area. The data types associated to all the variables are found in the
InventoryDataTypes.h file. Whereas, the InventoryUnit.h file exposes the functions
provided by the DLL so that outside applications can interface with the DLL and,
through these functions, get at the shared data.

Another important file identified in the project is InventorySharedSeg.cpp, which is
provided in Listing 16.21.

LISTING 16.21 The Declaration and Initialization of the Shared Segmentation Variables
for the C++Builder DLL

#pragma option -zRSHSEG // change default data segment name

#pragma option -zTSHCLS // change default data class name

#include “InventoryDataTypes.h”

// Here is the initialized data that will be shared.

int numAutoDealers = 0;

SAuto AllDealers = {0,0,0, 0}; //false};

SAuto TotalSold = {0,0,0,0};

SAuto Factory = {100, 100, 100, 100}; // start off with 100 cars

int NextDealerID = 0;

SDealerFactory DealerFactory[MaxDealers] = {false, NULL};

Bool InventoryLock = false;

This is probably the most unique and important file of this particular DLL. Notice
the two opening pragma clauses.

#pragma option -zRSHSEG // change default data segment name

#pragma option -zTSHCLS // change default data class name

They tell the compiler that the code to follow is to be included in the same shared
segmentation and class. Next, we see the InventoryDataTypes.h file, again, which is
followed by the variables to be used for containing the data that will be shared
through the DLL. What’s also vital is the initialization of these variables upon decla-
ration. This is similar to what’s required with Visual C++.

The third element of the Inventory DLL is the Inventory.DEF file, which is provided
in Listing 16.22.

CHAPTER 16 DLLs658

20 0672324806 CH16 12/12/02 2:43 PM Page 658

LISTING 16.22 The DEF File Identifying the Shared Segmentation Class for the
C++Builder DLL

LIBRARY Inventory

SEGMENTS

SHSEG CLASS ‘SHCLS’ SHARED

This piece is also vital. The pragma calls that were used in InventorySharedSeg.cpp
identified both SHSEG and SHCLS. These labels are declared in this definition file and
can be named something else if desired.

To share information contained in a shared segmentation variable, the DLL needs to
provide a function for an application to read or set the shared data. Let’s look at just
one function provided in Listing 16.23 that demonstrates this capability.

LISTING 16.23 A C++Builder DLL Function Available to External Applications, Which
Makes Use of the Shared Segmentation Variables

int BuySellCar(int model,int quantity)

{

unsigned int StartTime = clock();

while (InventoryLock)

{

if (StartTime - clock() > MaxWaitTime)

break;

}

InventoryLock = true;

// dealer can’t sell if no cars are available from dealer or factory

if (quantity > 0) // dealer can’t sell back to factory

{

int value = Factory[model];

if (value >= quantity) // can’t deplete the factory below zero

{

LocalDealer[model] += quantity;

AllDealers[model] += quantity;

Factory[model] -= quantity;

}

else // the factory has enough cars for order

{

LocalDealer[model] += value;

AllDealers[model] += value;

Factory[model] -= value;

MessageBeep(MB_OK); // factory doesn’t have enough cars to ship

Shared Memory Support in a DLL 659

20 0672324806 CH16 12/12/02 2:43 PM Page 659

}

}

else // dealer is selling a car

{

int value = LocalDealer[model];

if (value >= abs(quantity)) // can’t deplete all the vehicles

{

LocalDealer[model] += quantity;

AllDealers[model] += quantity;

TotalSold[model] -= quantity;

}

else

{

LocalDealer[model] -= value;

AllDealers[model] -= value;

TotalSold[model] -= value;

MessageBeep(MB_OK); // dealer doesn’t have enough cars to sell

}

}

// notify other Dealers of local dealer’s change Status

for (int i= 0; i< MaxDealers; i++)

{

if (DealerFactory[i].Open) // tell all dealers...

PostMessage(DealerFactory[i].hwnd,

WM_CAR_CHANGE,

(WPARAM) i, // what dealer id changed

(LPARAM) model);// what car changed

}

InventoryLock = false;

return DealerID; // no error, return store id

}

We do a few things here such as performing a lock to ensure that another applica-
tion’s call to this function won’t step on the same data. When locked, we examine
the parameter values and assign the data to the appropriate variable whether it is
local or shared. We also use a custom windows message to notify other applications,
which represent dealers and/or a factory, that new data is available.

Figure 16.17 provides an illustration of our DLL supporting multiple, simultaneous
applications that represent either a factory or car dealerships. All these systems are
able to share and reflect information, even though they are separate processes.

CHAPTER 16 DLLs660

LISTING 16.23 Continued

20 0672324806 CH16 12/12/02 2:43 PM Page 660

FIGURE 16.17 The automobile inventory simulation featuring one Factory application
and three Dealership applications.

This complete project group, including the Factory and Dealership applications as
well as the Inventory DLL, is provided on the CD-ROM in the SharedSegCode folder.
Also, the Visual C++ code that we started with earlier in this discussion could be used
to develop an equivalent Inventory DLL under VisualC++—this is also included on
the CD-ROM. Although the myth had been that shared segmentation could only be
supported by Visual C++, we’ve shown that it can indeed be supported by
C++Builder.

Using Microsoft Visual C++ DLLs with C++Builder
As powerful as C++Builder is, the majority of DLLs developed and used within the
software community are built using Visual C++. Therefore, chances are you will need
to interface your C++Builder code with a Visual C++ DLL. Again, there are two ways
for a DLL to attach to an application. Either it can be loaded in dynamically, or it
can be loaded in statically if the LIB file associated to the DLL is linked at compile
time. If that LIB file is a Microsoft LIB file, the DLL won’t be able to load. The reason
is because of the compatibility issues between the LIB file format for Visual C++ and
C++Builder. Both vendors use different exporting conventions. Microsoft supports
the Common Object Format File (COFF), whereas Borland uses the Object Model
Format (OMF). Fortunately, there is a way to create a Borland OMF import library file
that represents a Microsoft built DLL.

To create a Borland compatible .lib file for a Visual C++ DLL, you can use the
COFF2OMF command-line tool from Borland, which resides in the Bin folder under

Using Microsoft Visual C++ DLLs with C++Builder 661

20 0672324806 CH16 12/12/02 2:43 PM Page 661

C++Builder. COFF2OMF takes two arguments: the first is the source library’s filename;
and the second is the destination’s filename.

Coff2Omf MyDll.lib MyDll_bor.lib

In this example, COFF2OMF will generate a new OMF library file called MyDll_bor.lib.
Within your C++Builder project, be sure to link using this MyDll_bor.lib file as part
of the project file listing.

NOTE

The COFF2OMF utility only works on lib files with simple exported C functions. If C++ classes
are exported, it will not work.

If this doesn’t work, you need to find out how the functions are being exported and
give them an alias that C++Builder will like. To do this, first you should use
Impdef.exe to create a definition file (or .def file), which enables you to view all the
exported functions’ names and ordinal numbers. Next, modify the exported func-
tions in the .def file, so the function looks like this:

Old export section

EXPORTS

_Add@8 =_Add @1

New export section

EXPORTS

Add=_Add@8

After you’ve made the changes to the library, save the .def file. Now you can use
Implib.exe on this file to create a new library file that C++Builder should like.
Implib.exe also takes two parameters: the destination and the source. For example

Implib MyDll.lib MyDll.def

Because you now have a library in C++Builder style, you should be able to include it
in your project and use the DLL and .lib.

See the VCppProject folder on the CD-ROM that accompanies this book for the
complete C++Builder project CallVCppDll.bpr. This uses the Visual C++ DLL
mentioned previously.

Using C++Builder DLLs with Microsoft Visual C++
Sometimes it’s important to be sure that programs created by other compilers such as
Visual C++ or Visual Basic can access a DLL created by C++Builder. This ensures other

CHAPTER 16 DLLs662

20 0672324806 CH16 12/12/02 2:43 PM Page 662

vendors can write applications that can access the DLL. There shouldn’t be much
difficulty for a Visual C++ application to dynamically link a C++Builder DLL by using
LoadLibrary(), GetProcessAddress(), and FreeMemory() during execution. But for static
linking, which requires a LIB file, compatibility between Visual C++ and C++Builder
can be a much different matter. This is because of the different exporting conven-
tions used by the two different companies. As stated earlier, Microsoft supports the
Common Object Format File (COFF), whereas Borland uses the Object Model Format
(OMF). Fortunately, there is a way to create a Microsoft’s COFF import library file
that represents a Borland-built DLL.

To create an MS COFF import library file from a Borland OMF DLL a definition (DEF)
file must first be created. This is accomplished using the Borland IMPDEF command-
line tool at the DOS prompt.

impdef mybcbdll_coff.def mybcbdll.dll

This creates a definition file called mybcbdll_coff.def using the Borland IMPDEF
utility, which extracts the function calls from mybcbdll.dll. Now, to keep the names
consistent so the Microsoft linker knows exactly what to look for in the library repre-
senting the DLL, it’s important to modify the newly created .def file and remove the
additional underscore in front of the function names. For example, suppose the defi-
nition file created previously looks like the following:

LIBRARY MYBCBDLL.DLL

EXPORTS

@@Aboutform@Finalize @4 ; __linkproc__ Aboutform::Finalize

@@Aboutform@Initialize @3 ; __linkproc__ Aboutform::Initialize

_AboutBox @2 ; _AboutBox

_FormAbout @6 ; _FormAbout

_MsgQuery @1 ; _MsgQuery

___CPPdebugHook @5 ; _

Notice the underscores; they need to be removed. The .def file should be modified as
follows:

LIBRARY MYBCBDLL.DLL

EXPORTS

@@Aboutform@Finalize @4 ; __linkproc__ Aboutform::Finalize

@@Aboutform@Initialize @3 ; __linkproc__ Aboutform::Initialize

AboutBox @2 ; _AboutBox

FormAbout @6 ; _FormAbout

MsgQuery @1 ; _MsgQuery

___CPPdebugHook @5 ; ___CPPdebugHook

Using C++Builder DLLs with Microsoft Visual C++ 663

20 0672324806 CH16 12/12/02 2:43 PM Page 663

Next, the Microsoft Library Manager (LIB)c utility, which ships with Microsoft Visual
C++, should be used to create the COFF import library file as follows:

lib /DEF:mybcbdll_coff.def

NOTE

Make sure to have access to the lib command-line program located in the Visual C++ bin
directory by including this folder as part of the system Path.

The mybcbdll_coff.lib, which is generated by issuing the preceding command line,
can now be added and linked by a Microsoft Visual C++ project.

Figure 16.18 provides an illustration of a Visual C++ application using a form
contained with a C++Builder DLL. The code for both the C++Builder DLL and the
Visual C++ example application is provided on the CD-ROM under the MyVCProg
folder. (Library Manager)

CHAPTER 16 DLLs664

FIGURE 16.18 A Visual C++ Application using a C++Builder DLL.

Summary
In this chapter, we’ve examined how to build and use DLLs, which includes static
and dynamic loading. We’ve looked at how we can export functions, classes, and
visual controls such as forms within a DLL. We looked at how a DLL can be used to

20 0672324806 CH16 12/12/02 2:43 PM Page 664

share data among multiple applications through shared segmentation. Finally, we
looked at how both Visual C++ and Borland C++Builder applications and DLLs can
coexist and leverage off of one another.

DLLs are extremely useful for moving code from inside an application and into a
more modular and reusable structure. We can also use DLLs to store resources such as
strings and icons, or contain COM objects as an out-of-process server (see Chapter 17
for details on COM). Much like application development, the sky is virtually the
limit as to what you can do with a DLL. You’re encouraged to find ways to reuse
code within a DLL or Package so that other applications you develop can benefit
from the functionality. DLLs can also be used to provide updates and enhancements
to your applications. With a little innovative thinking, you can also discover ways to
use DLLs as a plug-in technology for your applications. To find out more about DLLs
and packages, see the C++Builder online help and the Win32 Programmer’s
Reference for DLLs.

Summary 665

20 0672324806 CH16 12/12/02 2:43 PM Page 665

20 0672324806 CH16 12/12/02 2:43 PM Page 666

IN THIS CHAPTER

• COM Fundamentals

• Creating and Using COM
Interfaces

• Adding Automation

• Adding Event Sinks

• Writing the COM Server

• ActiveX Controls

• Recommended Resources

17

COM Programming

by Paul Gustavson

The Component Object Model (COM) is an object-
oriented framework for integrating binary software compo-
nents. The COM supports reuse and the interoperability of
objects regardless of the language in which the software
was developed. COM-based technologies include COM
servers and clients, ActiveX controls, object linking and
embedding (OLE), and Automation. The primary platform
for COM is Windows, but it also can be supported with
other platforms such as Unix—although not as easily.

In this chapter, we’ll examine the capabilities provided by
COM and COM-based technologies, and how it is used
with C++Builder. The breadth and depth that COM
provides is extremely vast, therefore, we will only be able
to scratch the surface on COM programming with
C++Builder. However, COM is a powerful mechanism that
is often under utilized. The goal of this chapter is to equip
you with the essentials so that your C++Builder applica-
tions can benefit from COM.

COM Fundamentals
Before we dig into the COM support provided by
C++Builder and examine related code examples, it’s helpful
to understand the fundamental elements of COM. For
those familiar with COM, consider this a review.

COM is designed to enable modular elements of a program
to be built so that they can be used by and within other
programs. The benefits of COM and related COM-based
technologies are two-fold:

21 0672324806 CH17 12/12/02 2:40 PM Page 667

• COM specifies a standard at the binary level for developing and using compo-
nents in any language or development tool.

• COM provides transparency. The user of a component does not have to know
where the component actually resides. Even if the component is in a remote
server (using DCOM), the client uses it as a local component.

Essentially, COM provides a basis for building on your applications as a cooperative
set of independent binary units. This produces an aspect of reusability sometimes
referred to as componentware.

NOTE

COM has become a big part of Windows and provides a viable mechanism for object-oriented
software developers. We can use COM to develop modular elements of a program that can be
used by and within other programs. A current example includes the editor for Microsoft Paint,
a COM-based program, which can be seamlessly integrated into Word. To see this example,
open Word and choose Insert, Object, and Bitmap Image. A copy of the Paint editor should
integrate into Word. This COM activity is called in-place activation and is touted as one of the
Plug-and-Play features of Windows.

The applications you develop can also leverage capabilities available in other COM-based
applications, such a Powerpoint and Word. One of the more recent COM-based applications
provided by Microsoft that many application developers are taking advantage of is the
Microsoft XML (MSXML) parser. Access to the MSXML parser is accomplished using COM. In
fact, the TXMLDocument, which is a VCL class provided with Delphi and C++Builder, leverages
COM to provide a VCL wrapper for the MSXML parser.

COM Architectural Elements
Five basic architecture elements of COM enable the development and distribution of
componentware. These elements are described in Table 17.1. It’s important to under-
stand each one of these.

TABLE 17.1 COM Architecture Elements

Element Description

COM Interface Serves as a contract identifying the public methods used to access a COM

object. Equivalent to an abstract class containing pure virtual functions in

C++. Interfaces are used by a COM Client and recognized by a COM Server.

Note that a COM interface defines usage not implementation.

COM Class Represents the implementation of one or more COM interfaces, often

referred to as a CoClass. Encapsulates the behavior associated to the methods

and access to the properties identified in the COM interface declaration.

Classes are implemented within a COM Server.

CHAPTER 17 COM Programming668

21 0672324806 CH17 12/12/02 2:40 PM Page 668

COM Object The instantiation of a COM Class within a COM Server is a COM Object. A

COM Object is accessed by a COM Client through the COM Interface.

COM Server Provides the interface implementations that a client can use. A COM Class is

instantiated as a COM Object within a COM Server. The two types of servers

are out-of-process and in-process. A server that is its own application (EXE)

operates as an out-of-process server. A server that is represented as DLL or

ActiveX Control Library operates as an in-process server.

COM Client Code or program that utilizes a COM interface to communicate with an

object contained within a COM Server.

These five architectural elements are the basic tenants required for all things COM,
including COM+ and Distributed COM (DCOM). For COM to work effectively each
of these elements need to be in place. Figure 17.1 illustrates how these elements
interoperate.

COM Fundamentals 669

TABLE 17.1 Continued

Element Description

COM
Client

COM
Server

COM
Object

Interface

FIGURE 17.1 COM Client/Server communication via a COM Interface.

This illustrates how COM uses a client-server model. The server contains the COM
Object accessed by a client via a COM Interface. Later in the chapter, we will look at
how these architectural elements are developed and used with C++Builder.

COM Technologies
The other aspect of understanding COM fundamentals is to recognize the various
COM technologies and extensions that exist. Table 17.2 provides a listing of the
COM technologies supported by C++Builder.

21 0672324806 CH17 12/12/02 2:40 PM Page 669

TABLE 17.2 C++Builder COM Support

Item Description

ActiveX Controls A compiled software component representing a COM object

whose properties can be altered at design time and can inte-

grate and extend the functionality of an application at runtime.

ActiveX Library An in-process server DLL that hosts one or more ActiveX

controls or COM objects.

Property Page A dialog that enables modification of ActiveX control properties

at design time.

Active Form A simple ActiveX control preconfigured to run on a Web

browser. Descends from TActiveForm within C++Builder.

Active Server Object A COM Object used to transform an existing application to an

Active Server Page, which is a script that generates HTML pages

and can act as an Automation controller.

Automation Controller A client application that leverages and reflects capabilities

exposed by Automation Objects that are contained within an

external application.

Automation Objects COM objects contained with an application called an

Automation Server that can be controlled by other applications

programmatically at runtime.

COM+ Event Object A COM+ Object used for dispatching server events to registered

clients. Facilitates publish/subscribe paradigm.

COM+ Subscription Object A COM+ Object used for registering a client to receive notifica-

tion of events fired by COM+ publisher applications.

Transactional Object An element of COM+ allowing support for handling a large

number of clients. Features include just-in-time activation, trans-

actions, resource pooling, and security systems.

Type Library Used to define custom interfaces, dispinterfaces, coclasses,

enumerations, aliases, records, unions, and modules. Type

libraries can be identified within the system registry for access

by other applications.

As you can see, most of the COM technologies center on ActiveX, Automation and
COM+. Also identified in this table is the concept of Type Libraries, which we will
utilize in the next section by developing COM interfaces and classes.

NOTE

COM+ is an extension of COM that integrates Microsoft Transaction Server (MTS) and
Microsoft Message Queue (MSMQ), which makes it more suitable for large-scale distributed
development than standard COM. COM+ provides support for transaction control, security,
administration, queued components, and publish-and-subscribe event services. COM+

CHAPTER 17 COM Programming670

21 0672324806 CH17 12/12/02 2:40 PM Page 670

provides a more scalable technology than standard COM, which includes Just-In-Time
Activation and lifetime management. Although our discussion is largely focused on COM,
keep in mind that the techniques and capabilities of COM discussed here are fully supported
by COM+.

Creating and Using COM Interfaces
As identified in Table 17.2, COM takes on many different forms, including ActiveX
controls, Automation, ActiveForms, COM+, and DCOM just to name a few. The one
common capability provided by these various COM technologies is that COM facili-
tates communication between components, applications, clients, and servers through
clearly defined interfaces. These interfaces enable the reuse of software components
and services provided by COM objects.

Therefore, the most important thing about developing and using COM-based soft-
ware is to understand interfaces. As stated earlier, an interface defines a set of public
methods for accessing a COM object, which is contained within a COM server. From
a C++ perspective, an interface is comparable to an abstract class containing pure
virtual functions.

IUnknown

All COM interfaces descend from a base class called IUnknown. The primary purpose of
IUnknown is to expose an interface so that it can be utilized by other applications.
IUnknown is comprised of three virtual methods.

• QueryInterface()

• AddRef()

• Release()

QueryInterface() is used to query and retrieve a reference to a specified interface. The
C++ declaration for QueryInterface() is defined as follows:

virtual HRESULT QueryInterface(REFIID riid, void ** ppvObject);

Notice that there are two parameters associated to QueryInterface(): riid and
ppvObject. The riid parameter is used to identify the interface being requested. If the
interface exists, QueryInterface() will assign a pointer representing the interface to
the ppvObject parameter. If the object doesn’t support the interface, QueryInterface()
sets ppvObject to NULL and returns a nonzero error code.

Creating and Using COM Interfaces 671

21 0672324806 CH17 12/12/02 2:40 PM Page 671

AddRef() is used to increment the reference count for the interface and returns the
reference count value. When the caller is finished with the interface, it should call
the Release() method. Release() will decrement the reference count. If the reference
count drops to zero, the object is automatically freed.

CAUTION

Each of the IUnknown methods are virtual and are redefined by the class that inherits
IUnknown. Therefore, it’s quite possible that a COM object has redefined AddRef() and
Release() so that they do not perform the anticipated reference counting. In this case, the
reference count might never drop to zero. If this occurs, the object will not be automatically
freed, and it will be the responsibility of the application to then free the object.

NOTE

In addition to IUnknown, a custom interface can inherit several other interfaces, which are
identified in Table 17.3

TABLE 17.3 COM Common Interfaces

Interface Description

IDataBroker Design time interface for remote data modules.

IDispatch Interface used for providing Automation. (This is used in some of the

following examples.)

IEnumVARIANT Interface used for enumerating a collection of variant objects.

IFont Interface to a COM font object, which is actually a wrapper around a

Windows font object.

IPicture Interface to a picture object, which is a language-neutral abstraction

for bitmaps, icons, and metafiles, and its properties.

IProvider Provider interface for TClientDataSet.

IStrings Collection Interface for TStrings.

IUnknown The base interface for all other interfaces. Introduces the

QueryInterface() method, which is useful for discovering and using

other interfaces implemented by the same object.

The two most popular interfaces are IUnknown and IDispatch. We will use IDispatch later in
discussing Automation.

The first step when defining a custom interface is to establish a physical name for
the interface. Let’s take a look at a simple C++ example that declares a new COM
interface.

interface DECLSPEC_UUID(“{62648A4D-E9B4-4D92-A3AF-56AB782E233A}”)

IMetricConversion:

CHAPTER 17 COM Programming672

21 0672324806 CH17 12/12/02 2:40 PM Page 672

public IUnknown

{

virtual HRESULT feet_to_meters(

double feet/*[in]*/,

double* meters/*[out]*/) = 0;

virtual HRESULT meters_to_feet(

double meters/*[in]*/,

double* feet/*[out]*/) = 0;

}

Notice how our interface inherits IUnknown. Also, an I prefix is used in our physical
name to identify the type as an interface. This particular example includes five
virtual methods that will need to be implemented as a COM class. In this example,
each one of them returns an HRESULT return type, which is the common return type
for COM methods. It is equivalent to a LongWord type. Possible HRESULT values are
listed in the winerror.h file included with C++Builder. A return value of S_OK indicates
success.

Interface ID
For our interface to work in COM, IMetricConversion is identified (keyed) by a
Globally Unique Identifier (GUID), which is a 128-bit number. It is this GUID, rather
than the C++ type name, that a client uses to reference our interface. When a GUID
is associated with an interface, it is known as an Interface ID (IID). In the previous
example, the IID for the IMetricConversion interface would be IID_IMetricConversion.
In the system registry you’ll find IIDs keyed by the GUID. The value data for each
GUID in the registry identifies the physical name (for example, IMetricConversion),
but programmatically you reference the interface using the IID (for example,
IID_IMetricConversion).

If you do choose to utilize inline code that identifies a GUID for a custom interface
as shown in the previous sample, you can create your own GUIDs as described in the
following tip.

TIP

To generate a GUID at design time within the C++Builder use the Ctrl+Shift+G keystroke in
the Code Editor. To create a GUID programmatically, you should first initialize COM by calling
the Windows API function CoInitialize(), and then call CoCreateGuid() to generate a
unique GUID. C++Builder also generates a GUID when using the Type Library Editor to create
interfaces, which will be discussed later.

For a client to latch on to an interface, the QueryInterface() method is used with the
IID, as shown in the following psuedocode example.

Creating and Using COM Interfaces 673

21 0672324806 CH17 12/12/02 2:40 PM Page 673

extern GUID IID_IMetricConversion;

IUnknown *pServerUnkn;

// some code is left out here

// use OLE to get IUnknown of Server

IMetricConv *pMetricConversion;

pServerUnkn->QueryInterface(IID_MetricConv, (void **)&pMetricConversion);

// use MetricConversion methods

ServerUnkn->Release(); // release server

pMetricConversion->Release(); // release pointer to pMetricConversion object

Keep in mind that this is a pseudocode example. The actual process of getting an
IUnknown pointer to a server that supports the IMetricConversion interface is more
complex than has been shown, and in-depth discussion is beyond our scope at this
time. What’s being shown here is how an instance of a COM object is created by
passing the GUID-oriented class identifier (often called a CLSID). The CLSID is asso-
ciated to the COM class we want to create.

In a short bit, we’ll see how C++Builder alleviates much of the complexities through
Microsoft’s Active Template Library (ATL) with a class factory, specifically the
TCoClassCreatorT template and CoCreateInstance() call. What’s important to under-
stand is that the GUID is utilized within IUnknown’s QueryInterface() to retrieve a
pointer to pMetricConversion. After we latch onto an pMetricConversion object we can
utilize the methods associated to the interface, such as meters_to_feet() or
feet_to_meters(). Also, it’s important for the client to release the object using the
Release() method associated to the IUnknown interface after it’s done.

You might be wondering why a C++ client doesn’t delete a COM object as we would
normally expect since an object was instantiated through the QueryInterface() call.
In COM, it’s not the responsibility of the client to delete an object pointer to a COM
interface implementation. In fact, it should be avoided since other clients might also
access the object within the server. Instead, a client issues a Release() call when it’s
done using the object. The reference counting provided by the IUnknown interface
enables the proper lifetime management of an object. After the reference counting
reaches zero when a Release() call is made, the server is free to delete the object.

Type Libraries
In C++, a header file is often created to share data types such as classes and structures
that can be referenced by other C++ files. Unfortunately the use of a C++ header file
is language-dependent and not practical with COM because it can’t be used natively

CHAPTER 17 COM Programming674

21 0672324806 CH17 12/12/02 2:40 PM Page 674

by other languages such as Delphi or Visual Basic. Therefore, when we create a COM
interface in C++Builder, or in any other COM supported language, we need a mecha-
nism to allow other languages to reference the interface we’ve defined. This is the
capability that COM Type Libraries provide.

Type libraries provide a language-neutral mechanism for defining types such as inter-
faces, methods, classes, and other COM elements that are defined and used by a
server and called on by a client. Type libraries are saved as binary files with a *.tlb
extension or can be contained within the binary file representing the server (*.dll,
*.ocx, *.exe, *.olb). C++Builder provides support for creating and viewing type
libraries through the Type Library Editor. To view a type library, simply select File,
Open from the main menu and select type library from the list of file types.
Figure 17.2 provides an illustration of C++Builder’s Type Library Editor.

Creating and Using COM Interfaces 675

FIGURE 17.2 Borland’s Type Library Editor.

We will use a Type Library to define and contain the interfaces we need for our
examples. Later we’ll also use a type library to create the interface implementation
(CoClass) for a server.

NOTE

All COM interfaces conform to a Virtual Method Table (VMT), or vtable, which maps how an
object’s functions are laid out in memory. A vtable is COM’s way of standardizing the organi-
zation and order of declared interfaces so that multiple languages can utilize it. A standard-
ized layout of these interfaces, which contains virtual methods, is important in allowing
language independence and binary compatibility.

21 0672324806 CH17 12/12/02 2:40 PM Page 675

Creating an Interface in C++Builder
The easiest way to create an interface in C++Builder is through Borland’s Type
Library Editor. This is accomplished by selecting File, New, Other from the IDE’s
main menu. When the New items dialog appears, select on the ActiveX tab. This
view is shown in Figure 17.3.

CHAPTER 17 COM Programming676

FIGURE 17.3 New Items Dialog—ActiveX View.

Within this view, select the Type Library icon to activate the Type Library Editor. The
Type Library Editor contains a toolbar across the top allowing you to create various
COM elements, and a tree view on the left side identifying the elements of your type
library. The root node of the tree view always represents the type library itself. To
create an interface, you need to select the first red glyph in the top toolbar.

You’ll notice in the Attributes tab sheet a GUID is automatically generated for the
interface. You can rename your interface, and identify the type of interface you’re
inheriting, such as IUnknown, in the Parent Interface selection. To add methods to
your interface, select the glyph from the toolbar that looks like a green downward
right arrow. Again, you can rename the method within the Attributes tab sheet. An
example of an interface created using the Type Library Editor is shown in
Figure 17.4.

To generate the implementation for the Type Library, select the Refresh
Implementation glyph on the toolbar. C++Builder generates/updates a source and
header file for your server project that accompanies the TLB. Select F12 to view the
source code for the TLB file. The areas of interest within the header file for the TLB
we created is shown in Listing 17.1.

21 0672324806 CH17 12/12/02 2:40 PM Page 676

FIGURE 17.4 Using Borland’s Type Library Editor to create an interface.

LISTING 17.1 Type Library Header File Declarations

// ***//

// Forward declaration of types defined in TypeLibrary

// ***//

interface DECLSPEC_UUID(“{FAA00638-C897-4689-9AFF-D5B8E53A3A72}”)

IMetricConversion;

typedef TComInterface<IMetricConversion, &IID_IMetricConversion>

IMetricConversionPtr;

// ***//

// Interface: IMetricConversion

// Flags: (320) Dual OleAutomation

// GUID: {FAA00638-C897-4689-9AFF-D5B8E53A3A72}

// ***//

interface IMetricConversion : public IUnknown

{

public:

virtual HRESULT STDMETHODCALLTYPE feet_to_meters(double feet/*[in]*/,

double* meters/*[out]*/) = 0; // [3]

virtual HRESULT STDMETHODCALLTYPE meters_to_feet(double meters/*[in]*/,

double* feet/*[out]*/) = 0; // [4]

};

Creating and Using COM Interfaces 677

21 0672324806 CH17 12/12/02 2:40 PM Page 677

The Type Library Editor enables you to register the Type Library Binary (TLB) for this
interface by selecting the Register Type Library glyph. By registering the TLB, we can
use the interface for supporting development of other applications in the future (that
is, COM servers that implement the interface). This is demonstrated in the following
section.

Implementing an Interface in C++Builder
To implement an interface, we need to create a COM class (called a CoClass) within a
COM server. A Server can include an out-of-process server such as an EXE application
or an in-process server such as DLL.

COM SERVER TYPES

COM servers are binaries that contain the implementation of at least one COM object.
Depending on where the server resides, it can be classified as in-process (inproc), out-of-
process (outproc), or remote. It’s important to select the type of COM Server you wish to
implement.

An inproc server is always a DLL (OCX files, where ActiveX controls usually reside, are actually
DLLs). This kind of server makes its components reside in the client’s address space. The main
advantage is speed. The main disadvantage is that if the server crashes, the client will proba-
bly crash, too, because they share the same memory segment.

An outproc server is an executable. The main advantage with an EXE is that if the server
crashes, the client can potentially recover without much of an incident. The disadvantage is
that these servers typically respond slower.

A remote server resides in a different machine than the client. It can be implemented as a DLL
(using a surrogate process that wraps the DLL) or an EXE file.

COM+/MTS–compatible objects must be developed in DLLs to take full advantage of these
technologies. Therefore, they tend to be the choice when there is no reason to prefer an EXE
file.

Start by creating either an ActiveX Library (DLL) or a standard EXE application,
which will represent the COM server. To create an ActiveX Library, select the ActiveX
library icon in the ActiveX tab of the New items dialog (see Figure 17.3 for refer-
ence). After you have you started the DLL or EXE project, you need to select the
COM Object icon in the ActiveX tab of the New items dialog (again, see Figure 17.3
for reference). This will open the New COM Object dialog as illustrated in
Figure 17.5.

In this illustration, we entered a name for our class. Again, the type that identifies a
COM object is often referred to as a component class or CoClass.

Next, we use the type library containing the IMetricConversion interface we created
earlier through the Interface Selection Wizard. This is shown in Figure 17.6.

CHAPTER 17 COM Programming678

21 0672324806 CH17 12/12/02 2:40 PM Page 678

FIGURE 17.5 New COM Object dialog.

Creating and Using COM Interfaces 679

FIGURE 17.6 Interface Selection Wizard.

After a class has been created using the Type Library Editor, an icon will appear in
the tree view representing our CoClass. This is shown in Figure 17.7.

NOTE

The node in the tree view illustrated in Figure 17.7 represents a new CoClass, which we
expected. If we had checked the Generate Event support code check box in the New COM
Object dialog (see Figure 17.5) the Type Library Editor would have generated what’s called a
dispatch interface (or dispinterface). This combination of a CoClass and a dispinterface is
sometimes referred to as a dual interface, which allows binding on an object to occur two
different ways: late binding and early binding. The dispinterface is an interface used to support
binding at runtime (called late binding), whereas early binding occurs at compile time, by
directly linking to a member function of a vtable representing the object (the custom inter-
face). Basically, the dispinterface provides runtime access for an object so that it can issue
event callbacks to the client. This is part of a two-way automation, which we’ll discuss in more
detail later in the chapter.

21 0672324806 CH17 12/12/02 2:40 PM Page 679

FIGURE 17.7 New CoClass created represented within the Type Library Editor.

When Refresh is selected, C++Builder’s Type Library Editor will autogenerate the code
needed for our class. Actually several file pairs are created as identified in Table 17.4.

TABLE 17.4 Type Library Editor Autogenerated Files When Creating a New Object

File Pair Description

Type Library The C++ TLB code for the COM class. Represented by *_TLB.*.

Active Template Library The C++ ATL code for the COM class. Represented by *_ATL.*.

Implementation The C++ implementation boilerplate. Represented by *Impl.*.

The most useful header/source file pair generated from a developer’s standpoint, is
the implementation boilerplate. Here’s where we can fill in the code needed to
process a method defined by the original interface, as shown in Listing 17.2.

LISTING 17.2 TMetricConversion CoClass C++ Source Code

// TMETRICCONVERSIONIMPL : Implementation of TTMetricConversionImpl

// (CoClass: TMetricConversion, Interface: IMetricConversion)

#include <vcl.h>

#pragma hdrstop

#include “TMETRICCONVERSIONIMPL.H”

#pragma link “MetricConversion_OCX”

///

// TTMetricConversionImpl

CHAPTER 17 COM Programming680

21 0672324806 CH17 12/12/02 2:40 PM Page 680

STDMETHODIMP TTMetricConversionImpl::feet_to_meters(double feet,

double* meters)

{

*meters = feet * 0.3048;

return S_OK;

}

STDMETHODIMP TTMetricConversionImpl::meters_to_feet(double meters,

double* feet)

{

*feet = meters * 3.2808;

return S_OK;

}

As you might except from Borland RAD Tools, the Type Library Editor generates the
method calls within the source code, leaving the implementation up to you, the
developer. Unfortunately, if any modifications are made to the declarative elements
of either the source or header implementation boilerplate, they will not be reflected
in the Type Library Editor—it’s not quite two-way. In this example, after the boiler-
plate code was generated, the code representing the behavior for each method was
added manually.

NOTE

If you have created an inproc ActiveX Library, be sure to register the server after you’re satis-
fied with the implementation. This is accomplished by selecting Run, Register ActiveX Server
from the IDE’s main menu. When successfully registered, your COM server will be accessible
to client applications. Note that you can unregister a COM server by selecting Run, Unregister
ActiveX Server.

To register an outproc Server, simply run the application after each time it is built.

As you can see, the same basic steps apply to creating a class in C++Builder as they
do in creating an interface. It’s just that a class must be implemented as part of a
server. The accompanying CD-ROM contains an example for both an inproc DLL
server and an outproc EXE server within the SimpleCOM folder for this chapter. Just
look for the projects titled MetricConversionServerEXE.bpr and
MetricConversionServerDLL.bpr, respectively.

Creating and Using COM Interfaces 681

LISTING 17.2 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 681

Accessing a COM Object
Now that we have both an inproc and outproc Server, we need to build a simple
application known as a COM client that utilizes the MetricConversion object
contained within these servers.

The ClientExample program for this chapter, which can be found in the SimpleCom
folder for this chapter on the companion CD-ROM, contains two check boxes for
selecting the server type at runtime, two edit fields for entering measurement values,
and two buttons to access the methods of the object to convert these measurements.
Let’s take a look at the code for accessing these two different types of servers, as
shown in Listing 17.3.

LISTING 17.3 ClientExample C++ Source Code

#include <vcl.h>

#pragma hdrstop

#include “ClientForm.h”

#include “MetricConversionServerDLL_TLB.cpp”

#include “MetricConversionServerEXE_TLB.cpp”

//---

#pragma package(smart_init)

#pragma resource “*.dfm”

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)

{

//

}

//---

void __fastcall TForm1::ButtonConvertToFeetClick(TObject *Sender)

{

TCOMIMetricConversion MetricConversion; //

if (RadioButtonEXE->Checked)

MetricConversion =

Metricconversionserverexe_tlb::CoMetricConversion2::Create();

else

MetricConversion =

Metricconversionserverdll_tlb::CoMetricConversion::Create();

CHAPTER 17 COM Programming682

21 0672324806 CH17 12/12/02 2:40 PM Page 682

double meters = EditMeters->Text.ToDouble();

double feet;

MetricConversion->meters_to_feet(meters,&feet);

EditFeet->Text = AnsiString(feet);

}

//---

void __fastcall TForm1::ButtonConvertToMetersClick(TObject *Sender)

{

TCOMIMetricConversion MetricConversion; //

if (RadioButtonEXE->Checked)

MetricConversion =

Metricconversionserverexe_tlb::CoMetricConversion2::Create();

else

MetricConversion =

Metricconversionserverdll_tlb::CoMetricConversion::Create();

double feet = EditFeet->Text.ToDouble();

double meters;

MetricConversion->feet_to_meters(feet,&meters);

EditMeters->Text = AnsiString(meters);

}

For accessing two different servers, there’s really not a lot of code required. We only
need to include the server’s TLB file within our include section. This approach is
unlike the approach required for an application that leverages capabilities provided
by a standard DLL. With a standard DLL, the application needs to either link with an
equivalent LIB at build time or use the Windows LoadLibrary() call at runtime. In
COM, C++Builder provides a utility file called utilcls.h, which contains a class
template called TcoClassCreatorT, which is used to expose Create() and
CreateRemote() routines for clients. This class template is used within our client by
CoMetricConversion within the MetricConversionDLL_TLB.h file as shown here.

typedef TCoClassCreatorT<TCOMIMetricConversion, IMetricConversion,

&CLSID_MetricConversion,

&IID_IMetricConversion> CoMetricConversion;

When we make the CoMetricConversion::Create() call as shown in Listing 17.3, the
class template actually calls CoCreateInstance(), which is what’s used in COM to
instantiate an object of the class associated with a specified class identifier (CLSID).
In our case the class identifier is CLSID_MetricConversion, which was provided through
the typedef declaration that applied the TCoClassCreateorT template.

Creating and Using COM Interfaces 683

LISTING 17.3 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 683

NOTE

According to the Borland Help:

“CoCreateInstance() first ensures that COM is initialized before attempting to create the
specified object. It then connects to the class object specified by [the class identifier], uses its
IClassFactory interface to create an instance, releases the class factory, and returns the
requested interface.”

If the object is successfully created, CoCreateInstance() returns S_OK. Borland’s implementa-
tion of CoCreateInstance() protects against errors that might occur if the object is not avail-
able locally.

Figure 17.8 illustrates this example during execution.

CHAPTER 17 COM Programming684

FIGURE 17.8 Snapshot of the COMClient example.

This example also demonstrates how COM servers, which offer varying levels of
fidelity while still being based on the very same interface, can be developed and
deployed. In this example, the inproc DLL server doesn’t provide nearly the same
amount of fidelity as the outproc EXE application. However, they both support the
same interface.

We can also build clients that utilize a COM server with application development
environments such as Delphi, Visual Basic, Visual C++, or even Java. This is one of
the benefits over a standard DLL approach because a DLL, to be effective and useful
with other languages, needs to be written with C structure function calls and wrap-
pers to any embedded class methods. This isn’t uncommon because many of the
Win32 API calls, which are contained within DLLs, provide straight C functions. But
COM enables us to maintain a more object-oriented design and enforces a guaran-
teed interface after it’s been registered. The same can’t be said for a DLL because
there’s no guarantee it will maintain its interface (and backward compatibility) as it
changes and evolves. Additionally, in COM, an interface implementation can be
accessed and used as objects externally by clients. Furthermore, with the capabilities
of COM such as Distributed COM (DCOM), which will be discussed in the next

21 0672324806 CH17 12/12/02 2:40 PM Page 684

chapter, clients can leverage and access objects provided by remote servers, not just
inproc our outproc servers on a single platform.

OPERATING AS A COM CLIENT

COM Clients are applications that access COM objects implemented by a server application
(EXE) or library (DLL, OCX). Examples of COM Clients include applications that visually reflect
an ActiveX control (called an ActiveX container), utilize the services and capabilities provided
by an external application (called an Automation controller), or simply access objects and
associated data provided through a server application. Although COM Clients vary, the steps
in functioning as a COM client are very similar.

COM Clients first must call either the CoInitialize() or CoInitializeEx() function
provided by the objbase.h Win32 API file. In our example, this call was made for us within
the CoCreateInstance() method, which we described earlier. Initialization needs to be
performed before utilizing any other COM function. CoInitializeEx() provides an additional
parameter over CoInitializeEx() enabling you to specify the type of threading model.
Although there are many types of threading models, the two valid choices for this function
are either apartment-threaded or free-threaded. Threading models are discussed later in this
chapter and are further defined in Table 17.5. The use of CoInitialize() defaults the thread-
ing model to an apartment-threaded.

When initialized, the client can use an interface (or set of interfaces) to a server object and
begin to use its properties and methods. However, the client must have access to the inter-
face, which is often provided by a type library.

Importing a Type Library
Because we created the server for our last example, we were fortunate to have the
server’s TLB header file that we included in our client.

#include “MetricConversionServerDLL_TLB.cpp”

In many instances, however, the C++ TLB source code for a server will not be
provided, only its type library (*.TLB) or within the actual server (*.DLL). Fortunately,
there’s a mechanism to import a type library within C++Builder.

For a client to digest the COM-type elements a server exposes (including classes and
interfaces), follow these steps:

1. Click Project, Import Type Library in the BCB IDE. The Import Type Library
dialog appears (see Figure 17.9 later in this chapter).

2. In this example, uncheck the Generate Component Wrapper check box.
Having this checked indicates that you want component wrappers to be gener-
ated for all CoClasses that are not flagged as Hidden, Restricted, or PreDeclID.
An unchecked control will generate the type library definitions, but not the
component wrappers.

Creating and Using COM Interfaces 685

21 0672324806 CH17 12/12/02 2:40 PM Page 685

3. In the Import Type Library list box, select the name of the Type Library of your
server. In our example, it is the MetricConversionServerDLL Library (Version 1.0).
Press the Create Unit button. The file MetricConversionServerDLL_TLB.cpp will be
added to your project.

CHAPTER 17 COM Programming686

FIGURE 17.9 Importing the MetricConversionServerDLL Type Library.

NOTE

If you compare the server sources TLB files MetricConversionServerDLL_TLB.cpp and
MetricConversionServerDLL_TLB with the C++ files generated using the Import Type Library
wizard, you will notice that they are equivalent. However, because COM is a binary standard,
there is no need to distribute or locate the TLB header file of a server. Also, remember that a
server can be written in any COM-supported programming language, not just C++.

The main advantage of distributing the Type Library is that it can be used to generate specific
language declarations of all the components and types it describes. That will guarantee that
your components (interfaces, dispinterfaces, CoClasses, and other elements) are capable of
being used by any development platform.

Adding Automation
In the DLL chapter, we developed a mock simulation environment representing a
Honda automobile factory and various dealerships. The collaboration needed to
achieve this interoperability between the Inventory keeper (our server) and the
factory and dealerships (our clients), was provided through our DLL using shared
segmentation and external functions. This DLL provided an example of automation.

21 0672324806 CH17 12/12/02 2:40 PM Page 686

Automation is the capability of an application to control, effect and/or access objects
within another application.

COM provides an even easier way to support automation. In fact, we can create an
outproc COM server with the same functionality as our DLL that automated the
Honda factory/dealership simulation, which we created in Chapter 16. A COM
example of this automation is provided on the companion CD-ROM. You’re encour-
aged to take a look at this example by opening the ProjectGroup1.bpr file within the
AutoBusiness folder for this chapter. This project group includes the
InventoryKeeperServer, Dealership, and Factory projects. The InventoryKeeperServer
project is an outproc server that mimics the functionality provided in the original
shared segmented DLL from Chapter 16. The Dealership and Factory projects repre-
sent COM client applications.

We can also take an existing application such as the MP3 player we created originally
in Chapter 15, and provide an automation object so that other applications can
benefit from the MP3 player’s capabilities. Let’s take a look at how this is done.

Adding Automation to an Existing Application
To follow along with this example of adding automation to an existing application,
copy the MP3Demo folder from Chapter 15 and name it as MP3DemoCOM. Open the project
within this folder using C++Builder. We’re going to convert the MP3Player into a
COM server. This is done by selecting File, New, Other, and then selecting the
ActiveX tab within the New Items dialog. Next, select the Automation Object glyph.
This will enable us to define both the COM interface and the CoClass within the
same Type Library. This is illustrated in Figure 17.10.

Adding Automation 687

FIGURE 17.10 Adding a COM Automation Object to the MP3Player through the New
Automation Object dialog.

If you haven’t already, fill in the CoClass Name entry field and Description, then
click the OK button. At this time, we don’t want to select Generate Event Support
Code within this dialog. We’ll explain this selection within the Event Sinks section

21 0672324806 CH17 12/12/02 2:40 PM Page 687

that follows. Also, an Apartment thread will work fine for our example. (For more on
threading models see the Threading Model note later in this chapter).

After the OK button is selected, the Type Library Editor will appear, as illustrated in
Figure 17.11.

CHAPTER 17 COM Programming688

FIGURE 17.11 Type Library Editor for our MP3Player.

You’ll notice that within this figure we’ve added three methods to the IMP3Player
interface that was created: Play, Stop, and Open. We could have easily added more
methods such as a Pause method. Within the Open method, a File parameter has been
added based on the LPSTR type. Our client will use this method to pass in the file-
name it wants to open. Incidentally, the parent interface for IMP3Player is IDispatch,
which is used to support COM automation.

After we’re content with the methods we need for our interface, we can then select
the Refresh Implementation glyph on the top of the Type Library Editor. This will
generate the implementation code discussed earlier in Table 17.4. Listing 17.4
displays the implementation code we need for tapping into our MP3Player.

LISTING 17.4 MP3ObjectImpl.cpp Source File

// MP3OBJECTIMPL : Implementation of TAppObjectImpl (CoClass: AppObject,

// Interface: IAppObject)

#include <vcl.h>

#pragma hdrstop

#include “MP3ObjectImpl.h”

#include “mp3Demo.h”

21 0672324806 CH17 12/12/02 2:40 PM Page 688

///

// TAppObjectImpl

STDMETHODIMP TMP3ObjectImpl::Open(LPSTR File)

{

Form1->OpenMP3File(File);

return S_OK;

}

STDMETHODIMP TMP3ObjectImpl::Play()

{

Form1->PlayButtonClick(NULL);

return S_OK;

}

STDMETHODIMP TMP3ObjectImpl::Stop()

{

Form1->StopButtonClick(NULL);

return S_OK;

}

One of the few changes that we need to make to the original MP3 player code is the
addition of the OpenMP3File() method for assigning a file to the player. This imple-
mentation is shown in Listing 17.5.

LISTING 17.5 Code Modification to MP3Player Program

void __fastcall TForm1::OpenMP3File(char* filename)

{

bool was_playing = mp3_.playing();

if (mp3_.open(filename))

{

FileText->Caption =

“ “ + ExtractFileName(AnsiString(filename));

UpdateLengthInfo();

MP3Timer->Enabled = true;

if (was_playing) mp3_.play();

}

}

Adding Automation 689

LISTING 17.4 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 689

//---

void __fastcall TForm1::OpenButtonClick(TObject *Sender)

{

if (OpenDialog1->Execute())

{

OpenMP3File(OpenDialog1->FileName.c_str());

}

}

Before our MP3Player program can compile, we need to make a few more minor
changes to the MP3Player code. Within the header file called mp3Demo.h, we use a
message handler template map to field windows messages. Now that we’re linking in
with COM, our MESSAGE_HANDLER template has been slightly altered within one of the
header files we include. To alleviate this problem, simply change MESSAGE_HANDLER to
VCL_MESSAGE_HANDER, as shown here.

public: // User declarations

void __fastcall OpenMP3File(char* filename);

__fastcall TFormMP3(TComponent* Owner);

BEGIN_MESSAGE_MAP

VCL_MESSAGE_HANDLER(MM_MCINOTIFY, TMessage, MMMciNotify)

VCL_MESSAGE_HANDLER(WM_ENTERSIZEMOVE, TMessage, WMEnterSizeMove)

VCL_MESSAGE_HANDLER(WM_MOVING, TMessage, WMMoving)

END_MESSAGE_MAP(TForm)

Also, we need to include the header file that defines MM_MCINOTIFY at the top of our
mp3Demo.h file.

#include “MCIDevice.h”

And, for this particular example, we need to move the declaration mp3_ from the
private section of our form class into the mp3Demo.cpp file so that it’s in proper scope
for supporting any COM Controllers.

#pragma package(smart_init)

#pragma resource “*.dfm”

TForm1 *Form1;

MP3Device mp3;

CHAPTER 17 COM Programming690

LISTING 17.4 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 690

Next, we just need to compile and link our program, and run one time to register it.
A view of the application during execution is illustrated in Figure 17.12. Notice that
it looks and acts the same as it did before!

Adding Automation 691

FIGURE 17.12 The MP3Player during execution.

Creating an Automation Controller
Now, we just need to create a simple automation controller application that can take
advantage of the capabilities provided by the MP3Player we just modified.

Start by creating a brand-new application. Then, select Project, Import Type Library
from the main menu. The Import Type Library dialog will appear. Select Proj_mp3Demo
Library, as shown in Figure 17.13.

FIGURE 17.13 The Import Type Library.

Select Create Unit for this dialog to create a TLB unit file that will be added to your
project. Next, include the header file for the TLB within your Unit’s header file as
follows:

#include “Proj_mp3Demo_TLB.h”

21 0672324806 CH17 12/12/02 2:40 PM Page 691

Within the private section of your class, add the following declaration.

private: // User declarations

TCOMIMP3Object MP3Player;

Within the client example provided on the CD-ROM, I’ve added a Directory List Box
and a File List Box that enables the application to operate like a file explorer. In this
case, it’s only interested in MP3 files. A button has been added that will play a
selected MP3 file. The code for this Automation Controller is shown in Listing 17.6.

LISTING 17.6 MP3FileViewerForm.cpp Source Code

/*---

MP3FileViewerForm.cpp

Chapter 17 - COM Automation Controller Example

created by Paul Gustavson, 2002

---*/

#include <vcl.h>

#pragma hdrstop

#include “MP3FileViewerForm.h”

//---

#pragma package(smart_init)

#pragma resource “*.dfm”

TForm1 *Form1;

//---

__fastcall TForm1::TForm1(TComponent* Owner)

: TForm(Owner)

{

MP3Player = NULL;

}

//---

void __fastcall TForm1::Button1Click(TObject *Sender)

{

// let’s make sure the file exists

if (FileListBox1->FileName.Length() == 0)

{

MessageBeep(MB_OK);

return;

}

CHAPTER 17 COM Programming692

21 0672324806 CH17 12/12/02 2:40 PM Page 692

// if (!FileExists(EditFileDll->Text))

if (!FileExists(FileListBox1->FileName))

{

ShowMessage(AnsiString(“Please select a file, and try again. “));

MessageBeep(MB_OK);

return;

}

// instantiate COM object

if (!MP3Player) // if we haven’t instantiated MP3 COM object, do it now

MP3Player = Proj_mp3demo_tlb::CoMP3Object::Create();

else // stop anything already playing

MP3Player->Stop();

MP3Player->Open(FileListBox1->FileName.c_str());

MP3Player->Play();

}

//---

void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)

{

if (MP3Player)

MP3Player->Stop(); // make sure it’s stopped.

}

//---

void __fastcall TForm1::SpeedButtonApplyMaskClick(TObject *Sender)

{

FileListBox1->Mask = EditMask->Text;

}

The key piece of code to analyze in this listing is the Button1Click() event handler.
This handler is triggered when the user presses the button to play the selected MP3
file. If the MP3_object is NULL, it is instantiated using the CoMP3Player::Create()
method. If it has been previously instantiated, a call is made to ensure that any
current files playing have been stopped. It then loads and plays the new file using
the methods defined by the IMP3Player interface. Figure 17.14 illustrates the
Automation activities brought on by the COM Controller during execution.

Adding Automation 693

LISTING 17.6 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 693

FIGURE 17.14 The MP3FileViewer program utilizing the MCI MP3 Player Demo
through COM Automation.

The concepts we used to create an automation controller for the MP3Player can be
applied for creating automation controllers for other available COM objects.
Microsoft Word, for instance, can be leveraged by Automation Controller’s that you
create. For more information on this topic, see the Microsoft Office Integration
chapter in the C++Builder 5 Developer’s Guide (Chapter 21), which is provided in
PDF format on the book CD-ROM.

THREADING MODELS

When defining a class that will be instantiated as an object for a COM Server, it’s important to
identify the type of threading model that should be used. The threading model identifies how
an object can be accessed in a multithreaded environment. More specifically, it identifies how
COM should respond to (or serialize) simultaneous calls to the interface. Within C++Builder,
the selection of the threading model in the New COM Object dialog for Automation objects,
Active Server objects, ActiveX controls, and COM objects determines how the object will be
registered. Table 17.5 identifies the various types of threading models that can be chosen.

TABLE 17.5 Automation Object Threading Models

Threading Model Description

Single All client calls to an object are handled by only one common thread

within the server. Not well suited for a server that needs to accommo-

date a large volume of clients simultaneously.

CHAPTER 17 COM Programming694

21 0672324806 CH17 12/12/02 2:40 PM Page 694

Apartment Client calls to an object are handled by separate threads. In this situa-

tion, multiple threads can access global memory, which needs to be

protected. However, objects can safely access their own instance data

(object properties and members). This is also known as single-

threaded apartment (STA).

Free An instantiated object can be accessed by multiple threads within the

server at any one time. In this situation, it’s important to protect both

instance data and global memory. This is also known as multithreaded

apartment (MTA).

Both Each object instance can be called by multiple threads simultaneously,

except that all callbacks supplied by clients are executed in the same

thread.

Neutral Allows multiple clients access to an object on different threads simulta-

neously, but COM arbitrates access ensuring no two method calls

conflict. Even though calls are arbitrated, access to global memory and

instance data must still be protected. This is not suitable for objects

with a user interface. Only available under COM+ within C++Builder,

otherwise mapped to the Apartment model.

Adding Event Sinks
If you recall from Chapter 16, for our InventoryKeeper DLL to share information with
the various clients (the Honda factory and dealerships), Windows Messaging was
used for notification through a PostMessage() call. On reception of a notification
from the DLL, a client, such as Dealer or Factory, would than make a function call
back into the DLL to retrieve additional information.

With COM, we can do away with PostMessage() calls and client polling by setting up
a server to inform clients of new information establishing an outgoing interface
specifically called a dispinterface, which is short for dispatch interface. In a
moment, we will see how a dispinterface can be implemented using the Type
Library Editor.

For this to work, a client, not the server, will need to implement the outgoing inter-
faces established by the server. Specifically, the client will need an object that imple-
ments a dispinterface. Such an object is called an event sink.

In short, an event sink is a COM object on the client-side that implements an outgo-
ing interface (dispinterface) associated to a COM object within a server. The client
can then connect its event sink to the server through a connection point and start

Adding Event Sinks 695

TABLE 17.5 Continued

Threading Model Description

21 0672324806 CH17 12/12/02 2:40 PM Page 695

receiving events. The server fires events to the client through the methods of the
sink object interface. Figure 17.15 illustrates how it works.

CHAPTER 17 COM Programming696

Event
Sink

…

Client

IEvents

COM
object

Server
IX

…

FIGURE 17.15 Event sinks and connection point–based events.

Writing the COM Server
To demonstrate how to fire an event from a server to a client, we’ll create an
example program that models a restaurant. In this restaurant customers enter, wait
to be seated, order their food, wait for their food, eat, pay their bill, and eventually
leave. Customers, in our example, will be represented as client applications that will
connect to the restaurant using COM interfaces, and will receive service using COM
outgoing interfaces. We’ll explore building a customer application in a few moments,
but first let’s look at what it takes to create our Restaurant Automation Server.

For starters, we create a standard GUI application. This will be an outproc server.
Next, we create a COM Automation Object through the File, New, Other, ActiveX
selection, which are the steps we performed earlier. Figure 17.16 illustrates the New
Automation Object dialog for the object we’ll create.

FIGURE 17.16 The New Automation Object dialog for the CustomerAction object.

Notice, in this example we are using the Free threading model, and we have checked
the Generate Event Code check box. When OK is selected, the Type Library Editor
will appear with an interface, a disp interface, and CoClass. We’re going to add a few
records and enumerate to this type library, as shown in Figure 17.17.

21 0672324806 CH17 12/12/02 2:40 PM Page 696

FIGURE 17.17 The Type Library Editor for the CustomerAction object and its related
interfaces, enumerations, and records.

Again, when we click Refresh, the TLB code will be generated for our server. Also
added to this example is a lot of functionality exposed through the GUI by declaring
properties and methods within the public section of our form class. These are acces-
sible by the ConnectionActionImpl code.

You’re encouraged to look at the complete Form code within the example source
provided on the book CD-ROM, which can be found under the COM_Restaurant folder
for this chapter. We’ll look at just a couple of methods provided by the form class
that illustrate the two-way Automation. First, however, we’ll concentrate on the code
for the ConnectionActionImpl.cpp file, as shown in Listing 17.7.

LISTING 17.7 ConnectionActionImpl.cpp Source Code

// CUSTOMERACTIONIMPL : Implementation of TCustomerActionImpl

// (CoClass: CustomerAction, Interface: ICustomerAction)

// written by Paul Gustavson, 2002.

#include <vcl.h>

#pragma hdrstop

#include “CUSTOMERACTIONIMPL.H”

Writing the COM Server 697

21 0672324806 CH17 12/12/02 2:40 PM Page 697

#include “RestaurantForm.h”

///

// TCustomerActionImpl

static TCOMCriticalSection CS;

STDMETHODIMP TCustomerActionImpl::EnterRestaurant(long* customerID)

{

long result = Form1->AddCustomer(this);

*customerID = result;

return S_OK;

}

STDMETHODIMP TCustomerActionImpl::RequestSeating(long customerID)

{

Form1->RequestSeating(customerID);

return S_OK;

}

STDMETHODIMP TCustomerActionImpl::PlaceOrder(long customerID, TOrder Order)

{

Form1->PlaceOrder(customerID,Order);

return S_OK;

}

STDMETHODIMP TCustomerActionImpl::RequestCheck(long customerID)

{

Form1->RequestCheck(customerID);

return S_OK;

}

STDMETHODIMP TCustomerActionImpl::PayBill(long customerID,

PaymentType Type, double Amount)

{

Form1->PayBill(customerID,Type, Amount);

return S_OK;

}

STDMETHODIMP TCustomerActionImpl::LeaveTip(long customerID, double Amount)

{

CHAPTER 17 COM Programming698

LISTING 17.7 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 698

Form1->LeaveTip(customerID,Amount);

return S_OK;

}

STDMETHODIMP TCustomerActionImpl::ExitRestaurant(long customerID)

{

Form1->RemoveCustomer(customerID);

return S_OK;

}

As you can see, there’s not a lot of code that we’ve had to add within this file. For
each method, we simply call methods contained in the main application, and imme-
diately return an S_OK response to the client. What’s important to understand is that
a majority of these Form1 methods are asynchronous; that is, any call we make to
Form1 returns immediately. Form1 simply puts items such as a customer waiting for a
seat, waiting for food, or waiting for a check into a Timer queue to model the simu-
lation. Let’s take a look at some of the important elements of the Form1 code.

Listing 17.8 reflects the code used to identify when a customer has entered the
restaurant.

LISTING 17.8 The AddCustomer() Method

long __fastcall TForm1::AddCustomer(TCustomerActionImpl* ca)

{

// MessageBeep(MB_OK);

long customerID = nextcustomerid;

nextcustomerid++;

numcustomers++;

customer[customerID-1] = TCustomer(lasttimesec); // initialize;

customer[customerID-1].status = Entered;

customer[customerID-1].customerID = customerID;

customer[customerID-1].customeraction = ca;

LabelNumCustomers->Caption = AnsiString(numcustomers);

StringGridCustomers->Cells[0][customerID] = AnsiString(customerID);

StringGridCustomers->Cells[1][customerID] = “Entered”;

StringGridCustomers->Cells[4][customerID] =

SimulationTime(customer[customerID-1].timein);

Writing the COM Server 699

LISTING 17.7 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 699

// if (numseats > 0)

// StringGridCustomers->Cells[1][customerID] = “Seated”;

return customerID;

}

What’s important about this code is that a pointer to TCustomerActinImpl has been
passed in as a parameter. This parameter identifies the interface to the event sink
object for the customer. We’ll use this later so that the server can fire events back to
the customer when seating is ready, when an order is ready, or when the bill is ready,
and so on.

Listing 17.9 reflects the code used to capture an order by the customer.

LISTING 17.9 The PlaceOrder() Method

void __fastcall TForm1::PlaceOrder(long customerID, TOrder order)

{

if (customerID >= 1)

{

StringGridCustomers->Cells[1][customerID] = “Waiting For Meal”;

customer[customerID-1].order = order;

customer[customerID-1].status = WaitingForFood;

if (!customer[customerID-1].timer)

{

customer[customerID-1].timer = new TTimer(Form1);

customer[customerID-1].timer->OnTimer =

customer[customerID-1].timerevent;

}

customer[customerID-1].timer->Interval = (time_ToServeMeal * 60000)

/ multiplier;

customer[customerID-1].timer->Enabled = true;

}

// click on StringGrid for this customer - show the order

StringGridCustomers->Row = customerID;

StringGridCustomersSelectCell(Application,0,customerID,NULL);

}

CHAPTER 17 COM Programming700

LISTING 17.8 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 700

The most important thing to understand in this code is that when a customer order
comes through, a unique customer-oriented timer is established, which will be trig-
gered when the simulation time for cooking and serving a meal is reached.

Let’s take a look at the timer event handling code in Listing 17.10.

LISTING 17.10 The TCustomer::timerevent() Event Handler

void __fastcall TCustomer::timerevent(TObject *Sender)

{

// if time up

timer->Enabled = false;

if (status == WaitingToBeSeated)

{

Form1->StringGridCustomers->Cells[1][customerID] = “Seated with menu”;

status = PreparingToOrder;

customeraction->Fire_OnSeatingReady(customerID);

// set up timer for waiter to check to see if customer is ready to order

timer->Interval = (Form1->time_ReadyToOrder * 60000) / Form1->multiplier;

timer->Enabled = true;

}

else if (status == PreparingToOrder)

{

Form1->StringGridCustomers->Cells[1][customerID] = “Ready To Order Query”;

customeraction->Fire_OnReadyToOrderQuery();

}

else if (status == WaitingForFood)

{

Form1->StringGridCustomers->Cells[1][customerID] = “Meal Has Arrived”;

status = Eating;

customeraction->Fire_OnOrderReceived();

}

else if (status == Eating)

{

}

else if (status == WaitingForBill)

{

Form1->StringGridCustomers->Cells[1][customerID] = “Bill On Table”;

Form1->StringGridCustomers->Cells[2][customerID] =

FloatToStrF(bill, ffCurrency, 0, 2);

customeraction->Fire_OnCheckReceived(bill);

Writing the COM Server 701

21 0672324806 CH17 12/12/02 2:40 PM Page 701

}

else if (status == WaitingForChange_Card)

{

Form1->StringGridCustomers->Cells[1][customerID] =

“Change / Charge Card Returned”;

status = AfterDinnerChat;

customeraction->Fire_OnChangeReturned(change);

}

else if (status == AfterDinnerChat)

{

}

else if (status == Departed)

{

}

}

This code is used to handle time-oriented simulation events. When a simulation
event of interest occurs, the appropriate event sink method is fired back to the
customer client application. This enables the client to not be held up in a synchro-
nous wait for processing to complete. It also frees the client from polling the server
for status updates and demonstrates an effective way for a server to notify external
applications without resorting to PostMessage() calls.

Implementing Event Sinks within a Client
Now we need to create a client that not only calls the methods of an interface which
is handled by our Restaurant server, but can set up the event sink method handlers
for the Restaurant server to provide notifications of completed events.

To set up the triggering of events, we need to create a class that implements our
event sinks. C++Builder provides a template class TEventDispatcher found in utilcls.h
to help us write IDispatch-based event sinks. It implements the IDispatch interface
for servers to call when firing events. Its InvokeEvent() method is used to forward the
server calls to their corresponding event handlers. InvokeEvent() is defined as follows:

// To be overriden in derived class to dispatch events

virtual HRESULT InvokeEvent(DISPID id, TVariant* params = 0) = 0;

TEventDispatcher also exposes some methods for connecting the sink to, and discon-
necting it from, a server: ConnectEvents() and DisconnectEvents(), respectively.

CHAPTER 17 COM Programming702

LISTING 17.10 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 702

We will use the TEventDispatcher template for creating a class that will delegate the
processing of the COM event to a C++Builder VCL event handler. Our implementa-
tion of the event sinks class to support the ICustomerActionEvents dispinterface is
provided in Listing 17.11.

LISTING 17.11 RestaurantSink.h File

/*---

RestaurantSink.h

Chapter 17 - COM Automation Server Example w/ Event Firing

created by Paul Gustavson, 2002

---*/

#if !defined(RESTAURANTSINK_H__)

#define RESTAURANTSINK_H__

#include <atlvcl.h>

#include <atlbase.h>

#include <atlcom.h>

#include <ComObj.HPP>

#include <utilcls.h>

#include “RestaurantWaiter_TLB.h”

typedef void __fastcall (__closure * TOrderReceivedEvent)(void);

typedef void __fastcall (__closure * TCheckReceivedEvent)(double Amount);

typedef void __fastcall (__closure * TChangeReturnedEvent)(double Amount);

typedef void __fastcall (__closure * TSeatingReadyEvent)(long customerID);

typedef void __fastcall (__closure * TReadyToOrderQuery)(void);

//---

// Create a class that handles ICustomerActionEvents

class TRestaurantSink :

public TEventDispatcher<TRestaurantSink, &DIID_ICustomerActionEvents>

{

protected:

// Event field

TOrderReceivedEvent FOnOrderReceived;

TCheckReceivedEvent FOnCheckReceived;

TChangeReturnedEvent FOnChangeReturned;

TSeatingReadyEvent FOnSeatingReady;

TReadyToOrderQuery FOnReadyToOrderQuery;

// Event dispatcher

HRESULT InvokeEvent(DISPID id, TVariant* params)

Writing the COM Server 703

21 0672324806 CH17 12/12/02 2:40 PM Page 703

{

if ((id == 1) && (FOnOrderReceived != NULL)) // OnOrderReceived

FOnOrderReceived();

else if ((id == 2) && (FOnCheckReceived != NULL)) // OnCheckReceived

FOnCheckReceived(params[0]);

else if ((id == 3) && (FOnChangeReturned != NULL)) // OnChangeReturned

FOnChangeReturned(params[0]);

else if ((id == 4) && (FOnSeatingReady != NULL)) // OnReadyToOrderQuery

FOnSeatingReady(params[0]);

else if ((id == 5) && (FOnReadyToOrderQuery != NULL)) // OnReadyToOrderQuery

FOnReadyToOrderQuery();

return S_OK;

}

// Reference to the event sender

CComPtr<IUnknown> m_pSender;

public:

__property TOrderReceivedEvent OnOrderReceived =

{ read = FOnOrderReceived, write = FOnOrderReceived };

__property TCheckReceivedEvent OnCheckReceived =

{ read = FOnCheckReceived, write = FOnCheckReceived };

__property TChangeReturnedEvent OnChangeReturned =

{ read = FOnChangeReturned, write = FOnChangeReturned };

__property TSeatingReadyEvent OnSeatingReady =

{ read = FOnSeatingReady, write = FOnSeatingReady };

__property TReadyToOrderQuery OnReadyToOrderQuery =

{ read = FOnReadyToOrderQuery, write = FOnReadyToOrderQuery };

public:

TRestaurantSink() :

m_pSender(NULL),

FOnOrderReceived(NULL),

FOnCheckReceived(NULL),

FOnSeatingReady(NULL),

FOnReadyToOrderQuery(NULL)

{

CHAPTER 17 COM Programming704

LISTING 17.11 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 704

}

virtual ~TRestaurantSink()

{

Disconnect();

}

// Connect to Server

void Connect(IUnknown* pSender)

{

if (pSender != m_pSender)

m_pSender = pSender;

if (NULL != m_pSender)

ConnectEvents(m_pSender);

}

// Disconnect from Server

void Disconnect()

{

if (NULL != m_pSender)

{

DisconnectEvents(m_pSender);

m_pSender = NULL;

}

}

};

#endif //RESTAURANTSINK_H__

This code exhibits the class needed to handle ICustomerActionEvents. Five methods
are associated to this event sink object: OnOrderReceivedEvent(),
OnCheckReceivedEvent(), OnChangeReturnedEvent(), OnSeatingReadyEvent(), and
OnReadyToOrderQuery(). We also implemented an OnInvokeEvent() method, which is
our dispatcher event method. Within this method, which is invoked by the server,
we examine the id being fired and check to see if an event method has been assigned
to the appropriate dispatch event. Upon a match, the client’s event method that was
associated to the dispatch event within the class will be triggered. This header file
needs to be included within the header file for our client application.

#include “RestaurantSink.h”

Writing the COM Server 705

LISTING 17.11 Continued

21 0672324806 CH17 12/12/02 2:40 PM Page 705

Within the private section of our form class we need to identify not only the
TCOMICustomerAction interface we desire, but the event sink object created in
RestaurantSink.h.

private: // User declarations

long myid;

TCOMICustomerAction Restaurant;

TRestaurantSink FRestaurantSink;

double bill;

Within the protected section of our form class for the client, we need to declare the
event methods.

protected:

void __fastcall OnOrderReceived();

void __fastcall OnCheckReceived(double amount);

void __fastcall OnChangeReturned(double amount);

void __fastcall OnSeatingReady(long customerID);

void __fastcall OnReadyToOrderQuery();

Next, we need to connect these dispatch events within our client, which is depicted
in Listing 17.12.

LISTING 17.12 FormCreate() method

void __fastcall TForm2::FormCreate(TObject *Sender)

{

Restaurant = Restaurantwaiter_tlb::CoCustomerAction::Create();

// Connect dispatch events:

FRestaurantSink.OnOrderReceived = TForm2::OnOrderReceived;

FRestaurantSink.OnCheckReceived = TForm2::OnCheckReceived;

FRestaurantSink.OnChangeReturned = TForm2::OnChangeReturned;

FRestaurantSink.OnSeatingReady = TForm2::OnSeatingReady;

FRestaurantSink.OnReadyToOrderQuery = TForm2::OnReadyToOrderQuery;

FRestaurantSink.Connect(Restaurant);

Restaurant->EnterRestaurant(&myid);

Caption = “Customer #” + AnsiString(myid);

}

In this method, we first establish an instance to the interface. Then, we assign event
methods defined by our client application to the event sink dispatch methods. Also
important is to establish a connection point between the event sink object and the

CHAPTER 17 COM Programming706

21 0672324806 CH17 12/12/02 2:40 PM Page 706

instance to the interface using the event sink’s Connect() method, which we defined
in the RestaurantSink.h file.

Listing 17.13 shows the code for both a call to a COM object method and an event
method handler.

LISTING 17.13 ButtonPlaceorderClick() and OnOrderReceived()

void __fastcall TForm2::ButtonPlaceOrderClick(TObject *Sender)

{

TOrder order;

order.Drink = FormMenu->RadioGroupDrink->ItemIndex;

order.Appetizer = FormMenu->RadioGroupAppetizer->ItemIndex;

order.Dessert = FormMenu->RadioGroupDessert->ItemIndex;

order.Entree = FormMenu->RadioGroupEntree->ItemIndex;

order.SideDish = FormMenu->RadioGroupSideDish->ItemIndex;

Restaurant->PlaceOrder(myid,order);

LabelStatus->Caption = “Placed Order. Waiting for meal...”;

FormMenu->Close(); // close menu

ButtonPlaceOrder->Enabled = false;

ButtonMenu->Enabled = false;

}

//---

void __fastcall TForm2::OnOrderReceived()

{

LabelStatus->Caption = “Meal has arrived. You are now eating.”;

ButtonRequestBill->Enabled = true;

}

The first method represents the code used when the Customer is ready to order his
meal. The actual call made to the object method contained within the server is
Restaurant->PlaceOrder(), which returns immediately—it’s asynchronous. When the
simulation event is complete, the Restaurant server triggers the client’s
OnOrderReceived() event method.

Figure 17.18 illustrates an active Restaurant serving multiple Customers simultane-
ously.

You’re encouraged to look at the code for the Restaurant and the Customer client to
further examine the intricacies of how they both work. Figure 17.19 shows the
composition for the projects associated to these two applications.

Writing the COM Server 707

21 0672324806 CH17 12/12/02 2:40 PM Page 707

FIGURE 17.18 An execution run of the Restaurant Server Application with multiple
Customer Clients.

CHAPTER 17 COM Programming708

FIGURE 17.19 Project group for the Restaurant Server Application and Customer Client
Application.

NOTE

Be sure to add the C++Builder ATL folder to your include path, as shown in Figure 17.20.
Otherwise, you’ll receive a batch of errors upon compilation indicating the ATL header files

21 0672324806 CH17 12/12/02 2:40 PM Page 708

cannot be found. The ATL folder and its related files are key elements in C++Builder for
supporting COM development.

ActiveX Controls 709

FIGURE 17.20 Adding the ATL path to the Project Options.

ActiveX Controls
Another topic that we could spend a whole chapter discussing is ActiveX controls.
Briefly, ActiveX controls are inproc COM servers representing a software component
that can be integrated into an existing application to add functionality. In many
ways, they are very similar to a VCL control, except it’s COM-based and can be used
by a number of applications that support ActiveX controls including C++Builder,
Delphi, Visual Basic, and Internet Explorer.

Within C++Builder, you can add ActiveX controls to your component palette in the
IDE just like a VCL control. The object inspector can be used to modify the proper-
ties of an ActiveX control dropped on a form. Property editors can sometimes be
provided within an ActiveX control, which enables further property manipulation.
To activate a property editor, simply right-click the ActiveX control that has been
dropped on your form.

C++Builder provides the ActiveX Control Wizard for creating ActiveX controls based
on a VCL. This is illustrated in Figure 17.21.

This wizard enables you to create an ActiveX control that wraps a VCL class. To acti-
vate this wizard, start with a clean project by selecting File, New, Other, and select
the ActiveX tab within the New Items dialog as illustrated in Figure 17.3. Then,
select the ActiveX Control glyph.

Here are the steps associated to creating an ActiveX control within C++Builder.

1. Choose or create a new VCL control that forms the basis of your ActiveX
control.

21 0672324806 CH17 12/12/02 2:40 PM Page 709

FIGURE 17.21 The ActiveX Control Wizard.

2. Activate the ActiveX control wizard and identify the VCL you’ve selected or
created in Step 1.

3. To create one or more property pages for the ActiveX control, use Borland’s
ActiveX property page wizard found on the New Items dialog under the
ActiveX view.

4. If you created a property page, associate it with the ActiveX control.

5. Build and Register your ActiveX control.

6. Test your ActiveX control by embedding it within potential target applications.

7. If your ActiveX control is Web-capable (through Internet Explorer), deploy it
on the Web.

You’ll notice when creating ActiveX controls that you start with creating the class to
an object before you create the COM interface to our control. This is somewhat in
reverse from what we did earlier. After the control is written, the type library can be
generated.

Another form of ActiveX control that we can create is an Active Form, which is
intended for deployment on the Web. To begin to create an Active Form, start with a
clean project by selecting File, New, Other, and select the ActiveX tab within the
New Items dialog as illustrated in Figure 17.3. Then, select the Active Form glyph.
This will enable you to use the IDE’s form designer to create a visual control, such as
a dialog, that can be deployed and accessed using the Web.

The Borland Help provides additional information on creating ActiveX controls and
Active Forms. You’re encouraged to look at this material for further details.

CHAPTER 17 COM Programming710

21 0672324806 CH17 12/12/02 2:40 PM Page 710

Recommended Resources
We’ve only scratched the surface on using COM. For more information on
C++Builder COM programming, the following books and resources are recom-
mended.

• C++Builder 4 Unleashed, Kent Reisdorph, et al.; 1999, Sams Publishing; ISBN
0-672-31510-6

• C++Builder 5 Developer’s Guide, Hollingworth, Butterfield, Swart, Allsop, et al.;
2001, Sams Publishing; ISBN 0-672-31972-1

To learn more about COM/COM+

• Essential COM, Don Box; 1997, Addisson-Wesley Pub; ISBN 0-201-63446-5

• Inside COM, Dale Rogerson; 1997, Microsoft Press; ISBN 1-57231-349-8

• Inside Distributed COM, Guy Eddon and Henry Eddon; 1998, Microsoft Press;
ISBN 1-57231-849-X

• Understanding COM+, David S. Platt; 1999, Microsoft Press; ISBN 0-7356-0666-8

• Mastering COM and COM+, Ash Rofail and Yasser Shohoud; 1999, Sybex, Inc.;
ISBN 0-7821-2384-8

For more information on ATL

• ATL Internals, Brent Rector and Chris Sells; 1999, Addison Wesley; ISBN 0-201-
69589-8

Delphi related readings

• Delphi6 Developer’s Guide, Teixeira, Pacheco; 2002, Sams Publishing; ISBN 1-672-
32115-7

• Delphi COM Programming, Eric Harmon; 2000, Macmillan Technical Publishing;
ISBN 1-57870-221-6

Internet resources

• nntp://newsgroups.borland.com/borland.public.cppbuilder.

activex

• http://bdn.borland.com/cpp/

• http://www.cetus-links.org/oo_ole.html

Recommended Resources 711

21 0672324806 CH17 12/12/02 2:40 PM Page 711

• http://www.techvanguards.com/

• http://msdn.microsoft.com/

Summary
In this chapter we’ve looked at the fundamentals of COM, which included examin-
ing how to create and use interfaces, how to add automation to an existing applica-
tion and create automation controllers, and how to add event sinks so that client
applications can be notified of new information by a server object. We also quickly
looked at how to create ActiveX controls.

COM has become a foundation for allowing Windows programmers to write and
share reusable software modules that can interoperate with other software modules.
COM interfaces and objects, and the clients and servers that utilize them, can be
implemented by virtually any development language and environment that supports
pointers. This includes Visual Basic, C++, and Delphi. In essence, COM enables
Windows programmers to achieve essentially three things:

• Writing reusable code and software modules that can be used by a wide variety
of programming languages. This includes ActiveX controls.

• Controlling and utilizing elements of other applications. This is accomplished
using type libraries and OLE automation.

• Enabling applications and their objects to interoperate with other applications
located on remote machines. This is provided through Distributed COM
(DCOM).

It is almost certain that COM will continue to have a strong presence within the
Windows and .NET programming community in the future. The topics we covered
provide the essentials in using COM and its related extensions including COM+ and
DCOM. DCOM is discussed in the next chapter.

CHAPTER 17 COM Programming712

21 0672324806 CH17 12/12/02 2:40 PM Page 712

PART IV

Distributed Computing

IN THIS PART

18 DCOM: Going Distributed

19 SOAP and Web Services with BizSnap

20 Distributed Applications with DataSnap

21 DataSnap Multitier Connections

22 Web Server Programming with WebSnap

22 0672324806 PTIV 12/12/02 2:40 PM Page 713

22 0672324806 PTIV 12/12/02 2:40 PM Page 714

IN THIS CHAPTER

• What Is DCOM?

• The DCOMCnfg Utility Tool

• Field Testing DCOM

• Programming Security

18

DCOM: Going
Distributed

by Mark Cashman

COM objects are an intrinsic part of the Windows oper-
ating system today.

More and more of the Windows operating system services
are being exposed in the form of COM objects, which are
taking the place of traditional Application Programming
Interfaces (APIs) from DLLs.

Until recently, COM objects suffered from one big weak-
ness—they could only be used from within the confines of
a single computer. It was impossible to move the compo-
nents to different machines on the network to create a
distributed system.

To address this problem, Microsoft created DCOM. DCOM
extends COM by providing the capability to activate COM
objects remotely. But, DCOM also introduces new security
and programming issues.

What Is DCOM?
Distributed COM is Microsoft’s solution enabling COM
objects to work on different machines across the network.
It extends COM by enabling objects to be accessed
remotely.

If you take a COM object and put it out somewhere sepa-
rated from the client across the network, you get a DCOM
object. DCOM is just plain COM with distribution and
security added to it. Technically speaking, DCOM was
made possible by the extension of Remote Procedure Calls
(RPCs) to Object RPC, and it first appeared when Microsoft
released Windows NT 4.0.

23 0672324806 CH18 12/12/02 2:38 PM Page 715

DCOM has been ported to some Unix flavors and can, with some work and platform
restriction, be used as a cross-platform solution for distributed systems.

Despite other great competing technologies, DCOM is a mainstream technology.
This is becuase of the growing acceptance by the corporate market of the Windows
NT and Windows 2000 operating system family.

DCOM uses the concept of location transparency, which means that you can move a
COM server to a different machine on the network without requiring code modifica-
tion. Neither the server nor the client needs to be concerned about where the other
is running. They can be on the same machine, on a local area network, or in a wide
area network such as the Internet. For the client, the location of the server is a
Registry setting that can be easily modified. This is unlike more comprehensive
distributed solutions such as CORBA or J2EE that use a name server to identify the
location of a remote object and, therefore, offer a truer location transparency.

DCOM clients and servers must abide by the rules of authentication and authoriza-
tion. This implies that clients must perform some sort of log in to access the
machine where the server lives. Servers must authenticate the client, verifying
whether he is really who he says he is, and authorize access by checking whether the
user has the necessary privileges. DCOM applications can rely on security settings
stored in the Registry or can change their security settings through code. These two
kinds of security are known as declarative security and programmatic security, respec-
tively.

Unfortunately, security is often one of the biggest challenges in DCOM—DCOM
itself is not that complex. This means a significant amount of this chapter isn’t
about DCOM per se, but actually is about making security work for DCOM objects.

Windows OS Family and DCOM
DCOM comes standard with Windows 98, Windows NT 4.0, Windows 2000, and
Windows XP, but you have to add it to Windows 95. You can download DCOM95
from Microsoft’s Web site at http://www.microsoft.com/com or you can do a full install
of Internet Explorer 4/5 in Windows 95 to get DCOM95 installed.

NOTE

If your network has a Domain Controller, you should configure your Windows 95 and 98
machines to use user-level security; otherwise, you won’t be able to perform authenticated
DCOM calls.

Windows 95 and 98 are really only suited for use as DCOM clients because they can’t
dynamically launch and execute DCOM servers and don’t have native security.

CHAPTER 18 DCOM: Going Distributed716

23 0672324806 CH18 12/12/02 2:38 PM Page 716

The DCOMCnfg Utility Tool
The DCOM Configuration Utility (DCOMCnfg.exe) is the tool that you use to modify
DCOM settings that are specific to a server or that apply system-wide acting on all
registered servers on a given machine.

When you run the DCOMCnfg utility tool, you’re presented with a dialog-based screen
(see Figure 18.1), which exhibits the following tabs: Applications, Default Properties,
Default Security, and Default Protocols.

The DCOMCnfg Utility Tool 717

FIGURE 18.1 The DCOMCnfg configuration utility tool.

NOTE

All relevant discussion of DCOMCnfg.exe in this chapter is based on the version that comes
with Windows NT 4.0 with Service Pack 4 or later and Windows. Windows 9X presents a
slightly modified version of this configuration tool. Windows XP uses the Component Services
Administrative Tool, invoked from the Control Panel Administrative Tools, which looks and
acts differently. See the Windows XP Help in the Component Services tool for more informa-
tion on the special features of that tool.

Global Security Settings
The Applications tab shows a list of all the servers containing the AppID Registry key
that are registered on the machine. You can select any server and click the Properties
button to have access to its settings.

The Default Properties tab (see Figure 18.2) is the place where you can completely
enable or disable DCOM on the computer and configure system-wide default levels
of authentication and impersonation.

23 0672324806 CH18 12/12/02 2:38 PM Page 717

On this tab, you also have the option to enable or disable COM Internet Services
(CIS). CIS introduces new features to the DCOM model that enable clients and
servers to communicate in the presence of proxy servers and firewalls. You can learn
more about CIS on the Microsoft MSDN Web site at http://msdn.microsoft.com/
library/backgrnd/html/cis.htm.

CHAPTER 18 DCOM: Going Distributed718

FIGURE 18.2 The Default Properties tab.

Authentication can be configured for when a client first connects, when a method
call is made, or on every network packet passed between the client and server.

You can turn off authentication by selecting None at the Default Authentication
Level combo box. Although risky, this would allow users without valid security
credentials to have access to your server. Users coming from the Internet, for
example, could benefit from this option.

The Default Impersonation Level combo box controls whether the server can deter-
mine the identity of the connected client and, if it can, use this identity to access
system resources acting like the client itself. You can choose from the following:

• Anonymous—The client identity is unavailable.

• Identity—The server can impersonate the client only to obtain its identity.

• Impersonate—The server can impersonate the client to access local system
resources on the client’s behalf.

• Delegate—The server can impersonate the client to access local and remote
resources on the client’s behalf. Requires Windows 2000 running Kerberos as
the Security Service Provider (SSP).

23 0672324806 CH18 12/12/02 2:38 PM Page 718

In the Default Security tab (see Figure 18.3), you can configure system-wide defaults
for access, launch, and configuration permissions.

The DCOMCnfg Utility Tool 719

FIGURE 18.3 The Default Security tab.

Default Access Permissions relates to who is allowed or denied access to servers regis-
tered on the machine. If you want to let any user access your server, you can allow
access permission to the built-in account Everyone.

Default Launch Permissions relates to who is authorized to load and run a server
process. If you want to let any user execute your server, you can allow launch
permission to the built-in Everyone account. Note that this option cannot be set
programmatically.

Default Configuration Permissions states the precise type of access (Read, Full
Control, or Special Access) you can set under HKEY_CLASSES_ROOT Registry key. This
effectively controls user access rights to Registry entries related to DCOM setting.

The Default Protocols tab (see Figure 18.4) is used to arrange the ordering and avail-
ability of network protocols used by DCOM. You can configure DCOM for access
over firewalls by selecting the desired network protocol and clicking the Properties
button. Unless you have a good understanding of network protocols and operating
system administration, you should leave these options unchanged.

Bear in mind that all options in the Default Properties tab and Default Security tab
operate system wide. Modifying those options are likely to break some server
installed on the system. The best course of action is to only change the settings for
an explicit server component.

23 0672324806 CH18 12/12/02 2:38 PM Page 719

FIGURE 18.4 The Default Protocols tab.

Per-Server Security Settings
Selecting a server from the Applications tab and clicking the Properties button gives
you access to the security options related to that specific server.

The General tab (see Figure 18.5) on the Easy DCOM Type Library 1.0 Properties
dialog shows the server’s registered name, its type, local path, and authentication
level. You can use the Authentication Level combo box to modify the authentication
level of the server.

CHAPTER 18 DCOM: Going Distributed720

FIGURE 18.5 The General tab.

23 0672324806 CH18 12/12/02 2:38 PM Page 720

From the Location tab (see Figure 18.6), you can select from where the server will be
executed. For example, by checking the Run application on the following computer
option and entering the name of the computer, you can change the location from
where the server will be activated.

The DCOMCnfg Utility Tool 721

FIGURE 18.6 The Location tab.

The Security tab (see Figure 18.7) enables you to choose between using the system-
wide default security settings or using custom security settings. All custom options
work the same as the options showed for the Default Security tab (refer to
Figure 18.3).

FIGURE 18.7 The Security tab.

23 0672324806 CH18 12/12/02 2:38 PM Page 721

The Identity tab (see Figure 18.8) is where you configure the account under which
the server will run. The options are

• The interactive user—Uses the account of the user who happens to be logged
on at the server’s machine. When there is no one logged on the system, the
activation request will fail. This option is useful for debugging purposes
because the server might have access to the desktop of the logged user.

• The launching user—Uses the account of the user that requested the server
object. A new copy of the server process will be created for every distinct client.
This is the default option and must be avoided because it is not good for
distributed applications.

• This user—Uses a specific account that can be a local or domain account. You
can elect to use an already defined account or create a new one to suit your
needs. Most of the time, this is the preferred option to choose from because
you know beforehand the privileges your server will have when it’s running.

CHAPTER 18 DCOM: Going Distributed722

FIGURE 18.8 The Identity tab.

DCOM will use the default global settings stored in the Registry on behalf of every
server that has not been customized through the use of the DCOMCnfg utility tool. If
you do customize the settings of a server, those settings will take precedence over
the global ones. Nevertheless, programmatic security will always take precedence
over declarative security.

You should always remember to configure Launch Permissions setting the users or
group of users authorized to launch your server. Forgetting to do so might make
your server unavailable for remote-client access.

You are not going to cover the Endpoints tab in this chapter. Please refer to the
DCOMCnfg documentation for further information.

23 0672324806 CH18 12/12/02 2:38 PM Page 722

Field Testing DCOM
You’re going to create a very simple COM server and client to experiment with
DCOM. This server will be able to return the name of the remote host computer and
its current date/time.

The server will be packaged as an EXE binary. You won’t use a DLL packaged server
because it requires a surrogate program running on the server computer to work out-
of-process. The example will use type library marshaling to avoid the registration of a
proxy/stub marshaling DLL. You can refer to http://msdn.microsoft.com for a variety
of articles that can help you get a better understanding of COM marshaling. For the
purposes of this chapter, just think of it as packaging function parameters for trans-
mission over the network.

Creating the Server Application
You’re free to create whatever directory structure you want, but it is a good idea to
use a main folder with two subfolders named Server and Client for this project.

You can find the code for the example server application in the EasyDCOM\Server
folder on the CD-ROM that accompanies this book.

To create the server application, do the following:

1. Launch C++Builder.

2. Select File, New, Application from the main IDE menu.

3. Save the project in the Server folder as EasyDCOM.bpr renaming Unit1.cpp to
MainUnit.cpp.

4. Switch to the main project’s form.

5. Press F11 to activate the Object Inspector.

6. Type frmMain at the Name Property.

7. Design your project’s main form to look like the screen in Figure 18.9.

Field Testing DCOM 723

FIGURE 18.9 The EasyDCOM main form.

8. Select File, New from the main menu.

9. Switch to the ActiveX tab.

23 0672324806 CH18 12/12/02 2:38 PM Page 723

10. Double-click Automation Object. The New Automation Object dialog
will appear.

11. Type HostInfo in the CoClass Name field.

12. Enter Easy DCOM Type Library 1.0 in the Description field and click OK.

13. Select View, Type Library to bring the Type Library Editor (TLE) to the front.

14. On the left pane, select the IHostInfo interface.

15. From the TLE toolbar, click the New, Property button down arrow, and select
Read Only from its pop-up menu.

16. Rename Property1 to Info.

17. On the right pane, select the Parameters tab and change Parameters type to
BSTR* (see Figure 18.10).

CHAPTER 18 DCOM: Going Distributed724

FIGURE 18.10 The TLE editor showing the read-only property info.

18. Press the Refresh button in the TLE editor to update the source files.

19. Switch to the HostImpl.cpp file and add the following code to the get_Info()
method:

STDMETHODIMP THostInfoImpl::get_Info(BSTR* Value)

{

try {

char lpBuffer[MAX_COMPUTERNAME_LENGTH + 1];

unsigned long nSize = sizeof(lpBuffer);

23 0672324806 CH18 12/12/02 2:38 PM Page 724

if (GetComputerName(lpBuffer, &nSize) == 0)

return HRESULT_FROM_WIN32(GetLastError());

WideString strVal = AnsiString().

sprintf(“Date and time at %s is: %s”,

lpBuffer, DateTimeToStr(Now()));

*Value = strVal.Detach();

}

catch(Exception &e) {

return Error(e.Message.c_str(), IID_IHostInfo);

}

return S_OK;

};

20. Press F9 to compile and run the server.

Have a look at the code for the Info property of your EasyDCOM server.

You start by calling the Win32 API function GetComputerName() to store the computer
name in the lpBuffer variable returning the appropriate HRESULT on error.

Then, you instantiate a WideString object based on the computer name and its
current date and time.

You invoke the Detach() method of the WideString object to release ownership from
the underlying BSTR because COM states that an out parameter has to be released by
the client, not the server. Detach() relinquishes ownership over the returned string.

Creating the Client Application
You can find the code for the example client application in the EasyDCOM\Client
folder on the CD-ROM that accompanies this book.

To create the client application, do the following:

1. Start a new application and save the project in the Client folder as
EasyDCOMClient.bpr, renaming Unit1.cpp to MainUnit.cpp.

2. Design your project’s main form, adding the necessary components to look like
the screen in Figure 18.11. When done, rename your components as follows:

Original Name New Name

Form1 frmMain

GroupBox1 gbxLocal

Field Testing DCOM 725

23 0672324806 CH18 12/12/02 2:38 PM Page 725

GroupBox2 gbxRemote

Edit1 txtLocal

Edit2 txtRemote

Button1 cmdInfo

Button2 cmdFinish

CHAPTER 18 DCOM: Going Distributed726

Original Name New Name

FIGURE 18.11 The EasyDCOMClient main form and its components.

3. Open EasyDCOMClient.cpp and add the following:

USEUNIT(“..\Server\EasyDCOM_TLB.cpp”);

4. Open MainUnit.h and add the following:

#include “..\Server\EasyDCOM_TLB.h”

5. Take advantage of C++Builder technology by declaring a smart interface vari-
able to your EasyDCOM server.

Add the following code under TfrmMain class private section:

TCOMIHostInfo m_objHost;

6. Edit the project’s main form source code and add the following code to its
constructor:

char lpBuffer[MAX_COMPUTERNAME_LENGTH + 1];

unsigned long nSize = sizeof(lpBuffer);

GetComputerName(lpBuffer, &nSize);

txtLocal->Text = AnsiString().sprintf(“Date and time at %s is: %s”,

lpBuffer, DateTimeToStr(Now()));

7. C++Builder also provides us a creator class that has static methods for creating
local and remote instances of your object.

23 0672324806 CH18 12/12/02 2:38 PM Page 726

Double-click the cmdInfo button and add the following code to its OnClick
event:

if (!m_objHost.IsBound()) {

AnsiString strHost;

if (InputQuery(“Create Server”, “Enter computer name:”,

strHost)) {

if (strHost.IsEmpty())

OleCheck(CoHostInfo::Create(m_objHost));

else

OleCheck(CoHostInfo::CreateRemote(WideString(strHost),

m_objHost));

WideString strValue;

OleCheck(m_objHost.get_Info(&strValue));

txtRemote->Text = strValue;

}

}

8. Double-click the cmdFinish button and add the following code to its OnClick
event:

Close();

9. Click the project’s main form, press F11 to activate the Object Inspector, and
switch to its Events tab. Double-click the OnClose event and write the following
code:

m_objHost.Unbind();

10. Press F9 to compile and run the client. Click the Go Get button to display the
Create Server dialog. When asked for the machine name, leave it blank and
click OK to create the server locally.

Let’s review the code for the client application.

The constructor code for the main form retrieves and shows the name of the local
computer and its date and time.

The handler code for the cmdInfo button calls the IsBound() method on the smart
interface object verifying whether the server object is already instantiated and
proceeds accordingly.

Field Testing DCOM 727

23 0672324806 CH18 12/12/02 2:38 PM Page 727

The InputQuery() function receives the NETBIOS name, DNS name, or IP address of
the remote machine and stores it in the strHost variable.

If strHost is then empty, the server is locally instantiated using the Create method;
otherwise, the CreateRemote() method accepts the machine name or IP address stored
in strHost and tries to instantiate the server at the specified machine. OleCheck() is
used to verify the returned HRESULT, throwing an exception on fail.

The get_Info() method is invoked passing the address of a WideString variable. This
variable is then filled with information returned from the hosting machine, and its
value is shown in the txtRemote edit control.

Before closing the form, the Unbind() method of the smart interface object is invoked
to release the server.

Now it’s time to move your EasyDCOM sample to another machine on the network.
Copy EasyDCOM.exe to a local drive on the remote machine and run it once to
perform self-registration.

NOTE

If you choose a Windows 9X machine to host your server, it won’t be able to automatically
launch the server; you’ll have to launch it manually.

Configuring Launch and Access Permissions
Let’s assume, for the sake of your discussion, that the remote and client machines
participate in a Microsoft network domain.

You’re going to grant launch permission to anyone participating on the network, so
proceed as follows:

1. Run DCOMCnfg.exe and double-click Easy DCOM Type Library 1.0 from the
Applications tab list box. On XP, use the Component Services Administrative
Tool from the Control Panel, and pick Component Services, Computers, My
Computer, DCOM Config. Using this tool is outside the scope of this chapter,
but information can be found in the help file.

2. For Windows 2000 and NT, go to the Security tab and select Use Custom
Launch Permissions. Click the Edit button, and then the Add button. Double-
click the built-in account Everyone, and then click OK (see Figure 18.12). This
states that anyone on the network can now load and run the server, but you
still need to grant access to its services.

3. From the Security tab, select Use custom access permissions. Click the Edit
button, and then the Add button. Select the local or domain account to which
you want to grant access permission, and then click OK (see Figure 18.13).

CHAPTER 18 DCOM: Going Distributed728

23 0672324806 CH18 12/12/02 2:38 PM Page 728

FIGURE 18.12 Granting Launch Permission to the Everyone account.

Field Testing DCOM 729

FIGURE 18.13 Granting access permission to a selected account.

Configuring Identity
You’re going to choose which account the server will use when running. The best
option, as mentioned previously, is to select This User and enter an account that
gives the server all the necessary privileges it needs when running.

Go to the Identity tab (refer to Figure 18.8). Select This user and enter or browse for
the username. Enter the password, confirm it, and click OK.

23 0672324806 CH18 12/12/02 2:38 PM Page 729

Running the Example
What have you accomplished in terms of DCOM security for your sample
application?

First, you allowed anyone to launch your server. Then, you selected the user or group
of users that have clearance to access your server. Finally, you solved the identity
problem of your server by specifying the account it would use when running.

Now you’re now ready to go.

Start EasyDCOMClient.exe on the client machine, click the Go Get button, and enter
the remote machine name or IP address when asked. You should see something like
the screen in Figure 18.14.

CHAPTER 18 DCOM: Going Distributed730

FIGURE 18.14 EasyDCOMClient talking to its server on a remote machine.

Programming Security
So far, you have looked at declarative security, but what about programmatic secu-
rity? Well, as matter of fact, COM is implicitly making calls into its security API
for us.

What happens is that under the hood, COM reads the settings stored in the registry
and calls the CoInitializeSecurity() function.

CoInitializeSecurity() is called exactly once for each process that uses COM, estab-
lishing process-wide security settings. It configures the security packages that will be
used by COM, the authentication level for each process, and which users will be
allowed access to the object.

CoInitializeSecurity Function Parameters
CoInitializeSecurity() is, by far, the most important COM security API function and
has the following parameters:

PSECURITY_DESCRIPTOR pVoid, //Points to security descriptor

LONG cAuthSvc, //Count of entries in asAuthSvc

SOLE_AUTHENTICATION_SERVICE * asAuthSvc,

//Array of names to register

23 0672324806 CH18 12/12/02 2:38 PM Page 730

void * pReserved1, //Reserved for future use

DWORD dwAuthnLevel, //Default authentication level

DWORD dwImpLevel, //Default impersonation level

SOLE_AUTHENTICATION_LIST * pAuthList,

//Authentication information for

// each authentication service

DWORD dwCapabilities, //Additional client and/or

// server-side capabilities

void * pReserved3 //Reserved for future use

Some parameters apply to both servers and clients, whereas others apply solely to
clients or to servers exclusively.

The first parameter, pVoid, applies only when the process acts like a server. It’s used
to control access permissions, and its value can be a pointer to an AppID GUID, a
SECURITY_DESCRIPTOR, or an IAccessControl interface.

If a NULL pointer value is passed on pVoid, COM will grant access to anyone. This
achieves the same functionality as using DCOMCnfg to grant access permission to the
built-in Everyone account. If a valid pointer is passed on pVoid, the dwAuthnLevel (fifth
parameter) cannot be set to RPC_C_AUTH_LEVEL_NONE.

The second and third parameters, cAuthSvc and asAuthSvc, are also used for servers.
They are used for registering the authentication packages with COM and refer to an
array of SOLE_AUTHENTICATION_SERVICE structures.

The SOLE_AUTHENTICATION_SERVICE structure has the following members:

typedef struct tagSOLE_AUTHENTICATION_SERVICE {

DWORD dwAuthnSvc;

DWORD dwAuthzSvc;

OLECHAR* pPrincipalName;

HRESULT hr;

} SOLE_AUTHENTICATION_SERVICE;

You can pass -1 (cAuthSvc) and NULL (asAuthSvc) to use the default security packages
available on the system. NTLM (NT Lan Manager) is the only authentication service
available on Windows NT 4.0, but you can use Kerberos with Windows 2000.

The fifth parameter, dwAuthnLevel, is used for setting the authentication level and
applies to both clients and servers. It is equivalent as setting per-server authentica-
tion level (refer to Figure 18.5) through the use of DCOMCnfg. For this parameter, the
value specified by the server is the minimum allowed. The actual value used will be
the higher of the client and server values. If the client calls in with a lower value, the
call fails.

Programming Security 731

23 0672324806 CH18 12/12/02 2:38 PM Page 731

The sixth parameter, dwImpLevel, applies only to clients. It sets the impersonation
level the client has toward the server. It is equivalent to setting the global imperson-
ation level (refer to Figure 18.2) through the use of DCOMCnfg. The clear advantage
here is that you’re no longer dependent on system-wide settings; you’re now in
control of the impersonation level, and this per-client setting cannot be achieved by
the use of DCOMCnfg.

You can choose from one of the following impersonation levels:

RPC_C_IMP_LEVEL_DEFAULT

RPC_C_IMP_LEVEL_ANONYMOUS

RPC_C_IMP_LEVEL_IDENTIFY

RPC_C_IMP_LEVEL_IMPERSONATE

RPC_C_IMP_LEVEL_DELEGATE

As you might have guessed, they’re equivalent to their DCOMCnfg counterparts (refer to
Figure 18.2).

The eighth parameter, dwCapabilities is used for both clients and servers to describe
additional capabilities they might have. The value for this parameter can be one or
more of the following bitmasks:

• EOAC_NONE—Indicates that no capability flags are set.

• EOAC_MUTUAL_AUTH—Not used. Mutual authentication is automatically provided
by some authentication services.

• EOAC_SECURE_REFS—Determines that reference-counting calls must be authenti-
cated to avoid malicious releases. Refer to Figure 18.2 for the equivalent option
using DCOMCnfg.

• EOAC_ACCESS_CONTROL—Must be used when passing an IAccessControl interface
pointer as an argument to the parameter pVoid of CoInitializeSecurity().

• EOAC_APPID—Indicates that the pVoid parameter to CoInitializeSecurity() is a
pointer to an AppID GUID. CoInitializeSecurity() searches the AppID in the
Registry and reads the security settings from there.

Using CoInitializeSecurity

You’re going to modify your sample application to completely turn off DCOM secu-
rity by using CoInitializeSecurity(). This modification will make your sample appli-
cation suitable for Internet access.

To accomplish this, you must allow access to anonymous users, disable authentica-
tion, and disable impersonation. It turns out that this is very simple to implement
using CoInitializeSecurity().

CHAPTER 18 DCOM: Going Distributed732

23 0672324806 CH18 12/12/02 2:38 PM Page 732

As stated earlier, CoInitializeSecurity() must be called only once per process just
before any significant COM calls. You must make the call on both the client and
server sides just after calling CoInitialize().

To turn off security in your EasyDCOM sample, do the following:

1. Open EasyDCOM.cpp.

2. Add the following code just below the line containing the try block inside
WinMain:

CoInitialize(NULL);

CoInitializeSecurity(NULL,

-1,

NULL,

NULL,

RPC_C_AUTHN_LEVEL_NONE,

RPC_C_IMP_LEVEL_ANONYMOUS,

NULL,

EOAC_NONE,

NULL);

3. Add the following code above the line containing the return statement at the
end of WinMain:

CoUninitialize();

4. Open EasyDCOMClient.cpp, repeat steps 2 and 3 and add the following line below
the include for vcl.h:

#include <objbase.h>

Let’s see what you have done.

You started by calling CoInitialize() saying that you wanted to join the main STA.
Next, CoInitializeSecurity() is called with the appropriate parameters to solve your
problem.

For the pVoid parameter of CoInitializeSecurity(), you passed NULL, telling COM that
anyone is welcome to access your server.

For the cAuthSvc and asAuthSvc parameters, you stuck with the defaults of -1 and
NULL, respectively, letting COM use the available security packages on the system.

Because you’re not interested in authenticating any user calling into your object, you
used RPC_C_AUTH_LEVEL_NONE for the dwAuthnLevel parameter.

Programming Security 733

23 0672324806 CH18 12/12/02 2:38 PM Page 733

For the dwImpLevel parameter, you use RPC_C_IMP_LEVEL_ANONYMOUS because you’re not
going to impersonate the client to discover its credentials or act on its behalf.
Remember, you actually don’t know who the client is.

For the dwCapabilities parameter, you just pass EOAC_NONE.

That’s all; you completely turned off security for your sample application. From now
on, any anonymous user will be able to make calls into your server.

NOTE

Servers using connection points over DCOM could also make use of this technique to turn off
DCOM security because they will want to access the sink implemented at the client side.

If you try to use an event sink over a DCOM connection, it will fail with an Access Denied
error. This is because the client, now acting as a server, will verify if the caller has the neces-
sary credentials to access its sink object. The client will try to ensure that the server account is
allowed access to its sink object.

You can work around this problem by making the server account the same as the client
account. In other words, the client on the client machine and the identity of the server on the
server machine must use a login account with the same name and password.

The problem with this approach is that you must know beforehand what account the client
will be using.

Understanding DLL Clients and Security
What if you need to implement the client for your remote server as an ActiveX
control to be used inside some container such as Internet Explorer or IIS and Active
Server Pages? Well, that’s trouble.

An in-proc-server (DLL) is loaded into the address space of a container process and,
when this happens, COM has already called CoInitializeSecurity(), explicitly or
implicitly.

It doesn’t matter if the container application issued the call or if COM did it based
on Registry settings. Even if you call CoInitializeSecurity() in your code, it will be
too late; by that time, all COM security settings are already in place.

One possible solution for this case could be the creation of an intermediary out-of-
proc server (EXE) that would take care of security issues and make calls into the
remote server on behalf of the ActiveX client. To the ActiveX client, this intermedi-
ary server would look like the remote server.

The bottom line is that you can’t control security through the use of
CoInitializeSecurity() from inside a DLL. You should keep that in mind when
writing DLL clients for your remote servers.

CHAPTER 18 DCOM: Going Distributed734

23 0672324806 CH18 12/12/02 2:38 PM Page 734

Implementing Programmatic Access Control
You can indicate which individual users or group of users are allowed or denied
access to your server by using the pVoid parameter of CoInitializeSecurity(). When
providing a valid argument for this parameter, the authentication level must be at
least RPC_C_AUTH_LEVEL_CONNECT; otherwise, CoInitializeSecurity() will fail.

Now, you’ll learn how to use a SECURITY_DESCRIPTOR, instead of an AppID GUID or
IAccessControl interface, to supply security information using the pVoid parameter in
a call to CoInitializeSecurity().

The SECURITY_DESCRIPTOR structure has the following members:

typedef struct _SECURITY_DESCRIPTOR {

BYTE Revision;

BYTE Sbz1;

SECURITY_DESCRIPTOR_CONTROL Control;

PSID Owner;

PSID Group;

PACL Sacl;

PACL Dacl;

} SECURITY_DESCRIPTOR;

Creating a security descriptor with the outdated Win32 Security API is, to say the
least, arcane. C++Builder and its ATL support greatly simplify this job with a class
called CSecurityDescriptor.

NOTE

Programmatic modification of access control lists (ACLs) via the Win32 Security API is a very
complex procedure that requires careful coding and testing.

Beginning in Windows NT 4.0 with Service Pack 2, COM provides the IAccessControl inter-
face. This interface, which is implemented in CLSID_DCOMAccessControl system object, is also
considered an easy alternative to programming ACLs other than using the raw security API.

CSecurityDescriptor can be used anywhere a SECURITY_DESCRIPTOR structure is required,
thanks to its conversion operators. You can use its methods to initialize a new secu-
rity descriptor to allow or deny access to particular accounts.

The built-in account SYSTEM must always be included in the access control list
because the system’s Service Control Manager (SCM) needs this account to manage
COM servers.

For demonstration purposes, you’re going to change your server to only accept
requests from clients using the Guest account. This account is disabled by default
when the operating system is first installed.

Programming Security 735

23 0672324806 CH18 12/12/02 2:38 PM Page 735

Let’s keep modifying your EasyDCOM sample application by doing the following:

1. Open EasyDCOM.cpp and add the following code below the line containing the
include for atlmod.h:

#include <atl\atlcom.h>

2. Add the following code above the line containing the call to CoInitialize():

CSecurityDescriptor sd;

sd.InitializeFromProcessToken();

sd.Allow(“Guest”, COM_RIGHTS_EXECUTE);

sd.Allow(“NT_AUTHORITY\\SYSTEM”, COM_RIGHTS_EXECUTE);

3. Replace the call to CoInitializeSecurity() with the following:

CoInitializeSecurity(sd, -1, NULL, NULL, RPC_C_AUTHN_LEVEL_CONNECT,

RPC_C_IMP_LEVEL_IDENTIFY, NULL, EOAC_NONE, NULL);

4. Open EasyDCOMClient.cpp and delete the lines containing CoInitialize(),
CoInitializeSecurity(), and CoUninitialize().

To experiment with the sample, you will need to enable the Guest account and give
it the same password on both the client and server machines. As an alternative you
can log on as Guest on the machine hosting the server and run the client application
from there.

You can replace the Guest account with the name of a valid local or domain account.
You must use the format DOMAIN\UserOrGroup or MACHINE\UserOrGroup when passing the
account name to the Allow method of CSecurityDescriptor. If you suppress the DOMAIN
or MACHINE from the account name, the current machine name is assumed.

If you try to run the sample without being logged as Guest, you will receive an Access
Denied error coming from the server. This is because only the Guest account is
granted access to the server now.

TIP

Windows 2000 comes with a new command-line utility called RunAs. This utility allows an
application to be run under the credentials of a supplied account. RunAs is an excellent tool
for testing COM servers under the credentials of different client principals.

Let’s examine the code.

A CSecurityDescriptor object, represented by the variable sd, is instantiated and,
encapsulated inside it, a new security descriptor is created.

CHAPTER 18 DCOM: Going Distributed736

23 0672324806 CH18 12/12/02 2:38 PM Page 736

Next, you called the InitializeFromProcessToken() method to take care of all subtle
details regarding the internals of the security descriptor.

The call to Allow passed Guest as the account name, and the value COM_RIGHTS_EXECUTE
to grant access rights to the Guest account. You did the same to grant access to built-
in System account, this time using NT_AUTHORITY\SYSTEM as the account name.

Last, CoInitializeSecurity() is called passing the sd object as an argument for its first
parameter. You use RPC_C_AUTHN_LEVEL_CONNECT as the authentication value,
RPC_C_IMP_LEVEL_IDENTIFY as the identity value, and the default values for all other
parameters.

Implementing Interface-Wide Security
Up to this point, you have centered your focus on process-wide security settings that
can be configured using CoInitializeSecurity(). But, what if you need to control
security only during method calls; for example, to make a specific call encrypted
instead of encrypting the entire process?

IClientSecurity Interface
COM helps us with this scenario by providing a finer control of security at the inter-
face level for both clients and servers. At client-side, the underlying remoting layer,
represented by the Proxy Manager, implements the IClientSecurity interface. At
server-side, the Stub Manager implements the IServerSecurity interface.

The methods of the IClientSecurity interface are QueryBlanket(), SetBlanket(), and
CopyProxy().

QueryBlanket() retrieves the authentication information used by the interface proxy.
This information is the security information passed to CoInitializeSecurity() during
process initialization. You call QueryBlanket() using NULL on all parameters that you
don’t want to retrieve information.

SetBlanket() sets the authentication information to be used by a particular interface
proxy. Its use affects all clients of the proxy.

CopyProxy() makes a private copy of the interface proxy that you can use later with
SetBlanket(). This method enables multiple clients to independently change their
interface security settings.

The parameters for QueryBlanket() and SetBlanket() correspond to the parameters of
CoInitializeSecurity() with one notable exception, the seventh parameter—
pAuthInfo. This parameter is dependent on the security package in use. It points to a
COAUTHIDENTITY structure when the NTLM security package is being used.

Programming Security 737

23 0672324806 CH18 12/12/02 2:38 PM Page 737

The COAUTHIDENTITY structure has the following members:

typedef struct _COAUTHIDENTITY

{

USHORT *User;

ULONG UserLength;

USHORT *Domain;

ULONG DomainLength;

USHORT *Password;

ULONG PasswordLength;

ULONG Flags;

} COAUTHIDENTITY;

You can make calls using the credentials of an arbitrary user if you pass the pAuthInfo
parameter a COAUTHIDENTITY structure pointer filled with username, password, and
domain information. When you pass NULL to this parameter, each COM method call
is made using the credentials of the client process.

To use IClientSecurity, you must use QueryInterface() on the Proxy Manager for
IID_IClientSecurity, call one of its methods, and then release the interface. COM
makes your life easier by providing wrappers that encapsulate this sequence.

The COM wrapper functions for the methods of the IClientSecurity interface are
CoQueryProxyBlanket(), CoSetProxyBlanket(), and CoCopyProxy().

IServerSecurity Interface
At the server-side, the IServerSecurity interface can be used to identify and imper-
sonate the client. You can call CoGetCallContext() from within a method call to
obtain an interface pointer to this interface. IServerSecurity has the methods
QueryBlanket(), ImpersonateClient(), RevertToSelf(), and IsImpersonating().

QueryBlanket() is analogous to its sibling in IClientSecurity interface; it returns the
security settings in use. For example, you could use QueryBlanket() to determine
whether the client is using encryption or to discover the client identity.

During a method call, you can use ImpersonateClient() to enable the server to use
the security credentials of the client. The impersonation level used by the client
determines if the server can actually access system objects acting as the client itself,
or if the server can only use the client’s credentials to perform access checks.

RevertToSelf() restores the security credentials of the server and stops the server
from impersonating the client. COM will automatically restore the server’s security
credentials prior to leaving a method call, even if you forget to call RevertToSelf()
explicitly.

IsImpersonating() is used to check whether the server is currently impersonating the
client.

CHAPTER 18 DCOM: Going Distributed738

23 0672324806 CH18 12/12/02 2:38 PM Page 738

COM offers the following functions as wrappers for the methods of the
IServerSecurity interface: CoQueryClientBlanket(), CoImpersonateClient(), and
CoRevertToSelf().

Using the Blanket
To demonstrate the use of the IServerSecurity and IClientSecurity interfaces, you’re
going to create a brand-new example. This example will enable the client to change
its identity and interrogate the server to discover the current identity in use. It will
also let the server create a local file using the credentials of the client. Later, through
the use of Windows Explorer, you will be able to access the properties of the file
object and see its owner to confirm whether the file was created using the identity
you supplied.

To conduct this experiment, create two local accounts named CommonUser and
ExtraUser, members of the User group, on both the client and server machines, and
log on the client machine using the ExtraUser account.

Use DCOMCnfg to configure the server to allow access and launch permissions to every-
one, and set the identity of the server (refer to Figure 18.8) to use the Administrator
account.

The example server application that you will create in the following section is
provided in the Blanket\Server folder on the CD-ROM that accompanies this book.

NOTE

In the absence of an NT Server domain, the workstation machine is, in effect, the only
member of its own domain.

Create your new sample server as follows:

1. Start by creating an EXE server called Blanket with an Automation Object that
has a CoClass name of ObjBlanket. Next, use the TLE editor to add the follow-
ing two methods:

[id(1)] HRESULT _stdcall BlanketInfo([out, retval] BSTR * Value);

[id(2)] HRESULT _stdcall CreateFile([in] BSTR Value);

2. Now you need to implement the methods. Open ObjBlanketImpl.cpp and add
the following code to the BlanketInfo method:

try {

*Value = NULL;

LPWSTR pPrivs;

Programming Security 739

23 0672324806 CH18 12/12/02 2:38 PM Page 739

OleCheck(CoQueryClientBlanket(NULL, NULL, NULL, NULL, NULL,

(LPVOID*)&pPrivs, NULL));

WideString strInfo = pPrivs;

*Value = strInfo.Detach();

}

catch(Exception &e) {

return Error(e.Message.c_str(), IID_IObjBlanket);

}

return S_OK;

This method makes use of the CoQueryClientBlanket() to retrieve the name of
the client principal and return it to the caller. It performs this operation by
passing NULL to all parameters except the sixth, pPrivs. This tells
CoQueryClientBlanket() that you’re only interested in information regarding the
identity of the client.

3. Add the following code to the CreateFile() method:

try {

OleCheck(CoImpersonateClient());

HANDLE hFile = ::CreateFile(AnsiString(Value).c_str(),

GENERIC_WRITE,

FILE_SHARE_WRITE,

NULL,

CREATE_ALWAYS,

FILE_ATTRIBUTE_NORMAL,

NULL);

if (INVALID_HANDLE_VALUE == hFile)

return HRESULT_FROM_WIN32(GetLastError());

CloseHandle(hFile);

OleCheck(CoRevertToSelf());

}

catch(Exception &e) {

return Error(e.Message.c_str(),IID_IObjBlanket);

}

return S_OK;

Here, you started by calling CoImpersonateClient() to begin impersonating the client.

CHAPTER 18 DCOM: Going Distributed740

23 0672324806 CH18 12/12/02 2:38 PM Page 740

You made this call because you wanted to create a local file using the identity
supplied by the client instead of the identity currently in use by the server process.

Remember that you manually set the server’s identity to use the credentials of the
Administrator account. So, if the call to CoImpersonateClient() succeeds, you will be
able to see a different owner for the created file.

Before leaving the method, you closed the file handle and called CoRevertToSelf() to
tell the server to stop impersonating the client and revert to its own identity.

You can now build the project. When done, copy the server to the remote machine
and run it once to perform self-registration.

You can find the code for the example client application in the Blanket\Client folder
on the CD-ROM that accompanies this book.

The client will also be an EXE application. To create the client application do the
following:

1. Start a new project and save it as BlanketClient renaming Unit1 to MainUnit.

2. Design its main form to look like Figure 18.15, and rename its components as
follows:

Original Name New Name

Form1 frmMain

RadioButton1 rdoLoged

RadioButton2 rdoIdnty

GroupBox1 gbxIdn

GroupBox1 gbxInfo

Label1 lblUser

Label2 lblDomain

Label3 lblPwrd

Edit1 txtUser

Edit2 txtDomain

Edit3 txtPwrd

Edit4 txtInfo

Button1 cmdCallServer

Button2 cmdSetIdentity

Button3 cmdGetInfo

Button4 cmdCreateFile

Button5 cmdFinish

Programming Security 741

23 0672324806 CH18 12/12/02 2:38 PM Page 741

FIGURE 18.15 The BlanketClient main form and its components.

3. Open MainUnit.h and add the following header file to its list of header files:

#include “..\Server\Blanket_TLB.h”

4. Declare two private data members in the TfrmMain derived class as the
following:

TCOMIObjBlanket m_objBlanket;

SEC_WINNT_AUTH_IDENTITY m_pAuthInfo;

5. Add the following two private member functions to the TfrmMain class:

void GetAuthInfo();

void SetAuthInfo();

You will find the code for MainUnit.cpp in Listing 18.1.

LISTING 18.1 The Code for MainUnit.cpp, Main Form of the BlanketClient Project

#include <vcl.h>

#pragma hdrstop

#include “MainUnit.h”

#pragma package(smart_init)

#pragma resource “*.dfm”

TfrmMain *frmMain;

__fastcall TfrmMain::TfrmMain(TComponent* Owner) : TForm(Owner)

{

m_AuthInfo.Flags = SEC_WINNT_AUTH_IDENTITY_ANSI;

m_AuthInfo.User = NULL;

m_AuthInfo.Domain = NULL;

m_AuthInfo.Password = NULL;

CHAPTER 18 DCOM: Going Distributed742

23 0672324806 CH18 12/12/02 2:38 PM Page 742

}

void __fastcall TfrmMain::FrmMain_Close(TObject *Sender, TCloseAction &Action)

{

m_objBlanket.Unbind();

delete[] m_AuthInfo.User;

delete[] m_AuthInfo.Domain;

delete[] m_AuthInfo.Password;

}

void __fastcall TfrmMain::CmdCallServer_Click(TObject *Sender)

{

if (!m_objBlanket.IsBound()) {

AnsiString strHost;

if (InputQuery(“Create Server”, “Enter computer name:”, strHost)) {

if (strHost.IsEmpty())

OleCheck(CoObjBlanket::Create(m_objBlanket));

else

OleCheck(CoObjBlanket::CreateRemote(WideString(strHost),

m_objBlanket));

ShowMessage(“Server created”);

}

}

}

void __fastcall TfrmMain::CmdCreateFile_Click(TObject *Sender)

{

if (m_objBlanket.IsBound()) {

AnsiString strFile;

if (InputQuery(“Create File”, “Enter path and file name:”, strFile)) {

OleCheck(m_objBlanket.CreateFile(WideString(strFile)));

ShowMessage(“File created”);

}

}

}

void __fastcall TfrmMain::CmdFinish_Click(TObject *Sender)

{

Programming Security 743

LISTING 18.1 Continued

23 0672324806 CH18 12/12/02 2:38 PM Page 743

Close();

}

void __fastcall TfrmMain::CmdGetInfo_Click(TObject *Sender)

{

if (m_objBlanket.IsBound())

GetAuthInfo();

}

void __fastcall TfrmMain::CmdIdentity_Click(TObject *Sender)

{

gbxIdn->Enabled = rdoIdnty->Checked ? true : false;

txtDomain->Color = rdoIdnty->Checked ? clWindow : clBtnFace;

txtPwrd ->Color = rdoIdnty->Checked ? clWindow : clBtnFace;

txtUser ->Color = rdoIdnty->Checked ? clWindow : clBtnFace;

}

void __fastcall TfrmMain::CmdSetIdentity_Click(TObject *Sender)

{

if (m_objBlanket.IsBound()) {

if (rdoIdnty->Checked)

SetAuthInfo();

OleCheck(CoSetProxyBlanket(m_objBlanket,

RPC_C_AUTHN_WINNT,

RPC_C_AUTHZ_NONE,

NULL,

RPC_C_AUTHN_LEVEL_CONNECT,

RPC_C_IMP_LEVEL_IMPERSONATE,

rdoIdnty->Checked ? &m_AuthInfo : NULL,

EOAC_NONE));

}

}

void TfrmMain::GetAuthInfo()

{

WideString strInfo;

OleCheck(m_objBlanket.BlanketInfo (&strInfo));

txtInfo->Text = strInfo;

}

CHAPTER 18 DCOM: Going Distributed744

LISTING 18.1 Continued

23 0672324806 CH18 12/12/02 2:38 PM Page 744

void TfrmMain::SetAuthInfo()

{

delete[] m_AuthInfo.User;

delete[] m_AuthInfo.Domain;

delete[] m_AuthInfo.Password;

m_AuthInfo.UserLength = txtUser ->Text.Length();

m_AuthInfo.DomainLength = txtDomain->Text.Length();

m_AuthInfo.PasswordLength = txtPwrd ->Text.Length();

m_AuthInfo.User = (PUCHAR)new TCHAR[txtUser ->Text.Length()+1];

m_AuthInfo.Domain = (PUCHAR)new TCHAR[txtDomain->Text.Length()+1];

m_AuthInfo.Password = (PUCHAR)new TCHAR[txtPwrd ->Text.Length()+1];

lstrcpy((LPTSTR)m_AuthInfo.User , (LPCTSTR)txtUser ->Text.c_str());

lstrcpy((LPTSTR)m_AuthInfo.Domain , (LPCTSTR)txtDomain->Text.c_str());

lstrcpy((LPTSTR)m_AuthInfo.Password, (LPCTSTR)txtPwrd ->Text.c_str());

}

You can see from Listing 18.1 that you initialized some of the members of m_AuthInfo
in the constructor of TfrmMain. Microsoft documentation suggests DCOM will keep a
pointer to the identity information contained in this structure until a new value is
used, or until COM itself is uninitialized.

The SetAuthInfo() private member function acts like a helper method for dealing
with the SEC_WINNT_AUTH_IDENTITY structure. It avoids memory leaks and correctly
assigns identity information to its members.

The Set Identity button handles client identity change. It performs its action by
calling CoSetProxyBlanket() to adjust the interface security settings telling the Proxy
Manager to use identity information contained in the m_AuthInfo member variable.

Identity information is toggled between the current logged user identity (process
token credentials), and the supplied identity through the use of a NULL argument in
the pAuthInfo parameter of the CoSetProxyBlanket() function.

CoSetProxyBlanket() is called with a RPC_C_IMP_LEVEL_IMPERSONATE level of imperson-
ation to let the server effectively behave as the client using the credentials supplied
in the pAuthInfo parameter.

The event handler for the Get Info button calls the server’s BlanketInfo() method to
retrieve the current user identity name and place the result in the txtInfo edit box.

Programming Security 745

LISTING 18.1 Continued

23 0672324806 CH18 12/12/02 2:38 PM Page 745

The Create File button handles file creation at the remote machine, asking for a
path and a filename and executing the server’s CreateFile() method. The remote file
is then created using the identity currently in use.

Let’s try your sample and proceed as follows:

1. Start BlanketClient.exe and click the Call Server button. Enter the name of the
host machine to instantiate the Blanket server.

2. Click the Get Info button, and you should see something similar to the screen
in Figure 18.16. This is the result of pressing the Get Info button while
BlanketClient is using the credentials of the current logged user, ExtraUser.

CHAPTER 18 DCOM: Going Distributed746

FIGURE 18.16 BlanketClient running under the current logged user account.

3. Click the Create File button and enter C:\RemFile1.Txt to create a remote file
named RemFile1.Txt on the root of the host’s drive C.

Figure 18.17 shows the file properties. You can confirm that the remote file was
created under credentials of the ExtraUser account.

FIGURE 18.17 RemFile1.Txt properties shows ExtraUser as its owner.

23 0672324806 CH18 12/12/02 2:38 PM Page 746

4. Fill the identity fields with information from the CommonUser account, and click
the Set Identity button to change the client identity. Figure 18.18 shows the
result of clicking the Get Info button after performing this operation.

Summary 747

FIGURE 18.18 BlanketClient using the credentials of the CommonUser account.

5. Click the Create File button again. This time, give the remote file the name
RemFile2.Txt.

Figure 18.19 now shows that the remote file was created under credentials of
the CommonUser account.

FIGURE 18.19 RemFile2.Txt properties shows CommonUser as its owner.

Summary
DCOM is a very big subject that deserves an entire book by itself. It’s a huge technol-
ogy that has many subtle aspects. In this chapter, it’s most important features were
addressed.

23 0672324806 CH18 12/12/02 2:38 PM Page 747

You were introduced to DCOM and learned that it brings remote capabilities to COM
objects, and that it introduces important issues like security as well.

You learned how to use the DCOMCnfg configuration tool to control DCOM settings
stored in the Registry for specific components and for all components in the system.

You also saw how to use CoInitializeSecurity() to programmatically control security
at server- and client-sides, and you learned how to control security at the interface
level through the use of IClientSecurity and IServerSecurity interfaces implemented
by the Proxy and Stub managers.

DCOM is not the only distributed systems technology available to you in
C++Builder. The following chapters will take you on a tour of what’s left.

CHAPTER 18 DCOM: Going Distributed748

23 0672324806 CH18 12/12/02 2:38 PM Page 748

IN THIS CHAPTER

• Building Web Services

• Consuming Web Services

• Using Other Web Services

19

SOAP and Web Services
with BizSnap

by Bob Swart (a.k.a. Dr. Bob)

BizSnap is the name given by Borland to describe the
featureset of C++Builder that covers XML-document
programming (see Chapter 13, “XML Document
Programming and XML Mapper,”) as well as Web Services
(using SOAP). In this chapter, we’ll cover Web Services,
then after a short introduction to SOAP, we’ll implement
our first Web Service in C++Builder 6. Import and usage
(consuming) of Web Services written in C++Builder 6 and
other development environments will follow.

Note that we can use C++Builder 6 Professional to import
and use Web services, but we have to use the Enterprise
edition to build our own Web services.

Apart from this chapter, we can also find information on
special Web Services that contain SOAP data modules—a
combination of BizSnap and DataSnap technology—in
Chapter 21 (about “DataSnap Multitier Connections”).

Building Web Services
In Chapter 13 we saw the XML document capabilities of
C++Builder 6 Enterprise. Now we’re ready to examine
another XML capability of C++Builder in the shape of
SOAP and Web Services. It probably sounds more difficult
than it needs to be, but will turn out to be easy, just wait.

SOAP stands for Simple Object Access Protocol, and is a
cross-platform and cross-language protocol, which is not
only supported in C++Builder 6, but also in Kylix 3 (for
Linux), and lots of other tools.

24 0672324806 CH19 12/12/02 2:43 PM Page 749

SOAP Server Application
To build Web Services in C++Builder 6 we have to start with a SOAP Server
Application. So, start C++Builder 6 Enterprise, File, New, Other, and go to the
WebServices tab of the Object Repository. In this tab of the Object Repository, which
can be seen in Figure 19.1, we see four icons: the SOAP Server Application, the SOAP
Server Data Module, the SOAP Server Interface, and the WSDL Importer.

CHAPTER 19 SOAP and Web Services with BizSnap750

FIGURE 19.1 WebServices tab of Object Repository.

We’ll use them all in this chapter, but at this time we need the first one, so select the
SOAP Server Application icon and click OK. The New SOAP Server Application
Wizard starts and asks about the type of Web server application that we want to use
for our Web Service. In this chapter I want to use the simple CGI (common gateway
interface) target, which can be seen in Figure 19.2. A CGI target is the easiest to
deploy and use. See Chapter 22, “Web Server Programming with WebSnap,” for more
details about the different Web server application targets.

FIGURE 19.2 New SOAP server application.

After you click on the OK button, a new SOAP Server project is created that includes
a Web Module. We are also presented with a Confirm dialog, asking if we want to
create an interface for the SOAP module (see Figure 19.3). If we answer Yes to this
question, the SOAP Server Interface wizard is started (the third icon on Figure 19.1).

24 0672324806 CH19 12/12/02 2:43 PM Page 750

FIGURE 19.3 SOAP server Web module.

However, please just say no to this question at this time because I want to explain a
few things that have been generated so far. Specifically, I want to explain the capabil-
ities of the three components on the SOAP Web module, visible in the background
of Figure 19.3. Don’t worry about closing the Confirm dialog and not creating an
interface for the SOAP module right away; we can always start the SOAP Server
Interface wizard manually.

SOAP Server Web Module
Before we continue, save all files, placing the SOAP Web module in file SWebMod.cpp
and the new SOAP project itself in BCB6WebService.bpr (this will result in a Web
service Web server application called BCB6WebService.exe).

The SOAP Web module already contains three components (that can also be found
on the WebServices tab of the C++Builder 6 component palette), namely a
THTTPSoapDispatcher, a THTTPSoapCppInvoker, and a TWSDLHTMLPublish component.

The THTTPSoapDispatcher component is used to receive incoming SOAP requests and
dispatch them to another component (defined by its Dispatcher property) that can
interpret the request and execute it. The latter will be done in this case by the
THTTPSoapCppInvoker component, which receives the incoming SOAP request, executes
(invokes) a C++ method, and produces the response back to the THTTPSoapDispatcher.
Before the THTTPSoapCppInvoker can actually invoke the requested C++ method, it first
checks to see if the method’s interface and implementation class have been regis-
tered in the invocation registry (we’ll get back to this in a moment).

Where the first two components are used when the Web service is actually
consumed, the third component—TWSDLHTMLPublish—is used to produce the WSDL
(Web Service Description Language) that defines the interface of the Web
service itself.

We don’t have to configure the properties or events of these three components; they
are already fully prepared to be used. We only have to focus on the task at hand:
Build some kind of Web service engine, and define its interface, so it can be
published and used. In other words, we can now manually start the SOAP Server

Building Web Services 751

24 0672324806 CH19 12/12/02 2:43 PM Page 751

Interface wizard. Open File, New, Other, go to the WebServices tab of the Object
Repository, and double-click the SOAP Server Interface icon. This will present us with
the Add New WebService dialog, where we can specify the name of the service as
well as other options.

To get an idea what kind of functionality is suited to be packaged as a Web Service
application, take a look at the list of Web services at http://www.xmethods.org. As a
main example for this first section, I want to produce a Web Service that can convert
inches to centimeters and back. It’s only a small example, but will illustrate the Web
Services functionality quite nicely (and it’s actually even quite useful if you live in
Europe and are used to centimeters, but want to estimate whether or not a 19-inch
LCD screen will fit between the table desktop and the bookshelf).

We should specify CmInch as Service Name (see Figure 19.4), which is automatically
copied to the Filename identifier. That results in the files CmInch.cpp and CmInch.h,
which will be generated and added to the project.

CHAPTER 19 SOAP and Web Services with BizSnap752

FIGURE 19.4 Generated SOAP server Web module.

In the Code Generation group we can select the option to generate comments
(selected by default), or generate sample methods. You can select the latter option if
you want, although in this section we will also write our own sample methods
(which should be clear enough, so I generally do not need sample methods to be
generated). The final option controls the service activation model, which I want to
cover in a bit more detail now.

Server Activation Model
The choices for the service activation model are either “per request” (default) or
“global.” In the latter case, there will be one global Web Service instance to handle
all incoming requests from clients. The default choice “per request” means that an
instance of the implementation class is created for every incoming request (and
destroyed after the request is handled). The code that is generated for the two
choices differs in only one place—a special Factory method is generated in case of
the global choice. This Factory method checks if an instance already exists and

24 0672324806 CH19 12/12/02 2:43 PM Page 752

returns it if this is the case, or creates the single instance if not. For our CmInch inter-
face, the CmInchFactory() method would be implemented as follows inside CmInch.cpp:

static void __fastcall CmInchFactory(System::TObject* &obj)

{

static _di_ICmInch iInstance;

static TCmInchImpl *instance = 0;

if (!instance)

{

instance = new TCmInchImpl();

instance->GetInterface(iInstance);

}

obj = instance;

}

To make sure that this CmInchFactory() method is indeed used, it has to be passed as
the second argument to the InvRegistry()->RegisterInvokableClass() method call,
which is shown in this snippet from CmInch.cpp):

static void RegTypes()

{

InvRegistry()->RegisterInterface(__interfaceTypeinfo(ICmInch));

InvRegistry()->RegisterInvokableClass(__classid(TCmInchImpl), CmInchFactory);

}

You might wonder why I showed these code snippets in such detail? The reason is to
offer you the ability to switch between a “global” and a “per request” server instance
by adding the CmInchFactory() method implementation and only adding the second
argument to the InvRegistry()->RegisterInvokableClass() call when planning to use a
global server instance. Otherwise, you can omit CmInchFactory as second argument
and have a “per request” server instance.

So, my advice is to select the Global option for the Service Activation Model, and
remove the second argument from InvRegistry()->RegisterInvokableClass() if you
decide not to use a global instance after all (the code for the CmInchFactory won’t be
used in that case). Save the generated code in files CmInch.cpp and CmInch.h as indi-
cated previously.

Invokable Registry
Let’s backtrack for a moment here, and consider this InvRegistry object. This is the
aforementioned Invokable Registry, used to register both the Web service interface
(definition) as well as the implementation class. At the server side (which we are
building at this time), both the interface and implementation have to be registered,
of course, but at the client side (the topic of next section), only the Web service
interface has to be registered to use it.

Building Web Services 753

24 0672324806 CH19 12/12/02 2:43 PM Page 753

Web Service Interface
Now that we have an empty CmInch Web service skeleton, we should add some
methods. Starting with the interface in CmInch.h, where we need to add two new
methods, Cm2Inch() and Inch2Cm(), to the ICmInch interface definition as follows:

// ** //

// Invokable interfaces must derive from IInvokable

// The methods of the interface will be exposed via SOAP

// ** //

__interface INTERFACE_UUID(“{F446E03A-0BAE-437A-98A7-FF503836AE02}”)

ICmInch : public IInvokable

{

public:

virtual float STDMETHODCALLTYPE Cm2Inch(float Cm) = 0;

virtual float STDMETHODCALLTYPE Inch2Cm(float Inch) = 0;

};

typedef DelphiInterface<ICmInch> _di_ICmInch;

Now, before you hit F9 to compile—this won’t work, yet, because we’ve only defined
the ICmInch interface (inside CmInch.h). The TCmInchImpl class inside CmInch.cpp is the
one to actually implement the ICmInch interface—or at least the one that should
implement it (which is why the code currently doesn’t compile). So, switch back to
the CmInch.cpp file and add the Cm2Inch() and Inch2Cm() methods to the class defini-
tion of TCmInchImpl (just copy them from the ICmInch definition and remove the “= 0”
parts at the end). This leads to the following code for the class definition:

// ** //

// TCmInchImpl implements interface ICmInch

// ** //

class TCmInchImpl : public TInvokableClass, public ICmInch

{

public:

/* IUnknown */

HRESULT STDMETHODCALLTYPE QueryInterface(const GUID& IID, void **Obj)

{ return GetInterface(IID, Obj) ? S_OK : E_NOINTERFACE; }

ULONG STDMETHODCALLTYPE AddRef() { return TInterfacedObject::_AddRef(); }

ULONG STDMETHODCALLTYPE Release(){ return TInterfacedObject::_Release(); }

/* ICmInch */

virtual float STDMETHODCALLTYPE Cm2Inch(float Cm);

virtual float STDMETHODCALLTYPE Inch2Cm(float Inch);

CHAPTER 19 SOAP and Web Services with BizSnap754

24 0672324806 CH19 12/12/02 2:43 PM Page 754

/* Ensures that the class is not abstract */

void checkValid() { delete new TCmInchImpl(); }

};

Now the final step, the actual implementation of the Cm2Inch() and Inch2Cm()

methods. For this we might want to look up the actual conversion rate between
centimeters and inches, which is generally defined as 2.54 centimeters per inch. This
means that the implementation of the two methods from our Web service class
TCmInchImpl is as follows:

const CmPerInch = 2.54;

float STDMETHODCALLTYPE TCmInchImpl::Cm2Inch(float Cm)

{

return Cm / CmPerInch;

};

float STDMETHODCALLTYPE TCmInchImpl::Inch2Cm(float Inch)

{

return Inch * CmPerInch;

};

At this time we can save all files, compile the project (and perhaps fix any typos that
were made), and get ready to deploy the CmInch Web service on the Web.

Deploying the SOAP Server
Before we can deploy the Web service, however, we should first make sure that it can
actually be executed on the target machine. By default, C++Builder 6 generates
projects that use the dynamic RTL and runtime packages. Resulting in really small
executables (the BCB6WebServices.exe is only 52,736 bytes), but requiring the dynamic
RTL as well as a number of runtime packages. To turn it into a standalone executable
(which is easy to install), we must perform a few additional steps.

First of all, we should open the Project, Options dialog, go to the Compiler tab and
click on the Release button (just in case). Second, go to the Linker tab, and uncheck
the Use dynamic RTL option. Third and last, go to the Packages tab and uncheck the
Build with runtime packages option. Now close the Project Options dialog again, and
recompile the application. This time, the BCB6WebService.exe will be 704,512 bytes
big. A significant difference, but at least it can be deployed and used as a standalone
CGI Web Service now, by placing it in a cgi-bin or scripts directory of a Web server
similar to IIS (Internet Information Service). See Chapter 22, “Web Server
Programming with WebSnap,” for more deployment details.

Building Web Services 755

24 0672324806 CH19 12/12/02 2:43 PM Page 755

Just for your convenience, I’ve deployed BCB6WebService.exe on my own Web server
(hosted by TDMWeb), so it’s now available to use as example and demonstration on
the Web at http://www.eBob42.com/cgi-bin/BCB6WebService.exe (see also Figure 19.5.)

CHAPTER 19 SOAP and Web Services with BizSnap756

FIGURE 19.5 CmInch Web service on the Web.

Note that this direct URL shows the two SOAP interfaces ICmInch and IWSDLPublish

that are exposed by the BCB6WebService application. ICmInch is the one that we made,
and IWSDLPublish is the one that every C++Builder Web service gets for free by using
the TWSDLHTMLPublish component (see Figure 19.3).

We can click the link for each of these interfaces, click on their WSDL link, or pass
the additional PathInfo/wsdl to the URL to get the WSDL (Web Service Description
Language) description, automatically produced by the TWSDLHTMLPublish component,
which is shown in Figure 19.6.

FIGURE 19.6 WebService Listing of BCB6WebService/wsdl.

24 0672324806 CH19 12/12/02 2:43 PM Page 756

If you click the link for the WSDL for ICmInch (or directly go to the URL http://www.
eBob42.com/cgi-bin/BCB6WebService.exe/wsdl/ICmInch), you get the full WSDL for the
ICmInch interface—see Figure 19.7 for details.

NOTE

If you have a Web server on your own machine, the URL for the WSDL can be http://
localhost/cgi-bin/BCB6WebService.exe/wsdl/ICmInch instead.

As can be seen, the WSDL is an XML document that consists of a number of sections
such as the message, portType, binding, or service. We’ll see some of these again
shortly when we actually use the CmInch Web service.

In the next section of this chapter, we will use this WSDL, so we either need to save
the WSDL as shown in Figure 19.7, or the URL itself to let C++Builder 6 itself retrieve
the WSDL.

Consuming Web Services 757

FIGURE 19.7 WebService Listing of BCB6WebService/wsdl/IcmInch.

Consuming Web Services
It’s time to import and use—also called consume—Web services. To get an idea what
kinds of functionality are suited as Web Service applications, I always recommend
taking a look at the list of Web services http://www.xmethods.org, as mentioned previ-
ously. In the next section, we will consume a Web service written in a foreign
language, but right now we should start by consuming the CmInch Web services we
wrote in the previous section using C++Builder 6 itself.

24 0672324806 CH19 12/12/02 2:43 PM Page 757

A Web Service consumer can be any kind of application. But to keep things simple,
let’s just start a new default visual application in C++Builder. Save the form in file
MainForm.cpp and the project in BCB6WSClient.bpr. Now we have to add an import unit
that represents the CmInch Web service interface—a job for the WSDL Importer.

WSDL Importer
We need to use the WSDL Importer (from the WebServices tab of the Object
Repository), because we must import the WSDL that defines the Web service (inter-
face) and generate an C++ import unit that defines the C++ interface of this particu-
lar Web service. So, activate File, New, Other, go to the WebServices tab of the Object
Repository, and double-click the WSDL Importer icon, which will result in the WSDL
Import wizard (see Figure 19.8).

CHAPTER 19 SOAP and Web Services with BizSnap758

FIGURE 19.8 WSDL importer.

Enter the URL of the Web Service that we’ve just created. This can be http://
localhost/cgi-bin/BCB6WebService.exe/wsdl/ICmInch (on your own localhost machine)
or the “real” http://www.eBob42.com/cgi-bin/BCB6WebService.exe/wsdl/ICmInch (for the
version deployed on my Web site on the Internet). If you’ve saved the WSDL in a
local file, you can also click on the button with the ellipsis and specify the location
of the local file with the WSDL for ICmInch. The benefit of using a local WSDL file is
that you don’t need an active Internet connection to develop the Web service client
application, and you can edit the file and make some changes to it if you want (and
know what you’re doing).

After we’ve specified the URL to retrieve the WSDL information for our Web Service,
we can take a look at the options by clicking the Option button (see Figure 19.9).

24 0672324806 CH19 12/12/02 2:43 PM Page 758

FIGURE 19.9 WSDL Importer (Options).

We can also click the Next button to extract structure information from the WSDL
and display this information in a treeview as well as show the code that will be
generated, which is shown in Figure 19.10.

Consuming Web Services 759

FIGURE 19.10 WSDL Importer (Final Page).

As you can see, the ICmInchservice (Web service) root consists of one interface, called
ICmInch, which has two methods: Cm2Inch() and Inch2Cm(). This information was
extracted from the retrieved WSDL and not from anything else (the WSDL Importer
has no knowledge about what we did in the previous section of this chapter). Note
that the WSDL Importer will also work with Web Services that are written in an
entirely other development environment (as we will see in the next section),
although some interoperability issues between SOAP implementations in other
environments may remain to be worked on.

Anyway, we can now click the Finish button to create the Web Service import unit.
Save the generated import unit in file ICmInch.cpp, and make sure to #include the

24 0672324806 CH19 12/12/02 2:43 PM Page 759

ICmInch.h header file in the MainForm.h header file (after the other #include statements
in MainForm.h) as follows:

#include “ICmInch.h”

The generated unit ICmInch.h has the following contents for the definition of the
ICmInch Web service interface:

// ** //

// The types declared in this file were generated from data read from the

// WSDL File described below:

// WSDL : http://www.ebob42.com/cgi-bin/BCB6WebService.exe/wsdl/ICmInch

// Version : 1.0

// (2002-08-15 12:23:22 - $Revision: 1.0.1.0.1.82 $)

// ** //

#ifndef ICmInchH

#define ICmInchH

#include <System.hpp>

#include <InvokeRegistry.hpp>

#include <XSBuiltIns.hpp>

#include <SoapHTTPClient.hpp>

namespace NS_ICmInch {

// ** //

// The following types, referred to in the WSDL document are not being

// representedin this file. They are either aliases[@] of other types

// represented or were referredto but never[!] declared in the document.

// The types from the latter categorytypically map to predefined/known

// XML or Borland types; however, they could also

// indicate incorrect WSDL documents that failed to declare or import a schema

// type.

// ** //

// !:float - “http://www.w3.org/2001/XMLSchema”

// *** //

// Namespace : urn:CmInch-ICmInch

// soapAction: urn:CmInch-ICmInch#%operationName%

// transport : http://schemas.xmlsoap.org/soap/http

// style : rpc

CHAPTER 19 SOAP and Web Services with BizSnap760

24 0672324806 CH19 12/12/02 2:43 PM Page 760

// binding : ICmInchbinding

// service : ICmInchservice

// port : ICmInchPort

// URL : http://www.ebob42.com/cgi-bin/BCB6WebService.exe/soap/ICmInch

// *** //

__interface INTERFACE_UUID(“{CDD9B184-9089-99F2-FFD3-3BD586315394}”)

ICmInch : public IInvokable

{

public:

virtual float Cm2Inch(const float Cm) = 0;

virtual float Inch2Cm(const float Inch) = 0;

};

typedef DelphiInterface<ICmInch> _di_ICmInch;

_di_ICmInch GetICmInch(bool useWSDL=false, AnsiString addr=””);

#endif // __ICmInch_h__

}; // NS_ICmInch

#if !defined(NO_IMPLICIT_NAMESPACE_USE)

using namespace NS_ICmInch;

#endif

Note that the definition of the ICmInch interface looks very much like the definition
we wrote in the CmInch.cpp unit of the previous section (for the BCB6WebService
project). That isn’t too strange, of course, if you consider that the entire purpose of
the WSDL Importer Wizard is to indeed regenerate the interface (in C++ code).

Even more interesting to look at is the file ICmInch.cpp, which contains the code to
get an instance of the ICmInch Web service interface by calling the GetICmInch()
method. See Listing 19.1.

LISTING 19.1 Generated Import Unit for ICmInch Web Service

// ** //

// The types declared in this file were generated from data read from the

// WSDL File described below:

// WSDL : http://www.ebob42.com/cgi-bin/BCB6WebService.exe/wsdl/ICmInch

// Version : 1.0

// (2002-08-15 12:23:22 - $Revision: 1.0.1.0.1.82 $)

Consuming Web Services 761

24 0672324806 CH19 12/12/02 2:43 PM Page 761

// ** //

#include <vcl.h>

#pragma hdrstop

#if !defined(ICmInchH)

#include “ICmInch.h”

#endif

namespace NS_ICmInch {

_di_ICmInch GetICmInch(bool useWSDL, AnsiString addr)

{

static const char* defWSDL= “http://www.ebob42.com/cgi-bin/BCB6WebService.exe

➥/wsdl/ICmInch”;

static const char* defURL = “http://www.ebob42.com/cgi-bin/BCB6WebService.exe

➥/soap/ICmInch”;

static const char* defSvc = “ICmInchservice”;

static const char* defPrt = “ICmInchPort”;

if (addr==””)

addr = useWSDL ? defWSDL : defURL;

THTTPRIO* rio = new THTTPRIO(0);

if (useWSDL) {

rio->WSDLLocation = addr;

rio->Service = defSvc;

rio->Port = defPrt;

} else {

rio->URL = addr;

}

_di_ICmInch service;

rio->QueryInterface(service);

if (!service)

delete rio;

return service;

}

// ** //

// This routine registers the interfaces and types used by invoke the SOAP

// Service.

CHAPTER 19 SOAP and Web Services with BizSnap762

LISTING 19.1 Continued

24 0672324806 CH19 12/12/02 2:43 PM Page 762

// ** //

static void RegTypes()

{

/* ICmInch */

InvRegistry()->RegisterInterface(__interfaceTypeinfo(ICmInch),

L”urn:CmInch-ICmInch”, L””);

InvRegistry()->RegisterDefaultSOAPAction(__interfaceTypeinfo(ICmInch),

L”urn:CmInch-ICmInch#%operationName%”);

}

#pragma startup RegTypes 32

}; // NS_IcmInch

Using ICmInch

Now, move back to the (empty) main form, and drop two TLabeledEdit components
(call them edCm and edInch), and two TButton components (call them btnCm2Inch and
btnInch2Cm). Set the EditLabel->Caption property of edCm to centimeters, and the
EditLabel->Caption property of edInch to inches. Set the Caption properties of
btnCm2Inch and btnInch2Cm to Cm to Inches and Inches to Cm, respectively.

Now that the GUI part is done, we need to drop a THTTPRIO component—the left-
most component from the Web Services tab of the Component Palette. The THTTPRIO
component is a Remote Invokable Object that communicates using HTTP (hence the
name HTTPRIO). It will be used by a client application to connect to a Web Service and
pretend to implement the Web Services at the client location. To the client, it’s as if
the THTTPRIO component is behaving as if its a local implementation, whereas, in
fact, the THTTPRIO is connecting to the remote Web Service, sending SOAP requests
and receiving SOAP answers over HTTP.

This might sound complex, but working with the THTTPRIO component is really easy.
Set the WSDLLocation property of the THTTPRIO component to the location of the
WSDL, which can be found at either http://localhost/cgi-bin/BCB6WebService.exe/
wsdl/ICmInch or http://www.eBob42.com/cgi-bin/BCB6WebService.exe/wsdl/ICmInch (note
that the later will be much slower than using the localhost because it requires your
THTTPRIO to connect to the Internet for every SOAP request).

TIP

When I started to enter a URL for the WSDLLocation property, I experienced a form of Code
Completion because after the first h I immediately got the entire URL for ICmInch for the
WSDLProperty. Quite handy, although I’m not sure if this is an official feature.

Consuming Web Services 763

LISTING 19.1 Continued

24 0672324806 CH19 12/12/02 2:43 PM Page 763

Now, set the Service property of the THTTPRIO component to ICMInchservice (the only
choice if you click the arrow for the drop-down combo box). Finally, set the Port
property to ICMInchPort, which is again the only possible choice. This should enable
the design of the Web Service client form, which can be seen in Figure 19.11.

CHAPTER 19 SOAP and Web Services with BizSnap764

FIGURE 19.11 Centimeters to inch converter Web Service client.

We now need to write the code for the BtnCm2Inch and BtnInch2Cm buttons. We start
with BtnCm2Inch first, using the THTTPRIO component and use QueryInterface to extract
the _di_ICmInch interface from it. After that, we can use the method Cm2Inch() from
this interface, as if it was a simple local method. See the following code snippet:

void __fastcall TForm1::btnCm2InchClick(TObject *Sender)

{

_di_ICmInch service;

HTTPRIO1->QueryInterface(service);

if (service) {

edInch->Text =

FloatToStr(service->Cm2Inch(

StrToFloatDef(edCm->Text,0)));

}

}

You can now save, compile, and run the BCB6WSClient application and confirm that
you can convert centimeters to inches (but not back, yet).

Apart from using the three WSDLLocation, Service, and Port properties, we can also use
just one property: the URL property. This property can be set to the same value as we
specified for the WSDLLocation property, with the difference that we have to specify
/soap instead of /wsdl. So, in our example, that becomes http://www.eBob42.com/
cgi-bin/BCB6WebService.exe/soap/ICmInch. Placing this value in the URL property will

24 0672324806 CH19 12/12/02 2:43 PM Page 764

clear the WSDLLocation, Service, and Port properties. Recompile the BCB6WSClient appli-
cation, and you can confirm that you can still convert centimeters to inches.

You might wonder what the difference is between using the single URL property or
the WSDLLocation, Service, and Port properties. According the online help, the
WSDLLocation, Service, and Port properties are used when you need to dynamically
look up connection information from the WSDL document at runtime. If you don’t
need that, you can use the URL property instead, which can result in clients that
execute a bit faster.

Without HTTPRIO

If you think this was easy, watch this: We can even do it without the THTTPRIO
component. As you might have noticed, the ICmInch.cpp file contains a function
called GetICmInch(), which creates a THTTPRIO component behind the scenes. We can
even pass arguments to the GetICmInch() function, which is the first one to specify
the use of the WSDLLocation, Service, and Port properties versus the URL property (by
default set to use of the URL property). It is the second to specify the address where
the Web service can be found. For the conversion of inches to centimeters we can
use the GetICmInch() function and obtain the Inch2Cm() method from the resulting
_di_ICmInch interface, as in the following code:

void __fastcall TForm1::btnInch2CmClick(TObject *Sender)

{

edCm->Text =

FloatToStr(GetICmInch()->Inch2Cm(

StrToFloatDef(edInch->Text,0)));

}

After you compile and run the client application, you can enter inches and convert
them to centimeters (or vice versa). You can also use C++Builder to consume one of
the numerous other available Web Services, or think and produce another Web
Service yourself. The sky and your imagination are the limits.

In the next section, we will use an existing Web service available today on the
Internet, which provides a bit more functionality than simply converting centime-
ters to inches (something that we could do a lot faster without Web services in the
first place).

Using Other Web Services
We will now examine and use a Web service made available by Google (not imple-
mented in C++Builder 6 Enterprise, but in another development environment), with
the obvious functionality to search Google.

Using Other Web Services 765

24 0672324806 CH19 12/12/02 2:43 PM Page 765

Google Web APIs
Information about the official Google Web APIs (Beta 2 at the time of writing this
book)—as they call them—can be obtained from the Google Web site at http://www.
google.com/apis/. I don’t know why they call them simple APIs when, in fact, they
are APIs made available as a Web service. Anyway, at the aforementioned URL, you
can see that it takes only three steps to start to use the Google APIs:

1. Download the developer’s kit

2. Create a Google Account

3. Write your program using your license key

The first step is easy and consists of downloading a 658,031 Byte ZIP file with the
complete Google API (currently at Beta 2, released April 11, 2002). Samples for Java
as well as .NET, an API reference, and—most importantly for us—the GoogleSearch.
wsdl file, which contains the WSDL definition for the GoogleSearch Web service.
We’ll use this file as a starting point in step 3, when we’re building our Web service
client with C++Builder 6.

Google Search Key
The second step involves creating a Google account. This sounds more dangerous
than it really is. The use of the Google API is free (at least at the time of writing), but
you need to pass a personal key that will allow you up to 1,000 search queries per
day for noncommercial use only. To get this key, you need to register yourself with
an existing email address and a password (although you can forget that password).
An email message will be sent to the specified account in order to verify the email
address. After you’ve received the email message and clicked the link inside, you will
receive a second message with your special Google Search Key. In my case, that key is
1WpiIaxr+k+hbyYbRLZOJfg7X9NgI837. The key is included in the source code, so
the project on the CD-ROM with this book will work right from the start, although it
will only work 1,000 times each day (for all combined users of the executable).
Therefore, you might want to register yourself and get your own personal Google
Search key, which entitles you to 1,000 daily search queries for yourself.

Google Search
Armed with the GoogleSearch.wsdl file and the Google Search Key, we can start
C++Builder 6 (Professional or Enterprise) and build our Web service client. Start a
new C++Builder project and save the (empty) main form in GoogleForm.cpp and the
project itself in Google42.bpr. The first thing we need to do now is to generate a C++
import unit for the WSDL definition found in the GoogleSearch.wsdl file, so activate
File, New, Other, and select the WSDL Importer Wizard from the Object Repository.

CHAPTER 19 SOAP and Web Services with BizSnap766

24 0672324806 CH19 12/12/02 2:43 PM Page 766

Instead of specifying a URL for the Google Search, you can use the local
GoogleSearch.wsdl file—this is especially handy in case you do not have a live
Internet connection available at all times because all information is in the local
WSDL file.

Click on the Next button, which will show a preview of the generated import unit as
well as a treeview with the GoogleSearch specific types, interfaces, and methods (as
can be seen in Figure 19.12).

Using Other Web Services 767

FIGURE 19.12 GoogleSearch types and interfaces.

As we can see in the treeview, there are three structure types: DirectoryCategory,
ResultElement, and GoogleSearchResult; two array types: ResultElementArray and
DirectoryCategoryArray; and one interface called GoogleSearchPort with three member
functions: doGetCachedPage, doSpellingSuggestion, and doGoogleSearch. After we click
the Finish button, the C++ import unit is generated in file GoogleSearch.cpp with the
type definitions in GoogleSearch.h.

To illustrate the things we can do with the result, here are the GoogleSearchResult,
ResultElementArray, and ResultElement type summaries with only their __published
property names (and not their private fields) taken from the generated
GoodleSearch.h file:

class ResultElement : public TRemotable {

__published:

__property AnsiString summary;

__property AnsiString URL;

__property AnsiString snippet;

__property AnsiString title;

__property AnsiString cachedSize;

__property bool relatedInformationPresent;

24 0672324806 CH19 12/12/02 2:43 PM Page 767

__property AnsiString hostName;

__property DirectoryCategory* directoryCategory;

__property AnsiString directoryTitle;

};

typedef DynamicArray<ResultElement*> ResultElementArray;

/* “urn:GoogleSearch” */

class GoogleSearchResult : public TRemotable {

__published:

__property bool documentFiltering

__property AnsiString searchComments

__property int estimatedTotalResultsCount

__property bool estimateIsExact

__property ResultElementArray resultElements

__property AnsiString searchQuery

__property int startIndex

__property int endIndex

__property AnsiString searchTips

__property DirectoryCategoryArray directoryCategories

__property double searchTime

};

The GoogleSearchPort interface with its three methods and their arguments is defined
as follows:

__interface INTERFACE_UUID(“{0B396A82-A4DD-69A7-A771-6D80F8831A71}”)

GoogleSearchPort : public IInvokable

{

public:

virtual TByteDynArray doGetCachedPage(const AnsiString key,

const AnsiString url) = 0;

virtual AnsiString doSpellingSuggestion(const AnsiString key,

const AnsiString phrase) = 0;

virtual GoogleSearchResult* doGoogleSearch(const AnsiString key,

const AnsiString q, const int start, const int maxResults,

const bool filter, const AnsiString restrict, const bool safeSearch,

const AnsiString lr, const AnsiString ie, const AnsiString oe) = 0;

};

typedef DelphiInterface<GoogleSearchPort> _di_GoogleSearchPort;

And, of course, we also have the helpful GetGoogleSearchPort() function that will
return the _di_GoogleSearchPort interface for instant use.

CHAPTER 19 SOAP and Web Services with BizSnap768

24 0672324806 CH19 12/12/02 2:43 PM Page 768

As you might have realized by now, the DirectoryCategory is not a type that we will
use at this time, but the ResultItem and GoogleSearchResult are the two result classes
that will be used in this section. The GoogleSearchResult contains the resultElements
property that points to an array of ResultItems. Finally, the method goGoogleSearch()
of the GoogleSearchPort interface is the most interesting, so let’s examine that one in
more detail.

doGoogleSearch

The definition of the doGoogleSearch() method of the GoogleSearchPort interface is as
follows (this time with some meaningful comments for each argument):

virtual GoogleSearchResult* doGoogleSearch(

const AnsiString key, // your own Google Search Key

const AnsiString q,; // query string

const int start, // start URLs

const int maxResults, // maximum results

const bool filter, // filter alike results?

const AnsiString restrict, // restrictions

const bool safeSearch, // adult filter?

const AnsiString lr, // language?

const AnsiString ie, // input encoding

const AnsiString oe) = 0; // output encoding

Ouch! A lot of arguments, that’s for sure. Fortunately, the Google Search API ZIP-file
that we downloaded earlier also contains a file APIs_Reference.html (of 100,417 bytes)
containing more information about the search request formats and search results
formats; including the meaning of the arguments to doGoogleSearch().

The key argument is the Google Search Key that you have to obtain (we can use the
key 1WpiIaxr+k+hbyYbRLZOJfg7X9NgI837). The q argument is the actual query
(there’s a subsection on the complete query syntax, which includes the site: option
to specify that you want to search within a specific Web site). The start argument
specifies where you want to start the results, and maxResults specifies how many
results you want to receive (with a maximum of 10). Because you can only get a
maximum of 10 results at a given time, start can be used to specify where to start. If
start is 0, you get the first 10 results. To get the next 10 results, you must pass a
value of 10 in start, and so on. This will quickly consume your 1,000 available daily
queries, so be aware not to use this to obtain all 142,000 results for “Dr. Bob” on the
Web. Personally, I think the first 10 results are just fine, so I use 0 for start and 10
for maxResults. The filter argument can be used to filter results that are very similar,
something that I also often use at Google myself, so I pass true as value for filter.
The restrict argument can be used to restrict the search query to a specific country
or topic within Google. The safeSearch argument can be set to true to make sure you
don’t get any “adult” search results. Handy if you want to build your own custom

Using Other Web Services 769

24 0672324806 CH19 12/12/02 2:43 PM Page 769

search engine for your kids at home (although I haven’t tested this fully to make
sure it really works as advertised). The lr argument is a bit similar to the restrict
argument, and can be used to select results in a specific language (lr), such as Dutch
or English (there seem to be no distinction between English, American English, or
any of the other English dialects). Finally, the ie and oe arguments specify the Input
and Output Encoding, which can be set to latin1 for Dutch and English (see the
reference document for more information).

In short, my call to doGoogleSearch(), for a given query string inside an TEdit called
edtQuery, would look as follows:

GetGoogleSearchPort()->doGoogleSearch(“1WpiIaxr+k+hbyYbRLZOJfg7X9NgI837”,

edtQuery->Text, 0, 10, True, “”, True, “lang_en”, “latin1”, “latin1”);

This would give us a result of type GoogleSearchResult, which is derived from
TRemoteable. GoogleSearchResult is covered next.

GoogleSearchResult

The GoogleSearchResult has a number of useful properties such as estimatedTotal
ResultsCount, searchTime, and resultElements. The last one is an array of which the
elements are of type ResultElement, having a number of interesting subproperties
such as title, URL, and cachedSize. We can use a TStringGrid to display the results. In
fact, let’s now build the GUI and actually write some code. The steps are as follows:

1. Drop a TPanel component on the GoogleForm. Set its Align property to alTop, and
clear the Caption property.

2. Drop a TButton component on the right of the TPanel, set its Name property to
btnSearch, its Caption property to Search, the Anchor->Right subproperty to true,
and the Anchor->Left subproperty to false. These last two changes will ensure
the button stays glued to the right of the panel, even if you resize the
GoogleForm.

3. Drop a TEdit component on the left side of the TPanel, and resize, so it almost
reaches the TButton (see Figure 19.13). Set its Name to edtQuery, clear the Text
property, and set the Anchor->Right subproperty to true.

4. Drop a TStringGrid component on the GoogleForm, right under the TPanel, set its
Align property to alClient, so the TStringGrid occupies the remainder of the
GoogleForm. Set its ColCount property to 4, its RowCount property to 11 (that’s 10
plus the header), set the DefaultRowHeight property to 21, and finally set the
Options->goRowSelect subproperty to true.

5. Now, resize the Form to make the StringGrid fit without scrolling. To initialize
the columns of the StringGrid, write the follow code in the OnCreate event
handler of the Form:

CHAPTER 19 SOAP and Web Services with BizSnap770

24 0672324806 CH19 12/12/02 2:43 PM Page 770

void __fastcall TForm1::FormCreate(TObject *Sender)

{

StringGrid1->ColWidths[0] = 20;

StringGrid1->ColWidths[1] = (StringGrid1->ClientWidth - 55) / 2;

StringGrid1->ColWidths[2] = StringGrid1->ColWidths[1];

StringGrid1->ColWidths[3] = 32;

StringGrid1->Cells[0][0] = (AnsiString)” #”;

StringGrid1->Cells[3][0] = (AnsiString)” KB”;

}

The OnClick event handler of the TButton component can be used to make the call to
doGoogleSearch and show the results inside the TStringGrid component. This code is
as follows:

void __fastcall TForm1::btnSearchClick(TObject *Sender)

{

for (int row=1; row<=10; row++)

for (int col=0; col<=3; col++)

StringGrid1->Cells[col][row] = “”; // clear StringGrid

GoogleSearchResult* Results =

GetGoogleSearchPort()->doGoogleSearch(“1WpiIaxr+k+hbyYbRLZOJfg7X9NgI837”,

edtQuery->Text, 0, 10, True, “”, True, “lang_en”, “latin1”, “latin1”);

Caption = IntToStr(Results->estimatedTotalResultsCount) +

“ results in “ + FloatToStr(Results->searchTime) + “ seconds.”;

for (int i=Results->resultElements.Low;

i <= Results->resultElements.High; i++)

{

StringGrid1->Cells[0][i+1] = IntToStr(i+1);

StringGrid1->Cells[1][i+1] = Results->resultElements[i]->title;

StringGrid1->Cells[2][i+1] = Results->resultElements[i]->URL;

StringGrid1->Cells[3][i+1] = Results->resultElements[i]->cachedSize;

}

}

The result is a Windows application that can be used to enter a number of search
words and return the top 10 URLs. To jump directly to one of the resulting URLs, we
only have to implement the OnDlbClick event handler of the TStringGrid, as follows:

void __fastcall TForm1::StringGrid1DblClick(TObject *Sender)

{

TStringGrid* SG = dynamic_cast<TStringGrid*>(Sender);

ShellExecute(Handle,”open”,SG->Cells[2][SG->Row].c_str(),NULL,0,SW_NORMAL);

}

Using Other Web Services 771

24 0672324806 CH19 12/12/02 2:43 PM Page 771

The best thing is that you can integrate this feature in your own (noncommercial)
applications as well, of course. As long as an Internet connection is available to talk
to Google’s official Search Web service.

CHAPTER 19 SOAP and Web Services with BizSnap772

FIGURE 19.13 GoogleSearch Output.

Apart from searching for keywords in a Windows GUI application (or added as a
dialog to your own application), another good use of this functionality could be to
add it to a Web site, transformed as Web server application. In that case, you can
prefix the Query text with the site: keyword, including the name of the Web site
you’re looking at. For example, “site:www.drbob42.com” to look for the keyword in
pages on my own Web site. As an example of the output, take a look at Figure 19.14
which shows a search for the BizSnap WebServices SOAP combination in the
site:www.drbob42.com.

FIGURE 19.14 GoogleSearch Web site–specific results.

24 0672324806 CH19 12/12/02 2:43 PM Page 772

Summary
In this chapter we have seen how to use C++Builder 6 to build Web services and how
to import and use them—both Web services written in C++Builder and Web services
written in other languages. In the last section, we’ve even seen how to consume
foreign Web Services with C++Builder 6. We’ve seen how to generate the import files
based on a WSDL definition of the Web Service, and how to actually call the
methods from the Web Service.

For more information about SOAP and Web Services in C++Builder, Delphi, Kylix, or
JBuilder check out my SOAP Bubbles Web site at http://www.drbob42.com/SOAP. There
you can download full source code for this Google42 Web service client, including
any enhancements that I have added since the time of writing.

This ends the coverage of Web Services in C++Builder 6 Enterprise. Note that
Chapter 21, “DataSnap Multitier Connections,” will cover the combination of Web
Services and DataSnap, with the SOAP Data Module and SOAPConnection components.

Summary 773

24 0672324806 CH19 12/12/02 2:43 PM Page 773

24 0672324806 CH19 12/12/02 2:43 PM Page 774

IN THIS CHAPTER

• Introduction to DataSnap

• DataSnap Clients and Servers

• Stateless DataSnap

• Deployment

20

Distributed Applications
with DataSnap

by Bob Swart

In this chapter you will learn about DataSnap, the multi-
tier database technology previously called Multitier
Database Architecture Services (MIDAS).

Using a multitier database architecture, you can partition
applications so that you can access data on a second
machine (a database server) without having a full set of
database tools on your local machine. It also enables you
to centralize business rules and processes and distribute the
processing load throughout the network.

The examples in this chapter use DataSnap, which means
that you must have a copy of the Enterprise Edition of
C++Builder to run the programs in this chapter. Note that
you can also use the trial version of C++Builder 6
Enterprise to run the examples in this chapter.

Introduction to DataSnap
DataSnap supports a three-tier technology, which in its
classic form consists of the following:

• A database server on one (server) machine

• An application server on a second (middle-tier)
machine

• A thin client on a third (client) machine

The server should be a tool such as InterBase, Oracle, MS
SQL server, and so on. The application server and the thin
client should be built in C++Builder. The application server

25 0672324806 CH20 12/12/02 2:37 PM Page 775

will contain the business rules and the tools for manipulating the data. The client
will do nothing more than present the data to the user for viewing and editing.

In some situations, more than one tier can exist on the same machine (similar to the
database server and the application server). However, as long as they are separate
executables, they can still be considered separate tiers. N-tier computing refers to the
fact that all these tiers can be spread out across multiple machines. For instance, you
might have the employee server on one machine and the payroll server on another
machine. One of these application servers might access Oracle data from a third
machine, and the other server might access InterBase data from a fourth. Hence, you
don’t have three tiers, but n tiers.

NOTE

The term n-tier can be a bit misleading, at least from some perspectives. No matter how you
break up your database servers, application servers, and clients, you still end up with a
maximum of three tiers of computing. Just because you have the middle tier spread out over
10 machines doesn’t really change the fact that all 10 machines are involved in middle-tier
computing.

DataSnap is based on technology that enables you to package datasets and send
them across the network as parameters to remote method calls. It includes technol-
ogy for converting a dataset into a Variant or XML package on the server side, and
then unbundling the dataset on the client and displaying it to the user in a grid. The
latter is done with the aid of the TClientDataSet or TINetxPageProducer (previously
called the TMidasPageProducer) component.

Seen from a slightly different angle, DataSnap is a technology for moving a dataset
from a TTable or TQuery object on a server to a TClientDataSet object on a client.
TClientDataSet looks, acts, and feels exactly like a TTable or TQuery component, except
it doesn’t have to be attached to the BDE (Borland Database Engine) or any other
database driver for that matter—apart from the DataSnap middleware DLL itself. In
this particular case, TClientDataSet gets its data from unpacking the variant that it
retrieves from the server.

DataSnap enables you to use all the standard C++Builder components, including
database tools, in your client-side applications. However, the client side is a true
thin client: It does not have to include or link any database drivers apart from the
MIDAS.DLL itself (but at least you’re relieved from BDE or ODBC installation
scenarios). Installing MIDAS.DLL on the client is sometimes referred to as a zero-
configuration thin client. And, although it’s not exactly zero-configuration, it’s
indeed very simple to set up a DataSnap client, as this chapter will show.

CHAPTER 20 Distributed Applications with DataSnap776

25 0672324806 CH20 12/12/02 2:37 PM Page 776

The two different layers of the DataSnap technology are as follows:

• The components found on the Component Palette and built in the VCL
(TDataSetProvider, TClientDataSet, and TXMLBroker). The first two are found on
the Data Access tab, and the last one on the InternetExpress tab of the
Component Palette.

• The protocol used to send messages over the Internet. This layer might be
DCOM, HTTP, or just plain-old TCP/IP (sockets). With C++Builder 6 we can
even use SOAP over HTTP. Different connection components can be found on
the DataSnap tab of the Component Palette, and will be covered in more detail
in the next chapter.

The built-in C++Builder components enable you to easily connect two machines and
pass datasets back and forth between them. In the simplest scenarios, they make it
possible for you to build middle-tier and client applications with just a few clicks of
the mouse.

DataSnap Clients and Servers
The best way to understand what DataSnap is and how it works is to actually build
an application, consisting of a client and a server. Usually, I start with the DataSnap
server to encapsulate and export the datasets. Then, the next step is to build a
DataSnap client that connects to this server and displays the data in some way.

Creating a Simple DataSnap Server
To build your first DataSnap server, select File, New—Application to open a new
empty application. The fact that the main form of this application is shown ensures
that the DataSnap server will remain loaded (the message loop of the main form
keeps the DataSnap server alive). The Caption property of the main form is set to
C++Builder 6 Developer’s Guide. However, to be able to easily identify the DataSnap
server, I always drop a TLabel on the main form, set its Font property to something
that’s big and readable (like Comic Sans MS 24pt.), its Transparent property to true,
and set the Caption property of the TLabel component to the name of the DataSnap
server (C++Builder 6 DataSnap Server in this case). Resizing the main form and giving
it a noticeable background color in the Color property helps to identify it among
your other applications, as shown in Figure 20.1.

To turn a regular application into a middleware database server, you have to add a
remote data module to it. This special data module can be found on the Multitier tab
of the Object Repository (see Figure 20.2), so select File, New—Other and go to the
Multitier tab.

DataSnap Clients and Servers 777

25 0672324806 CH20 12/12/02 2:37 PM Page 777

FIGURE 20.1 The C++Builder 6 DataSnap Server main form.

CHAPTER 20 Distributed Applications with DataSnap778

FIGURE 20.2 The Remote Data Module icon inside the Object Repository.

The Multitier tab shows several CORBA wizards, a remote data module, and a
Transactional Data Module. The Transactional Data Module can be used with
Microsoft Transaction Server (MTS) prior to Windows 2000 or COM+ in Windows
2000 and later; it won’t be covered here. It’s the normal remote data module that
you need to select to create your first simple DataSnap server.

When you select the Remote Data Module icon and click the OK button, the New
Remote Data Module Object dialog, which is shown in Figure 20.3, opens.

There are a few options you must specify. CoClass Name is the name of the internal
class. This must be a name that you can remember, so use SimpleDataSnapServer at
this time (one word, because no spaces are allowed). Threading Model is the second
option you can set. By default, it is set to Apartment, which is almost always the
correct choice. Alternative choices are Single, Free, Both, and Neutral. Although you
almost never need to change this option, it’s important to know what they all mean.

25 0672324806 CH20 12/12/02 2:37 PM Page 778

FIGURE 20.3 The New Remote Data Module Object dialog.

The Single threading model setting supports only one client request at a time. If
more than one client wants to make a request, they must all wait in line. Only one
client request is executed and in a single thread. This avoids all possible multithread-
ing issues, but it can kill your performance (unless you never expect more than one
client to make a request at the same time).

The Apartment threading model setting assumes that more than one client can make
a request at roughly the same time, meaning that more than one request might need
to be handled simultaneously. Using the Apartment threading model means that
each instance of the remote data module handles one client request at a time. To
handle more client requests, a separate thread is created for each request. As a conse-
quence, each request runs in its own separate little apartment (hence the name) and,
although instance data is safe, you must be aware of threading issues with global
variables. This model can be used with regular BDE datasets, in which you need a
TSession component with AutoSessionName set to true to make sure each thread (that
is, each request) gets its own unique BDE session.

The Free threading model means that each thread can handle more than one client
request at the same time. This approach gets harder because you must guard against
not only global variable threading issues, but also against instance data. This thread-
ing model can be selected when you’re using ADO datasets.

The Both threading model is a variation on the Free threading model, with serialized
callbacks to client interfaces. This will not be covered in this chapter.

The final model is the Neutral threading model. This is a new model that’s available
only under COM+ (in Windows 2000 or XP) and will otherwise map to the
Apartment threading model. On Windows 2000 and later, Neutral means that call-
backs will always be serialized.

See the “Choosing a Threading Model” section of Chapter 17, “COM Programming,”
of this book for more information about the different threading models and their
consequences.

DataSnap Clients and Servers 779

25 0672324806 CH20 12/12/02 2:37 PM Page 779

After the Threading Model option, you can enter a description. What you enter here
will end up in the Registry for the ProgID of the application server interface. It is also
the help string for the interface in the type library. You can enter anything you
want, but I’ve entered C++Builder 6 Developer’s Guide Simple DataSnap Server, as you
can see in Figure 20.4.

Finally, you might want to let the wizard generate a separate interface for managing
events with the Generate Event Support Code option. Managing events in automa-
tion objects is not a topic of this chapter, so leave this option unchecked.

CHAPTER 20 Distributed Applications with DataSnap780

FIGURE 20.4 Completed New Remote Data Module Object dialog.

After you’ve completed all options inside the New Remote Data Module Object
dialog (see Figure 20.4 for my options), press OK to generate the remote data
module. The result is a remote data module that looks very much like a regular data
module. Visually, there’s no difference, and you can treat it like a regular data
module by dropping a TSession component (from the BDE tab) on it and setting the
AutoSessionName property of the TSession component to true. (Remember that you
need to do this when using BDE and the Apartment threading model, as discussed
earlier.)

After you have a TSession component, you can add other components from the Data
Access tab of the Component Palette. For example, you can drop a TTable compo-
nent and set its Name to tblCustomer. Set its DatabaseName property to BCDEMOS and open
the drop-down combo box for the TableName property to select the customer.db table.

Now it’s time to work on the so-called remote aspects of this data module. Go to the
Data Access tab of the Component Palette. Here you’ll find a TDataSetProvider
component. This component is the key to exporting datasets from a remote data
module to the outside world (more specifically to DataSnap client applications).
Drop the TDataSetProvider component on the remote data module, set its Name to
dspCustomer, and assign its DataSet property to tblCustomer. This means that the
TDataSetProvider will provide or export tblCustomer to a DataSnap client application
that connects to it (one that you will build in the following section). The
RemoteDataModule of SimpleDataSnapServer should now look similar to Figure 20.5.

25 0672324806 CH20 12/12/02 2:37 PM Page 780

NOTE

Later in this chapter, we’ll examine the TDataSetProvider component in more detail. For
now, the most important property is the Exported property, which is set to true to indicate
that tblCustomer is exported (by default). You can set this property to false to hide the fact
that tblCustomer is exported from the remote data module, so clients cannot connect to it.
This can be useful for example in a 24×7–running middleware data base server where you
need to make a backup of certain tables and must ensure that nobody is working on them
during the backup. With the Exported property set to false, no one can make a connection
to them (until you set it to true again, of course).

DataSnap Clients and Servers 781

FIGURE 20.5 The SimpleDataSnapServer remote data module.

Basically, this is all it takes to create a simple DataSnap server. The only thing that’s
left for you is to save the project (for example using a Save All). I’ve put the main
form in file SimpleDataSnapServerMainForm.cpp, the remote data module will be placed
in file SimpleDataSnapServerImpl.cpp, and I’ve put the project itself in SimpleData
SnapServer.bpr. You can save the type library in SimpleDataSnapServer.tlb. After the
project is saved, you need to compile and run it. Running the DataSnap server—
which shows only the main form, of course—will register it (inside the Windows
Registry), so any DataSnap client can find and connect to it. If you ever want to
move the DataSnap server to another directory (on the same machine), you only
need to move it and immediately run it again, so it re-registers itself for that new
location. This is a very convenient way of managing DataSnap server applications.

Later in this chapter, we’ll see how to deploy a DataSnap server on another machine
(in case you’re wondering at this time).

DataSnap Server Registration
Let’s examine this DataSnap server application registration process in a little more
detail. Open the header file for the source unit SimpleDataSnapServerImpl. Inside
SimpleDataSnapServerImpl.h, you’ll see a function definition for UpdateRegistry(),
which is repeated in Listing 20.1 for your convenience.

LISTING 20.1 Function UpdateRegistry

// Function invoked to (un)register object

//

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)

25 0672324806 CH20 12/12/02 2:37 PM Page 781

{

TRemoteDataModuleRegistrar regObj(GetObjectCLSID(), GetProgID(),

GetDescription());

// Disable these flags in order to disable use by socket or Web connections.

// Also set other flags to configure the behavior of your application server.

// For more information, see atlmod.h and atlvcl.cpp.

regObj.Singleton = false;

regObj.EnableWeb = true;

regObj.EnableSocket = true;

return regObj.UpdateRegistry(bRegister);

}

The UpdateRegistry() function ensures that the DataSnap remote data module is
registered (or unregistered) automatically when you want to use the middleware
application server as an automation server. Note that the UpdateRegistry() method
enables both socket and Web connections (using HTTP). If for some reason you want
to disable one of these protocols, you simply have to assign false to the EnableWeb or
EnableSocket field of the regObj variable.

Borland’s C++Builder documentation even treats this as a security feature: If your
DataSnap server is not registered to support the socket or Web connection, it won’t
be visible to a socket or Web connection component at all. C++Builder 4 MIDAS 2
servers never had any of this and, as a result, you could basically run any automa-
tion object on the server using the socket connection component. To prevent that,
the C++Builder Socket (and Web) connection components will now show only
DataSnap servers that are registered properly.

So far, you haven’t written a single line of C++ code for the simple DataSnap server.
Let’s see what it takes to write a DataSnap client to connect to the simple DataSnap
Server.

Creating a DataSnap Client
There are a number of different DataSnap clients that you can develop. These
include regular Windows (GUI) applications, ActiveForms, and even Web server
applications (using Web Broker or InternetExpress). In fact, just about everything can
act as a DataSnap client, as you’ll see in a moment. For now, you’ll create a simple
regular Windows application that will act as the first simple DataSnap client to
connect to the simple DataSnap server of the previous section. At this stage, you
should not be trying to run the client and the server on separate machines. Instead,
get everything up and running on one machine, and then later you can distribute
the application on the network.

CHAPTER 20 Distributed Applications with DataSnap782

LISTING 20.1 Continued

25 0672324806 CH20 12/12/02 2:37 PM Page 782

Select File, New—Application to start a new C++Builder application.

NOTE

At this time, you might decide to add a data module to it (using File, New—Other, and
selecting a data module from the New tab of the Object Repository). To avoid unnecessary
screenshots in this book, I skip the data module and use the main form to drop my nonvisual
(DataSnap) components as well as my normal visual components in one place.

Before anything else, your DataSnap client must make a connection with the
DataSnap server application. This connection can be made using a number of differ-
ent protocols, such as (D)COM, TCP/IP (sockets), HTTP, and SOAP. The components
that implement these connection protocols are TDCOMConnection, TSocketConnection,
TWebConnection, and TSOAPConnection, respectively, and will be covered in more detail
in the next chapter. For the first SimpleDataSnapClient, you’ll use the TDCOMConnection
component, so drop one from the DataSnap tab onto the main form of your
DataSnap client.

The TDCOMConnection component has a property called ServerName, which holds the
name of the DataSnap server you want to connect to. In fact, if you open the drop-
down combo box for the ServerName property in the Object Inspector, you’ll see a list
of all registered DataSnap servers on your local machine. In your case, this list might
include only one item (SimpleDataSnapServer.SimpleDataSnapServer), but all DataSnap
servers that are registered will end up in this list eventually. The names consist of
two parts: The part before the dot denotes the application name, and the part after
the dot denotes the remote data module name. In the current case, select the
SimpleDataSnapServer remote data module of the SimpleDataSnapServer application.
After you’ve selected this ServerName, you’ll notice that the ServerGUID property of the
TDCOMConnection component also gets a value, as found in the Registry. Developers
with a good memory are free to type the ServerGUID property here to automatically
get the corresponding ServerName name.

The fun really starts when you double-click the Connected property of the
TDCOMConnection component, which will toggle this property value from false to true.
To actually make the connection, the DataSnap server will be executed (automati-
cally). This results in the automatic execution and opening of the main form of the
SimpleDataSnapServer that you created in the previous section. See Figure 20.6 for the
resulting SimpleDataSnapServer at runtime.

DataSnap Clients and Servers 783

FIGURE 20.6 The SimpleDataSnapServer at runtime.

25 0672324806 CH20 12/12/02 2:37 PM Page 783

NOTE

It might appear now that there are two ways to close the DataSnap server—either by assign-
ing false to the Connected property of the TDCOMConnection component or by simply
closing down the SimpleDataSnapServer (by clicking the close button of its main form). The
former will work, but the latter is not a good idea because a COM Server Warning will try to
tell you (see Figure 20.7).

If you still decide to close the DataSnap server this way, the TDCOMConnection component on
the DataSnap client main form will still think it’s connected. In a real-world situation where a
DataSnap server (or a connection to it) is terminated, the same thing will happen: The
DataSnap client still thinks it has a connection, but in fact the connection is gone. In the
“Implementing Error Handling” section of this chapter, we’ll cover the error checking that you
must include to be able to survive such circumstances without too many problems.

CHAPTER 20 Distributed Applications with DataSnap784

FIGURE 20.7 COM Server Warning when closing SimpleDataSnapServer the
wrong way.

Double-click the Connected property of the TDCOMConnection component again to close
down the DataSnap server. Now that you’ve seen you can connect to it, it’s time to
import some of the datasets that are exported by the remote data module, or rather
by the TDataSetProvider component on the remote data module. Drop a
TClientDataSet component on the main form, and connect its RemoteServer property
to the TDCOMConnection component. The TClientDataSet component will obtain its
data from the DataSnap server. You now need to specify which provider to use—in
other words, from which TDataSetProvider you want to import the dataset into the
TClientDataSet component. This can be done with the ProviderName property of the
TClientDataSet component. Just open the drop-down combo box and you’ll see a list
of all available provider names; those that have their Exported property set to true. In
this case, there is only one—the only TDataSetProvider component that you used on
the SimpleDataSnapServer in the previous section—so select that one (dspCustomer).

NOTE

Before you picked a value for the ProviderName property, you closed down the
SimpleDataSnapServer. However, when you opened up the drop-down combo box to list all
available TDataSetProvider components on the remote data module that currently have
their Exported property set to true, there is only one way (for C++Builder and the Object
Inspector) to know exactly which of these providers are available—by asking the
SimpleDataSnapServer (more specifically, by actively looking at the remote data module and

25 0672324806 CH20 12/12/02 2:37 PM Page 784

finding out which of the available TDataSetProvider components have their Exported prop-
erty set to true. And because the SimpleDataSnapServer was down, it has to be started
again to present this list to you in the Object Inspector. As a result, the moment you drop-
down the combo box of the ProviderName property, the SimpleDataSnapServer will be
started again.

After you’ve selected the RemoteServer and ProviderName, it’s time to open (or activate)
the TClientDataSet. You can do this by setting the Active property of the
TClientDataSet component to true. At that time, the SimpleDataSnapServer is feeding
data from the tblCustomer table via the TDataSetProvider component and a (D)COM
connection to the TDCOMConnection component, which routes it to the TClientDataSet
component on your simple DataSnap client.

Now you can drop a TDataSource component and move to the Data Controls tab of
the Component Palette and drop one or more data-aware controls. To keep the
example simple, just drop a TDBGrid component. Connect the DataSet property of the
TDataSource component to the TClientDataSet, and connect the DataSource property
of the TDBGrid component to the TDataSource. Because the TClientDataSet component
was just activated, you should immediately see live data at design time, provided by
the SimpleDataSnapServer.

In Figure 20.8 you’ll see the SimpleDataSnapClient main form so far. Note that I’ve
enabled Component Captions, an option found in the Preferences tab of the Tools,
Environment Options dialog.

DataSnap Clients and Servers 785

FIGURE 20.8 SimpleDataSnapClient at design time.

Now save your work. Put the main form in the ClientMainForm.cpp file and call the
project SimpleDataSnapClient. Now you’re ready to compile and run the DataSnap
client. Again, you haven’t written a single line of C++ code, but rest assured—that
will change soon enough in the upcoming sections.

Using the Briefcase Model
When you run the SimpleDataSnapClient, you see the entire CustomerTable data inside
the grid. You can browse through it, change field values, even enter new records or

25 0672324806 CH20 12/12/02 2:37 PM Page 785

delete records. However, after you close the application, all changes are gone, and
you’re back at the original dataset inside the C++Builder IDE again. No matter how
hard you try; the changes that you make to the visual data seem to affect the data
inside the (local) TClientDataSet only, and not the (remote) actual tblCustomer.

What you experience here is actually a feature of the so-called briefcase model. Using
this model, you can disconnect the client from the network and still access the data.
To do so, save a remote dataset to disk, shut down your machine, and disconnect
from the network. You can then boot up again and edit your (local) data without
connecting to the network.

When you get back to the network, you can reconnect and update the database. A
special mechanism notifies you of database errors and any conflicts that need to be
resolved. For instance, if two people edited the same record, you will be notified and
given options to resolve any problem.

You don’t actually have to be able to reach the server at all times to be able to work
with your data. This capability is ideal for laptop users, or for sites that want to keep
database traffic to a minimum.

You’ve already experienced that (apparently) your SimpleDataSnapClient works on the
local data inside your TClientDataSet component only. It appears you can even save
the data to a local file and load it again. To save the current content of a
TClientDataSet, you need to drop a TButton on the main form, set the Name property
to btnSave, set Caption to Save, and write the following C++ code for the OnClick
event handler:

void __fastcall TForm1::btnSaveClick(TObject *Sender)

{

ClientDataSet1->SaveToFile(“customer.cds”,dfBinary);

}

This saves all records from the TClientDataSet in a file called customer.cds in the
current directory. cds stands for ClientDataSet, but you can use your own file and
extension names, of course. Note the dfBinary flag that is passed as the second argu-
ment to the SaveToFile method of TClientDataSet. This value indicates that I want to
save the data in binary—Inprise/Borland propriety—format. Alternately, I could
specify to save the data in XML format, passing the dfXML value. An XML file will be
much larger (14,108 versus 7,493 bytes for the entire tblCustomer data), but it has the
advantage that it can be used by other applications as well. You won’t be doing so in
this chapter, so I’ll stick to the smaller (and more efficient) binary format.

Similarly, to implement the functionality that you can load the customer.cds file
again into your TClientDataSet component, you need to drop another TButton
component, set its Name property to btnLoad, set Caption to Load, and write the follow-
ing C++ code for the OnClick event handler:

CHAPTER 20 Distributed Applications with DataSnap786

25 0672324806 CH20 12/12/02 2:37 PM Page 786

void __fastcall TForm1::btnLoadClick(TObject *Sender)

{

ClientDataSet1->LoadFromFile(“customer.cds”);

}

Note that the LoadFromFile method of the TClientDataSet component does not need a
second argument; it’s obviously smart enough to determine whether it’s reading a
binary or an XML file. And, although the binary file can probably be generated only
by another TClientDataSet component, the XML file could actually have been
produced by a different application.

Armed with these two buttons, you can now (locally) save the changes to your data
and even reload those changes—even if you stop and start the simple DataSnap
client application again.

To control whether the TClientDataSet component is connected to the DataSnap
server live, you can drop a third TButton component on the form that toggles the
Active property of the TClientDataSet component. Set the Name property of this
TButton to btnConnect and give the Caption property the value Connect. Now, write the
following code for the OnClick event handler, as can be seen in Listing 20.2.

LISTING 20.2 btnConnect OnClick Event Handler

void __fastcall TForm1::btnConnectClick(TObject *Sender)

{

if (ClientDataSet1->Active) // close and disconnect

{

ClientDataSet1->Close();

DCOMConnection1->Close();

}

else // open (will automatically connect)

{

// DCOMConnection1->Open();

ClientDataSet1->Open();

}

}

NOTE

Note that to close the connection, you actually have to close the TClientDataSet component
and close the TDCOMConnection as well. To open the connection, you need only to open the
TClientDataSet component, which will implicitly open the TDCOMConnection as well.

DataSnap Clients and Servers 787

25 0672324806 CH20 12/12/02 2:37 PM Page 787

Finally, there’s one more thing you really need to do: make sure the TDCOMConnection
and TClientDataSet components are not connected to the SimpleDataSnapServer at
design time. Otherwise, whenever you open your SimpleDataSnapClient project in the
C++Builder IDE again, it will need to make a connection to the
SimpleDataSnapServer—loading that DataSnap server. And when—for one reason or
another—SimpleDataSnapServer is not found on your machine, you will have a hard
time loading the SimpleDataSnapClient project. So, I always make sure they are not
connected at design time. To do so, you have to assign false to the Connected prop-
erty of the TDCOMConnection component (which will unload the main form of the
SimpleDataSnapServer) and false to the Active property of the TClientDataSet compo-
nent (which means you won’t see any data at design time anymore).

NOTE

If you try to talk to a DCOM server, but can’t reach it, the system will not immediately give
up the search. Instead, it can keep trying for a set period of time that rarely exceeds two
minutes. During those two minutes, however, the application will be busy and will appear to
be locked up. If the application is loaded into the IDE, all C++Builder will appear to be locked
up. You can have this problem when you do nothing more than attempt to set the Connected
property of the TDCOMConnection component to true.

Note that there is no solution to this problem. This is simply a warning not to leave the
Connected property of a TDOMConnection set to true because it can cause your IDE (and
machine) to appear hung when you next open the project.

Now, when you recompile and run your SimpleDataSnapClient, it will show up with
no data inside the TDBGrid component (see Figure 20.9). This is the time to click the
Connect button to connect to the SimpleDataSnapServer and obtain all records (from
the database server). However, there are times (for example, when you are on the
road or not connected to the machine that runs the SimpleDataSnapServer), when you
cannot connect to the SimpleDataSnapServer. In those cases, you can click the Load
button instead and work on the local copy of the records. Note that this local copy is
the one that you last saved, and it is updated only when you click the Save button to
write the entire contents of the TClientDataSet component to disk.

CHAPTER 20 Distributed Applications with DataSnap788

FIGURE 20.9 SimpleDataSnapClient at runtime (without SimpleDataSnapServer
running).

25 0672324806 CH20 12/12/02 2:37 PM Page 788

At this time you might want to write some additional code that disables the Save
button until some data is present inside the TClientDataSet component. Otherwise,
clicking the Save button has no effect (including not removing or overwriting the
current customer.cds file—if you have one).

Another useful enhancement consists of changing the Caption property of the
btnConnect buttton from Connect to Disconnect (and back) when connecting. This
can be done with the code as shown in Listing 20.3.

LISTING 20.3 btnConnect OnClick Event Handler

void __fastcall TForm1::btnConnectClick(TObject *Sender)

{

if (ClientDataSet1->Active) // close and disconnect

{

ClientDataSet1->Close();

DCOMConnection1->Close();

dynamic_cast<TButton*>(Sender)->Caption = “Connect”;

}

else // open (will automatically connect)

{

// DCOMConnection1->Open();

ClientDataSet1->Open();

dynamic_cast<TButton*>(Sender)->Caption = “Disconnect”;

}

}

Using ApplyUpdates

It’s nice to be able to connect or load a local dataset and save it to disk again. But
how do you ever apply your updates to the actual (remote) database again? This can
be done using the ApplyUpdates method of the TClientDataSet component.

Drop a fourth button on the SimpleDataSnapClient main form, set its Name property to
btnApplyUpdates and the Caption property to Apply Updates. The OnClick event handler
of the Apply button should get the following code:

void __fastcall TForm1::btnApplyUpdatesClick(TObject *Sender)

{

ClientDataSet1->ApplyUpdates(0);

}

The ApplyUpdates method of the TClientDataSet component has one argument: the
maximum number of errors that it will allow before it stops applying updates. With

DataSnap Clients and Servers 789

25 0672324806 CH20 12/12/02 2:37 PM Page 789

a single SimpleDataSnapClient connected to the SimpleDataSnapServer, you will never
encounter any problems, so feel free to run your SimpleDataSnapClient now. Click the
Connect button to connect to (and load) the SimpleDataSnapServer, and use the Save
and Load buttons to store and read the contents of the TClientDataSet component to
and from disk. You can even remove your machine from the network and work on
your local data for a significant amount of time, which is exactly the idea behind the
briefcase model (your laptop being the briefcase). Any changes you make to your
local copy will remain visible, and you can apply the changes to the remote database
with a click of the Apply Updates button—when you’ve reconnected to the network
with the SimpleDataSnapServer.

Implementing Error Handling
What if two clients, both using the briefcase model, connect to the
SimpleDataSnapServer, obtain the entire tblCustomer, and make changes to the first
record? According to what you’ve built so far, both clients could then send the
updated record back to the DataSnap server using the ApplyUpdates method of the
TClientDataSet component. If both pass zero as value for the MaxErrors argument of
ApplyUpdates, the second one to attempt the update will be stopped. The second
client could pass a numerical value bigger than zero to indicate a fixed number of
errors or conflicts allowed before the update is stopped. However, even if the second
client passed -1 as its argument (to indicate that it should continue updating no
matter how many errors occur), it will never update the records that have been
changed by the previous client. You need reconcile actions to handle updates on
already-updated records and fields.

Fortunately, C++Builder contains a very useful dialog especially written for this
purpose. Whenever you need to do error reconciliation, you should consider adding
this dialog to your DataSnap client application (or write one yourself, but at least do
something about it). To use the one available in C++Builder, just select File, New—
Other, go to the Dialogs tab of the Object Repository and select the Reconcile Error
Dialog icon, which can be seen in Figure 20.10.

After you select this icon and click OK, a new unit is added to your
SimpleDataSnapClient project. This unit contains the definition and implementation
of the Update Error dialog that can be used to resolve database update errors (see
Figure 20.11).

After this unit is added to your SimpleDataSnapProject, there is something very impor-
tant you have to check. First save your work (put the new unit in file
ErrorDialog.cpp).

CHAPTER 20 Distributed Applications with DataSnap790

25 0672324806 CH20 12/12/02 2:37 PM Page 790

FIGURE 20.10 The Reconcile Error Dialog icon inside the Object Repository.

DataSnap Clients and Servers 791

FIGURE 20.11 Update (Reconcile) Error dialog at design time.

When or how do you use this special ReconcileErrorForm? It’s actually very simple.
For every record for which the update did not succeed (for whatever reason), the
OnReconcileError event handler of the TClientDataSet component is called. This event
handler of TClientDataSet is defined as follows:

void __fastcall TForm1::ClientDataSet1ReconcileError(

TClientDataSet *DataSet, EReconcileError *E, TUpdateKind UpdateKind,

TReconcileAction &Action)

{

}

This event handler has four arguments: the TClientDataSet component that raised
the error, a specific ReconcileError that contains a message about the cause of the
error condition, the UpdateKind that generated the error (insert, delete, or modify),
and the Action that should be taken. Action can return the following enum values (the
order is based on their actual enum values):

25 0672324806 CH20 12/12/02 2:37 PM Page 791

• raSkip—Do not update this record, but leave the unapplied changes in the
change log. Be ready to try again next time.

• raAbort—Abort the entire reconcile handling; no more records will be passed to
the OnReconcileError event handler.

• raMerge—Merge the updated record with the current record in the (remote)
database, only changing (remote) field values if they changed on your side.

• raCorrect—Replace the updated record with a corrected value of the record that
you made in the event handler (or inside ReconcileErrorDialog). This is the
option in which user intervention is required.

• raCancel—Undo all changes inside this record, turning it back into the original
(local) record.

• raRefresh—Undo all changes inside this record, but reload the record values
from the current (remote) database, not from the original local record you had.

The good thing about ReconcileErrorForm is that you don’t really need to concern
yourself with all this. You only need to pass the arguments from the OnReconcileError
event handler in the TClientDataSet component to the HandleReconcileError function
from the ErrorDialog.

This can be done in two steps. First, you need to include the ErrorDialog unit header
inside the SimpleDataSnapClient main form definition (or the data module, if you
decided to use one). Click the ClientMainForm and select File, Include Unit Hdr... to
get the Use Unit dialog (see Figure 20.12).

CHAPTER 20 Distributed Applications with DataSnap792

FIGURE 20.12 Add the ErrorDialog unit header to the ClientMainForm unit.

With the ClientMainForm as your current unit, the Use Unit dialog will list the only
other available unit, which is the ErrorDialog. Just select it and click OK.

25 0672324806 CH20 12/12/02 2:37 PM Page 792

The second thing you need to do is to write one line of code in the OnReconcileError
event handler of the TClientDataSet component to call the HandleReconcileError()
function from the ErrorDialog unit (that you just added to your ClientMainForm
import list). The HandleReconcileError() function has the same four arguments as the
OnReconcileError event handler (not a real coincidence, of course), so it’s a matter of
passing arguments from one to another—nothing more, nothing less. The
OnReconcileError event handler of the TClientDataSet component can be coded
similar to Listing 20.4.

LISTING 20.4 Completed OnReconcileError Event Handler

void __fastcall TForm1::ClientDataSet1ReconcileError(

TClientDataSet *DataSet, EReconcileError *E, TUpdateKind UpdateKind,

TReconcileAction &Action)

{

Action = HandleReconcileError(this, DataSet, UpdateKind, E);

}

Demonstrating Reconcile Errors
How does all this work in practice? To test it, you obviously need two (or more)
SimpleDataSnapClient applications running simultaneously. For a complete test using
the current SimpleDataSnapClient and SimpleDataSnapServer applications, you need to
perform the following steps:

1. Start the first SimpleDataSnapClient and click the Connect button (the
SimpleDataSnapServer will now be loaded as well).

2. Start the second SimpleDataSnapClient and click the Connect button. Data will
be obtained from the SimpleDataSnapServer that’s already running.

3. Using the first SimpleDataSnapClient, change the Company field for the first
record (for example, change it to “Bob Swart Training Consultancy”).

4. Using the second SimpleDataSnapClient, also change the Company field for the
first record (make sure you don’t change it to the same value as in the previous
step—for example, change it to eBob42).

5. Click the Apply Updates button of the first SimpleDataSnapClient. All updates
will be applied without any problems.

6. Click the Apply Updates button of the second SimpleDataSnapClient. This time,
one or more errors will occur because the first record had its Company field
value changed (by the first SimpleDataSnapClient). The OnReconcileError event
handler is called.

DataSnap Clients and Servers 793

25 0672324806 CH20 12/12/02 2:37 PM Page 793

7. Inside the Update Error dialog (see Figure 20.13), you can now experiment with
the Reconcile Actions (Abort, Skip, Cancel, Correct, Refresh, and Merge) to get
a feel for what they do. Pay special attention to the differences between Skip
and Cancel and those between Correct, Refresh, and Merge.

CHAPTER 20 Distributed Applications with DataSnap794

FIGURE 20.13 The Reconcile Error dialog in action.

Skip moves on to the next record, skipping the requested update (for the time
being). The unapplied change will remain in the change log. Cancel also skips the
requested update, but it cancels all further updates (in the same update packet). The
current update request is skipped in both cases, but Skip continues with other
update requests, and Cancel cancels the entire ApplyUpdate request.

Refresh just forgets all updates you made to the record and refreshes the record with
the current value from the server database. Merge tries to merge the update record
with the record on the server, placing your changes inside the server record. Refresh
and Merge will not process the change request any further, so the records are
synchronized after Refresh and Merge (whereas the change request can still be
redone after a Skip or Cancel).

Correct, the most powerful option actually gives you the option of customizing the
update record inside the event handler. For this you need to write some code or enter
the values in the dialog yourself.

Creating a DataSnap Master-Detail Server
Time to start a second, more complex example of a DataSnap server. Because we are
using different filenames, you can put it in the same directory as the
SimpleDataSnapServer. However, feel free to put each DataSnap Server and Client in
its own directory (which is easier to maintain if these applications grow in size and
complexity). I’ve listed the steps you need to perform, to make it a bit easier.

• First, start a new project using File, New—Application. Save the main form in
DataSnapServerMainForm.cpp and the project in DataSnapServer.bpr.

25 0672324806 CH20 12/12/02 2:37 PM Page 794

• Like the first SimpleDataSnapServer example, make sure the main form can be
identified as your (second) DataSnap server application (see Figure 20.14). This
means just adding a label, an image, or anything that will help identify this
main form, so you’ll know immediately when it (and hence your second
DataSnap server) is running.

DataSnap Clients and Servers 795

FIGURE 20.14 Master-detail DataSnap server main form.

• Next, start the Remote Data Module Wizard from the Multitier tab of the
Object Repository, as you’ve done before. This time, specify CustomerOrders as
CoClass Name, and use the default values for all other options. This will result
in a middleware database server with the name DataSnapServer.CustomerOrders,
as you’ll see when you start to build the DataSnapClient for this server.

• After you have a new remote data module, drop two TTable components. Set
the Name property of one to tblCustomer and the other to tblOrders.

• For each of these TTable components, set the DatabaseName property to BCDEMOS.

• Click tblCustomer and select customer.db as the value for the TableName property.
Click tblOrders and select orders.db as the value for the TableName property.

You’re now ready to define the master-detail relationship between tblCustomer and
tblOrders.

• Drop a TDataSource component on the remote data module. Set its Name to
dsCustomer, and its DataSet property to tblCustomers. Select the tblOrders, and
set its MasterSource property to the DataSource.

• Click the elipsis for the MasterFields property of tblOrders. This will show the
Field Link Designer. Select CustNo as Available Index, and select CustNo as
both the Detail Field and the Master Field. Next, click the Add button to add
the Joined Fields (as shown in Figure 20.15).

• If you click OK again, the Field Link Designer will close and the master-detail
relationship between tblCustomer and tblOrders has been created.

Now that you have created the master-detail relationship, it’s time to export the
tables to the outside world.

25 0672324806 CH20 12/12/02 2:37 PM Page 795

FIGURE 20.15 The Field Link Designer for tblCustomer and tblOrders.

Exporting Master-Detail DataSets
In the SimpleDataSnapServer example, you used a single TDataSetProvider component
to export tblCustomer from the remote data module. This time, you might feel the
urge to use two TDataSetProvider components: one to export tblCustomer and one to
export tblOrders from the remote data module. That would export the two tables all
right, but not their master-detail relationship. In fact, you would have to redefine
the master-detail relationship at the client side again. This might work for a normal
application (defining the master-detail relationship at the client side). However, for a
multitier application in which a database server provides the data for the tables, this
situation has at least two real problems.

First of all, the detail TClientDataSet component on the DataSnapClient will have to
fetch and store all detail records from the database server, even if only a few of the
detail records are actually needed at the client side (after the master-detail relation-
ship has been established). A potentially large number of records are sent over for
nothing, wasting precious bandwidth. Of course, this problem can be overcome by
using parameters, sent from the client to the server, but this involves more work and
could introduce bugs that are hard to trace.

The second problem in defining the master-detail relationship on the client side has
to do with the fact that it’s more difficult to apply updates using two separate client
datasets. This is caused by the fact that the TClientData component doesn’t apply
updates for multiple tables in a single transaction, but on a dataset-by-dataset basis
(that is, you must make a separate call to ApplyUpdates for each table).

As a result, you should try not to export master-detail datasets as separate entities.
Fortunately, TDataSetProvider is able to export two (or more) tables having a master-
detail relationship as a single entity—provided you connect the TDataSetProvider
component to the master TTable, being the tblCustomer of your DataSnap server. The
trick is that the master table will automatically include a DataSetField for the detail
records, and only for those detail records that are relevant to the current master
record, sending only those records over the wire that are needed.

CHAPTER 20 Distributed Applications with DataSnap796

25 0672324806 CH20 12/12/02 2:37 PM Page 796

• You need only to drop a single TDataSetProvider component (which can be
found on the Data Access tab) on the remote data module, set its Name to
dspCustomerOrders, and connect its DataSet property to tblCustomer. This will
export both tblCustomer and tblOrders (as a nested field) from the remote data
module.

• Save your work again (the assigned name is CustomerOrdersImpl.cpp). The
Remote Data Module should resemble the one of Figure 20.16.

DataSnap Clients and Servers 797

FIGURE 20.16 The Remote Data Module with tblCustomer and tblOrders.

Note again that you didn’t have to write a single line of C++ code for the DataSnap
server application. Compile the DataSnapServer project and run it to register it on
your machine. Now it’s time to start working on the DataSnap client application that
retrieves this master-detail data.

Creating a DataSnap Master-Detail Client
The new DataSnap server needs a new DataSnap client as well. Start another new
application (using File, New—Application). Save the main form as MainForm.cpp and
save the project as DataSnapClient.bpr. Drop a TDCOMConnection component (from the
DataSnap tab) on the main form. After you open up the drop-down combo box for
the ServerName property of the TDCOMConnection component, you should see both
SimpleDataSnapServer.SimpleDataSnapServer (the first example) and
DataSnapServer.CustomerOrders (the second example). Obviously, you want to select
the DataSnapServer.CustomerOrders as the value for the ServerName property. You can
set the Connected property of the TDCOMConnection component to true to test if the
DataSnapServer actually gets loaded correctly.

Now, drop a TClientDataSet component (which can be found on the Data Access tab)
to retrieve the data via the TDCOMConnection component from the remote data
module. Connect the RemoteServer property of the TClientDataSet component to the
TDCOMConnection component, which is named DCOMConnection1 by default. Next, you
need to select the right provider that’s exported from the remote data module. In
this case, there is still only one provider (you exported only the tblCustomer using

25 0672324806 CH20 12/12/02 2:37 PM Page 797

dspCustomerOrders), so select the only choice you have as the value for the
ProviderName property of the TClientDataSet component, which should be
dspCustomerOrders.

Now, drop a TDataSource component under the TClientDataSet component (so you
know that they’ll belong together). Connect the DataSet property of the TDataSource
component to the TClientDataSet component. Move over to the Data Controls tab of
the Component Palette to drop a TDBGrid component on the form. Connect the
DataSource property of the TDBGrid component to the TDataSource component.

To see live data at design time again, you only have to set the Active property of the
TClientDataSet component to true and presto! See Figure 20.17 for remote customer
data in the C++Builder IDE at design time.

CHAPTER 20 Distributed Applications with DataSnap798

FIGURE 20.17 The DataSnap client main form showing customer data at design time.

Using Nested Tables
You might have noticed (from Figure 20.17 for example) that the TDBGrid appears to
show data only from TableCustomers. If you scroll all the way to the right of the
TDBGrid component, you’ll notice one last field called tblOrders. The TDBGrid compo-
nent apparently cannot show the actual contents of this field because it only
displays (DATASET). Actually, that particular last field named tblOrders is a
TDataSetField.

It gets even better when you run the DataSnapClient application and click the
tblOrders field inside the DBGrid. This will show an ellipsis, and when you click that
ellipsis (or double-click the DATASET field itself), a new pop-up window will appear
(see Figure 20.18), showing the detail records belonging to the master record that
you just clicked.

I have to admit that—at first—it looks nice to have a new pop-up window show the
detail records of the particular master record (that you used to double-click the
DATASET column). However, after a few minutes the excitement disappears, and I
wonder about my clients. Would they like this interface? Wouldn’t it be better to
display the detail records in another TDBGrid component right under the first one?
Your taste may differ, but at least it’s possible, like almost anything in C++Builder.

25 0672324806 CH20 12/12/02 2:37 PM Page 798

FIGURE 20.18 DataSnap client showing customer data and client detail.

Close the DataSnapClient application if it’s still running and return to the
C++Builder IDE. Drop another TClientDataSet component on the main form (which
will be called ClientDataSet2 by default). This time, you need to look at the
DataSetField property of ClientDataSet2; the second TClientDataSet component.
Somehow, you have to connect this property with the persistent tblOrders field of
type TDataSetField. The only problem—which becomes apparent after you drop
down the list of available DataSetFields—is that there are no persistent fields, yet.

To use the nested dataset (the detail records), you must create a persistent DataSet
field for the nested data. This sounds more difficult than it is because the easy way is
just to double-click the first TClientDataSet component (ClientDataSet1) to start the
Fields Editor (at design time), right-click in the Fields Editor, and select Add All
Fields. This will create persistent fields for every field, including a DataSetField for
the nested detail table tblOrders, as can be seen in Figure 20.19.

DataSnap Clients and Servers 799

FIGURE 20.19 The Fields Editor showing tblCustomer fields.

After tblOrders has been turned into a persistent field, you can drop down the
combo box for the DataSetField property of the second TClientDataSet component.
The combo box will show the ClientDataSet1.tblOrders as the only possible dataset
field to select, so pick it. Note that this ClientDataSet is not connected directly to a
remote server, but indirectly because it gets its data from the nested dataset that the
first TClientDataSet component received from the remote data server.

25 0672324806 CH20 12/12/02 2:37 PM Page 799

You can now drop a second TDataSource component (from the Data Access tab) and a
second TDBGrid component (from the Data Controls tab). Connect the second
TDataSource (DataSource2) to the second TClientDataSet (ClientDataSet2), and the
second TDBGrid (DBGrid) to this second TDataSource (DataSource2). This will show
live detail data at design time (see Figure 20.20).

CHAPTER 20 Distributed Applications with DataSnap800

FIGURE 20.20 The DataSnap client main form showing customer and orders data at
design time.

This is a good solution for both displaying and updating master-detail relationships.
Sometimes displaying the detail in a pop-up window might be what you need, and
sometimes my solution using a second TClientDataSet component is more suited.

The problem of updating the master-detail relationship is solved by the fact that you
now have only one call to ApplyUpdates to make (from the first TClientDataSet
component—the one directly connected to the remote server). This automatically
updates the entire nested table.

Understanding DataSnap Bandwidth Bottlenecks
Although even the SimpleDataSnapServer example has some potential (bandwidth)
bottlenecks, they will become more noticeable when looking at the master-detail
DataSnapServer and DataSnapClient pair.

When a TClientDataSet is set to Active, it makes a request to the TDataSetProvider
component on the remote data module to send data over the wire. How much data
depends on both the size of the individual records and, of course, the number of
records. The latter is determined by the value of the PacketRecords property of the
TClientDataSet component. By default, this property is set to -1, meaning
TClientDataSet just says “send me all available records.”

This is hardly a problem for a relatively small BCDEMOS example using customers.db
(only 55 records) and orders.db (only 205 records). But imagine a real-world

25 0672324806 CH20 12/12/02 2:37 PM Page 800

customer’s table. Surely it would hold more than 55 customers. Even a small table of
customers could easily hold a thousand or more records. And what about the orders?
A few thousand perhaps? At a hundred bytes or more for each table, that could lead
to a few hundred kilobytes to send over the wire as soon as the DataSnapClient
connects to the DataSnapServer (and requests all data to be sent). And that’s in a
small shop, not an airline reservation desk or an online bookstore. I’m sure you
understand why this has the potential of being a serious performance bottleneck if
not a show stopper, especially with multiple DataSnapClients all talking to the same
DataSnapServer over the same wire.

Minimizing Bottlenecks Using PacketRecords
There are a few ways to minimize the impact of this bottleneck. First and most
obvious is to change the PacketRecords property to a value other than -1. Depending
on the number of records you want to display at the same time, you might want to
set PacketRecords of the first TClientDataSet to 10 or so. This will ensure that only the
first 10 records are transferred when the first connection is made. As soon as you
start to browse through the TDBGrid component and reach for the 21st record, the
TClientDataSet will perform another request to the TDataSetProvider component on
the remote data module, to obtain the next set of 10 records. Thus, after two
requests, the client shows 20 records inside the TDBGrid. This continues until all
records have been moved from the remote data module to the TClientDataSet
component inside the DataSnapClient application.

NOTE

You don’t need to modify PacketRecords of the second detail TClientDataSet. The nested
dataset is already at the client side, contained as DataSetField within the master record itself.

When you looked closely, you might have noted that the scrollbar thumb of the
TDBGrid component seems to shrink in size. That’s because the first time, the
TClientDataSet obtained only 10 records, which are shown in the TDBGrid compo-
nent—unlike 55 that are shown when all data is obtained (compare Figures 20.20
and 20.21).

So far so good, however, there are a few things you must be aware of when using this
solution. If you run the new DataSnapClient, click the grid, and hit Ctrl+End, you
expect to scroll down to the last record. And, sure enough, you do. The bad news is
that to show you the last record (the 55th, in this case), the TClientDataSet has to
make five new requests to the TDataSetProvider component on the remote data
module. The first request gets records 11–20, and so on, until the fifth request gets
records 51–55. In other words, to show you the last record, it has to retrieve all
records. And again, in this 55-record scenario, that’s not a big deal. But imagine
thousands of records, where pressing Ctrl+End could lead to a sudden and significant
delay in response time.

DataSnap Clients and Servers 801

25 0672324806 CH20 12/12/02 2:37 PM Page 801

FIGURE 20.21 DataSnapClient showing the first 10 customers with orders in DBGrids.

Minimizing Bottlenecks Using Server Optimization
Apart from the PacketRecords property, which is a client-side optimization technique,
it’s often far more useful to look at the server side. Remember that the amount of
data that is being sent over the wire is the result of multiplying the record size by
the number of records. If you did your best by minimizing the number of records,
then it’s time to look at the record size. Of course, you cannot just hack the tables
and try to shrink down the record size, but you can look at the available fields and
make a well-planned decision about which fields are exported (provided) from the
remote data module and which fields aren’t. In all previous examples, you’ve simply
exported the entire dataset using the TDataSetProvider component. In fact, with
DataSnapServer you’ve even explicitly added all fields to both tblCustomer and
tblOrders. All this information is sent from the DataSnapServer to the
DataSnapClient. If you need all these fields, there’s nothing you can do about it.
However, more often than not, only some of the available fields are used at the
client side. That means you send maybe 10 fields over the wire when you only need
3. Although you can specify at the client-side which fields you want to see (at both
the TDBGrid and TClientDataSet levels), this doesn’t matter anymore at that time
because the fields have already been transferred. You need to make a conscious deci-
sion at the server side. It will make a difference, even with a table that contains a
large number of records. If you pass only one or two fields (out of perhaps a dozen),
you’re sending only a fraction of the table.

Using the PacketRecords property of the TClientDataSet component for client-side
optimizations and reducing the number of fields to include at the server side are just
two bandwidth optimization techniques that have proven to be very effective in
real-world applications. The remaining part of this chapter focuses on some of the
specific DataSnap enhancements that are part of C++Builder 6. The first one is a big
issue: the stateless nature of the DataSnap server!

CHAPTER 20 Distributed Applications with DataSnap802

25 0672324806 CH20 12/12/02 2:37 PM Page 802

Stateless DataSnap
One of the biggest changes in DataSnap (introduced with MIDAS 3) is that DataSnap
applications now support stateless remote data modules (made possible by the
DataSnap IAppServer interface). This means you can now share remote data modules
without having to write your own custom interfaces (extending the MIDAS 2
IProvider interface) because no state information is maintained. It also means that
each client will have to maintain its own state and send it to the server with every
request for data. The DataSnap documentation even states that, although each call
from the client to the server carries more (state) information, fewer calls are needed,
so message traffic is in fact reduced.

To make this change clear, I’ve compared the events of the TClientDataSet component
in C++Builder 4 (MIDAS 2) and C++Builder 6 (DataSnap). New events introduced for
the TClientDataSet component in C++Builder 6 are AfterApplyUpdates, AfterExecute,
AfterGetParams, AfterGetRecords, AfterPost, AfterRefresh, AfterRowRequest, and
AfterScroll, and of course their counterparts BeforeApplyUpdates, BeforeExecute,
BeforeGetParams, BeforeGetRecords, BeforePost, BeforeRefresh, BeforeRowRequest, and
BeforeScroll. These eight sets of methods are used to send the necessary state
information from the client to the server.

A similar list of differences can be seen on the server side, where I’ve compared the
events for the TDataSetProvider component of C++Builder 4 (MIDAS 2) with
C++Builder 6 (DataSnap). The new event handlers of TDataSetProvider are AfterApply

Updates, AfterExecute, AfterGetParams, AfterGetRecords, and AfterRowRequest. Their
counterparts are BeforeApplyUpdates, BeforeExecute, BeforeGetParams, BeforeGetRecords,
and BeforeRowRequest. There is also a new OnGetTableName event handler.

The Before events of TDataSetProvider allow necessary state information to be
obtained from the client (sent by a corresponding Before event of the TClientDataSet
component). The After events of TDataSetProvider enable state information to be
passed back to the client (received by the corresponding After events of the
TClientDataSet).

Stateful Versus Stateless DataSnap Servers
As an example, let’s take the case where we used a value of 10 for PacketRecords
again. The use of PacketRecords can have a significant side effect: to allow the
DataSnap server to send you the next set of records, it has to somehow remember
the state of the client. And, because the client didn’t tell the server anything (yet),
this means that the DataSnap server is actually stateful. As we’ll see in the next
chapter, not all connection protocols can support a stateful connection. MTS, HTTP,
and SOAP will not support this, and hence if you use a value of 10 for the
PacketRecords, you will get the same (first) 10 records every time to request new
data. Which might even lead to key violations (because the first 10 records are
already present in the local ClientDataSet).

Stateless DataSnap 803

25 0672324806 CH20 12/12/02 2:37 PM Page 803

So, let’s actually build a Stateless DataSnap Server and implement the way in which
TClientDataSet and TDataSetProvider components communicate when asking for the
next batch of records. First of all, set the FetchOnDemand property of ClientDataSet1
(the master TClientDataSet component) to false. This is very important; otherwise,
you’ll get a stack error later, as I’ll explain in a moment.

With FetchOnDemand set to false, there will be no automatic mechanism to send
(fetch) packets of records from the DataSnap server to the client, so we have to
implement it ourselves. An example of a situation in which you want to implement
(and control) the fetching of packets of records is when you want (or must) make
sure the dataset on the server side is positioned correctly before sending the records
over. In this section, we’ll see exactly how to do that. This technique can also be
important when you’re working with stateless environments such as MTS, HTTP, or
SOAP.

Now, to get the next batch of records from the TDataSetProvider component on a
DataSnap server, the TClientDataSet component (with FetchOnDemand set to false) on
the DataSnapClient application should use the BeforeGetRecords event to specify a
certain record or position. This is set using the OwnerData parameter of this event
handler (given a dataset with a single key field named CustNo, as in your examples),
which can be seen in Listing 20.5.

LISTING 20.5 ClientDataSet OnBeforeGetRecords Event Handler

void __fastcall TForm1::ClientDataSet1BeforeGetRecords(TObject *Sender,

OleVariant &OwnerData)

{

TClientDataSet* Master = (TClientDataSet*) Sender;

if (Master->Active)

{

void* Current = Master->GetBookmark();

try

{

Master->Last();

OwnerData = Master->FieldByName(“CustNo”)->AsString;

Master->GotoBookmark(Current);

}

__finally

{

Master->FreeBookmark(Current);

}

}

}

CHAPTER 20 Distributed Applications with DataSnap804

25 0672324806 CH20 12/12/02 2:37 PM Page 804

The Master->Last() statement is the one that will generate a stack overflow if the
FetchOnDemand property of the TClientDataSet component is set to true. In that case,
moving to the last record will actually trigger the TClientDataSet component to fetch
(on demand) all records, which will fire this OnBeforeGetRecords event handler again,
and so on until you finally get a stack error.

Anyway, just before the TDataSetProvider component on the remote data module
from the DataSnapServer sends the requested records, the BeforeGetRecords event
handler is called, including the OwnerData value as you passed on the ClientDataSet
side (see Listing 20.6).

LISTING 20.6 Server DataSetProvider OnBeforeGetRecords Event Handler

void __fastcall TCustomerOrders::dspCustomerOrdersBeforeGetRecords(

TObject *Sender, OleVariant &OwnerData)

{

TVariant Variant = OwnerData;

if (!VarIsEmpty(Variant))

{

TLocateOptions LocateOptions;

TDataSet* DataSet = ((TDataSetProvider*) Sender)->DataSet;

if (DataSet->Locate(“CustNo”, Variant, LocateOptions))

DataSet->Next();

}

}

Now that both BeforeGetRecords event handlers have fired, it’s time to actually send
the records from the DataSnapServer remote data module to the DataSnapClient.

After the records are sent, the TDataSetProvider component is able to send some
information back to the TClientDataSet (like the number of actual records in the
entire dataset on the server side). This could be started using the AfterGetRecords
event handler of the TDataSetProvider component as can be seen in Listing 20.7.

LISTING 20.7 Server DataSetProvider OnAftereGetRecords Event Handler

void __fastcall TCustomerOrders::dspCustomerOrdersAfterGetRecords(

TObject *Sender, OleVariant &OwnerData)

{

TDataSet* DataSet = ((TDataSetProvider*) Sender)->DataSet;

if (DataSet->Active)

OwnerData = IntToStr(DataSet->RecordCount);

else

OwnerData = AnsiString(“n/a”);

}

Stateless DataSnap 805

25 0672324806 CH20 12/12/02 2:37 PM Page 805

Note that you again pass an AnsiString value in the OwnerData parameter (which is of
type OleVariant). Passing AnsiString values always seems to work for me, whereas a
direct assignment of DataSet->RecordCount to OwnerData doesn’t compile.

Now, the value of OwnerData as passed by the OnAfterGetRecords event handler of the
TDataSetProvider component will be picked up at the client side by the
OnAfterGetRecords event handler of the TClientDataSet component. Storing the value
somewhere is a different matter, so I’ve just used a ShowMessage dialog to display
the number of records at the server side, as you can see in Listing 20.8.

LISTING 20.8 ClientDataSet OnAftereGetRecords Event Handler

void __fastcall TForm1::ClientDataSet1AfterGetRecords(TObject *Sender,

OleVariant &OwnerData)

{

ShowMessage(“Number of records at server: “ + WideString(OwnerData));

}

Using the implementations of the OnBeforeGetRecords and OnAfterGetRecords event
handlers for both the TClientDataSet (on the client) and the TDataSetProvider (on the
server), you can compile the DataSnapServer and DataSnapClient projects and test
them. This is your last chance to set the FetchOnDemand property of the TClientDataSet
component to false to prevent a stack error, by the way (as I mentioned at the
beginning of this section).

To test them, you need to run the DataSnapClient project, which will load the
DataSnapServer when connecting to it. As soon as a connection to the
DataSnapServer is made, the TClientDataSet makes its first request for data (calling
the GetNextPacket method), which results in a call to the OnBeforeGetRecords() from
the TClientDataSet, passing nothing because the Active property is still false at that
time. So, the OnBeforeGetRecords method of the TDataSetProvider will be called, but
with an empty OwnerData argument, which means no further actions are taken. Then,
the first 10 (value of PacketRecords) records are sent by the TDataSetProvider compo-
nent to the TClientDataSet component. After this, the OnAfterGetRecords event
handler of the TDataSetProvider is called, in which it collects the number of records
of its DataSet component (the tblCustomer, which has 55 records). The value 55 is
passed in OwnerData and is received at the client side when the OnAfterGetRecords
event handler of the TClientDataSet is called. This results in a message dialog, seen in
Figure 20.22, that shows Number of records at DataSnap server: 55, just as expected.

CHAPTER 20 Distributed Applications with DataSnap806

25 0672324806 CH20 12/12/02 2:37 PM Page 806

FIGURE 20.22 Result of manually sending OwnerData between client and server.

The DataSnapClient will now show up with only the first 10 records inside the
DBGrid. When you browse through these records until number 10, and you want the
next one, you won’t get it. Similarly, when you press Ctrl+End, no additional records
are fetched. You see only 10 records at the client (the value of PacketRecords), and
you know that 55 exist at the server. Of course, the reason you don’t get any more
records at this time is because you’ve set the FetchOnDemand property to false. To get
more packets with records, you now have to call the GetNextPacket method manually.
This can be done by adding a TButton component to the client main form (name it
btnFetch and set Caption to Fetch, as shown in Figure 20.23) with the following code
for the OnClick event handler:

void __fastcall TForm1::btnFetchClick(TObject *Sender)

{

ClientDataSet1->GetNextPacket();

}

Stateless DataSnap 807

FIGURE 20.23 Manually fetching packets with records from server to client.

If you click the Fetch button, the next packet of 10 records is retrieved, resulting in a
total of 20 records in the client. Clicking Fetch four more times will retrieve the final
35 records. At that time, the DataSet at the DataSnapServer will no longer be active,
so you cannot obtain the RecordCount anymore (which is why I had to add the else
clause in the OnAfterGetRecords event for the TDataSetProvider).

25 0672324806 CH20 12/12/02 2:37 PM Page 807

In short, the DataSnap server doesn’t know anything—it is stateless; it has to be told
the complete state by the clients, and both clients and server can communicate
using the OwnerData parameter of some helpful Before and After event handlers. Note
that the OwnerData parameter that is used to pass data is of type OleVariant. You can
put just about anything in it, but it helps if you know beforehand what to expect
(on the other side), which is why I usually try to pass an AnsiString just to be sure.

Apart from the Before and After events, TClientDataSet has two additional events for
Post and Scroll, with no direct counterpart on the TDataSetProvider side. Obviously,
these routines have only a DataSet as an argument and no OwnerData.

A final word on this: Assigning true to the FetchOnDemand property of the TClient
DataSet will ensure that the relevant state information is automatically sent from the
client to the server. However, there are situations in which you might want to be in
control, in which case you need to rely on the techniques I showed you in this
section. It’s also important to be able to manage state by yourself (at the client side)
when working with stateless protocols such as MTS, HTTP, or SOAP.

Deployment
Deploying DataSnap is fairly easy. You have to find the correct set of DLLs and pack-
ages for your client application and include DataSnap itself (which consists of only
MIDAS.DLL for DataSnap). There are no database drivers and no additional setup, only
your client and MIDAS.DLL. You might need to register the server on your client
machine as well, or at least the type library for the server—see the “Accessing the
Server Remotely” section which is covered in the next chapter.

You also need to purchase an official license. A MIDAS 2 license was pretty expensive
at U.S. $5,000.00 per hardware server. You are allowed to run as many MIDAS 2
servers on a machine as you want and can. MIDAS 3 and DataSnap have a new
lower-than-ever deployment license model, which incidentally has no effect on the
MIDAS 2 licensing model (another reason to upgrade your MIDAS 2 applications to
MIDAS 3). A MIDAS 3 or DataSnap license for an unlimited server is now only U.S.
$299.95. As a result of this much lower price, Borland no longer offers a per-seat
client license, making the licensing scheme not only much cheaper, but easier as
well.

When do you need to purchase a DataSnap license? That depends on the DataSnap
data packet (sent from the provider to the ClientDataSet or XMLBroker and back). In
his DataSnap licensing article on the Borland Community site, John Kaster (Borland
Developer Relations) has formulated two rules:

1. If the DataSnap data packet goes from one machine to another by any means,
a license is required.

CHAPTER 20 Distributed Applications with DataSnap808

25 0672324806 CH20 12/12/02 2:37 PM Page 808

2. If the DataSnap data packet always stays on the same machine, you do not
need a license.

Note that “by any means” includes copying to a floppy disk, using email, copying
from one hard disk to another, backing up from one machine and restoring on
another then resolving the data, and so on. Basically, this means any method of
transferring the data packet from one machine to another (including retyping or a
WAP connection).

This greatly reduced license fee is a tremendous opportunity for C++Builder 6 devel-
opers who need to develop n-tier solutions. Previously, clients had serious problems
with the MIDAS 2 license fees (especially if you had to prove all benefits first), but
now I have little reluctance suggesting a multitier DataSnap approach.

And the future might be even better: Delphi 7 Studio (just released at the time of
writing) has extended the DataSnap license by including a free deployment of
DataSnap applications with Delphi 7 Enterprise or Architect. This means that if
you’ve purchased a copy of Delphi 7 Enterprise (or Architect), you already paid for
the DataSnap license of all DataSnap applications that you can build with that. Only
for Delphi 7 and Kylix 3, I’m afraid. But C++Builder 7 will most likely contain a
similar license schema. Stay tuned…

Summary
In this chapter, you looked at Borland’s multitier technology called DataSnap. In
particular, you saw how to create servers and clients and how to use DCOM, sockets,
and HTTP to connect to a remote server.

This technology is important for several reasons:

• It provides a means of creating thin clients that make few demands on the
client system.

• It simplifies—in fact, nearly eliminates—the need to configure the client
machine.

• It enables you to partition applications in logical compartments. If you want,
each of these compartments can be run on a separate machine, thereby distrib-
uting the load of the application.

• It provides a means for distributing a load over several server machines or for
routing the load to a specific machine with the power to handle heavy
demands.

• It provides a robust architecture for handling and reporting (reconciliation)
errors, particularly in a multiuser environment.

Summary 809

25 0672324806 CH20 12/12/02 2:37 PM Page 809

• It enables you to use a briefcase technology that stores files locally and allows
you to reload them when it is time to update the server. This capability is ideal
for laptop users who spend a lot of time on the road.

For many users, this technology is so compelling that it entirely replaces the stan-
dard client/server database architectures. These users are attracted to the capability to
partition an application into logical pieces, even if the entire application is being run
on a single machine. However, the biggest benefits achieved by this architecture
become apparent when you bring multiple machines and servers into play.

This chapter should get you started using some of the more sophisticated aspects of
this technology. There will come a time when nearly every computer in the world
will be continually connected to nearly every other computer. When that occurs,
distributed computing will become one of the most essential fields of study in
computer programming. DataSnap is a very helpful piece of technology in this
respect.

The next chapter will focus on the different connection components and communi-
cation protocols. Including the use of Web services as DataSnap servers.

CHAPTER 20 Distributed Applications with DataSnap810

25 0672324806 CH20 12/12/02 2:37 PM Page 810

IN THIS CHAPTER

• Accessing the Server
Remotely Using DCOM

• HTTP WebConnection

• TCP/IP SocketConnection

• New DataSnap Connections

• TSOAPConnections

21

DataSnap Multitier
Connections

by Bob Swart

The previous chapter introduced DataSnap and mainly
focussed on the DataSnap Servers and Clients, and this
chapter will focus on the communication protocols and
different connection components between the DataSnap
Servers and Clients.

The examples in this chapter use DataSnap, which means
that you must have a copy of the Enterprise Edition of
C++Builder to run the programs in this chapter. Note that
you can also use the trial version of C++Builder 6
Enterprise to run the examples in this chapter.

Accessing the Server Remotely Using
DCOM

In this chapter, we start with the example projects for the
SimpleDataSnapServer and DataSnapServer from the previous
chapter. They can be found on the CD-ROM with this
book.

The objective in this section is to make the connection not
work just locally, but also remotely. In other words, DCOM
instead of COM (when both the DataSnap Server and
Client are running on the same machine).

When setting up DCOM, it is best to set up the server half
of the DCOM program on a machine that’s running as a
Windows NT/2000/XP domain server. In particular, you
don’t want to run the DataSnap server on a Windows
95/98/Me machine, and it is best if the server machine is a
domain server and the client machines are all part of this

26 0672324806 CH21 12/12/02 2:41 PM Page 811

domain. If you don’t have an NT/2000/XP domain server available, you probably
should try to set up your client and server machines to have the same logon and the
same password, at least during the initial stages of testing. Windows 98/Me ships
with DCOM as part of the system, whereas Windows 95 machines need to have
DCOM added to the system. You can download the DLLs necessary to implement
DCOM on a Windows 95 machine from the Microsoft Web site (although Microsoft
officially doesn’t support Windows 95 anymore—nor Windows NT for that matter).

You must have the DataSnap server registered on both the client and the server. The
client program could still locate and launch the server if you failed to register it, but
COM could not marshal data back and forth if the type library for the server is not
registered on the client machine. You can do so by running the DataSnap server
once on both machines. However, it’s not very convenient to run the DataSnap
server on all client machines, so an easier solution is running the DataSnap server
once on the server, and then registering the TLB file on the clients using TRegSvr.exe
(in the CBuilder6\Bin directory). In this case, the TLB file is called
SimpleDataSnapServer.tlb. This file was generated automatically when you created the
DataSnap server.

When you access the DataSnap server remotely from a client machine, you need to
copy the single C++Builder client executable to the client side only. No database
tools are needed, other than the MIDAS.DLL file, which contains the ClientDataSet
functionality.

HTTP WebConnection
Apart from using DCOM as a communication protocol, as implemented using the
TDCOMConnection component, DataSnap supports two other protocols as well: TCP/IP
(sockets) and HTTP. The latter is called TWebConnection and is especially useful in situ-
ations where you need to go through a proxy or firewall, which can be quite a
problem (or at least quite a task) using the regular TDCOMConnection component.

Before we start using the TWebConnection component in C++Builder 6, I have to warn
you that this component does not operate correctly with C++Builder 6, including
Update 2. The problem that you’ll encounter is an Access Denied message when the
DataSnap client tries to connect to the DataSnap server. We have been unable to
solve this problem, and can only report that it used to work just fine, and hopefully
some forthcoming patch or update from Borland for C++Builder will fix it again in
the future.

TWebConnection is found on the DataSnap tab of the Component Palette. It is perfect
to use for stateless HTTP communication connecting to a DataSnap server (which is
also stateless, as you’ve seen).

CHAPTER 21 DataSnap Multitier Connections812

26 0672324806 CH21 12/12/02 2:41 PM Page 812

For the remainder of this section, you should probably copy the DataSnapClient
project from its original directory (from the previous chapter) to a new directory,
where you can experiment on it using the TWebConnection component. Note that this
precaution is only necessary with the DataSnapClient project; we won’t be modifying
the DataSnapServer at all.

Using the DataSnapClient project, you can replace the current TDCOMConnection compo-
nent with a TWebConnection component. Now the TWebConnection component has to
connect to the DataSnapServer you created in this chapter. The TWebConnection compo-
nent makes this connection by using the HTTP protocol. However, to use a
WebConnection, you must make sure that WININET.DLL is installed on the client system
(which is available if you have Internet Explorer version 3 or higher installed), the
server must have Internet Information Server version 4 or higher or Netscape
Enterprise version 3.6 or higher, and finally you must install a special Borland-made
ISAPI DLL called HTTPSRVR.DLL (found in the CBuilder6\Bin directory) in a cgi-bin or
scripts directory on the Web server that the TWebConnection component uses to
connect to. HTTPSRVR is responsible for launching the DataSnapServer on the Web
server and will marshal all requests from the client to the application server inter-
face, sending packets of records back.

For more information on Web servers, ISAPI DLLs, and general Web server program-
ming, see Chapter 22, “Web Server Programming with WebSnap.”

As a direct consequence, the URL property of the WebConnection component must
point to http://localhost/cgi-bin/httpsrvr.dll (which points to the scripts directory
on my local machine—I could also have used http://127.0.0.1/scripts
/httpsrvr.dll). Next, you can click the ServerName property, open the list of available
DataSnap servers, and select the DataSnapServer.CustomerOrders DataSnap server. You
can make sure that the connection actually works by double-clicking the Connected
property of the TWebConnection component. If the value turns to true, you’re okay.

NOTE

Note that you don’t actually see the DataSnap Web server running. That’s because HTTPSRVR
(started by the server) is activated by another user (the default Internet user), and as a result
you don’t see any visual representation of the middleware server at this time (as you did when
using a DCOM or the upcoming Sockets middleware server).

To make sure the server is actually running, you can always take a look at the Task
Manager, of course. Inside the Task Manager, you’ll see the DataSnapServer running,
but (not so) surprisingly, no indication of that is seen at the desktop.

Other than this, the TWebConnection component works exactly the same as the
TDCOMConnection component, with one difference—security. The TWebConnection
component enables you to take advantage of SSL security and to communicate with

HTTP WebConnection 813

26 0672324806 CH21 12/12/02 2:41 PM Page 813

a DataSnapServer application that is protected behind a firewall. For all this, the
TWebConnection component has a number of helpful properties such as Proxy,
ProxyByPass, UserName, and Password. The UserName and Password properties of
TWebConnection can be used to go through a proxy or if the Web server requires
authorization or authentication.

Unfortunately, as I wrote in the start of this section, the TWebConnection component
will produce an “Access Denied” error when trying to connect a DataSnap Client to
the DataSnap Server.

Object Pooling
Finally, a Web connection can use object pooling. This feature enables the server to
create a pool of multiple server instances for client requests. This way, the
DataSnapServer doesn’t use the resource for the remote data module and database
connection unless it’s actually needed.

Object pooling gives you the ability to set a maximum for the number of instances
of the remote data module inside the DataSnap server application. Whenever a client
request is received, the DataSnap server checks to see if a free remote data module
exists in the pool. If not, it creates a remote data module instance (but never more
than the specified maximum number of remote data module instances) or raises an
exception with the message Server too busy. The remote data module, in its turn,
services the client requests and duly waits for the next one. After a certain period of
time without client requests, the remote data module is freed automatically (by the
object pooling mechanism).

In previous versions of DataSnap, this feature would not have been possible, because
we now have instances of a remote data module that services more than one client.
As a result, the server cannot rely on state information—this has to be maintained by
the client. As indicated previously, DataSnap is indeed stateless.

The big question should now be: How do we enable object pooling for HTTP connec-
tions? We must get inside the UpdateRegistry() method again—found in the header
file of your remote data module. Inside the UpdateRegistry() method, an object
regObj is used to configure the behavior of the application server. With object
pooling, we must set three additional property values.

First, regObj.MaxObjects specifies the maximum number of instances. If the DataSnap
server receives a client request and no remote data modules are available, an excep-
tion with message Server too busy is raised.

Second, regObj.Timeout specifies the number of minutes the remote data module can
wait idle in the pool of remote data modules. After spending the specified amount of
time without a single client request, the remote data module will be freed automati-
cally by the DataSnap server. According to the documentation, the DataSnap server

CHAPTER 21 DataSnap Multitier Connections814

26 0672324806 CH21 12/12/02 2:41 PM Page 814

checks every six minutes to see if any remote data module should be freed.
Specifying a timeout value of 0 means that the remote data module will never time
out, so in that case the only useful feature you’re using is the limit on the amount of
remote data module instances.

After these two property settings, the regObj.RegisterPooled must be set to true to
indicate that you want to use object pooling.

In practice, there’s a fourth property value you can set, regObj.Singleton, which spec-
ifies whether the remote data module should be a singleton (but we already set that
to false). If you set it to true, the number of instances and timeout arguments will
be ignored, and only a single remote data module (which must be free threaded) will
be created to handle all client requests.

An example modified UpdateRegistry for a remote data module with up to 10
instances that time out after 42 minutes of inactivity can be seen in Listing 21.1.

LISTING 21.1 UpdateRegistry to enable Connection Pooling

// Function invoked to (un)register object

//

static HRESULT WINAPI UpdateRegistry(BOOL bRegister)

{

TRemoteDataModuleRegistrar regObj(GetObjectCLSID(),

GetProgID(), GetDescription());

// Disable these flags to disable use by socket or Web connections.

// Also set other flags to configure the behavior of your application server.

// For more information, see atlmod.h and atlvcl.cpp.

regObj.Singleton = false;

regObj.MaxObjects = 10;

regObj.Timeout = 42;

regObj.RegisterPooled = true; regObj.EnableWeb = true;

regObj.EnableSocket = true;

return regObj.UpdateRegistry(bRegister);

}

Note that I’ve used hard-coded magic numbers 10 and 42 here. This is not a good
idea in real life, especially because it means that you need to recompile the DataSnap
server whenever you want to make some changes (for example, if you add new
memory to the server, which can then handle more than 10 instances). That’s not
even considering that the same DataSnap server could be placed on multiple
machines, each of a different configuration (see the section “Object Broker,” later in
this chapter). I always recommend using an external configuration file where you
can specify—for each machine, and for every time you first start the DataSnap server

HTTP WebConnection 815

26 0672324806 CH21 12/12/02 2:41 PM Page 815

application—the number of instances and timeout minutes. This adds flexibility to
the power already present in object pooling.

TCP/IP SocketConnection
So far, you’ve mainly worked with the TDCOMConnection component and the
TWebConnection component. However, DataSnap can also employ a third protocol:
TCP/IP (plain sockets). This is done by using the TSocketConnection component (the
third of the Connection components available on the DataSnap tab of the Component
Palette from C++Builder 6 Enterprise).

If you don’t have an NT domain server available on your network, you should proba-
bly not try to use DCOM at all and instead should use plain TCP/IP. A socket
connection will work even if no NT server is in the equation, and it is usually much
easier to set up than a DCOM connection. However, security is much more difficult
to enforce on a socket connection (unlike the TWebConnection component, for
example).

You can easily convert either SimpleDataSnapClient or DataSnapClient into a TCP/IP
application. You don’t even need to make any changes to your DataSnap servers to
make it work. To get started building your sockets-based DataSnap program, run the
ScktSrvr.exe program found in the CBuilder6\Bin directory on the server machine.
This program must be running on the server or this system will not work. Note that
ScktSrvr.exe can either be run as a normal application or be used as an NT service
(using the -install and -uninstall command-line parameters).

Drop a TSocketConnection component from the DataSnap page of the Component
Palette on the main form of the DataSnapClient application. Set its Address property
to the IP address of the machine where the DataSnapServer application resides. This
can be a remote machine or your current machine (such as localhost). Fill in the
ServerName property, just as you did in the DCOM example earlier in this chapter, by
dropping down the ServerName combo box and selecting the
DataSnapServer.CustomerOrders DataSnap Server. You should now be able to test your
connection by setting the Connected property of the TSocketConnection component to
true. As I explained earlier, you should not leave the Connected property set to true at
design time.

Assuming you have dropped down a TSocketConnection component on the form and
set its ServerName property correctly, you can drop a new TButton component, set its
Name property to ButtonSocket, Caption to Socket, and write the event handler code as
seen in Listing 21.2:

CHAPTER 21 DataSnap Multitier Connections816

26 0672324806 CH21 12/12/02 2:41 PM Page 816

LISTING 21.2 SocketConnection to Remote Machine

void __fastcall TForm1::ConnectTCPIP1Click(TObject *Sender)

{

AnsiString S;

if (InputQuery(“Enter Machine Name or IP-Address:”,

“Machine Name/IP-Address”, S))

{

SocketConnection1->Address = S;

ClientDataSet1->RemoteServer = SocketConnection1;

ClientDataSet1->Active = true;

}

}

When the user clicks on the Socket button, he is prompted for the IP address of the
machine where the server resides. Assuming your system is set up correctly, you can
also pass in the human-readable equivalent of that IP address, such as localhost or—
in my case—www.eBob42.com.

The code sets the Address property of the TSocketConnection component to the
address supplied by the user. It then changes the RemoteServer property of the
TClientDataSet so that it no longer points at the TDCOMConnection component, but at
that TSocketConnection component. Finally, it sets the Active property of the
TClientDataSet to true. Setting the Active property to true will automatically cause
the TSocketConnection.Connected property to be set to true as well, as you’ve seen
earlier.

At this stage, you should be fully connected to your server and viewing your data.
This approach will work equally well whether the server is on the same machine or
on a remote machine. Furthermore, you don’t need an NT domain server or even an
NT server, though I always recommend that you use one when working with
DataSnap.

Note that the DataSnap server does not have to be changed to connect to a client
using DCOM or sockets (TCP/IP). In fact, after you have a working DataSnap server,
you only need to run it to enable it to register itself (so you can locate it and connect
to it from a DataSnap client). This COM-specific Registry is done by the inherited
UpdateRegistry call, and is performed by all versions of DataSnap. It’s actually quite
convenient because if you want to move the server application to another location
(on the same machine), you only need to rerun it to reregister itself and enable
clients to connect to it.

Usually, I write DataSnap applications that communicate using DCOM. However, in
some cases you might want to use plain sockets instead. A regular remote data

TCP/IP SocketConnection 817

26 0672324806 CH21 12/12/02 2:41 PM Page 817

module can communicate using sockets, provided you’ve left that particular commu-
nication protocol enabled in the UpdateRegistry method. Clients need to connect to
the remote data module using the SocketConnection component. However, for a
connection to be made to the DataSnap application server, you also need to run the
socket server on the server machine. Using C++Builder 4, you had two socket server
applications: ScktSrvr.exe (the socket server) or ScktSrvc.exe (the NT service edition
of the socket server). In C++Builder 5 and 6, these two are combined in a single
ScktSrvr.exe that can either be run as a normal application or be used as an NT
service (using the -install and -uninstall command-line parameters).

Registered Servers
As I mentioned before, the C++Builder 5 and 6 ScktSrvr checks the Registry to see if
a DataSnap server has enabled the socket communication protocol (that is, whether
the EnableSocket field of the regObj has been assigned to true inside the
UpdateRegistry() function). For C++Builder 4 DataSnap servers, this isn’t present,
which means that if you upgrade a C++Builder 4 DataSnap server to C++Builder 5 or
6, you must not forget to include a new UpdateRegistry method. If, for any reason,
the new DataSnap server doesn’t register itself as using the socket communication
protocol, you can always use the C++Builder 6 socket server (and not the C++Builder
4 socket server). In the Connections menu you can specify that you don’t want
Registered Object Only (you want to see unregistered objects as well, as can be seen
in Figure 21.1).

CHAPTER 21 DataSnap Multitier Connections818

FIGURE 21.1 Borland socket server looking at registered objects only.

26 0672324806 CH21 12/12/02 2:41 PM Page 818

This change will not take affect until the socket server is restarted, but then you
can see C++Builder 6 DataSnap servers using the TSocketConnection component—
registered or not.

A final new feature regarding the TSocketConnection component has to do with call-
backs. TDCOMConnection components always support callbacks, and TWebConnection
components never support callbacks. With a TSocketConnection component you can
specify using the SupportCallbacks property, whether the TSocketConnection compo-
nent will marshal calls from the DataSnapServer to the DataSnapClient over an inter-
face supplied as a callback. If you don’t want to do that, you can set SupportCallbacks
to false (it’s true by default). Setting it to false has the advantage that you then
need only Winsock 1 support to deploy your DataSnapClient, whereas otherwise
(with SupportCallbacks set to true) you need Winsock 2 or higher. Because Windows
95 doesn’t include Winsock 2 by default, this means one less deployment problem
(believe it or not there are still clients out there using Windows 95).

Object Broker
You’ve now seen three possible connection components that exist in C++Builder
Enterprise: TDCOMConnection, TWebConnection, and TSocketConnection all connecting to a
single DataSnap server application. However, sometimes you don’t have a single
DataSnap server to connect to, but multiple DataSnap servers. Reasons for having
multiple DataSnap servers can be diverse, but most often this is done for load
balancing and failover. If one server goes down, others can take over, and having
10 servers all over the world usually results in fewer bottlenecks than having one
big server.

Imagine having to determine at the client side which of these DataSnap Servers to
connect to. You’d need to know exactly which servers are available (or you might
miss one—maybe the last one that’s available at the time) and how to connect to
them. In an ideal world, you wouldn’t want all your clients to know about this.
Fortunately, DataSnap offers a helpful hand in this case, by means of the concept
called Object Brokering.

With Object Brokering, you make a connection from the client to a server without
knowing which server you’ll end up with. Each of the three connection components
has a property called ObjectBroker. This property can be used to connect to a compo-
nent derived from TCustomObjectBroker. It will then be responsible for telling the
connection component which server to use (by specifying the ServerName or
ServerGUID). Note that when you actually use an ObjectBroker, the local values speci-
fied for the ServerName and ServerGUID properties will be ignored as far as your appli-
cation is concerned; ObjectBroker will supply you with dynamic values at runtime.

As an example of how to implement your own Object Brokering techniques,
C++Builder Enterprise comes with a TSimpleObjectBroker component (found on the
DataSnap tab of the Component Palette).

TCP/IP SocketConnection 819

26 0672324806 CH21 12/12/02 2:41 PM Page 819

TSimpleObjectBroker itself contains two interesting properties. Servers contains a list
of available servers, for each of which you can specify the ComputerName, the Port (211
by default), and Enabled. Note that you as a developer must make sure that this list is
filled and maintained properly. If you add a new server or a server goes down, you
must update the list.

The second property is LoadBalanced. As the name indicates, this property tries to
ensure that the servers are load balanced, or at least that a request is balanced among
the servers. The technique used here is based on a random generator. When
LoadBalanced is set to true, each connection component will be connected to a
random server from the list. When LoadBalanced is set to false (the default), each
connection component on the client application will be connected to the first server
on the list.

The TSimpleObjectBroker component is implemented in unit ObjBrkr (found in the
$(BCB)\Source\Vcl directory) and contains a fairly simple algorithm. Picking a
random server isn’t such a bad idea, but obviously it’s not really intelligent, either. If
you ever need to write your own Object Broker algorithm, TSimpleObjectBroker might
be a good place to start.

One final word on Object Brokering: After a connection component is connected to
a DataSnap server, it will remain connected to that particular server until the
Connected property is set to false again. When you reconnect (set Connected back to
true), you might end up with a different server.

New DataSnap Connections
Apart from the new name DataSnap replacing DataSnap, C++Builder 6 introduced
some real new enhancements as well, such as local connections and connection
brokers. The former was introduced because the role of the TClientDataSet compo-
nent was significantly enlarged in C++Builder 6. We now have the TClientDataSet
component in the Professional version of C++Builder, instead of only the Enterprise
version. And, we can now have local DataSetConnections instead of only remote
DataSetConnections, as we’ll see in this section.

Specifically, I want to focus on two new components with icons that (almost) look
alike: the TConnectionBroker and the TLocalConnection component (I won’t cover the
TSharedConnection). The final section of this chapter will focus exclusively on
DataSnap and SOAP (using SOAP Data Modules and the TSOAPConnection component).

TLocalConnection

Let’s start with the TLocalConnection component. This component can be handy for
people who want to start building distributed applications, but are not ready to
implement the server, yet. As you might know, it’s not really required to put the

CHAPTER 21 DataSnap Multitier Connections820

26 0672324806 CH21 12/12/02 2:41 PM Page 820

TDataSetProvider and TClientDataSet in different tiers of a multitier application. They
can actually reside in the same single-tier application (previously leaving the
RemoteServer property of the TDataSetProvider component a bit useless). However,
this single-tier application might be a convenient way to prepare your multitier
application. You are limited because you cannot implement actual access to the
IAppServer interface (the interface that’s normally provided by the remote data
module to the client application, and through which the TDataSetProvider exports its
dataset property to the local TClientDataSet). To take the single-tier simulation one
step further, Borland has now provided us with the TLocalConnection component.
This is, in fact, almost a dummy component with one great feature: It implements
the IAppServer interface and can be used to assign any TDataSetProvider to (as if the
data was retrieved from the Connection component by some communication means).
The benefit should be obvious: The client part of the application (still single-tier at
this time) can now implement and test the use of the IAppServer interface as imple-
mented by the TLocalConnection component. This means that you can postpone the
actual split of your application in two physical tiers until you’re really ready, which
might help to keep things under control (and maintainable as well as manageable).

I understand if that doesn’t really make much sense to you (especially if you’ve
seldom built prior multitier applications using DataSnap). So, let’s just build a practi-
cal example where I’ll show you exactly where and when the TLocalConnection
component comes into play, and how it changes the rules of the game.

BDE “legacy” Application
We could have used any database access layer in C++Builder 6 for this example, but
because dbExpress can already make use of embedded TClientDataSet components (in
the TSQLClientDataSet component—see Chapter 12), it seems more appropriate to use
the Borland Database Engine (BDE) as our start point. That way we can also keep the
illusion of a legacy application that needs to be upgraded to a multitier architecture.

To build our “legacy” application, start C++Builder 6 and create a new application
using File, New—Application. Save the project in Legacy.bpr and the main form in
LegacyMainForm.cpp. Click File, New—Data Module to add a new data module, and
save that in DataMod.cpp. Note that the main form will only be used to show the
contents of the datasets on the data module. I assume you can manage to build that
part yourself (so won’t cover it in this chapter).

Now, we’ll move on to the data module. Because we’re building a BDE application,
we need to drop a TDataBase component from the BDE tab of the Component
Palette, set its DatabaseName property to BDE, and its AliasName property to DBDEMOS.
Add a TSession component and set its AutoSessionName property to true. Now drop
two TTable components on the data module, assign their DatabaseName properties to
BDE (the one we’ve just made), and rename them to tblCustomer and tblOrders,
respectively. Now, set the TableName property of tblCustomer to customer.db, and the
TableName property of tblOrders to the orders.db table.

New DataSnap Connections 821

26 0672324806 CH21 12/12/02 2:41 PM Page 821

We’re now ready to define a master-detail relationship between tblCustomer and
tblOrders, using a TDataSource component from the Data Access tab. Set its name
property to dsCustomerOrders, and its DataSet property to tblCustomer. Now, click
tblOrders, and set its MasterSource property to the dsCustomerOrders DataSource. Click
the ellipsis for the MasterFields property to start the Field Link Designer, use the
CustNo index, and select the CustNo field for both tables to be the field for the master-
detail link. Click OK to create the master-detail relationship. See Figure 21.2 for the
data module, so far, that we can use in a normal (legacy) BDE application right away.

CHAPTER 21 DataSnap Multitier Connections822

FIGURE 21.2 New Data Module.

Preparing to Upgrade
Now, although the BDE application we’ve just created works just fine, there might
come a day when you need to turn it into a distributed application—or at least make
the preparations to do so. For example, because the database must be placed on its
own—more secure—machine, or because you will also be required to accept browser-
based clients in the near future (apart from Windows GUI clients).

A distributed application is based on a TDataSetProvider component on a Remote
Data Module at the server side, and a TxxxConnection and TClientDataSet at the client
side (where TxxxConnection can be any of the connection component we’ve seen). To
prepare for that architecture, we should now drop a TDataSetProvider component
from the Data Access tab onto the data module. Set its Name to dspCustomerOrders
(we will use it to provide both the Customer master and the Orders detail records),
and set its DataSet property to tblCustomer. The TDataSetProvider will now export
the Customer master table with the Orders detail records embedded as a so-called
nested dataset.

However, because the TDataSetProvider is used on a normal data module, and not a
regular data module, there is no way it will be actually exported to the outside
world. Fortunately, we can still use it (and have used it in the past), as a local
TDataSetProvider. The trick is that a local TClientDataSet will be able to connect to a
local TDataSetProvider as long as they both share the same owner. In other words, as
long as they are both placed on the same data module or form, they can talk to
each other!

26 0672324806 CH21 12/12/02 2:41 PM Page 822

So, drop a TClientDataSet component on the data module, set its Name to cdsCustomer

and assign its ProviderName property to dspCustomerOrders. This method also worked
with C++Builder 5. However, there is a better way that also helps if you want the
TClientDataSet to use more than just the TDataSetProviders that are available on this
single-data module. It’s also better if you want to make specific IAppServer method
calls to prepare yourself for a move to a real distributed architecture (where the
TDataSetProvider will end up in the server tier, and the TClientDataSet component
will have to use a TxxxConnection component to talk to the server and get a list of
TDataSetProviders). The better way consists of dropping the TLocalConnection
component (the topic of this section). Using a TLocalConnection component, a
TClientDataSet component can have access to all available (local) TDataSetProvider
components in your entire application—not just the ones that exist in the same
data module or form.

To show the “better” way, drop a TLocalConnection component (from the DataSnap
tab) on the data module. This component only has two properties: Name and Tag, so
there’s nothing you can customize or configure. Note that it’s a global application
component, and you only need one of them to service your entire application.

After the TLocalConnection component is in place, you can go back to your
cdsCustomer TClientDataSet component, and assign its RemoteServer property to
LocalConnection1; the local connection component. This time, when you open the
drop-down combo box for the ProviderName property of cdsCustomer, you will get a
list of all DataSourceProviders in your entire application (there is still only one, but
believe me, you’ll get them all at this time). Select dspCustomerOrders to connect to
this particular TDataSetProvider. Note that we now connect to the TDataSetProvider
through the IAppServer interface (which is implemented by the TLocalConnection
component). The difference is that it will be much easier to migrate to a real
RemoteServer using a TxxxConnection component later—because we will see in the
remainder of this section.

To finish the data module example, you need to drop a TDataSource component, set
its Name property to dsCustomer, and connect it to the cdsCustomer ClientDataSet. If
you want to explicitly use the Orders detail records as well, you must right-click the
cdsCustomer ClientDataSet, start the Fields Editor, right-click in the Fields Editor and
select Add All Fields. The list of fields will include a field named tblOrders. This is
the nested dataset (of type DataSetField) that we created earlier in this example. We
can use this explicit (also called persistent) DataSetField to feed another
TClientDataSet component. So, drop a second TClientDataSet on the data module, set
its Name property to cdsOrders and this time you only have to open the drop-down
combo box for the DataField property and select the (only) value
cdsCustomertblOrders. A TDataSource component named dsOrders connected to the
cdsOrders finishes the preparation to this point (see Figure 21.3).

New DataSnap Connections 823

26 0672324806 CH21 12/12/02 2:41 PM Page 823

FIGURE 21.3 LocalConnection.

You can now use the dsCustomer and dsOrders DataSources to connect to data-aware
controls (on the main form).

ApplyUpdates

Of course, working with ClientDataSets means caching your data, so there’s one
more change that you have to make to the data module. You must make sure to call
the ApplyUpdates method of the cdsCustomer ClientDataSet to apply all changes (edits,
inserts, deletes) from the ClientDataSet back (through the TLocalConnection compo-
nent) to the DataSetProvider and the actual database tables. Note that you don’t need
to do this for the cdsOrders ClientDataSet because that one isn’t even connected to a
RemoteServer or ProviderName; it’s simply connected to a DataSetField.

For the cdsCustomer, there are a few ways to make sure the ApplyUpdates method is
called. First of all, you can put a button on your form and ask your end user to click
the button to explicitly call ApplyUpdates. Of course, this means that you must know
for sure that the end user will in fact click the button. This is something that you
can’t debug or fix; you just have to trust it. When you do this, at least make sure to
ask the user to save all changes when she tries to close the main form. The
ClientDataSet maintains a ChangeCount property, which holds the number of changes.
If this property has a value greater than zero, you know for sure that some changes
have been made (and have not been applied, yet). I always implement this as follows
in the OnClose event of the main form:

#include “DataMod.h”

void __fastcall TForm1::FormClose(TObject *Sender, TCloseAction &Action)

{

CHAPTER 21 DataSnap Multitier Connections824

26 0672324806 CH21 12/12/02 2:41 PM Page 824

if (DataModule1->cdsCustomer->ChangeCount > 0)

{

if (MessageDlg(“Save all changes?”, mtConfirmation,

mbYesNoCancel, 0) == mrYes)

DataModule1->cdsCustomer->ApplyUpdates(-1);

}

}

At least then we know for sure that the user can never forget to save the changes and
updates (she can refuse them, but not by accident).

As a final remark, note that the ApplyUpdates might fail when another (concurrent)
user has also changed the same record in the remote database. Because we’re
currently only preparing to upgrade our legacy BDE application to a distributed
multitier architecture, I won’t discuss that topic. For more information about the
Reconcile Error Dialog, see the previous Chapter 20, “Distributed Applications with
DataSnap.”

At this time, we have a data module that is still a single tier, but has all aspects of a
multitier solution inside. The application can now make use of the dsCustomer and
dsOrders DataSources, as well as the cdsCustomer and cdsOrders ClientDataSets, and
even the IAppServer interface exposed by the RemoteServer that the cdsCustomer
ClientDataSet is connected to. The fact that—in this version of the data module—the
RemoteServer points to a TLocalConnection component doesn’t matter; we can still
use the IAppServer interface as if we’re already working in a multitier distributed
architecture. This way, without actually having multiple physical tiers, you can
already prepare and set up the entire presentation layer of your application—the GUI
part, for example, or a TXMLBroker component, which also has to connect to a
RemoteServer to get to the DataSetProvider.

We’ll continue with the example application(s) by continuing our potential upgrade
to multitier path with the new TConnectionBroker component.

TConnectionBroker

The TConnectionBroker component is another component that can come in handy
when you want to configure or maintain your DataSnap application. Like all actual
TxxxConnection components, the TConnectionBroker component is only useful in
DataSnap client applications, and can be used as an additional layer between
TClientDataSets and the actual TxxxConnection components. As such a layer, it can be
used to quickly switch between different TxxxConnection components. In case you
wonder why this would be useful for a single or even a few TClientDataSet compo-
nents (which can easily be moved from one TxxxConnection component to another),
just consider the situation where you have one hundred TClientDataSet components.

New DataSnap Connections 825

26 0672324806 CH21 12/12/02 2:41 PM Page 825

Believe me, this will turn out to be a nightmare if you want to switch them over
from one TxxxConnection component to another. Just imagine for a moment that you
accidentally forget to switch one ClientDataSet over! Your application will still
compile, and it will even run, but then the problems start (especially if you’ve
deployed it to your clients already). Unless the ClientDataSets are all connected to
the TConnectionBroker component, which can then be used to switch from, say a
TLocalConnection to a TDCOMConnection or a TSocketConnection component with the
ease of a single-mouse click.

To show this particular feature in action, let’s continue with the previous example
application, taking it one step further by adding an actual TDCOMConnection compo-
nent, and then using the TConnectionBroker to switch between the TLocalConnection
and the TDCOMConnection. Of course, this requires a DataSnap server as well, so let’s
start with the server now, and then come back to modify our data module (which is
already getting pretty crowded for a small example).

DataSnap BDE Server
If we take a look at the data module that we have so far, it should be clear that we
can actually split it in two separate parts (also called tiers): a server part and a client
part. The separation should take place right between the TLocalConnection and the
TDataSetProvider component. The server side consists of the TDataBase, TSession, two
TTables, a TdataSource, and the TDataSetProvider, and the client side contains the rest.
Because we don’t want to break the legacy application, we won’t actually remove the
server-side components from the remote data module, but simply copy them. But
first we need to create the DataSnap Server using File, New—Application. Save the
project in DataSnapServer.bpr and the main form in MainForm.cpp. This time we need
to add a remote data module. Click File, New—Other, go to Multitier and select the
Remote Data Module icon. The Remote Data Module will be the remote object that
implements the IAppServer interface on the server side. The Remote Data Module
Wizard asks for the CoClass name of the Remote Data Module (the name of your
class as well as interface, which will be derived from IAppServer). Let’s take
RemoteDataMod42 (see Figure 21.4). Leave the Threading Model value at its default—see
the previous chapter for more information about this setting.

CHAPTER 21 DataSnap Multitier Connections826

FIGURE 21.4 Remote Data Module Wizard.

26 0672324806 CH21 12/12/02 2:41 PM Page 826

When you click OK, the new Remote Data Module has been created. If you start
the Type Library Editor from the Views menu, you’ll notice that it contains the
definition of the IRemoteDataMod42 interface, and that the parent interface of
IRemoteDataMod42 is set to IAppServer. If you want, you can now add your custom
properties and methods to IRemoteDataMod42.

Close the Type Library Editor (we’ll get back to it later), and click File, Open to open
the file DataMod.cpp from the Legacy.bpr project—without actually opening the
project itself. Select the TDataBase, TSession, tblCustomer, tblOrders, dsCustomerOrders,
and dspCustomerOrders. Copy them to the clipboard, move back to your Remote Data
Module and paste them. See Figure 21.5 for the remote data module on my machine.

New DataSnap Connections 827

FIGURE 21.5 RemoteDataMod42.

The only thing left to do now is to compile and run the DataSnap server application.
This will register it on my local machine, so I can connect to it from the DataSnap
client application using one of the many different connection types.

DataSnap Client
Let’s return to the DataSnap client application. By this I mean the original Legacy.bpr
application that currently uses a TLocalConnection component on the data module.
We will now extend this data module with a new way to connect to the actual
DataSnap Server that we just built. Because I’m testing on my local machine, the
easiest way is to add a TDCOMConnection component. However, because my main point
it to show how to use the TConnectionBroker component to easily switch between
different TxxxConnection components, you can also pick a TSocketConnection or
TWebConnection component at this time—the choice is yours.

After you’ve dropped the TDCOMConnection component on the data module, you can
open the drop-down combo box for the ServerName property (showing three
DataSnap servers). In our example, we need to select DataSnapServer.RemoteDataMod42
as ServerName. If you set the Connected property of the TDCOMConnection component to
true, the DataSnapServer will be started (it will pop up and also appear in the
taskbar). If you set the Connection property to false again, the DataSnapServer should
be shut down again.

26 0672324806 CH21 12/12/02 2:41 PM Page 827

After you’ve configured and tested the TDCOMConnection component, you can take the
cdsCustomer TClientDataSet component and point it to the TDCOMConnection compo-
nent instead of the TLocalConnection component. Whenever you now activate (or
open) the cdsCustomer, you will use the new connection—resulting in the
DataSnapServer to be invoked (if it wasn’t running already), and your DataSnap
client to retrieve data from the remote data module on the DataSnapServer. Note
that you do not have to change the cdsOrders TClientDataSet component because
this one is simply connected to the tblOrders DataSetField inside cdsCustomer (which
has already been taken care of).

Switching Connections
For a single ClientDataSet, it didn’t take long to switch from one TxxxConnection
component to another. But a real-world situation often uses more than a single,
sometimes even more than a few dozen or hundred TClientDataSets. In those situa-
tions, you need a little help from your friend the TConnectionBroker. Drop the
TConnectionBroker component from the DataSnap tab onto the data module (see
Figure 21.6). The TConnectionBroker has three important properties: Connection,
Connected, and LoginPrompt. The most important one is the Connection property,
which can be set to either the TLocalConnection or the TDCOMConnection com-
ponent—or to another TConnectionBroker (but a circular reference to the same
TConnectionBroker itself is not allowed, of course). You can now click cdsCustomer
again, and set its RemoteServer property to the TConnectionBroker. Whenever you need
to switch between TxxxConnection components, you now only have to point a single
RemoteServer property of the TConnectionBroker to another server. That’s it, and you
can even do this at runtime (make sure to close down the connection nicely, by
setting Connected to false, before you attempt to switch from one Connection type to
another). In fact, your client application can decide at runtime which connection to
use, even before making the actual connection and opening the TClientDataSets. You
only have to assign the right TxxxConnection component to the RemoteServer property
of the ConnectionBroker component.

CHAPTER 21 DataSnap Multitier Connections828

FIGURE 21.6 ConnectionBroker.

26 0672324806 CH21 12/12/02 2:41 PM Page 828

Using the combination of the TLocalConnection and the TConnectionBroker compo-
nent enables you to write standalone applications that have the capability to switch
to a multitier architecture when needed. You can even put a specific TxxxConnection
component in it already (like we just did in our example) and make sure that the
multitier edition of the application is tested thoroughly (on a few machines) before
everyone switches over from the standalone version to the multitier version. After
that happens, your end users will probably not even be aware of the change. (The
actual presentation layer doesn’t change—and will not need to change because the
interface to it remains connected to the TClientDataSet and TDataSource components
on the lower-right corner of the data module—independent of the fact whether
we’re connected to a remote server or just have a local connection.)

TSOAPConnection
One of the big DataSnap enhancements in Delphi 6 is the TSOAPConnection compo-
nent from the Web Services tab of the component palette. The TSOAPConnection can
be used for DataSnap applications, provided the DataSnap server is set up to act as a
Web service (and is using a SOAP Server Data Module instead of a regular remote
Data Module).

The SOAP Connection is a bit similar to the Web Connection because both use HTTP
as the transport protocol. The difference is that the SOAP Connection component is
used to connect to a Web server application (using HTTP) that implements the
IAppServer interface as a Web service. Using a specific URL, we must specify the path
info of the THTTPSoapDispatcher on the application server.

SOAP is the protocol that underlies Delphi’s support for Web Service applications.
SOAP marshals method calls using an XML encoding, whereas SOAP connections use
HTTP as a transport protocol. SOAP connections have the advantage that they work
in cross-platform applications because they are supported on both Windows and
Linux. Because SOAP connections use HTTP, they have the same advantages as Web
connections: HTTP provides a lowest-common denominator that you know is avail-
able on all clients, and clients can communicate with an application server that is
protected by a firewall. As with HTTP connections, you can’t use callbacks via SOAP.
SOAP connections also limit you to a single remote data module in the application
server.

When using SOAP as communication protocol, we cannot just use a regular
Windows application as DataSnap server. Instead, we must explicitly make sure to
use a Web server application (one that exposes the IAppServer interface).

We must use the URL property of the SOAPConnection component to point to the
THTTPSoapDispatcher component inside the DataSnap server application. For example,
URL could be of the form:

http://localhost/cgi-bin/DataSnapServer.exe/SOAP

TSOAPConnection 829

26 0672324806 CH21 12/12/02 2:41 PM Page 829

For more information about SOAP and Web Services please read Chapter 19, “SOAP
and Web Services with BizSnap.”

C++Builder 6 Enterprise Soap Server
For multitier applications in C++Builder 6 (on Windows) to connect to Kylix 3 (on
Linux), the communication has to be based on SOAP—the only communication
protocol both C++Builder and Kylix have in common. This means we have a SOAP
(remote) Data Module and TDataSetProvider component on the server side, and a
TSOAPConnection component on the client side. In the remainder of this chapter, I will
show the steps to build a Soap Server and Client using C++Builder 6 Enterprise (the
steps are similar for Kylix 3 for C++).

Let’s start by building a SOAP DataSnap CGI executable Server in C++Builder 6
Enterprise, which consists of the following steps:

1. Start C++Builder 6 Enterprise and close the default project (if any).

2. Click File, New—Other, and go to the WebServices tab of the Object Repository.

3. Double-click the SOAP Server Application icon, which gives the New Soap
Server Application dialog.

4. Select CGI executable and click the OK button. A new Soap Server Application
has now been generated for you.

5. Answer No to the question Create Interface for SOAP module.

6. The Soap Web Module contains three automatically generated components:
THTTPSoapDispatcher, THTTPSoapCppInvoker, and TWSDLHTMLPublish. See Chapter 19
for more information about these components.

7. Save the Soap Web Module in file SWebMod.cpp and the project in file
SoapServer42.bpr.

8. Now, click File, New—Other, and go back to the WebServices tab of the Object
Repository.

9. This time, double-click the SOAP Data Module icon, which results in the Soap
Data Module Wizard.

CHAPTER 21 DataSnap Multitier Connections830

FIGURE 21.7 New Soap Data Module Wizard.

26 0672324806 CH21 12/12/02 2:41 PM Page 830

10. Enter SoapDataMod42 as Class Name (see Figure 21.7), and click the OK button. A
new Soap Data Module has now been generated for you.

11. Save this new unit with the Soap Data Module as SDataMod.cpp.

12. Drop a TClientDataSet component on the Soap Data Module; set its Name prop-
erty to cdsBiolife. Set its FileName property to biolife.xml. (The biolife.xml
table can be found in the C:\Program Files\Common Files\Borland Shared\Data
directory.)

13. Drop a TDataSetProvider component on the Soap Data Module, set its Name
property to dspBiolife, and its DataSet property to cdsBiolife (see Figure 21.8).

TSOAPConnection 831

FIGURE 21.8 SOAP Server Data Module.

14. Click the Soap Data Module, go to the Events tab of the Object Inspector, and
write the following code in the OnCreate event handler of the Soap Data
Module:

void __fastcall TSoapDataMod42::SoapDataModuleCreate(TObject *Sender)

{

cdsBiolife->Open();

}

This will make sure that the cdsBiolife TClientDataSet is opened when the
SOAP Data Module is created. As an alternative you can set the Active property
of the cdsBiolife TClientDataSet to true at design time, which will load the
entire contents of the biolife.xml file in cdsBiolife (also leading to a bigger
SDataMod.dfm file).

15. Compile and deploy your SoapServer42 application in the cgi-bin or scripts
directory of your Web server. Make sure to remember the URL. If the Web
server is installed on your local machine, this can be something like
http://localhost/cgi-bin/SoapServer42.exe.

16. You can test the output in a browser using the /wsdl switch. You’re set if you
see the interfaces IWSDLPublish, IAppServer, and IAppServerSOAP, as well as
ISoapDataMod42, as can be seen in Figure 21.9.

26 0672324806 CH21 12/12/02 2:41 PM Page 831

FIGURE 21.9 WebService Listing in Netscape browser.

Note that for real-world deployment you probably want to ensure that you compile
the SOAP Server without the dynamic RTL and runtime packages, so you only have
to deploy the executable together with the MIDAS.dll and Borlndmm.dll (which is
easier than having to deploy all packages too). See Chapter 19 for more information
on SOAP and Web Services.

C++Builder 6 Enterprise SOAP Client
Now that we have a SOAP DataSnap CGI executable Server written in C++Builder 6
Enterprise, we can start writing the Soap DataSnap Client written in C++Builder 6
Enterprise, using the following steps:

1. Start C++Builder 6 Enterprise, and start the project type that you want
(anything works). I will assume that we use a regular Windows client, so do
File, New—Application.

2. Save Unit1.cpp as ClientForm.cpp, and the project in file SoapClient.bpr.

3. Drop a TSoapConnection component from the Web Services tab of the
C++Builder 6 Enterprise Component Palette.

4. Set the URL property of the TSoapConnection component to http://localhost/
cgi-bin/ (where server is the name or IP address of your SOAP server machine).
Followed by the name of the SOAP Server application (SoapServer42.exe), then
followed by /soap, and the interface name of your SOAP Data Module
(/ISoapDataMod42) resulting in http://localhost/cgi-bin/SoapServer42.exe/soap/
ISoapDataMod42.

5. Drop a TClientDataSet component, and set its RemoteServer property to the
TSoapConnection component.

CHAPTER 21 DataSnap Multitier Connections832

26 0672324806 CH21 12/12/02 2:42 PM Page 832

6. Now, open the ProviderName property, which will list dspBiolife (as exported
from the SOAP Data Module). If at this time you do not see the name of the
exported TDataSetProvider, you have to go two steps back and see if you made a
mistake in the value for the URL property (you might want to try to replace
ISoapDataMod42 with IAppServerSoap).

7. Drop a TDataSource component and set its DataSet property to the
TClientDataSet component.

8. Drop a TDBGrid component and set its DataSource property to the TDataSource
component.

9. Drop a TDBNavigator component and set its DataSource property to the
TDataSource component, too.

10. Drop a TDBImage component, set its DataSource property to the TDataSource
component, and its DataField property to ‘Graphic’. Note that it might take a
few seconds for the combo box of the DataField property to drop down because
of the fact that the TClientDataSet has to request the meta data (to obtain the
field names) from the SOAP Server.

11. Now, finally, set the Active property of the TClientDataSet component to true
to get live data at design time, as can be seen in Figure 21.10.

TSOAPConnection 833

FIGURE 21.10 SOAP Client connecting to SOAP Server WebService.

Again, if you want to make modifications to the client application and send these
back to the server, you need to call the ApplyUpdates methods (see Chapter 20 regard-
ing the DataSnap for more details on this).

A final word on performance issues: Please note that it might take a while before you
get a response when you first click any of the two buttons. The delay is caused by
the fact that a SOAP request has to be put in a SOAP envelope and sent over the
Internet to the Web service (using HTTP). At the server machine, the Web server CGI
executable has to be started. Then, it must unpack the SOAP envelope, dispatch the
SOAP request, execute the C++ method, pack the result back in a SOAP envelope
again, send it back to the Web service consumer (again over the Internet using

26 0672324806 CH21 12/12/02 2:42 PM Page 833

HTTP), and then exit the Web service CGI executable again. A more efficient
approach for real-world Web services will certainly be to deploy them as ISAPI/NSAPI
DLLs or Apache DSO modules.

Summary
In this chapter, we looked at Borland’s multitier technology called DataSnap.
Specifically, we’ve seen the different ways in which DataSnap clients and servers can
communicate, using DCOM, TCP/IP sockets, HTTP, and even SOAP.

CHAPTER 21 DataSnap Multitier Connections834

26 0672324806 CH21 12/12/02 2:42 PM Page 834

IN THIS CHAPTER

• WebAppDebugger

• WebSnap Demo

• WebSnap Architecture

• WebSnap Login

• WebSnap Sessions

• WebSnap Master-Detail
Example

22

Web Server Programming
with WebSnap

by Bob Swart

This chapter covers Web server programming:
CGI/WinCGI, ISAPI/NSAPI, Apache, and the Web App
Debugger supported by C++Builder 6 Enterprise with the
new WebSnap technology. WebSnap is an extension of the
WebBroker technology (covered in Chapter 13 of Sams
C++Builder 5 Developer’s Guide—available on the CD-ROM).
WebBroker has been available in C++Builder from the start
and is present in the Professional and Enterprise editions
of C++Builder 6.

WebAppDebugger
Before we start with C++Builder 6 Enterprise features
contained in WebSnap, we want to show you the new
general enhancements that have been made in C++Builder
6 Web server application support (in other words, available
in C++Builder 6 Professional, too).

In order to start a new Web server application, just click
File, New–—Other and select the Web Server Application
icon on the first tab from the Object Repository. This will
show the new New Web Server Application Wizard, which
now contains five possible Web server project targets
instead of three (in contrast, Kylix only supports standard
CGI and Apache DSO dynamic-shared objects on Linux).

The new options include support for Apache-shared
modules (DLLs) on Windows as well as a special Web App
Debugger executable. When you select the latter, you must
also specify the CoClass Name of your Web server debug

27 0672324806 CH22 12/12/02 2:39 PM Page 835

application. In the screenshot, as shown in Figure 22.1, we’ve specified DrBob42 as
CoClass name:

CHAPTER 22 Web Server Programming with WebSnap836

FIGURE 22.1 New Web Server application types.

If you selected a Web App Debugger executable target and clicked OK, you not only
get a new project with a Web module, but with a normal form as well. In fact, the
form is the first unit of your project, so I’ve saved my project files in WADMainForm.cpp
(for my Web App Debugger main form), WebMod.cpp (for my Web module), and
DebugWebApp.bpr (for my main project file).

Default Web Action Item
Of course, before we can debug or even run a Web server application, we should first
add at least one Web action item. Right-click the Web module, and start the Action
Editor. Press Insert to create a new WebActionItem, set the Default property to true to
make it the default (just in case), and let it return some dynamic HTML:

void __fastcall TWebModule2::WebModule2WebActionItem1Action(

TObject *Sender, TWebRequest *Request, TWebResponse *Response,

bool &Handled)

{

Response->Content = “Hello, C++Builder 6 World!”;

}

Now, we’ll show you how to debug this very simple Web server application using the
C++Builder 6 Web Application Debugger (and without the need for an actual Web
server on your machine).

Debugging
If you hit F9, you just run the application with the empty form. Just let it run there
because to debug the Web server application, you need to start the Web Application
Debugger from the Tools menu or from the CBuilder6\bin directory as webappdbg.exe.

27 0672324806 CH22 12/12/02 2:39 PM Page 836

Starting the Web Application Debugger will give you the dialog box as shown in
Figure 22.2.

WebAppDebugger 837

FIGURE 22.2 The C++Builder 6 Web Application Debugger.

We must first click the Start button, which turns the Default URL label into a real
“url” that we can click to activate the Internet Explorer browser that we can use to
view the Web server application. As soon as we click the Default URL of the Web
Application Debugger, we get a list of registered servers, which includes the
ServerInfo.ServerInfo as well as DebugWebApp.DrBob42 (and perhaps other Web server
debug applications that have already been registered on your machine), as can be
seen in Figure 22.3.

FIGURE 22.3 Registered Servers.

You can select a specific Web server application from the list and click GO to execute
its default action. However, you can also first click the View Details link to see some
more details of each Web server application. The details include the location of the

27 0672324806 CH22 12/12/02 2:39 PM Page 837

Web server application as well as the ability to “Clean” the registry (that is, remove
all information about this particular Web server application from the registry). This
is very helpful because we still have numerous old MIDAS 3 (and new DataSnap)
application servers that we forgot to unregister before we removed them. At least
with the Web Application Debugger you can remove registry information from Web
server applications even long after the actual applications have been removed.
There’s just one warning: Do not remove the registry information for the
serverinfo.ServerInfo application because that’s the one that actually provides
the Web Application Debugger with the list of registered Web server applications.
Without the registry information for serverinfo.ServerInfo, the Web Application
Debugger won’t be able to get that list again. That is, until we re-run serverinfo.exe
from the CBuilder6\bin to register it again.

Debug Web Server Application
As you can see in the details listing, each Web server application has a number of
ways by which it can be identified. We have the CISID (or the GUID), the ProgID
(like the serverinfo.ServerInfo and DebugWebApp.DrBob42). The third way specifies the
full path to the registered application. Finally, the File Status reflects whether the
Web server application was actually found at the specified location. Sometimes, you
get Not Found Here, which might indicate that you’ve cleaned up your project, but
forgot to clean the registry (this has happened to me a few times more than I care
to admit).

Either of the three underlined links can be used to actually trigger the default action
of the Web server application, in our case resulting in a simple “Hello, world!”
Alternately, you could go back to the View List option, and just select the Web server
application you want to debug and press on the GO button. In both cases, the Web
Application Debugger will make a request to your (running) Web server application.
And, because the latter was running from within the C++Builder IDE, any breakpoint
that was set will be triggered after you reach it (a really cool way to enable debugging
of Web server applications without the need for a real Web server). When you’re
done debugging, you can always move the Web module to a “normal” Web server
application (the old trick to use multiple projects, each with a different target, all
sharing the same Web module).

After you’re done debugging, you should first close the Web server application, and
then the browser window. That leaves the Web Application Debugger window, where
you can now click the Stop button again. The Web Application Debugger dialog will
show some statistics, and even more interesting information on the Log tab, includ-
ing the event, time, elapsed time, path, content length, and content type.

Let’s now start with the main course: WebSnap, the new Web server application
framework available in the Enterprise edition of C++Builder 6.

CHAPTER 22 Web Server Programming with WebSnap838

27 0672324806 CH22 12/12/02 2:39 PM Page 838

WebSnap Demo
WebSnap is a new extension of the WebBroker Technology, but is not very well docu-
mented. It does combine lots and lots of possibilities with a significant learning
curve, and is best demonstrated in practice. I have done some experiments with
WebSnap and this section starts my (multipart) coverage of this Web server develop-
ment featureset. This time, I will show you step-by-step how to write a simple
WebSnap application that requires us to write very few lines of custom code (if any
at all). In the next sections, I will focus on the alternative choices and steps that are
possible along the way, including master-detail relationships (which are a bit more
tricky than the simple table that we’re using this time).

WebSnap can be compared with InternetExpress in that it’s an extension of
WebBroker, and it clearly uses some of the same ideas (which isn’t too strange, if you
consider that Jim Tierney, the architect of WebSnap, is also the same person who
designed InternetExpress a few years ago).

WebSnap Components
To start a new WebSnap application, we need to click File, New—Other, and go to
the WebSnap tab of the Object Repository. Here, we’ll see three icons that make up
the WebSnap wizards: one for a WebSnap application, one for a WebSnap Data
Module, and one for a WebSnap Page Module, as can be seen in Figure 22.4:

WebSnap Demo 839

FIGURE 22.4 WebSnap Application, Data Module, and Page Module.

The difference will be made clear in a moment, but let’s start with a new WebSnap
application first. The New WebSnap Application wizard (of Figure 22.5) is a big
dialog compared to the old WebBroker Application dialog (of Figure 22.1). It asks for
a lot of information, but right now we should only specify the type of application (a
CGI standalone executable), the Application Module Components being used (a Page
Module instead of just a Data Module), and the Page Name itself, which can be set to
Home.

27 0672324806 CH22 12/12/02 2:39 PM Page 839

FIGURE 22.5 New WebSnap application.

We can specify some additional different options by clicking the Components
button or the Page Options button, but these will be covered in more detail later in
this chapter.

WebSnap Web Module
For now, just click the OK button to generate the new CGI project and Web module
for our WebSnap application, which can be seen in Figure 22.6.

CHAPTER 22 Web Server Programming with WebSnap840

FIGURE 22.6 Home WebModule.

The Web module already contains five components: TPageProducer,
TWebAppComponents, TApplicationAdapter, TPageDispatcher, and TAdapterDispatcher.

Now, save the new Web module in file pmHome.cpp and the project in file CGI.bpr, so
we don’t have to do it later.

27 0672324806 CH22 12/12/02 2:39 PM Page 840

WebSnap Data Module
We must now create a WebSnap data module, so we can actually add some datasets
to connect to data (like the biolife table). We can do this by doing another File,
New—Other, moving to the WebSnap tab of the Object Repository again, but this
time selecting the second icon for the WebSnap data module. This will present us
with the following dialog for a New WebSnap Data Module, as can be seen in
Figure 22.7.

WebSnap Demo 841

FIGURE 22.7 New WebSnap data module .

If we just leave it at the default settings and click OK, a new WebSnap data module
has been added to our WebSnap CGI project. Save it in file wDataMod.cpp. Now, drop
any datasets on this data module, such as a regular TClientDataSet component from
the Data Access tab of the C++Builder 6 Component Palette. Set the Name property
to cdsBiolife, and connect its Filename property to C:\Program Files\Common Files\
Borland Shared\data\biolife.xml for the biolife table with memo field and picture,
among others.

Now, right-click the cdsBiolife component and start the Fields Editor. Right-click
again and select Add all Fields. To let the WebSnap client application maintain its
own state, we must now specify a primary key field (one that the client can use to
tell the WebSnap server which record we want to work on). For the cdsBiolife table,
we can just select the Species No field as keyfield, although generally any unique
field would do. To specify that Species No is the key field, we need to select Species
No in the fields editor, go to the Object Inspector, open up the ProviderFlags prop-
erty, and set the pfInKey subproperty value to true.

DataSetAdapter
Now that we have a cdsBiolife dataset on the WebSnap data module, we can drop a
TDataSetAdapter component next to it (third component from the left of the
WebSnap tab), and call it dsaBiolife. We should assign the cdsBiolife to the DataSet
property of the dsaBiolife TDataSetAdapter component. Next, open the TDataSet
Adapter in the Object Treeview (new in C++Builder 6). Right-click the Actions to add
all eleven possible actions (DeleteRow, FirstRow, PrevRow, NextRow, LastRow, EditRow,
BrowseRow, NewRow, Cancel, Apply, and RefreshRow). Next, right-click the Fields to add

27 0672324806 CH22 12/12/02 2:39 PM Page 841

all fields. The adapter fields that are generated correspond to the dataset fields from
the cdsBiolife. This is an important moment of your design. If you want to hide
some fields from your view (from the view that will be represented by this particular
TDataSetAdapter), you should remove these fields now. If there are some fields that
you don’t ever want to use, you should remove them even from the persistent field
list of the TClientDataSet—you should not wait until they appear in the
TDataSetAdapter field list.

For the list of actions you should also consider carefully which actions you want to
allow (that is, make available) for the end users, using this particular TDataSetAdapter.
You might have correctly guessed by now that you can actually have more than
one TDataSetAdapter connected to a T(Client)DataSet, each of these different
TDataSetAdapter components corresponding to a different view (showing potentially
a different set of fields, with potentially a different set of actions to apply on these
fields). For the example, at this time we want to enable all actions and show all fields
(so we don’t have to delete anything).

WebSnap Page Module
It’s now time to add the actual content-generating page modules to our WebSnap
Web module application. We can do this with the third and last icon on the
WebSnap tab of the Object Inspector: the WebSnap Page Module wizard (see
Figure 22.8).

CHAPTER 22 Web Server Programming with WebSnap842

FIGURE 22.8 New WebSnap Page Module Wizard.

To work with our previously constructed TDataSetAdapter, do not leave the default
properties set (still shown in the previous figure), but select an AdapterPageProducer
instead of the regular PageProducer, give it a nice Name and Title such as Biolife. The
Name, however, might not contain any spaces (it must be a valid identifier), but the

27 0672324806 CH22 12/12/02 2:39 PM Page 842

Title can, of course. Make sure you keep the Published property enabled, so the page
module will be made visible with a link from our Home page that we created earlier.
Also, if like me, you selected a CGI application, don’t bother with the Login Required
feature, since it does not work with CGI applications! This is caused by the fact that
the Login feature uses a session component that is kept in the memory of the Web
server application, so it has to remain up-and-running between requests (and a CGI
application exits after each request). Later in this Clinic, I’ll show you some more of
the Login Required details (for ISAPI DLLs), but you don’t have to select it for now.

After you click the OK button, a new Page Module is created for us, including an
AdapterPageProducer component that we selected. Save the file in pmBiolife.cpp. Now,
go to the Object TreeView, and open up the AdapterPageProducer. Right-click
WebPageItems and select the New Component dialog. The New Component dialog will
always only show the new components that are relevant for the particular situation.
In this particular situation, we can add either an AdapterForm or a LayoutGroup. A
LayoutGroup can be used to specify some layout options, and will be available at other
locations as well. For now, add an AdapterForm. Right-click the AdapterForm, and this
time add an AdapterFieldGroup (to show fields from cdsBiolife) as well as an
AdapterCommandGroup (to operate on cdsBiolife, using the actions that we added to the
dsaBiolife TDataSetAdapter component earlier).

We now still need to make a few connections. For the AdapterCommandGroup, we must
assign its DisplayComponent property to point to the AdapterFieldGroup. The only thing
left now is to make sure that the AdapterFieldGroup connects to the dsaBiolife
TDataSetAdapter (from the unit wDataMod). To do so, we must first include the header
of the wDataMod unit to the current unit (for example, using Alt+F11 or File, Include
Unit Hdr...), and then assign the Adapter property of the AdapterFieldGroup to
WebDataModule1->dsaBiolife to make the final connection.

Deployment
Before you can deploy WebSnap applications on a Web server (machine), there are
two special files that have to be installed and deployed on that machine first. For
more information, you should always read deploy.txt in your CBuilder6 directory.
Basically, you must register WebBrokerScript.tlb as well as stdvdl40.dll on the Web
server machine using tregsvr.exe–—all found in the CBuilder6\bin directory. Also,
WebSnap applications require the Microsoft Active Scripting Engine, which is
included in IE5 and later, and installed on Windows 2000 and later (but if it’s not on
your Web server, you can download it from http://msdn.microsoft.com/scripting).

And finally, you must ensure that the XML files that the ClientDataSets are using
are also available on the Web server (if you remove the PATH portion in the FileName
property, then you can put them in the same directory as your Web server
application).

WebSnap Demo 843

27 0672324806 CH22 12/12/02 2:39 PM Page 843

After these preparations, let’s turn to the CGI.exe project. By default, all C++Builder
projects have their options set to generate small executes, by using the dynamic RTL
as well as runtime packages. However, this results in additional files that you have to
deploy on the Web server. And, because I do not want to do that (I always want to
limit the number of files that I have to deploy), we should start the Project, Options
dialog. On the Compiler tab, click the Release button; on the Linker tab, uncheck
the Use dynamic RTL option, and finally on the Packages tab, uncheck the Build
with runtime packages option. Now, do Project, Build CGI to build the project. This
should result in a CGI.exe of 2,096,128 bytes—mainly caused by the fact that the
wDataMod.dfm is 2,487,537 bytes big if the ClientDataSet is open at design time (so
the data is made persistent inside this .dfm file). But, even without an active
ClientDataSet, the WebSnap executable will still be over one megabyte in size.
Without having written one line of C++ code!

Anyway, we now need to deploy both the executable CGI.exe as well as all .html files:
pmHome.html (for the Home page) and pmBiolife.html (for the biolife Page Module).
These two .html files are the ones that can be modified using Dreamweaver or
FrontPage. Deploying the files means moving them to the cgi-bin or Scripts directory
of your Web server. If you do this on your local machine, the URL to view the
CGI.exe can be something like http://localhost/Scripts/CGI.exe or http://localhost/

cgi-bin/CGI.exe. You can view the results of the CGI.exe in a browser and get the
main home page, which is still empty because we didn’t do anything special with
the TPageProducer component on the main WebModule, see Figure 22.9.

CHAPTER 22 Web Server Programming with WebSnap844

FIGURE 22.9 CGI.exe.

Next to the home page is a link to the Biolife page, and when you click it, you get
the real results of the WebSnap application, as can be seen Figure 22.10.

Remember that we added all fields to the DataSetAdapter, which explicitly included
the Graphic field. If we hadn’t made sure to add all fields at that place, the Graphic
field would not have been part of the displayed fields (even if by default you get all
fields when you didn’t select any). My best guess is that it’s part of some helpful
default optimization rule.

27 0672324806 CH22 12/12/02 2:39 PM Page 844

FIGURE 22.10 Output of WebSnap application in Internet Explorer.

Tweaking
We haven’t yet written a single line of C++ code. But this is about to change because
we do need some tweaking at this point. The project source code that has been
generated so far contains a little bug that prevents the command buttons from oper-
ating. Click the NextRow or LastRow button and you’ll see what I mean—we are still
at the first record! Believe me when I tell you that the problem is not related to the
fact that we have been building CGI standalone executable targets because you will
also be unable to move to the next record with an ISAPI Dynamic link library or a
Web App Debugger executable.

The problem has to do with multipart requests, and specifically the ReqMulti.obj file,
which isn’t linked with our application. If you take a look at the WebSnap demos in
CBuilder6\Examples\WebSnap, you’ll notice that these projects all work just fine, but
their source code differs slightly from the source code generated by C++Builder 6.

To make a long story short—to fix the problem, do Project, View Source, and add
one line of code (under the three #pragma lines that are already present in CGI.bpr):

#pragma link “ReqMulti.obj”

Now, save, recompile, and redeploy the CGI project, as can be seen in Figure 22.11.
Now you can use the buttons to navigate through the Biolife table (First, Prev, Next,

WebSnap Demo 845

27 0672324806 CH22 12/12/02 2:39 PM Page 845

and Last), or even edit the content of these fields and make changes to the bitmap.
In case of the bitmap, you need to specify a filename on your local disk, which will
be sent to the Web server application after you click the Apply button (which is
shown if you click the Edit button first). You then want to continue to the browse
state, using the BrowseRow button.

CHAPTER 22 Web Server Programming with WebSnap846

FIGURE 22.11 Edit WebSnap output in Internet Explorer.

If you don’t see the correct new picture, you might need to refresh the page before
you see it (for some reason, I always have to–—probably an Internet Explorer 6
issue).

Let’s see how this all works by examining the WebSnap Architecture, Adapters, and
Components from the ground up. While we do this, we’ll discover some handy
properties to make it look even better (the output of Figures 22.10 and 22.11 was
much too wide because of the long captions on the buttons, for example).

WebSnap Architecture
So far, we’ve seen only a number of WebSnap components and wizards in use. We
can already compare the general working of WebSnap with that of WebBroker (see
Chapter 13 of Sams C++Builder 5 Developer’s Guide for WebBroker details). In this
section we will discuss a number of the differences between WebBroker and
WebSnap, explain why you can use WebBroker components in a WebSnap environ-
ment, but not (easily) the other way around, and finally start the description of the
most important WebSnap building blocks: the adapters.

27 0672324806 CH22 12/12/02 2:39 PM Page 846

Actions Versus Pages
Where WebBroker was working with a single Web module, using Web action items
(and PathInfo) to distinguish the incoming requests, the new WebSnap architecture
uses Page Modules to prepresent individual pages (again dispatched using PathInfo).
Using WebBroker you have a choice in using the HTMLDoc (internal) or HTMLFile
(external) property to store the HTML template, and the default was using the inter-
nal HTMLDoc property (such as the MidasPageProducer).

The WebSnap architecture now uses external HTML templates as default, which
makes it easier to connect these external HTML files to Web editors such as
Dreamweaver or FrontPage (or even Notepad). So, we see Actions versus Pages as one
of the main differences.

WebSnap Web Modules
Where a WebBroker application starts with a Web module, a WebSnap application
starts with either a TWebAppDataModule or a TWebAppPageModule. Both are just a container
for WebSnap system components that we’ll see later, such as dispatchers, global
adapters (the TApplicationAdapter), a user list, and session components.

The WebSnap Application Wizard will automatically create the Web Module of
choice (either a TWebAppDataModule or a TWebAppPageModule) including the selected
components. However, you can always add more components later (or remove exist-
ing components), but you cannot change a TWebAppDataModule into a TWebApp
PageModule or vice versa. TWebAppComponents is the component in a TWebAppDataModule
that references all of the system components in use by the WebSnap application.

TWebAppDataModule Versus TWebAppPageModule

The difference between a WebAppPageModule and a TWebAppDataModule is that the former
generates a page. The PageProducer property references the producer component
responsible for generating content. This property must not be nil or no content will
be generated. The WebSnap Application Wizard automatically adds a page producer
component when it creates a new TWebAppPageModule.

WebSnap Page Modules
A TWebPageModule holds all the components needed for generating a specific Web
page. The WebSnap Page Module Wizard creates a TWebPageModule descendant as well
as the selected PageProducer for generating the content of the Web page. It also
adds code to the initialization section of the unit it creates that registers the
TWebPageModule descendant with a factory object that the WebSnap application can
use to create the Web page module.

The page producer that the wizard adds to the Web page module becomes the value
of the PageProducer property (and if you replace it with another PageProducer prop-
erty later, it will automatically be set to the PageProducer property). If the

WebSnap Architecture 847

27 0672324806 CH22 12/12/02 2:39 PM Page 847

PageProducer property is nil, the Web page module can’t generate the content of a
Web page.

WebSnap Data Modules
TWebDataModule is compatible with WebSnap applications. The initialization section of
TWebDataModule registers a factory that is used by the WebSnap application to create
the data module. Use TWebDataModule as a container for components that can be used
by other modules in your WebSnap application.

WebSnap Versus WebBroker
WebBroker is Action-based, whereas WebSnap is Page-based. The support for multiple
(optionally cached) data modules and page modules make it easier to maintain
bigger Web sites than was previously possible. Server side scripting adds to the flexi-
bility as well. And finally, WebSnap wouldn’t be possible without Adapter compo-
nents to glue the Delphi code to the scripting side (and back).

Server Side Scripting
One of the nice new features of WebSnap is the support for Server Side Scripting. In
the previous version of C++Builder, we had Internet Express, which enabled support
for Client Side Scripting (the JavaScript that was used to bind XML data packets to
HTML input controls), but this was limited to prewritten client-side JavaScript. With
WebSnap, we can not only use generated Server Side JavaScript, but can also easily
add our own scripting code, or use external Web page editors (such as the aforemen-
tioned Dreamweaver or FrontPage) to help write the server-side scripting.

We can use the HTML tab in the C++Builder code editor to modify the generated
HTML and even add our own scripting snippets. A very simple example script that
displays the Name of the Page as HTML title is programmed as follows (inside the
main WebSnap Web Module):

<html>

<head>

<title>

<%= Page.Title %>

</title>

</head>

<body>

<h1><%= Application.Title %></h1>

In case you wonder, the <%= and %> are just shortcuts for the JavaScript code
Response.Write to write the text between them.

CHAPTER 22 Web Server Programming with WebSnap848

27 0672324806 CH22 12/12/02 2:39 PM Page 848

As usual a good starting point to playing with server-side scripting is the code that
C++Builder generates, such as the login and user information on the main home
page, which is coded as follows:

<% if (EndUser.Logout != null) { %>

<% if (EndUser.DisplayName != ‘’) { %>

<h1>Welcome <%=EndUser.DisplayName %></h1>

<% } %>

<% if (EndUser.Logout.Enabled) { %>

<a href=”<%=EndUser.Logout.AsHREF%>”>Logout

<% } %>

<% if (EndUser.LoginForm.Enabled) { %>

<a href=<%=EndUser.LoginForm.AsHREF%>>Login

<% } %>

<% } %>

WebSnap Adapters
We’ve seen that the WebSnap architecture uses adapters as a communication layer
between the data layer and the presentation layer. As data layer we can use anything
that can store or retrieve data, including the obvious choice: a dataset. As presenta-
tion layer, WebSnap produces HTML in different formats (or modes) such as brows-
ing, editing, and so forth.

In this section, we’ll explain how an adapter works, and which adapters are available
in the C++Builder 6 Enterprise implemenation of WebSnap.

Adapters
There are five available Adapter components on the WebSnap tab of C++Builder 6:
the regular TAdapter, the TPagedAdapter (showing adapter output in multiple pages),
TDataSetAdapter (a logic connection between an adapter and a dataset), and the
TLoginFormAdapter (to provide you with a login form). Finally, we also have the
TApplicationAdapter and TendUserAdapter, but these are singleton adapters and usually
only added to your main WebSnap Web module.

Adapters consist of fields and actions, and if you right-click any TAdapter (or derived
component) you can select the Fields Editor and the Actions Editor; usually the place
to add custom fields and/or their actions.

Adapter Fields The Adapter Fields are storage places for data. Think of them as the
properties of WebSnap adapter layer. For the regular TAdapter component, there can
be six different kinds of Adapter Fields: AdapterBooleanField, AdapterField (the generic
value), AdapterFileField, AdapterImageField, AdapterMemoField, and finally AdapterMulti
ValueField.

WebSnap Architecture 849

27 0672324806 CH22 12/12/02 2:39 PM Page 849

All Adapter Fields are derived directly or indirectly from the TCustomAdapterField,
which has no published properties or events, but does call event handlers to retrieve
the Adapter Field value (OnGetValue), validate a value (OnValidateValue), update the
value (OnUpdateValue), as well as customize the displayed output (OnGetDisplayText).

Adapter Actions The Adapter Fields can be seen as placeholders for the data,
whereas the Adapter Actions can be seen as methods or routines that can operate on
this data. Although it’s useful for the user to see or be able to enter data, there is
always some kind of action (login, move to the next page, submit the data, delete
record, and so forth) that has to be taken, so there’s always need for Adapter Action
components.

For each Adapter Action, we can define the Name of the action as well as the
ActionName and DisplayLabel (to be used on buttons, for example, as we’ll see later
when we combine Adapter Actions with AdapterCommandGroups inside
AdapterPageProducers).

An Adapter Action can also define its ExecuteAccess, which specifies the access rights
needed to execute this particular action. The server-side script accesses the CanExecute
property and this value is checked against the end user’s rights. This is something
that we’ll see again when we add users to a userlist for the Login functionality.

Adapter Actions also have a number of events, namely the OnExecute (the most
important one), OnAfterGetResponse, OnBeforeGetResponse, OnGetEnabled, and
OnGetParams.

TAdapter

A regular TAdapter component has regular Adapter Fields and custom Adapter
Actions. Adapter components are used in combination with a TAdapterPageProducer
component—connecting the Adapter Fields to DisplayComponents (like an AdapterField
Group or AdapterGrid) and the Adapter Actions to AdapterActionButtons (from an
AdapterCommandGroup).

TPagedAdapter

A TPagedAdapter is a TAdapter component with an additional PageSize property that
defines the size of the items on a particular page. If you didn’t already add explicit
actions to the Adapter, you’ll see NextPage, PrevPage, and GotoPage actions automati-
cally (they will disappear as soon as you set the PageSize property back to zero again).

TDataSetAdapter

The TDataSetAdapter is one of the most useful TAdapter components, connecting to a
TDataSet, mapping dataset fields and operations to Adapter Fields and Actions.
Furthermore, like the TPagedAdapter, a TDataSetAdapter also has a PageSize property
that specifies the number of records that are displayed on a single page. Very useful!

CHAPTER 22 Web Server Programming with WebSnap850

27 0672324806 CH22 12/12/02 2:39 PM Page 850

TLoginFormAdapter

The TLoginFormAdapter has default adapter fields for user name, password, and next
page (which enables the user to select a Web page to open after logging in).
TLoginFormAdapter has a single default action for logging in. If the WebSnap applica-
tion also contains an end user adapter such as TEndUserAdapter or TEndUserSession

Adapter, TLoginFormAdapter will call the end user adapter’s Login() method to log the
user in. This adapter will be covered in more detail in the WebSnap Login section of
this chapter.

TApplicationAdapter

The TApplicationAdapter is a global adapter that is used only in the main WebApp
Web Module. It contains a single field called Title that gets its value from the
ApplicationTitle property. We can add custom adapter fields and actions to the
TApplicationAdapter, use server-side script, and use the Application variable to access
fields and actions of the ApplicationAdapter. For example, <%= Application.Title %>
writes the title of the application.

TEndUserAdapter

The TEndUserAdapter is another global adapter that is used only in the main WebApp
Web Module. The TEndUserAdapter has two default Adapter fields: DisplayName and
LoggedIn. These fields contain the user’s name and login state. We can write code in
the OnGetDisplayName and OnIsLoggedIn event handlers to override their values.
TEndUserAdapter also has two default actions: LoginForm and LogoutOut. The former
displays a login form, whereas the latter logs the user out. We can use the LoginPage
property to specify the Page Module name of the login page, and can respond to the
OnLogin and OnLogout event handlers.

At the scripting side, we have the EndUser script variable, which can be used to
display end user fields and execute end user actions. The following JavaScript snippet
displays the name of the end user when logged in:

<% if (EndUser.LoggedIn) { %>

<h1>Welcome <%= EndUser.DisplayName %> </h1>

<% } %>

The following JavaScript snippet displays a login or logout hyperlink.

<% if (EndUser.Logout.Enabled) { %>

<a href=”<%=EndUser.Logout.AsHREF%>”>Logout

<% } %>

<% if (EndUser.LoginForm.Enabled) { %>

<a href=<%=EndUser.LoginForm.AsHREF%>>Login

<% } %>

WebSnap Architecture 851

27 0672324806 CH22 12/12/02 2:39 PM Page 851

TEndUserAdapter also specifies the access rights for the end user. If the WebSnap appli-
cation contains a TWebUserList, TEndUserAdapter uses the TWebUserList to obtain rights
for the specific end user. We can also write code for the OnHasRights event handler to
perform this task.

TEndUserSessionAdapter

The TEndUserSessionAdapter is a special TEndUserAdapter that we will always use in
combination with the TSessionsService component (more about this in the WebSnap
Sessions section of this chapter).

Custom Adapter Components
We can derive from TAdapter or TCustomAdapter to create our own custom WebSnap
adapter components. See my Web site at http://www.drbob42.com/BobAdapt for a plug-
in wizard to create your own custom adapter components for Delphi, Kylix, and
C++Builder.

WebSnap Producers
Apart from Adapters, the WebSnap Architecture depends on a special TPageProducer
to actually produce the dynamic HTML. The TTableProducer components have a
small(er) role in the WebSnap world.

TAdapterPageProducer

A regular TPageProducer uses the HTMLDoc or HTMLFile properties to store a HTML
template to be filled in (using the OnHTMLTag event handler), whereas the
TAdapterPageProducer uses an external template file, and generated dynamic HTML as
well as scripting code to connect AdapterFields to DisplayComponents and
AdapterActions to CommandButtons.

Apart from the TAdapterPageProducer, which is the WebSnap-specific PageProducer, we
can also select a regular TPageProducer, a TDataSetPageProducer (both inherited from
WebBroker), a TInetXPageProducer (from InternetExpress), and finally a
TXSLPageProducer, which uses XML and XSL. However, it’s the TAdapterPageProducer
that can work with TAdapters–—the core of WebSnap.

Enough theoretical overview already, let’s return to WebSnap and cover Login,
Sessions, and the final WebSnap application combining everything together.

WebSnap Login
In the previous demo we used WebSnap to produce a Web server application that
could be used to browse, edit, and search (I didn’t show that) the biolife table. This
time, I want to extend that example in two ways. For one thing, I want to show how
to produce a master-detail relationship using the well-known customer and orders

CHAPTER 22 Web Server Programming with WebSnap852

27 0672324806 CH22 12/12/02 2:39 PM Page 852

tables. But first, I want to use some kind of authentication, using a login form (and
as a consequence, managing a list of known users and passwords at the same time).

WebSnap Application
To start the new WebSnap application, click File, New—Other, and go to the
WebSnap tab of the Object Repository for the WebSnap application icon. This will
result in the WebSnap Application Wizard, which needs some specific options set
(compared to last time, when we mainly used the default settings). I want to select
the Web App Debugger executable with DrBob42 as CoClass name again.

The second group of options specifies the Application Module Components. We’ll
leave this set to a Page Module (instead of a regular Data Module). However, this
time we need to click the Components button to add some additional components
that we need for this example. We need to select the End User Session Adapter (drop
down the End User Adapter combobox and select the TEndUserSessionAdapter),
Session Service, and User List Service (the only two we don’t need are the Dispatch
Actions and Locate File Service), resulting in Figure 22.12.

WebSnap Login 853

FIGURE 22.12 Specific Web App components.

The third group of options are the Application Module Options. I always use Home
as the name for the first page (instead of PageProducerPage1), but I leave all other Page
Options set at their default. This is the starting page of the application, so it can be a
general welcome to anyone, without the need to login.

After you click OK, a new WebSnap application is generated. Along with a bit more
than that, actually. You’ll noticed an empty new form as well as your page module.
The empty form is generated because we selected the Web App Debugger server type.
The best thing to do now is to save your project, renaming Unit1 (the empty form) to
MainForm.cpp, Unit2 (the page module) to pmHome.cpp, and the project itself to WAD.bpr
(again—you might want to save everything in a new directory).

27 0672324806 CH22 12/12/02 2:39 PM Page 853

You can resize the main form, add a nice label to it (to remind you that—when you
see it—the new WAD WebSnap application is running).

WebSnap Page Module
The WebSnap Page Module for the first (Home) page contains a few more compo-
nents than last time. Apart from the PageProducer, we now also have
WebAppComponents, ApplicationAdapter, EndUserSessionAdapter, PageDispatcher,
AdapterDispatcher, SessionService, and a WebUserList, as can be seen in Figure 22.13.

CHAPTER 22 Web Server Programming with WebSnap854

FIGURE 22.13 Home page module.

WebUserList
We actually need to start with the latter to create a list of “known” users, their pass-
words, and (optionally) their specific access rights and permissions. So, double-click
the WebUserList to get into the WebUserList->UserItems editor. You can add new users,
their password, and access rights here. I always leave the latter empty, but in real-
world situations, the access rights field can be a convenient way to make a distinc-
tion between normal users and administrators (or database managers), for example.

Press Ins or click the left button to add a new UserItem. Then, select a UserItem and
use the Object Inspector to assign values to the AccessRights (left empty), Password,
and UserName.

For now, I’ve just added a few users and their passwords, resulting in the following
list of five users and their passwords, as can be seen in Figure 22.14.

27 0672324806 CH22 12/12/02 2:39 PM Page 854

FIGURE 22.14 WebUserList editor.

Login Page Module
After we have a list of users and passwords, we can start to make the official Login
page of our WebSnap application. For this, we need to add a new WebSnap Page
Module (the usual way).

We need to make a few changes in this dialog (see Figure 22.15). First of all, the
Producer Type must change from a regular PageProducer to an AdapterPageProducer.
Second, the Name property of the Page options should be set to Login (or something
like that). The Title will automatically follow the changes in the Name.

WebSnap Login 855

FIGURE 22.15 New WebSnap Page Module.

Note that we should not check the Login Required option at this time because this is
the login dialog itself. Or at least, we’ll make it the Login dialog in just a second.

When you click OK, a new Page Module is created, with only an AdapterPageProducer
inside. Save this file in pmLogin.cpp, and go to the WebSnap tab of the C++Builder 6
component palette to drop a TLoginFormAdapter on the Login Page Module.

27 0672324806 CH22 12/12/02 2:39 PM Page 855

LoginFormAdapter

The LoginFormAdapter knows about Login names, passwords, and the next page that a
user wants to visit (if the login was successful). Remember last time when we
connected dataset fields via a DataSetAdapter to adapter fields from the AdapterPage
Producer? Well, the LoginFormAdapter will show a slightly different way to connect to
an AdapterPageProducer.

To see the internal fields of the LoginFormAdapter, just double-click it so the Field
Editor starts. Then, select Fields and right-click it and select Add All Fields. This
results in three (explicitly) persistent fields: AdaptUserName, AdaptPassword, and
AdaptNextPage. You can select each individual adapter field and change some proper-
ties, such as the DisplayLabel for the AdaptUserName (change it from UserName to simply
User). If you’ve decided to leave the Password field empty for one or more of your
users (in the WebUserList), this is generally no problem. However, I always want to
enforce the use of passwords, and you can do so (at design time), by setting the
PasswordRequired property of the LoginFormAdapter component to true.

Login Form
The three new adapter fields will now need to be connected to the AdapterPage
Producer, resulting in a visual Login form that we can use. To actually build the
Login Form, we need to go back to the AdapterPageProducer on the Login Page
Module (after all, it’s the Page Producer that generates the HTML). If you double-
click the AdapterPageProducer you get the Web Page Editor.

In the Web Page Editor, select the AdapterPageProducer (it’s the only component
anyway), and right-click with the mouse to get the Add New Components dialog.
Alternately, you can press the Ins key or press the button in the upper-left corner
of the Web Page Editor. In whatever way you do it, make sure you select the
AdapterForm. Then, for the AdapterForm, right-click it and add an AdapterCommandGroup
as well as an AdapterFieldGroup (note that you can do a multiselect in the Add Web
Component dialog).

We’ll now get two design time warnings that are easy to solve (see Figure 22.16).

Select the AdapterCommandGroup component, and assign the AdapterFieldGroup to its
DisplayComponent property. Next, select the AdapterFieldGroup component and assign
the LoginFormAdapter to its Adapter property. This last step will not only remove the
last warning, but will also result in a preview of the Login form. Note the UserName
field, which only displays the label User (as we specified earlier).

You might want to move the AdapterFieldGroup up in the list of the AdapterForm (if
only to make sure the Login button itself—which is part of the AdapterCommandGroup—
is shown under the three input fields).

CHAPTER 22 Web Server Programming with WebSnap856

27 0672324806 CH22 12/12/02 2:39 PM Page 856

FIGURE 22.16 Web Page surface designer editor.

Incorrect Login
Before we continue to test this, we need to do a few more things. First of all, we need
to have some pages to select as Next Page that actually require Login. We’ll do that
in a moment. What we need to do first is to make sure that the user will get some
useful feedback when an attempt to login has failed. For that, or generally any error
situation, we need an AdapterErrorList (which—as you probably can guess—displays
a list of error messages). Select the AdapterForm component, click Ins, and select an
AdapterErrorList to give Login (and general error) feedback. As usual, we get a design
time warning that the Adapter property of the AdapterErrorList is not assigned yet,
therefore, we should assign it to the LoginFormAdapter (just like we did with the
AdapterFieldGroup), see Figure 22.17.

The main visual difference (at design time) between the AdapterErrorList and the
AdapterFieldGroup or AdapterCommandGroup is that the former isn’t displayed in the left
pane, but only in the right pane of the Web Page Editor. It’s not such a big deal if
you think about it because it only means that the AdapterErrorList cannot get any
child components of its own (whereas the AdapterFieldGroup and AdapterCommandGroup

can).

But what did we just do with the AdapterErrorList? Nothing, really, it seems. We
only assigned the Adapter property back to the LoginFormAdapter. Which means that
if anything goes wrong, it will be displayed inside the HTML that is produced by the
LoginFormAdapter. And that means the same Login form where the user tried to
login, as we will see later, when we’re finally ready to try to Login to our WebSnap
application.

WebSnap Login 857

27 0672324806 CH22 12/12/02 2:39 PM Page 857

FIGURE 22.17 Final preview of Login form in the Web Page Editor.

EndUserSessionAdapter

And that’s not all, because we now have to tell the WebSnap application that the
Login page is ready to be used. In other words, should anyone (who is not yet logged
in) want to enter a page with the Login Required option set, this person must be sent
to the Login page we just made. To specify the Login page, we must go back to the
first Page Module (the pmHome unit), select the EndUserSessionAdapter component, and
set its LoginPage property to Login (the name of your Login Page Module).

You can now save everything and run the WAD application. Remember that you
have to start the Web App Debugger to view and login to the WebSnap application.
For a more interesting demo (with more than just the login and home page), we will
add session support to our WebSnap application.

WebSnap Sessions
Apart from the ability to login to a Web site, which is very useful of course, we
should also be able to maintain state in WebSnap applications; in other words,
session management. Using WebBroker, this can be done in three ways: using fat
URLs, using hidden fields, or using cookies. Using WebSnap, however, this can be
done somewhat easier. In the previous section, we used the TLoginFormAdapter and
the TWebUserList components to enable the login functionality in our WebSnap
application. You might not have realized it, but this also requires the maintenance of
state—logged in or not—in your current session. The thing is that it was done
implicitly and behind our back (like many of the WebSnap features). But you can use
the same techniques to store any information in the user’s session, using the
TSessionsService component. The TSessionsService component is able to store
name=value pairs for us with little effort.

CHAPTER 22 Web Server Programming with WebSnap858

27 0672324806 CH22 12/12/02 2:39 PM Page 858

TSessionsService

To spoil the surprise right from the start, TSessionsService is in fact using cookies to
store session IDs, but not the session values themselves. (Those are stored in memory
in the TSessionsService object, which is the reason why they don’t work for CGI
executables that are shutdown between requests, and why we must keep our WAD
Web App Debugger executable up and running to remain logged in). Login and
Session support works best in ISAPI applications.

Let’s continue with the WebSnap application to show how we can use the
TSessionsService component to maintain some session information. First, add a new
Page Module to obtain some session-related state information such as the date-of-
birth of the particular visitor (it might be a nice idea to be able to greet a visitor on
his or her birthday).

Click File, New—Other; go to the WebSnap tab and select the WebSnap Page Module
Wizard to add a new page. Set its Name/Title to Birthday, and make sure it uses an
TAdapterPageProducer component because we will be using an Adapter component
itself in a moment (see Figure 22.18).

WebSnap Sessions 859

FIGURE 22.18 New WebSnap Page Module Birthday.

Click OK and save the Page Module in pmBirthday.cpp.

On the TWebPageModule, we now need to drop a regular TAdapter component, which
will be used to request the date of birth for this particular visitor. While we’re at it,
we might as well ask for his or her name (it wouldn’t be nice to congratulate
someone with the message “congratulations visitor on your birthday!”). It would, of
course, be so much more personal to use a person’s own name.

27 0672324806 CH22 12/12/02 2:39 PM Page 859

TAdapter Fields
What we need to do first, is to right-click the Adapter component to start the Adapter
Fields Editor to define two new adapter fields named Name and Birthday. When you
click Insert inside the Adapter Fields Editor, the Add Web Component dialog pops up
(see Figure 22.19). Here, you can define what kind of AdapterField you want.

CHAPTER 22 Web Server Programming with WebSnap860

FIGURE 22.19 Add new AdapterField.

Both the Name and Birthday should be a regular (string) AdapterField, so just add two
AdapterField components and name them Name and Birthday, see Figure 22.20.

FIGURE 22.20 Birthday.Adapter1.Fields overview.

To make the appearance of the two AdapterFields more user friendly, make sure to
change the DisplayLabel property of Name to “What’s your name?” and the
DisplayLabel property of Birthday to “When were you born?” In a moment, this will
give a great and inviting message to the visitor.

TAdapterPageProducer

To make the connection between the Tadapter, its fields, and the generated output,
we must now double-click the TAdapterPageProducer to start the Web Page Editor
again. Right-click the AdapterPageProducer and add an AdapterForm. Then, right-click
the AdapterForm and add an AdapterFieldGroup. This will give you the expected design
time warning (the Adapter property is nil), which is solved by assigning the Adapter
property of the AdapterFieldGroup to the Adapter component we dropped just a
minute ago, see Figure 22.21.

27 0672324806 CH22 12/12/02 2:39 PM Page 860

FIGURE 22.21 Birthday input adapter form.

It’s nice to be able to fill in your name and birthday, but it would be really useful if
we could actually submit these values to the WebSnap Web server application. So,
let’s add an AdapterCommandGroup component to the AdapterForm, which, of course,
yields another design time warning that is solved by assigning the DisplayComponent
property of the AdapterCommandGroup component to the AdapterFieldGroup.

TAdapter Actions
Before we can actually add a submit button (and optionally a reset button) to the
AdapterCommandGroup, we must first make sure there’s a corresponding action in the
Adapter component (AdapterFields correspond with DisplayFields, and AdapterActions
correspond with CommandButtons, remember?).

Close the Web Page Editor for now, and return to the TAdapter component. Right-
click it and this time start the Actions Editor. We need just one action—to submit our
name and birthday—so add one AdapterAction of name SubmitNameAndBirthday. We’ll
get back to the implemenation in a moment, let’s return to add the buttons first.

Double-click the TAdapterPageProducer again, and in the Web Page Editor select the
AdapterCommandGroup and right-click to select Add All Commands. This will automati-
cally (explicitly) create a new button with name CmdSubmitNameAndBirthday and
caption SubmitNameAndBirthday, so you might want to add some spaces here and there
in the Caption property of this button, as can be seen in Figure 22.22.

Now, you can recompile the application, run it (using the WebApp Debugger), go to
the Birthday page, fill in your Name and Birthday, click the Submit Name And
Birthday button, and nothing will happen. Using Netscape the page will even be
cleared, and even using Internet Explorer you can click Home and Return to
Birthday, empty the page and start all over again. Nothing is saved! Which is not so
strange because we still need to implement the SubmitNameAndBirthday action event
handler, of course.

WebSnap Sessions 861

27 0672324806 CH22 12/12/02 2:39 PM Page 861

FIGURE 22.22 Final birthday input adapter form.

Go back to the TAdapter component, right-click it to select the Actions Editor, select
the (only) action SubmitNameAndBirthday, move to the Events tab of the Object
Inspector, and write the following code for the OnExecute event handler:

const char* const strName = “Name”;

const char* const strBirthday = “Birthday”;

void __fastcall TBirthday::SubmitNameAndBirthdayExecute(TObject *Sender,

TStrings *Params)

{

_di_IActionFieldValue MyValue;

MyValue = Name->ActionValue;

if (MyValue->ValueCount == 1)

Session->Values[strName] = MyValue->Values[0];

MyValue = Birthday->ActionValue;

if (MyValue->ValueCount == 1)

Session->Values[strBirthday] = MyValue->Values[0];

}

Now, you can again recompile the application and run it, but it won’t work the way
you hoped it would. The information is stored in your session, but other than that
nothing will happen—the page is still cleared and you can start all over again. Again
not so strange because we only store and never retrieve the session data.

We need to modify the Name and Birthday AdapterFields to make sure that—when
we need them—their values are retrieved from the current session. That would
ensure these two fields are initialized by the session data, resulting in a nonempty
screen when we return.

To implement this, we need to right-click the Adapter component, select the Fields
Editor, and for each of the Adapter Fields write a single line of code for the
OnGetValue event handler, as follows:

CHAPTER 22 Web Server Programming with WebSnap862

27 0672324806 CH22 12/12/02 2:39 PM Page 862

void __fastcall TBirthday::NameGetValue(TObject *Sender, Variant &Value)

{

Value = Session->Values[strName];

}

void __fastcall TBirthday::BirthdayGetValue(TObject *Sender, Variant &Value)

{

Value = Session->Values[strBirthday];

}

This will ensure that the values entered are persistent during the lifetime of the
session (i.e. when you close your browser, the data is gone again), but it’s a start (see
Figure 22.23).

WebSnap Sessions 863

FIGURE 22.23 Final birthday input adapter form.

TSessionsService

Here is a final technique to show how we can access the session ID; we can modify
the HTML generated by the Birthday page to include the session ID itself. Just add
the following scripting snippet to the HTML tab of the Page Module, and you’ll see
for yourself:

<p>

Session: <%= Session.SessionID.Value %>

</p>

<hr>

27 0672324806 CH22 12/12/02 2:39 PM Page 863

WebSnap Master-Detail Example
For the master-detail overview, we must create a WebSnap data module, so we can
actually add some datasets to connect to real-world data (the customer and orders
tables). So, click File, New—Other again, and select the WebSnap Data Module from
the WebSnap tab of the Object Repository. This will present us with a dialog for a
New WebSnap Data Module. If we just leave it at the default settings and click OK, a
new WebSnap data module has been added to our WebSnap project. We should now
drop any datasets on this data module, such as two regular TClientDataSet compo-
nents from the Data Access tab of the C++Builder 6 Component Palette. Rename the
ClientDataSet components to cdsCustomer and cdsOrders, and connect their filename
property to C:\Program Files\Common Files\Borland Shared\data\customer.xml and
orders.xml. Now save the data module in file wDataMod.cpp (make sure it ends up in
the project directory, and not in the data directory again).

Right-click both ClientDataSet components and start the fields editor. Right-click
again and make sure to Add all fields (you can remove any field from that list, but
make sure to leave the CustNo and OrderNo fields because we need them in a
moment). Now we need a TDataSource component, pointing to the cdsCustomer
dataset, to create a master-detail relationship. Assign the DataSource to the
MasterSource property of the cdsOrders dataset, and then click the ellipsis next to the
MasterFields property, so we can assign this to the CustNo fields of both datasets.

Primary Key
We already saw that to enable the WebSnap client application to maintain its own
state, we must now specify a primary key field (one that the client can use to tell the
WebSnap server which record we want to be working on). For the cdsCustomer
dataset, we must select the CustNo field, so go to the Object Inspector, open the
ProviderFlags property and set the pfInKey subproperty value to true. For the
cdsOrders dataset, we must do the same for the OrderNo field.

DataSetAdapter

Now that the cdsCustomer and cdsOrder datasets are ready, it’s time to drop two
TDataSetAdapter components from the WebSnap tab of the component palette; call
them dsaCustomer and dsaOrders—see Figure 22.24. The DataSet property of
dsaCustomer should point to the cdsCustomer dataset, and dsaOrders should point to
cdsOrders.

Go to the Object Treeview, select the DataSetAdapters and right-click the Actions
property to add all possible Actions. Do the same with the Fields property, so we
have adapter fields for every field in the two ClientDataSets. Now, although the
cdsOrders is already configured to be a detail of the cdsCustomer master table, we still
need to specify that the dsaCustomer is a MasterAdapter of the dsaOrders. We can do
this by assigning dsaCustomer to the MasterAdapter property of dsaOrders.

CHAPTER 22 Web Server Programming with WebSnap864

27 0672324806 CH22 12/12/02 2:39 PM Page 864

FIGURE 22.24 WebSnap Data Module.

This is again a very important moment in your design. If you want to remove some
fields from your view (from the view that will be represented by a particular
DataSetAdapter), you should remove these fields from the DataSetAdapter. If there are
some fields that you don’t ever want to use, you should remove them from the
persistent field list of the ClientDataSet—and not wait until they appear in the
DataSetAdapter field list.

For the list of actions you should also consider carefully which actions you want to
allow (that is, make available) for the end users, using this particular DataSetAdapter.
You might have correctly guessed by now that you can actually have more than one
DataSetAdapter connected to a (Client)DataSet, each of these different DataSetAdapter
components corresponding to a different view (showing potentially a different set of
fields, with potentially a different set of actions to apply on these fields).

WebSnap Page Module
Now that we have a master-detail relationship between the ClientDataSets (and even
the DataSetAdapters), it’s time to create a new WebSnap Page Module to show the
actual data. Click File, New—Other, go to the WebSnap tab, and double-click the
WebSnap Page Module icon. Because we want to use the DataSetAdapters, we must
change the Producer Type from a regular PageProducer to an AdapterPageProducer (as
usual). Apart from that, you will probably want to change the name (and, hence, the
title as well) to something like Customer, see Figure 22.25.

The final option that you need to check is the Login Required field. This will make
sure that we won’t be able to get to this page unless we’re logged into the system.
We’ll see this in a moment.

When you click OK, the new Page Module is created, including an
AdapterPageProducer component. Save this new unit in file pmCustomer.cpp, and press
Alt+F11 to include the header of the wDataMod unit, so we can access the
DataSetAdapters on the data module.

WebSnap Master-Detail Example 865

27 0672324806 CH22 12/12/02 2:39 PM Page 865

FIGURE 22.25 New WebSnap Page Module.

Next, double-click the AdapterPageProducer to start the Web Page Editor again. This
time, we’re going to build a master-detail output form. In the Web Page Editor, we
can always right-click a component to get the New Component dialog that will
produce subcomponents. First, we need to add an AdapterForm under the
AdapterPageProducer. Then, an AdapterCommandGroup, AdapterFieldGroup, and
AdapterGrid under the AdapterForm. Now we have three design time warnings, that
should be easy to fix. The AdapterCommandGroup should have its DisplayComponent prop-
erty point to the AdapterFieldGroup. The AdapterFieldGroup should have its Adapter
property point to the WebDataModule1->dsaCustomer (the master table). The AdapterGrid
should have its Adapter property point to WebDataModule1->dsaOrders (note that the
DataSetAdapters are coming from WebDataModule1, which is the reason that the header
of unit wDataMod must be included, or else you won’t be able to find the two
DataSetAdapters to use). The final results should be as shown in Figure 22.26.

Note that the buttons are again very wide (just like in the first example shown in
Figures 22.10 and 22.11). Fortunately, we can do something about that. Go to the
Web Page Editor, right-click the AdapterCommandGroup and Add All Commands. Now,
for each command button, go to the Object Inspector and change the Caption prop-
erty. Remove all Row from the button captions to result in a much nicer view as can
be seen in Figure 22.27.

It’s time to compile the application and run it. As you will see, the Home page
contains four links (to Home, Login, Birthday, and Customer) as well as a link to the
Login page in the upper-left corner. This means that the visitor can decide to Login
at any time during the session (not only when it’s needed). Let’s not login right
away, but just click the Customer link (which requires Login).

CHAPTER 22 Web Server Programming with WebSnap866

27 0672324806 CH22 12/12/02 2:39 PM Page 866

FIGURE 22.26 Customer-Orders data at design time.

WebSnap Master-Detail Example 867

FIGURE 22.27 Final Customer-Orders data at design time.

As can be expected, we do not end up on the Customer page, but rather on the
Login page. We have to specify our User (Name) and Password here, and the
NextPage is already preselected with the Customer page that we wanted to go to, see
Figure 22.28. How nice!

Just enter the correct User and Password, click Login and you’ll end up in the
Customer page. If you didn’t specify the correct Password (or an unknown User),
you’ll get an error message presented in the same Login page (because we made sure
to point the AdapterErrorList back to the LoginFormAdapter). Right now, the error
message is presented below the Login button, which can be fixed (if you want) by
moving the AdapterErrorList higher in the list of subcomponents from the
AdapterForm on the Login Page Module.

27 0672324806 CH22 12/12/02 2:39 PM Page 867

FIGURE 22.28 WebSnap Login page of WAD.

If you’ve logged in correctly, you get a view of the Customer-Orders overview on the
Customer page (note that I’m afraid it isn’t possible to see the details in Figure 22.29,
but believe me—they’re there).

CHAPTER 22 Web Server Programming with WebSnap868

FIGURE 22.29 WebSnap Customer page of WAD.

Linking Pages by Name
So far, we’ve only seen the main master page, with the details listed on the same
page (although the page was a bit long to show all details in the same screen shot).

27 0672324806 CH22 12/12/02 2:39 PM Page 868

However, sometimes you want to have a special page for the masters only, and then
use buttons to link to pages that show the single master and all details.

For this I want to create two more new TWebPageModules: one for the master
(customer) table, displayed in a grid-like output, and one for the master and details
(customer-orders) displayed in a field group for the master and grid for the details.
We’ve just made the latter, but let’s make the former now (the customers in a grid),
including a link from one page to another.

Click File, New—Other and select the WebSnap Page Module Wizard to add yet
another Page Module to our project. Make sure to select the AdapterPageProducer
again, and call it Customers (instead of the previous one, which was called
Customer—showing a single customer at a time, instead of all customers). Also,
don’t forget to check the Login Required option as well as the Published option.

After you’ve created the new WebSnap Page Module, save it in pmCustomers.cpp and
make sure to press Alt+F11 to include the header of the WebSnap Data Module (in
wDataMod), so you can access the dsaCustomers TDataSetAdapter. This is a very conve-
nient way to authorize users and actions with the Customer data.

Next, double-click the AdapterPageProducer to start the Web Page Editor again. This
time, we’re going to build a master grid-output form. Right-click in the Web Page
Editor to add an AdapterForm under the AdapterPageProducer. Then, add an
AdapterCommandGroup and AdapterGrid under the AdapterForm. We get two design time
warnings, which are easy to fix (as always). The AdapterCommandGroup should have its
DisplayComponent property point to the AdapterGrid. The AdapterGrid should have its
Adapter property point to WebDataModule1->dsaCustomers (one of the DataSetAdapters
from WebDataModule1, and the reason that the header of wDataMod must be included),
resulting in Figure 22.30.

WebSnap Master-Detail Example 869

FIGURE 22.30 Customers data at design-time.

27 0672324806 CH22 12/12/02 2:39 PM Page 869

Now, as you can see from Figure 22.30, there are far more buttons that I want to see.
In fact, I would never want to enable the user to edit anything inside an AdapterGrid
display. So, select the AdapterCommandGroup, right-click it, and make sure to select only
the Components (buttons) for the Actions you want such as FirstRow, PrevRow,
NextRow, LastRow, and BrowseRow.

The new design time output is getting closer to what we want already, see
Figure 22.31.

CHAPTER 22 Web Server Programming with WebSnap870

FIGURE 22.31 Customers data at design-time.

Apart from removing some of the buttons, we should also consider removing some
of the fields. Especially because I want to add a special command button (to view the
details) in the last column—which currently is out of view. To do this we must not
only remove some dataset fields, but also add a new column to the AdapterGrid.
Right-click the Adapter Grid, do Add All Columns, and then remove the columns
you don’t need (leaving only the CustNo, Company, City, Country, and Contact
fields, for example), see Figure 22.32.

After that, it’s time to add a new column to the AdapterGrid, so right-click the
AdapterGrid, select New Component, which gives us a dialog with three choices:
AdapterCommandColumn (displaying a button), AdapterDisplayColumn (displaying a field
value), or AdapterEditColumn (giving the option to edit a value), see Figure 22.33.

Clearly, we need the AdapterCommandColumn, so add that one. Warning: Your display
might look ugly once again because by default the new AdapterCommandColumn will
show all available AdapterActions. To fix this, just select the AdapterCommandColumn
component and right-click on it to add the only action you want (this time don’t do
an Add All Command, but only do an Add Command) and select the BrowseRow
Command which is the easiest to use in this situation.

27 0672324806 CH22 12/12/02 2:39 PM Page 870

FIGURE 22.32 Add All Columns.

WebSnap Master-Detail Example 871

FIGURE 22.33 Add New Column.

Select the BrowseRow button, go to the Object Inspector and specify the name of the
Customer (single value) Page Module in the PageName property. This will make sure
that whenever we click the BrowseRow button, we will jump to the Customer Page
Module, within the context that we were (that is, the current row in which the
button was shown).

Finally, make sure the buttons get some nicer captions (such as Details for the
BrowseRow button), and the final output at design time can be seen in Figure 22.34.

If you save your work, recompile it, and run it, you can use the Web App Debugger
again to view the WebSnap application in action. Whenever you click the Details
button, you will jump to the master-detail page with the complete information of
the customer and orders database, including the option to click the Edit button at
that location to change the data, if you want.

27 0672324806 CH22 12/12/02 2:39 PM Page 871

FIGURE 22.34 Final output.

Tweaking and Turning
Now, let’s do some final tweaking and turning before it’s time to wrap this topic
(follow-up articles on WebSnap will be published on my Web site at http://www.
drbob42.com/CBuilder). The first thing I want to do is to actually hide the Customer
Page Module because we now have a Customers Page Module with a Grid as a new
entrance (so no need to show both the Customer and Customers page from the top-
level menu). But when we created both Page Modules, we checked the Published
option already. So, how can we unpublish a WebSnap Page Module? Fortunately,
that’s not too difficult. For our example, open the file pmCustomer.cpp and go to the
last line. Now, place the << wpPublished option in comments, which will unpublish
the page module:

static TWebPageInit WebInit(__classid(TCustomer), crOnDemand, caCache,

PageAccess /* << wpPublished */ << wpLoginRequired, “.html”, “”, “”, “”, “”);

If you recompile and run the WebSnap application again, you will notice that the
Customer menu is gone, but you can still get there using the Details button on the
Customers page. Exactly the way I want it.

Final Deployment
Although the Web App Debugger application is really nice to debug and test without
the need for a real Web server, it is not a result that you can deploy. In fact, you can
deploy any target except for the Web App Debugger project. Fortunately, you can
just start another WebSnap application, remove the intial Application Module, and

CHAPTER 22 Web Server Programming with WebSnap872

27 0672324806 CH22 12/12/02 2:39 PM Page 872

move all units (except for the first empty main form) over to this new WebSnap
application. If you do this in a project group, you can even work on the WebSnap
projects at the same time, sharing the WebSnap data and page modules among the
different targets. Take a look at the CBuilder6\Examples\WebSnap directory for the
example projects that are all available as ISAPI DLLs and as Web App Debugger
executables.

Summary
We’ve covered a lot of WebSnap including Application Modules, Page Modules, Data
Modules, Adapters, the AdapterPageProducer, server-side Scripting, login, state and
session management, database producing, debugging, and deployment. All with very
little C++ code that we had to write (mainly for the session support). There’s far
more to cover, but this chapter should at least give you a good idea of what the
possibilities are with WebSnap in C++Builder 6 Enterprise.

Summary 873

27 0672324806 CH22 12/12/02 2:39 PM Page 873

27 0672324806 CH22 12/12/02 2:39 PM Page 874

PART V

Open Tools API

IN THIS PART

23 The Tools API: Extending the Borland IDE

28 0672324806 PTV 12/12/02 2:40 PM Page 875

28 0672324806 PTV 12/12/02 2:40 PM Page 876

IN THIS CHAPTER

• Tools API Fundamentals

• Creating a Wizard

• Creating and Using Services

• Creating and Using Notifiers

• Creating and Using Creators

• Using Editors

• Debugging Your IDE
Interfaces

• Building and Deploying DLLs

• Recommended Readings

23

The Tools API: Extending
the Borland IDE

by Paul Gustavson

Most of the discussion thus far in this book has been
centered on adding functionality to the applications you
produce using C++Builder, but did you know you can also
add new functionality and capabilities to C++Builder itself?
It’s true! Borland’s Tools API allows new wizards, menu
items, editor features, debugging support, tool bar buttons,
and much more to be added to both the C++Builder and
Delphi IDEs. It’s quite powerful, and in this chapter we’ll
look at how to make use of the Tools API for C++Builder.

Tools API Fundamentals
Before we jump into examples, it’s important to under-
stand the fundamentals of the Tools API. The Tools API
provides a set of interfaces to access the IDE. Under
C++Builder 6 there are 109 interfaces. If you’re up on
COM, you know that an interface is akin to an abstract
class identifying properties and methods to a block box
object. This means we’re not privy to the implementation,
we just know how to interface to the object containing the
implementation. We can only affect the behavior
contained within the implementation by what’s provided
through the interface methods. Like COM, Tools API inter-
faces are identified by a GUID, accessed using a query with
an Interface ID (IID), and provide automatic reference
counting for memory management.

The Tools API is really a combination of two basic cate-
gories of interfaces and services that are interrelated: the
Open Tools API and the Native Tools API. In this chapter,
we’ll take a look at both of these APIs.

29 0672324806 CH23 12/12/02 2:36 PM Page 877

Open Tools API (OTA)
The Open Tools API (OTA) provides a set of abstract interfaces and services that allow
extensions that can be applied to multiple versions of an IDE (for example,
C++Builder 5, C++Builder 6, Delphi 6, and so on). You can use the OTA to write
extensions that can access the source editor, the debugger, the message view,
modules to a project, packages, to-do items, provide key bindings for the IDE, and
much more.

The OTA is, to the core, very COM-like, which, theoretically, allows a single exten-
sion such as a wizard to work for multiple versions of C++Builder or Delphi because
it is interface focused and not implementation focused—the interface will not
change across multiple versions. This also means that a wizard can be written either
in Delphi or C++Builder and work for an environment representing the opposite
language. In fact, any language that supports COM interfaces, which can also deal
with Borland’s __fastcall calling convention and the AnsiString data type, can
potentially be used to write an IDE extension.

Native Tools API (NTA)
The Native Tools API (NTA) is a slightly different animal, but not by much. It
provides a set of native interfaces and services into the IDE, enabling us to get
directly at IDE elements (thus, some of the implementation elements). This includes
components, the form designer, the menu bar, toolbar buttons, a project’s action
list(s) and images list(s), as well as the project’s to-do list, code insight, and much
more. It’s pretty powerful, but keep in mind that custom extensions that use an NTA
interface are often tied to the specific version of the IDE because the NTA is more
implementation focused. Furthermore, because of the IDE dependency, extensions
deployed as DLLs require the VCL package.

Although most discussions within newsgroups, on the Web, and in literature center
primarily on the Open Tools API, make no mistake, discussion often includes aspects
of the Native Tools API. That’s because it’s hard to focus and use the Open Tools API
without also being tempted to use the Native Tools API to create IDE extensions.
Basically, they are a matched pair—like bread and butter. And, from this point
forward, this chapter treats these two APIs as a combined pair.

Tools API Capabilities
To recap, the Tools API interfaces allow you to interact with, and control elements
of, the IDE. These elements include the following:

• main-menu bar

• tool bars

• action lists

CHAPTER 23 The Tools API: Extending the Borland IDE878

29 0672324806 CH23 12/12/02 2:36 PM Page 878

• image lists

• source editor

• keyboard macros and bindings

• form editor

• debugger

• code completion

• message view

• modules

• packages

• To-Do list

We could go on. If you browse through the ToolsAPI.hpp file located in the
Cbuilder6\source\Toolsapi folder on your system, you’ll find a listing of all the avail-
able interfaces provided by the Tools API. Typically, we access and control these IDE
elements through an extension we develop known as a wizard. In the example that
we will build on, we’ll be using many of these interfaces.

NAMING CONVENTIONS

You might have noticed, as you browsed through the Tools API header file, a number of
acronyms that are used as prefixes for classes, interfaces, and data types. Table 23.1 provides
a few of the more common ones used with the Tools API.

Table 23.1 Tools API Naming Convention Prefixes

Acronymn Description

IOTA Prefix representing an Open Tools API interface, which is COM-like. Custom exten-

sions that use IOTA interfaces exclusively are not tied to the specific version of the

IDE, allowing the extension to be useful for other versions of the Borland IDE.

INTA Prefix representing a Native Tools API interface, which provides direct (native)

access to IDE objects. Custom extensions that use a Native Tools interface are tied

to the specific version of the IDE and require the VCL package for DLL implementa-

tions.

di Prefix used to represent a Delphi Interface wrapper around an interface. In

C++Builder, these data types are used in code for declaring variables to associate to

an interface.

IIDG Used to identify an Interface ID for an interface. (COM programmers should know this

one).

Tools API Fundamentals 879

29 0672324806 CH23 12/12/02 2:36 PM Page 879

As stated in the Borland Help, using the Tools API within an extension you might
develop (that is, a wizard) is simply a matter of writing classes that implement
certain interfaces, and calling on services provided by other interfaces. In fact,
writing a Tools API class is similar to writing a property or component editor. The
Tools API-based code you develop can be compiled and installed into the IDE as a
design time VCL package. It’s also possible to provide extensions to the IDE through
a DLL, but the DLL has to be identified in the Windows Registry with the IDE for its
extensions to take affect. We’ll talk more about DLLs a little later in the chapter.

NOTE

If you’re not familiar with VCL packages and registering components, you might want to
review the material provided in Chapter 4, which focuses on VCL Components and Packages.

Creating a Wizard
Let’s get our feet wet and create a simple wizard that integrates into the C++Builder
IDE using the Tools API. So that we develop something practical, the wizard we will
create will provide a mechanism for users to gauge the memory performance of their
applications under development—it is called the MemStat Wizard. We won’t get into
the specifics of how to attain and measure memory performance (examine the code
on the CD-ROM for that insight). Instead, our goal here is to understand how to
establish a wizard and extend the IDE using the Tools API.

NOTE

You can follow along with the MemStat Wizard example we develop in this book by locating
the following folders for this chapter on the CD-ROM that accompanies this book.

• wizard_part1_simple

• wizard_part2_services

• wizard_part3_notifier

• wizard_part4_editor

• wizard_part5_dll

Each folder represents progressions of our MemStat Wizard that we build on within this
chapter. The label tacked on to the end of each folder identifies the example for the section
being discussed. For instance, the example contained in the wizard_part2_services folder is
discussed in the “Creating and Using Services,” section within this chapter. The project name
for each of these examples is wizard.bpk.

CHAPTER 23 The Tools API: Extending the Borland IDE880

29 0672324806 CH23 12/12/02 2:36 PM Page 880

Selecting a Wizard Interface
The first step is determining the type of wizard interface we need for the MemStat
Wizard. The ToolsAPI.hpp file reveals four different types of wizard interfaces as listed
in Table 23.2.

Table 23.2 Tools API Wizard Interfaces

Wizard Interface Description

IOTAFormWizard Used to represent a wizard that generates a new unit or form. This type of

wizard resides in the Object Repository, which can be accessed through the

New Items dialog box.

IOTAMenuWizard Used to represent a simple wizard such as a dialog box that is accessed from

the IDE’s Help menu.

IOTAProjectWizard Used to represent a wizard that generates a new project or application. This

type of wizard resides in the Object Repository, which can be accessed

through the New Items dialog box.

IOTAWizard This is the root interface for the other three wizard interfaces. It’s used to

represents a simple wizard such as a dialog that can be custom configured to

the IDE’s menu bar or tool bar.

What differentiates these four interfaces is how each one is invoked. The first three
are automatically associated to either the Object Repository or the IDE’s Help menu.
The last interface, IOTAWizard, must be manually associated to an IDE element.

For simplicity and prototyping the IOTAMenuWizard provides the type of interface we
need for building and demonstrating our example. All we want, initially, is a wizard
that can be invoked from the Help menu bar.

Next, we need to build a specialized wizard class that inherits the IOTAMenuWizard
interface. That sounds fairly simple, but there are other interfaces involved that we
need to inherit as well.

Reconstructing TNotifierObject for C++Builder
It might be obvious that IOTAMenuWizard is a descendent of IOTAWizard, but IOTAWizard
descends from another interface called IOTANotifier. We need to pay special atten-
tion to IOTANotifer because the compiler is expecting our custom class to support its
methods. Let’s take a look at how this interface is defined to see what methods we
need to implement.

__interface IOTANotifier;

typedef System::DelphiInterface<IOTANotifier> _di_IOTANotifier;

__interface INTERFACE_UUID(“{F17A7BCF-E07D-11D1-AB0B-00C04FB16FB3}”)

IOTANotifier : public IInterface

Creating a Wizard 881

29 0672324806 CH23 12/12/02 2:36 PM Page 881

{

public:

virtual void __fastcall AfterSave(void) = 0 ;

virtual void __fastcall BeforeSave(void) = 0 ;

virtual void __fastcall Destroyed(void) = 0 ;

virtual void __fastcall Modified(void) = 0 ;

};

IOTANotifier is a Tools API interface used by the IDE to notify an item (such as a
wizard) of important events. We’ll talk more about some of the specialized Notifier
interfaces provided by the Tools API in the “Creating and Using Notifiers” section,
but, for the case of our wizard, we need to understand the underpinnings provided
by IOTANotifier. The four methods associated to IOTANotifier are explained in Table
23.3.

Table 23.3 Tools API—IOTANotifier Methods

Method Description

AfterSave Call immediately after the associated item is successfully saved. Not called for

IOTAWizard.

BeforeSave Called immediately before the associated item is saved. Not called for

IOTAWizard.

Destroyed The associated item is being destroyed.

Modified The associated item is being modified. Note: not called for IOTAWizard.

Although we are creating a simple wizard that has no real concern for notifications
at this point, the IDE still expects our custom class to be capable of supporting the
abstract methods of IOTANotifier. We need something in its place that provides
empty implementations for IOTANotifer methods because the compiler is expecting
to find these methods. To fill-in for IOTANotifier and support custom wizards,
Borland provides a convenient class within Delphi called TNotifierObject, which is
designed to be inherited by a custom wizard class in place of IOTANotifer. In Delphi,
this class integrates seamlessly for supporting wizards. Unfortunately the ToolsAPI
header file provided within C++Builder does not include a TNotifierObject class!

So, what do we do? The easiest thing to do is to build our own TNotifierObject C++
class and stick it in a file that we can use to support our Tools API implementations
for C++Builder. We need TNotifierObject so that we can build a Wizard class that
supports the methods identified in the interfaces it inherits. A newly created header
file called ToolsAPIEX.h contains the declaration for this TNotifierObject class, which
is shown in Listing 23.1.

CHAPTER 23 The Tools API: Extending the Borland IDE882

29 0672324806 CH23 12/12/02 2:36 PM Page 882

Listing 23.1 ToolsAPIEx Header File—TNotifierObject Class Declaration

#ifndef ToolsAPIExH

#define ToolsAPIExH

//—————————————————————————————————————-

#include <ToolsAPI.hpp>

#include <typeinfo>

// macro for implementing interfaces

#define QUERY_INTERFACE(T, iid, obj) \

if ((iid) == __uuidof(T)) \

{ \

(obj) = static_cast<T>(this); \

static_cast<T*>(*(obj))->AddRef(); \

return S_OK; \

}

#ifdef DLL // we’ll need this for building a DLL

#define BorlandIDEServices LocalIDEServices

extern _di_IBorlandIDEServices LocalIDEServices;

#endif

class PACKAGE TNotifierObject : public IOTANotifier {

public:

__fastcall TNotifierObject() : ref_count(0) {}

virtual __fastcall ~TNotifierObject();

void __fastcall AfterSave();

void __fastcall BeforeSave();

void __fastcall Destroyed();

void __fastcall Modified();

protected:

// IInterface

virtual HRESULT __stdcall QueryInterface(const GUID&, void**);

virtual ULONG __stdcall AddRef();

virtual ULONG __stdcall Release();

private:

long ref_count;

};

#endif

Creating a Wizard 883

29 0672324806 CH23 12/12/02 2:36 PM Page 883

Notice one of the first things we do in setting up to use the Tools API is to include
the ToolsAPI.hpp file. You’ll then notice a macro at the top called QUERY_INTERFACE.
This macro was defined and used, as suggested by Borland, to simplify the processing
required for querying each of the interfaces that a custom wizard inherits and uses
(getting a pointer to an interface object). The effect is identical to what’s required
with COM using the QueryInterface() method. In a short while, you’ll see this macro
being utilized.

Following the definition of this macro, you’ll see support for handling a DLL imple-
mentation, which we will talk about a little later. Finally, we come across the declara-
tion for our TNotiferObject class. In addition to the four methods contained by
IOTANotifer, there are three other methods we’ve defined in our class:
QueryInterface(), AddRef(), and Release(). The IOTANotifer interface, which we are
modeling, descends from IInterface, which is the base class for all Object Pascal
interfaces. In C++Builder, IInterface is a child interface of IUnknown. If you’re familiar
with COM, you’ll recognize that IUnknown is the base class for all COM interfaces. In
this case, our TNotiferObject needs to support the methods of IInterface to operate
accordingly. The implementation for the entire class, which is contained in our
ToolsAPIEx.cpp source file that we’ve created, is provided in Listing 23.2.

Listing 23.2 ToolsAPIEx Source File—TNotifierObject Class Implementation

#pragma hdrstop

#include “ToolsAPIEx.h”

#pragma package(smart_init)

HRESULT __stdcall

TNotifierObject::QueryInterface(const GUID& iid, void** obj)

{

QUERY_INTERFACE(IInterface, iid, obj);

QUERY_INTERFACE(IOTANotifier, iid, obj);

return E_NOINTERFACE;

}

//—————————————————————————————————————-

ULONG __stdcall TNotifierObject::AddRef()

{

return InterlockedIncrement(&ref_count);

}

//—————————————————————————————————————-

CHAPTER 23 The Tools API: Extending the Borland IDE884

29 0672324806 CH23 12/12/02 2:36 PM Page 884

ULONG __stdcall TNotifierObject::Release()

{

ULONG result = InterlockedDecrement(&ref_count);

if (ref_count == 0)

delete this;

return result;

}

//—————————————————————————————————————-

__fastcall TNotifierObject::~TNotifierObject() {}

void __fastcall TNotifierObject::AfterSave() {}

void __fastcall TNotifierObject::BeforeSave() {}

void __fastcall TNotifierObject::Destroyed() {}

void __fastcall TNotifierObject::Modified() {}

The implementation for QueryInterface() method queries each interface that we’ve
inherited or used. In this case it is IInterface and IOTANotifer. AddRef() and Release()

handle the interface reference counting (saving and releasing the interface). You’ll
notice it’s very COM-like—as designed.

For the purposes of our demonstration, and for supporting future custom wizards,
the TNotifierObject class interface and implementation have been saved to the
ToolsAPIEx.h and ToolsAPIEx.cpp files included on the companion CD-ROM for this
chapter. You can use this file as part of any C++Builder project used to build custom
wizards for the IDE.

NOTE

Although the Tools API supports C++ implementations through C++Builder, its native
language is Delphi. Keep in mind that the IDE for C++Builder is written in Delphi as well.
Although this chapter is focused on using C++ to extend the IDE, it’s quite possible to extend
the IDE for C++Builder using Delphi code units. This is something to consider because many
of the examples available on the Internet and in print format are written in Delphi. The
companion CD-ROM for this book provides an example, which consists of a C++Builder
project mixed with a Delphi unit. This project, titled Wizard_using_delphi.bpr, can be found
under the HelloWorldWizard folder.

If you’re like me and you prefer to use C++, you can still benefit from the Delphi code exam-
ples that are out there. Examining code examples that are written in Delphi will shed a little
bit of light on what will be needed for implementing it in C++Builder.

Creating a Wizard 885

LISTING 23.2 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 885

Defining a Custom Wizard Class
Now we have a TNotifierObject defined and implemented; let’s dive in and begin to
create our custom C++ wizard class, as shown in Listing 23.3. This code is contained
in the wizard_memstatus.h file found in the wizard_part1_simple folder on the
companion CD-ROM.

Listing 23.3 MemStatusWizard Class Definition

class PACKAGE MemStatusWizard : public NotifierObject, public IOTAMenuWizard {

typedef TNotifierObject inherited;

public:

__fastcall MemStatusWizard();

__fastcall ~MemStatusWizard();

// IOTAWizard

virtual AnsiString __fastcall GetIDString();

virtual AnsiString __fastcall GetName();

virtual TWizardState __fastcall GetState();

virtual void __fastcall Execute();

// IOTAMenuWizard

virtual AnsiString __fastcall GetMenuText();

void __fastcall AfterSave();

void __fastcall BeforeSave();

void __fastcall Destroyed();

void __fastcall Modified();

protected:

// IInterface

virtual HRESULT __stdcall QueryInterface(const GUID&, void**);

virtual ULONG __stdcall AddRef();

virtual ULONG __stdcall Release();

};

This class inherits multiple interfaces, including the TNotifierObject class we just
created, and IOTAMenuWizard. The TNotifierObject class needs to be identified as the
base class for our wizard. This is done using the following typdef clause.

typedef TNotifierObject inherited;

If you have ever used the Tools API with Delphi, you might notice that our
C++Builder class identifies a few more methods than a comparable Delphi example
would. Although Delphi and C++Builder are similar, there are also some peculiarities

CHAPTER 23 The Tools API: Extending the Borland IDE886

29 0672324806 CH23 12/12/02 2:36 PM Page 886

between the two. In this case, Delphi can handle the creation of abstract classes,
whereas C++Builder can’t. We need to be able to create an instance of our custom
wizard when we register it with the IDE. To elevate the C++Builder class from an
abstract class, we need override the member functions of IOTAMenuWizard, IOTAWizard,
and TNotifierObject.

The code for our custom wizard class is contained in the wizard_memstatus.cpp source
file as shown in Listing 23.4.

Listing 23.4 MemStatusWizard Class Implementation

ULONG __stdcall MemStatusWizard::AddRef() { return inherited::AddRef(); }

ULONG __stdcall MemStatusWizard::Release() { return inherited::Release(); }

HRESULT __stdcall MemStatusWizard::QueryInterface(const GUID& iid, void** obj)

{

QUERY_INTERFACE(IOTAMenuWizard, iid, obj);

QUERY_INTERFACE(IOTAWizard, iid, obj);

return inherited::QueryInterface(iid, obj);

}

void __fastcall MemStatusWizard::AfterSave() {}

void __fastcall MemStatusWizard::BeforeSave() {}

void __fastcall MemStatusWizard::Destroyed() {}

void __fastcall MemStatusWizard::Modified() {}

AnsiString __fastcall MemStatusWizard::GetIDString()

{

return “CBuilderDevelopersGuide.MemStat Wizard”;

}

AnsiString __fastcall MemStatusWizard::GetName()

{

return “MemStat Wizard”;

}

TWizardState __fastcall MemStatusWizard::GetState()

{

TWizardState result;

result << wsEnabled;

return result;

}

AnsiString __fastcall MemStatusWizard::GetMenuText()

Creating a Wizard 887

29 0672324806 CH23 12/12/02 2:36 PM Page 887

{

return “MemStat Wizard...”;

}

void __fastcall MemStatusWizard::Execute()

{

TFormMemStat* FormMemStat = new TFormMemStat(0);

FormMemStat->ShowModal();

delete FormMemStat;

}

__fastcall MemStatusWizard::MemStatusWizard()

{

}

__fastcall MemStatusWizard::~MemStatusWizard()

{

}

namespace Wizard_memstatus

{

void __fastcall PACKAGE Register()

{

RegisterPackageWizard(new MemStatusWizard ());

}

}

You’re encouraged to browse through this code to see what’s happening; it’s fairly
self-explanatory. Again, we use QueryInterface() to latch onto the interfaces we
inherit and use. GetIDString() is used to uniquely identify our custom wizard.
Similarly, GetName() is used to identify a friendly name for the custom wizard,
whereas GetMenuText() is used to identify the text for our menu item found under the
Help menu. The GetState() method is used to identify the state for the menu item
linked to invoke the custom wizard.

Probably the most important method of our class is Execute(). When the wizard is
invoked from the IDE, the Execute() method is called. In this example, a form
containing the GUI and processing for attaining and measuring system memory is
opened using the familiar ShowForm() method. We could have just as easily called any
other form created using C++Builder, or placed a call to a simple ShowMessage()
window.

CHAPTER 23 The Tools API: Extending the Borland IDE888

LISTING 23.4 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 888

Although it’s not depicted in this example, we can also add additional methods to
our class, which we will demonstrate a little later.

Registering a Wizard Class
You’ll notice that last thing included in the previous code listing is the Register()
function wrapped around the unit’s namespace. An instance of MemStatusWizard is
used with the Tools API RegisterPackageWindow() function to register the custom
wizard with the IDE. The Register() function is called when the source file is
included with a package. Figure 23.1 illustrates the package used to register the
MemStatusWizard. This package, called wizard.bpk, can be found on the companion
CD-ROM under the wizard_part1_simple folder for this chapter. To learn more about
creating and registering packages see Chapter 4.

Creating a Wizard 889

FIGURE 23.1 MemStatusWizard Package.

Also, we need to make sure that our package is a design-time package. Look under
the Description tab of the Project Options, as illustrated in Figure 23.2, to see the
proper usage.

FIGURE 23.2 Setting the Project options for a wizard package.

29 0672324806 CH23 12/12/02 2:36 PM Page 889

The End Result
Now that we have our custom wizard class registered, it’s time to see if it works.
Click the Help menu of the IDE and scroll down and select MemStat Wizard…as
illustrated in Figure 23.3.

CHAPTER 23 The Tools API: Extending the Borland IDE890

FIGURE 23.3 Launching the MemStat Wizard from the IDE.

The MemStat Wizard should then appear, as seen in Figure 23.4.

FIGURE 23.4 The MemStat Wizard.

Creating and Using Services
Right now our wizard is pretty limited. In fact, you might be thinking, “It’s really
not a wizard. It’s just an application that gets launched off the help menu.” Well,
from a user’s perspective, you’re right. We need to add some more capability to
really integrate it with the applications that get built and launched from the
C++Builder IDE. Specifically, we want our Wizard to be able to measure the memory
degradation of an application from launch to exit. More precisely, we need the
Wizard to be able to build and execute the application associated to the active
project. Before it executes a project, we need to have it trigger the first memory
check. Finally, the wizard needs to be informed when the execution is complete to
perform the final memory check. This will result in the display of the memory
usage.

29 0672324806 CH23 12/12/02 2:36 PM Page 890

This gets us to the heart of what the Tools API can do through the services it offers.
The service interfaces offered by the Tools API enables our wizard to access, obtain,
and even manipulate elements of the IDE at various modes of operation such as edit
mode and debug mode.

Selecting a Service Interface
We need to determine the type of service interface for the enhanced version of our
MemStat Wizard. The ToolsAPI.hpp file reveals thirteen basic types of service inter-
faces, as listed in Table 23.4.

Table 23.4 Tools API Service Interfaces

Service Interface Description

IOTAActionServices Used to perform file actions, such as opening a file in the IDE, and

closing and saving files.

IOTACodeInsightServices Used to query Code Insight managers, and to add and install a

custom Code Insight manager.

IOTADebuggerServices Used to access the IDE’s debugger.

IOTAEditorServices Used to access the source editor and its internal buffers.

IOTAKeyBindingServices Used to define individual key bindings for the IDE. An example key

binding is Shift-Ctrl-I, which tabs any selected text uniformly to the

right.

IOTAKeyboardServices Used to define and query for individual key bindings, and recording

and playing keyboard macros.

IOTAMessageServices Used to access the IDE’s message view window. You can add or clear

messages, or add, remove, or show a tab display.

IOTAModuleServices Used to retrieve a list of modules open in the IDE, creating new files,

saving or closing active files, or even registering a virtual file system.

IOTAPackageServices Used to retrieve a list of installed packages and their associated

components.

IOTAToDoServices Used to query To-Do Items, or register a custom To-Do list manager.

IOTAWizardServices Used to register or unregister an external wizard.

RegisterPackageWizard, on the other hand, does not provide

support unregistering a wizard, nor can it be used for a wizard

contained within a DLL.

IOTAServices Used to provide general services not supported by any other service

interface.register or unregister an external wizard.

RegisterPackageWizard, on the other hand, does not provide

support unregistering a wizard nor can it be used for a wizard

contained within a DLL.

INTAServices Used to provide access to the native components of the IDE. Modify,

add, or remove items menu bar, tool bars, image list, and/or action list

using this native tool service.

Creating and Using Services 891

29 0672324806 CH23 12/12/02 2:36 PM Page 891

For our MemStat Wizard example, we need to be able to detect the active project. A
project is a form of module, so we need to iterate through all the modules to find
the active project. We will need to use the IOTAModuleServices interface to perform
this action. We also should provide some feedback to the user through the IDE’s
Message View. This is the same window that provides compilation warnings and
errors and search results. The service interface we need for this capability is the
IOTAMessageServices. Finally, we need a way to launch the active project. The easiest
way to perform this operation is to automate the key press of the Run/Run menu
item, so we need access to the IDE’s main menu. This is achieved using the
INTAServices.

In the next section, we will take a look at how we can put it all together. Keep in
mind, we’ll be making no changes to the original MemStatus Wizard form.

Accessing a Service
The key element to accessing services is the BorlandIDEServices variable, which
provides the source for all service interfaces. Actually, to obtain any of the specialized
services, we need to use either the QueryInterface() or Supports() method provided
by the BorlandIDEServices. For example, the following code grabs the
IOTAModuleServices interface by using the BorlandIDEServices variable.

_di_IOTAModuleServices ModServices;

BorlandIDEServices->Supports(ModServices);

It’s really that simple. The _di_IOTAModuleServices identifies the Delphi Interface
wrapper to the IOTAModuleServices. ModServices is the interface object. The call to the
Supports() method assigns an object instance of the interface to the ModServices
object, allowing us to access the interface’s properties and methods (just like a class
object).

NOTE

The BorlandIDEServices, which provides the source for querying all service interfaces, is a
globally available variable within a Package hosting an IDE extension (such as a wizard). For a
DLL, however, the access to this service interface is only provided through the first parameter
passed by the DLL Entry Point function. Therefore, a BorlandIDEServices variable needs to
be defined for DLLs, as shown in the following code excerpt.

#ifdef DLL

#define BorlandIDEServices LocalIDEServices

extern _di_IBorlandIDEServices LocalIDEServices;

#endif

We’ll discuss more on DLLs a little later in the chapter.

CHAPTER 23 The Tools API: Extending the Borland IDE892

29 0672324806 CH23 12/12/02 2:36 PM Page 892

Utilizing a Service
Now that we know what service interfaces we need, and we know how to create an
instance of an interface, let’s see how these services can be utilized within the
Execute() method of our revamped MemStat Wizard. This code is shown in Listing
23.5, which can be found in the wizard_memstatus.cpp source file in the
wizard_part2_services folder for this chapter on the companion CD-ROM.

Listing 23.5 MemStatusWizard Class—Execute() Method

void __fastcall MemStatusWizard::Execute()

{

Application->ProcessMessages(); // let menu processing complete

bool launch = true; // unless instruected otherwise, run the application

TFormMemStat* FormMemStat = NULL;

SetupMessageViewAccess();

_di_IOTAModuleServices ModServices;

BorlandIDEServices->Supports(ModServices); // get access to Modules)

_di_IOTAProject project = FindCurrentProject(ModServices);

if (project)

{

_di_IOTAProjectBuilder projectbuilder = project->ProjectBuilder;

if (projectbuilder->ShouldBuild)

{

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - Project needs to be built first”),

MessageGroup);

AnsiString filename = ExtractFileName(project->FileName);

AnsiString message = “MemStatus Wizard detected that the “ +

filename + “ project needs to be built first.\n”

“Do you wish to continue?”;

int result = MessageBox(NULL,message.c_str(),

“MemStat Wizard - Build Project?”,

MB_YESNO);

if (result == IDYES)

{

projectbuilder->BuildProject(cmOTAMake,true,true); // build proj

}

Creating and Using Services 893

29 0672324806 CH23 12/12/02 2:36 PM Page 893

else launch = false; // user doesn’t want to run now

}

}

else // could not find project

{

AnsiString message = GetName() + “ - Project not loaded. Unable to run.”;

MessageServices->AddTitleMessage(message,MessageGroup);

MessageBox(NULL,message.c_str(),”MemStat Wizard - Build Project?”, MB_OK);

launch = false;

}

if (launch) // if launch is still a go

{

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - Project is built and ready to run”),Message

➥Group);

_di_INTAServices NativeServices;

BorlandIDEServices->Supports(NativeServices); // get access to IDE (menu bar)

// let’s find the Run top menu item...

TMenuItem* MenuItem =

FindMenuItemCaption(NativeServices->MainMenu->Items,”Run”);

if (MenuItem)

{

// now let’s find the Run (F9) menu item

TMenuItem* temp = FindMenuItemCaption(MenuItem,”Run”);

MenuItem = temp;

if (MenuItem)

{

if (MenuItem->Enabled)

{

int result = MessageBox(NULL,

“MemStat Wizard is ready to launch active project and “\

“measure memory performance. \n\n” \

“It’s recommended that you close all other “\

“applications with the exception of C++Builder “\

“before running the memory test. \n\n” \

“Do you wish to continue?”,

“MemStat Wizard - Ready to Run”,MB_YESNO);

if (result == IDYES)

CHAPTER 23 The Tools API: Extending the Borland IDE894

LISTING 23.5 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 894

{

FormMemStat = new TFormMemStat(0);// instantiate MemStat form

FormMemStat->Show(); // show the wizard

Application->ProcessMessages(); //let FormMemStat complete

FormMemStat->SpeedButtonStartClick(0); // measure memory first

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

FormMemStat->GetMemoryStartFree()),MessageGroup);

MenuItem->OnClick(0); // run the app

}

else

{

MessageServices->AddTitleMessage(

AnsiString(GetName() +

“ - User aborted run”),MessageGroup);

}

}

}

}

if (!MenuItem)

{

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - Unable to run application. “ \

“Project not loaded.”),MessageGroup);

}

}

// little loop processing here - but don’t tie up system (check and get out)

if (FormMemStat)

{

while (FormMemStat->Visible) // check

{

Application->ProcessMessages(); //get out (process current messages)

}

delete FormMemStat;

}

MessageServices->AddTitleMessage(GetName() + “ - Completed”,MessageGroup);

}

In addition to a totally revamped Execute() method, we’ve also added a few new
methods to our custom wizard class to support some of the service processing we

Creating and Using Services 895

LISTING 23.5 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 895

need to perform. These methods include SetupMessageViewAccess(),
FindMenuItemCaption(), and FindCurrentProject(). In addition to these methods,
there are a few properties added to our wizard class within the wizard_memstatus.h file
as shown in Listing 23.6:

Listing 23.6 Excerpt of the MemStatusWizard Class Definition

private:

_di_IOTAMessageServices MessageServices;

_di_IOTAMessageGroup MessageGroup;

void __fastcall SetupMessageViewAccess();

TMenuItem* FindMenuItemCaption(TMenuItem* topmenu, AnsiString Caption);

_di_IOTAProject FindCurrentProject(_di_IOTAModuleServices ModServices);

In the following sections, we will walk through the Execute() method code as
provided in Listing 23.5, and look at some of these new support methods we’ve
added. This examination will enable us to fully understand how to use these particu-
lar Tool API services.

Look Before You Leap with ProcessMessages()
Notice the first thing we do in the Execute() method is call Application
->ProcessMessages(). When we’re dealing with a myriad of messages being thrown
around the IDE and, as a wizard, we’re a part of that IDE, it’s a good idea to make
sure we’ve given a chance for other messages to be processed first before we get
going. This enables our wizard to utilize the service interfaces properly. For example,
because our Wizard is launched from the Help Menu Item, the menu processing is
still occurring when our Wizard launches. If we don’t allow these messages to be
processed, we might not get clean access to the IDE’s menu items, which, in our
example, we need later to Run the active project within C++Builder.

Providing Feedback Through the IDE Message View
The next critical thing we do in the Execute() method, is call a custom method that’s
been added to wizard_memstatus.cpp called SetupMessageViewAccess(). The implemen-
tation for this custom method is provided in Listing 23.7.

Listing 23.7 MemStatusWizard Class—SetupMessageViewAccess() Method

void __fastcall MemStatusWizard::SetupMessageViewAccess()

{

BorlandIDEServices->Supports(MessageServices); // get access to Message View

MessageGroup = MessageServices->AddMessageGroup(GetName());

MessageServices->ClearMessageGroup(MessageGroup); // need a clean canvas

CHAPTER 23 The Tools API: Extending the Borland IDE896

29 0672324806 CH23 12/12/02 2:36 PM Page 896

MessageServices->ShowMessageView(MessageGroup); // make it visible

MessageServices->AddTitleMessage(GetName() + “ - Activated”,MessageGroup);

}

In this method, we grab the IOTAMessageServices interface, which allows access to the
IDE’s Message View. The AddMessageGroup() function sets a new message tab if it does
not exist. In this case, the GetName() method is passed as a parameter which provides
the name of our wizard. ClearMessageGroup() is used to clean the message view
canvas for our message group. ShowMessageView() ensures that the message view is
visible. Finally, the one method we use repetitively is AddTitleMessage() to write out
text to our message group.

Locating and Building the Active Project
In the wizard’s Execute() method we grab a local copy of the IOTAModuleServices,
which will enable us to find the active project for which the Wizard will collect
memory information.

_di_IOTAModuleServices ModServices;

BorlandIDEServices->Supports(ModServices); // get access to Modules)

_di_IOTAProject project = FindCurrentProject(ModServices);

FindCurrentProject() is another custom method we’ve provided for our wizard that
has been added to the wizard_memstatus.cpp source file. This method is shown in
Listing 23.8.

Listing 23.8 MemStatusWizard Class—FindCurrentProject Method

_di_IOTAProject MemStatusWizard::FindCurrentProject(_di_IOTAModuleServices

➥ModServices)

{

//To obtain the active IOTAProjectGroup reference,

//iterate over all open modules and find the one module that

//supports the IOTAProjectGroup interface.

if (!ModServices) return NULL; // get out, no modules to search

_di_IOTAModule module;

_di_IOTAProjectGroup projectgroup = NULL;

_di_IOTAProject project = NULL;

bool done = false;

int index = 0;

Creating and Using Services 897

LISTING 23.7 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 897

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - Locating Active Project...”),MessageGroup);

while (!done)

{

if (index < ModServices->ModuleCount)

{

module = ModServices->Modules[index];

// cast module into project (if you can)

projectgroup = (_di_IOTAProjectGroup)module;

if (projectgroup)

{

//done = true;

project = projectgroup->ActiveProject;

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - Project Found = “ +

project->FileName),MessageGroup);

done = true;

}

else

index++;

}

else

{

done = true;

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - Unable to locate project”),MessageGroup);

}

} // while

return project;

}

This method iterates through all the active modules, which might include files,
forms, resource files, projects, and the project group. What we’re looking for is the
lone project group (there can only be one project group loaded by the IDE at one
time). To hunt down the lone project group, we cast each iterated module into a
project group, as follows:

projectgroup = (_di_IOTAProjectGroup)module;

If projectgroup is not NULL, it has been found! From here, we can locate the active
project by using the project group’s ActiveProject() method, and return it to the
Execute() method.

CHAPTER 23 The Tools API: Extending the Borland IDE898

LISTING 23.8 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 898

If a valid active project is returned by FindCurrentProject(), we can examine the
project build information by accessing the project’s ProjectBuilder() property as
shown in the following code snippet.

_di_IOTAProjectBuilder projectbuilder = project->ProjectBuilder;

if (projectbuilder->ShouldBuild)

{

——

——

if (result == IDYES)

{

launch = projectbuilder->BuildProject(cmOTAMake,true,true);

}

else launch = false; // user doesn’t want to run now

}

The ShouldBuild() property provided by the _di_IOTAProjectBuilder interface enables
us to determine if the project needs to be built. A true condition means a modifica-
tion to the code represented in that project has occurred and these changes are not
yet reflected in the executable. For our MemStatus Wizard, we want to make sure the
project is built before we initiate any memory measurements. If it’s not built, the
Tools API allows our wizard to create the executable by using the BuildProject()
method, which is provided by the _di_IOTAProjectBuilder interface. Notice that there
are three parameters for the BuildProject() call. Let’s look at its declaration.

bool __fastcall BuildProject(TOTACompileMode CompileMode,

bool Wait,

bool ClearMessages) = 0;

The first parameter of BuildProject(), CompileMode, identifies how the IDE (or our
Wizard from a user’s perspective) should compile the project. We can compile only
modified files, all files, check the syntax, or compile the current module only. In this
example, cmOTAMake was used to compile only modified files. The second parameter,
Wait, identifies whether the dialog box should be appear displaying to the user the
compiler progress and completion status, or if control should return immediately to
the wizard after compilation is complete. A value of true, as used in our example, will
require the user to click the OK button of the dialog box for control to be returned to
our wizard. The third parameter, ClearMessages, identifies if the Build message view
should be cleared before compiling. A true value, fortunately, will not clear our
custom Wizard message view that we created, but will clean the Build message view.
Finally, BuildProject() will return true, if the compilation was successful.

Creating and Using Services 899

29 0672324806 CH23 12/12/02 2:36 PM Page 899

Hacking into the IDE Responsibly
After we’ve located an active project, and we know it’s been built, we’re ready to
launch it and measure memory performance. To execute the project, however, is not
entirely straightforward.

One common way is to access the integrated debugger using the
IOTADebuggerServices interface, and use it’s CreateProcess() method. This method
starts the application representing the project loaded in the IDE. However, the
CreateProcess() method creates the process initially stopped at the first line of execu-
tion code. To use IOTADebuggerServices properly, we would need to use a thread noti-
fier to detect when the process stopped and restart the process automatically. There’s
a lag in this execution that is less than desired for the purpose of our example.

Another way is to hack into the IDE as a virtual user and emulate clicking the Run
menu item by using the INTANativeServices interface. If the project is built, it will
run without the stop/start condition associated to the CreateProcess() method. The
trick, however, is to locate the Run menu item. We start by grabbing a copy of the
INTANativeServices interface to the IDE:

_di_INTAServices NativeServices;

BorlandIDEServices->Supports(NativeServices); // get access to IDE (menu bar)

This will enable us to access the IDE’s MainMenu. This interface also allows access to
other IDE elements besides the MainMenu, such as ActionList, ImageList, and
ToolBar. In our example, we just want access to the MainMenu, so we can find the
“Run” menu item.

// let’s find the Run top menu item...

TMenuItem* MenuItem =

FindMenuItemCaption(NativeServices->MainMenu->Items,”Run”);

A custom method called FindMenuItemCaption() has been added to the wizard_
memstatus.cpp source file to iterate through the subitems of a menu item until a text
match is found. This method is provided in Listing 23.9.

Listing 23.9 MemStatusWizard Class—FindMenuItemCaption() Method

TMenuItem * MemStatusWizard::FindMenuItemCaption(TMenuItem* topmenu,

AnsiString Caption)

{

TMenuItem *menuitem = NULL;

bool done = false;

if (!topmenu) return menuitem; // get out, no menu to search

int index = 0;

while (!done)

CHAPTER 23 The Tools API: Extending the Borland IDE900

29 0672324806 CH23 12/12/02 2:36 PM Page 900

{

if (index < topmenu->Count)

{

menuitem = topmenu->Items[index];

if (menuitem->Caption.AnsiPos(Caption))

{

done = true;

}

index ++;

}

else

{

done = true;

menuitem = NULL;

}

} // while

return menuitem;

}

The FindMenuItemCaption() locates the menu item that matches the Caption. If it
exists, a new TMenuItem is returned to the caller. In this example, the caller is the
wizard’s Execute() method. Within the Execute() method, we then look for the next
“Run” menu item sub to the menu item that was just returned. This is done by
placing another call to FindMenuItemCaption(). After we finally locate the “Run” menu
item, we can trigger the OnClick() event for the specific menu item as depicted in the
following code snippet from the wizard_memstatus.cpp source file.

FormMemStat = new TFormMemStat(0);// instantiate MemStat form

FormMemStat->Show(); // show the wizard

Application->ProcessMessages(); //let FormMemStat complete

FormMemStat->SpeedButtonStartClick(0); // measure memory first

MenuItem->OnClick(0); // run the app

This code also reveals what we do to ready our memory measurement analysis. First,
we create an instance of the form that we’re going to display. We then Show() it.
Previously, we used the ShowModal() call, which forced our program to wait synchro-
nously until it was closed (see Listing 23.4). With the Show() method, control is
returned immediately to our Execute() method. Notice the use of the
ProcessMessages() method again. We use it in this instance to ensure that the form
we just displayed through the Show() method will be properly processed before we
activate any memory analysis.

Creating and Using Services 901

LISTING 23.9 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 901

In the previous MemStat Wizard example, the user was required to do things manu-
ally. This included initiating the memory analysis by clicking the start button off the
MemStat Wizard form, and then launching the application to evaluate after the
MemStat Wizard memory analysis had started. Now, we’re automating these actions
by calling the form’s SpeedButtonStartClick() method after the form is displayed
enabling us to get an accurate read on the memory prior to launching the applica-
tion under test. We launch that application, again, by triggering the OnClick() event
for the IDE’s Run menu item. It behaves as if the user has made these selections
manually.

Additional Processing with Services
In the first example provided in Listing 23.4, we used the ShowModal() method to
open our form, and when we were done with the form we knew when control was
returned. In this example, we have no idea precisely when the form is closed because
we are using the Show() method. The reason we are using the Show() method is
because we need to do some additional processing within our Execute() code (using
Services while the form is up). Specifically, we need to automate the Run using the
native services provided by the IDE after our memory form was shown. This example
is not unique. You may also find a case for your custom wizards where additional
processing needs to occur within your wizard while a form is already active. The key
is knowing how to gracefully detect when the form has closed. One way to do this
without making any modifications is to use a processing loop as shown in the
following code snippet found in the wizard_memstatus.cpp source file:

// little loop processing here - but don’t tie up system (check and get out)

if (FormMemStat)

{

while (FormMemStat->Visible) // check

{

// if you need to check on anything else, do it now

Application->HandleMessage(); //get out (process current messages)

}

delete FormMemStat; //form no longer visible, we created it, let’s delete it

}

MessageServices->AddTitleMessage(GetName() + “ - Completed”,MessageGroup);

Notice we only do the looping if FormMemStat exists and if it is visible. We don’t want
to tie up the system, so we just check for when the form is visible, and then, within
our loop process, we relinquish control to the kernel using the HandleMessage()
method, thereby allowing other messages in the system queue to be processed.
Certainly, other ways to check for form closure exist, including threading and
windows messaging, but this approach works very effectively.

CHAPTER 23 The Tools API: Extending the Borland IDE902

29 0672324806 CH23 12/12/02 2:36 PM Page 902

You’ll notice the last thing we do in our Execute() method is call MessageServices
->AddTitleMessage() to write out the final text within the Message View. This is
depicted in Figure 23.5.

Creating and Using Notifiers 903

Figure 23.5 Messages for MemStat Wizard.

Creating and Using Notifiers
Services such as displaying text in the Message View, building a project, and
automating a menu selection are used by our wizard to affect the IDE. What we need
next is a way for the IDE to affect our wizard by notifying when the execution of the
application has stopped. This is the job of notifiers. The combination of services and
notifiers is what allows for the two-way RAD capability provided by Delphi and
C++Builder. The Tools API enables us to profit from this RAD capability within the
extensions we create. For the MemStat Wizard example that we are enhancing, we
need a notifier to signal us through the IDE’s debugger when an application process
has stopped.

Let’s take a look at the various types of notifiers provided by the Tools API as shown
in Table 23.5.

Table 23.5 Tools API Service Notifiers

Notifier Interface Description

IOTABreakpointNotifier Used to retrieve breakpoint activities such as when the breakpoint

is triggered or the user wants to modify the breakpoint.

IOTADebuggerNotifier Used to retrieve debug notifications such as when the debugger

starts debugging a process, finishes debugging a process, or when

breakpoints are added or deleted.

IOTAEditLineNotifier Used to retrieve edit activities such as when the user inserts or

deletes lines in a source file.

IOTAEditorNotifier Used to retrieve activities associated to the source editor such as a

modification of text.

IOTAFormNotifier Used to retrieve activities associated with the form editor such as

when a property is altered or when a component on the form is

renamed.

29 0672324806 CH23 12/12/02 2:36 PM Page 903

IOTAIDENotifier This is the base class for all IDE notifiers.

IOTAMessageNotifier Used to retrieve activities associated to the message view such as

when a message is added or removed, or a message view tab is

added or selected.

IOTAModuleNotifier Used to retrieve events associated to a particular module such as

when a module’s source file has been modified.

IOTAProcessModNotifier Used to notify when a specified module is loaded.

IOTAProcessNotifier Used to retrieve events associated to a process being debugged

such as when the integrated debugger loads or unloads a module,

or when a process is created or destroyed.

IOTAThreadNotifier Used to retrieve events associated to a thread being debugged

such as when the integrated debugger loads or unloads a module,

or when a thread is created or destroyed.

IOTAToolsFilterNotifier Used to retrieve activities associated to a Build Tool such as filtering

output generated by the Build Tool.

In our example, we want to know when the process representing the application
under test is complete. The notifier best suited for this task is the
IOTADebuggerNotifier. This notifier has two methods that are useful: ProcessCreated()
and ProcessDestroyed(). The ProcessCreated() method is triggered when our applica-
tion is executed, and the ProcessDestroyed() method is triggered when our applica-
tion under test is completed.

Defining a Custom Debugger Notifier Class
Let’s take a look at Listing 23.10, which illustrates how we can set up the class to
represent this notifier for our MemStat Wizard. This code has been added to the
wizard_memstatus.h file located in the wizard_part3_notifier folder for this chapter,
which can be found on the companion CD-ROM.

Listing 23.10 DebugNotifier Class Declaration

class DebugNotifier: public TNotifierObject, public IOTADebuggerNotifier

{

typedef TNotifierObject inherited;

public:

__fastcall DebugNotifier(const _di_IOTADebuggerServices debugger,

const MemStatusWizard* wizard);

__fastcall ~DebugNotifier();

// IOTADebuggerNotifer

CHAPTER 23 The Tools API: Extending the Borland IDE904

Table 23.5 Continued

Notifier Interface Description

29 0672324806 CH23 12/12/02 2:36 PM Page 904

virtual void __fastcall BreakpointAdded(_di_IOTABreakpoint Breakpoint);

virtual void __fastcall BreakpointDeleted(_di_IOTABreakpoint Breakpoint);

virtual void __fastcall ProcessCreated(_di_IOTAProcess Process);

virtual void __fastcall ProcessDestroyed(_di_IOTAProcess Process);

// override NotifierObjectObject methods

void __fastcall AfterSave();

void __fastcall BeforeSave();

void __fastcall Destroyed(); // implement this

void __fastcall Modified();

protected:

// override IInterface methods

virtual HRESULT __stdcall QueryInterface(const GUID&, void**);

virtual ULONG __stdcall AddRef();

virtual ULONG __stdcall Release();

private:

const MemStatusWizard* wizard; // keep track of the wizard that owns this

➥notifier

_di_IOTADebuggerServices debugger; // keep track of debuggerservice that added me

as a notifier

AnsiString name; // remember the debugger’s old name

int index; // Notifier index

};

We create a notifier by defining a class that implements a specific notifier interface.
Note that this is very similar to how we created our custom wizard. In fact, our
Wizard class is also a descendent of a notifier (remember all that discussion on
IOTANotifier earlier).

In our case the specific notifier interface we need is IOTADebuggerNotifier. Like the
wizard, we also inherit TNotifierObject. The constructor method of the DebugNotifier
class will provide the processing for assigning a notifier to an interface. That is why
the first parameter of the constructor method requires a _di_IOTADebuggerServices
service interface. The second parameter will provide a pointer to our wizard class,
MemStatusWizard, so we have a way to directly notify the wizard of IDE changes. This,
incidentally, requires a few new methods and properties to be added in the public
section of our custom wizard class within the wizard_memstatus.h file so that the noti-
fier can provide the anticipated notification. This is shown in Listing 23.11.

Creating and Using Notifiers 905

LISTING 23.10 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 905

Listing 23.11 MemStatWizard Class—Public Declarations

class PACKAGE MemStatusWizard : public TNotifierObject, public IOTAMenuWizard

{

typedef TNotifierObject inherited;

public:

__fastcall MemStatusWizard();

__fastcall ~MemStatusWizard();

——

——

void __fastcall SetProcessActive(bool value); // used by debug notifier

// expose these properties (used mainly for debugmessaging by the debug notifier)

_di_IOTAMessageServices MessageServices;

_di_IOTAMessageGroup MessageGroup;

——

——

};

The DebugNotifier class will use the properties and methods that are shown in bold.
Let’s now look at the methods created for DebugNotifier that have been added to the
wizard_memstatus.cpp file as shown in Listing 23.12.

Listing 23.12 DebugNotifier Class Methods

__fastcall DebugNotifier::DebugNotifier(const _di_IOTADebuggerServices debugger,

const MemStatusWizard* wizard)

: index(-1), debugger(debugger), wizard(wizard) {

// register the notifier

index = debugger->AddNotifier(this);

#ifdef DebugMessages

char value[MAX_PATH];

sprintf(value,” - [Debug] - DebugNotifer has been created. Index = %d”,index);

wizard->MessageServices->AddTitleMessage(

AnsiString(wizard->GetName() + value),wizard->MessageGroup);

#endif

}

//—————————————————————————————————————-

CHAPTER 23 The Tools API: Extending the Borland IDE906

29 0672324806 CH23 12/12/02 2:36 PM Page 906

__fastcall DebugNotifier::~DebugNotifier()

{

//unregister the notifier if that hasn’t happend yet

if (index >= 0)

{

#ifdef DebugMessages

char value[MAX_PATH];

sprintf(value,” - [Debug] - About to call RemoveNotifer - inside ~Debug

➥Notifier() - Index = %d”,index);

wizard->MessageServices->AddTitleMessage(

AnsiString(wizard->GetName() + value),wizard->MessageGroup);

#endif

debugger->RemoveNotifier(index);

}

debugger = 0;

}

//—————————————————————————————————————-

ULONG __stdcall DebugNotifier::AddRef() { return inherited::AddRef(); }

ULONG __stdcall DebugNotifier::Release() { return inherited::Release(); }

HRESULT __stdcall DebugNotifier::QueryInterface(const GUID& iid, void** obj)

{

QUERY_INTERFACE(IOTADebuggerNotifier, iid, obj);

return inherited::QueryInterface(iid, obj);

}

void __fastcall DebugNotifier::AfterSave() {}

void __fastcall DebugNotifier::BeforeSave() {}

void __fastcall DebugNotifier::Destroyed()

{

//unregister the notifier if that hasn’t happend yet

if (index >= 0)

{

#ifdef DebugMessages

char value[MAX_PATH];

sprintf(value,” - [Debug] - About to call RemoveNotifer “

“- inside Destroyed() - Index = %d”,index);

wizard->MessageServices->AddTitleMessage(

AnsiString(wizard->GetName() + value),wizard->MessageGroup);

Creating and Using Notifiers 907

LISTING 23.12 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 907

#endif

debugger->RemoveNotifier(index);

index = -1;

}

debugger = 0;

}

void __fastcall DebugNotifier::Modified() {}

void __fastcall DebugNotifier::BreakpointAdded(_di_IOTABreakpoint Breakpoint)

{

#ifdef DebugMessages

wizard->MessageServices->AddTitleMessage(

AnsiString(wizard->GetName() + “ - Breakpoint Added...”),

wizard->MessageGroup);

#endif

}

//—————————————————————————————————————-

void __fastcall DebugNotifier::BreakpointDeleted(_di_IOTABreakpoint Breakpoint)

{

#ifdef DebugMessages

wizard->MessageServices->AddTitleMessage(

AnsiString(wizard->GetName() + “ - Breakpoint Deleted...”),

wizard->MessageGroup);

#endif

}

//—————————————————————————————————————-

void __fastcall DebugNotifier::ProcessCreated(_di_IOTAProcess Process)

{

wizard->SetProcessActive(true);

#ifdef DebugMessages

wizard->MessageServices->AddTitleMessage(

AnsiString(wizard->GetName() + “ - Process Created - Process ID = “ +

AnsiString((int)Process->ProcessId)),wizard->MessageGroup);

#endif

CHAPTER 23 The Tools API: Extending the Borland IDE908

LISTING 23.12 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 908

}

//—————————————————————————————————————-

void __fastcall DebugNotifier::ProcessDestroyed(_di_IOTAProcess Process)

{

wizard->SetProcessActive(false);

#ifdef DebugMessages

wizard->MessageServices->AddTitleMessage(

AnsiString(wizard->GetName() + “ - Process Destroyed - Process ID = “ +

AnsiString((int)Process->ProcessId)),wizard->MessageGroup);

#endif

}

Again, the constructor for the DebugNotifier class self registers as a notifier by using
the AddNotifier() method associated to the _di_IOTADebuggerServices object, which is
passed in as the parameter. The class’s destructor and the Destroyed() method both
provide a way to clean up the notifier, which needs to be done or we’ll end up
having IDE woes.

The two key methods we need to implement from this notifier interface are
ProcessCreated() and ProcessDestroyed(). Both of these methods call the
SetProcessActive() method, available from the wizard, to indicate if a process is
active or not. Let’s look at this new wizard method in Listing 23.13, which has been
added to the wizard_memstatus.cpp file.

Listing 23.13 MemStatusWizard Class—SetProcessActive() Method

void __fastcall MemStatusWizard::SetProcessActive(bool value)

{

ProcessActive = value;

}

There’s not a lot of complexity in SetProcessActive(), it just simply resets the
ProcessActive property associated to our custom wizard. As we will see shortly, the
Execute() method of our wizard checks on this variable to provide the final automa-
tion of the memory analysis process.

Creating and Using Notifiers 909

LISTING 23.12 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 909

Utilizing Our Debugger Notifier
Now, let’s take a look at how we set up and utilize this debug notifier in the
Execute() method for our MemStat Wizard located within the wizard_memstatus.cpp
file. Depicted in bold within Listing 25.14 are all the new additions to the Execute()
method since our last update.

Listing 23.14 MemStatusWizard Class—Execute() Method

void __fastcall MemStatusWizard::Execute()

{

Application->ProcessMessages(); // let menu processing complete

bool launch = true; // unless instruected otherwise, run the application

TFormMemStat* FormMemStat = NULL;

SetupMessageViewAccess();

_di_IOTADebuggerServices DebuggerServices; // we’ll use these a little later

DebugNotifier* debugnotifier; // keep track of debugnotifier

_di_IOTAModuleServices ModServices;

BorlandIDEServices->Supports(ModServices); // get access to Modules)

_di_IOTAProject project = FindCurrentProject(ModServices);

if (project)

{

_di_IOTAProjectBuilder projectbuilder = project->ProjectBuilder;

if (projectbuilder->ShouldBuild)

{

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - Project needs to be built first”),

MessageGroup);

AnsiString filename = ExtractFileName(project->FileName);

AnsiString message = “MemStatus Wizard detected that the “ +

filename + “ project needs to be built first.\n”

“Do you wish to continue?”;

int result = MessageBox(NULL,message.c_str(),

“MemStat Wizard - Build Project?”,

MB_YESNO);

if (result == IDYES)

{

launch = projectbuilder->BuildProject(cmOTAMake,true,true);

CHAPTER 23 The Tools API: Extending the Borland IDE910

29 0672324806 CH23 12/12/02 2:36 PM Page 910

}

else launch = false; // user doesn’t want to run now

}

}

else // could not find project

{

AnsiString message = GetName() + “ - Project not loaded. Unable to run.”;

MessageServices->AddTitleMessage(message,MessageGroup);

MessageBox(NULL,message.c_str(),

“MemStat Wizard - Build Project?”, MB_OK);

launch = false;

}

if (launch) // if launch is still a go

{

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - Project is built and ready to run”),

MessageGroup);

_di_INTAServices NativeServices;

BorlandIDEServices->Supports(NativeServices); // get access to IDE (menu bar)

// let’s find the Run top menu item...

TMenuItem* MenuItem =

FindMenuItemCaption(NativeServices->MainMenu->Items,”Run”);

if (MenuItem)

{

// now let’s find the Run (F9) menu item

TMenuItem* temp = FindMenuItemCaption(MenuItem,”Run”);

MenuItem = temp;

if (MenuItem)

{

if (MenuItem->Enabled)

{

int result = MessageBox(NULL,

“MemStat Wizard is ready to launch active project and “\

“measure memory performance. \n\n” \

“Although not required, it’s recommended that you “\

“close all other applications with the exception of “\

Creating and Using Notifiers 911

LISTING 23.14 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 911

“C++Builder before running the memory test. This will “\

“allow the MemStat Wizard to more precisely measure “\

“memory performance of the application under test.\n\n”\

“Do you wish to continue?”,

“MemStat Wizard - Ready to Run”,MB_YESNO);

if (result == IDYES)

{

FormMemStat = new TFormMemStat(0);//instantiate MemStat

FormMemStat->Show(); // show the wizard

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

FormMemStat->GetMemoryTotal()),MessageGroup);

// get interace to debuggerservices and a notifier

BorlandIDEServices->Supports(DebuggerServices);

debugnotifier = new DebugNotifier(DebuggerServices,this);

Application->ProcessMessages(); //let FormMemStat complete

FormMemStat->SpeedButtonStartClick(0); //measure memory

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

FormMemStat->GetMemoryStartFree()),MessageGroup);

MenuItem->OnClick(0); // run the app through the menu item

// here’s how we could run the app from the debugger service

#ifdef RunFromDebugger

_di_IOTAProcess Process;

// figure out exe name

AnsiString exename = ExtractFileNameNoExt(

project->FileName,true) + “.exe “;

if (FileExists(exename))

{

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

“Create Process = “ + exename),MessageGroup);

DebuggerServices->CreateProcess(exename, “”, “”);

Process = DebuggerServices->CurrentProcess;

if (Process)

{

CHAPTER 23 The Tools API: Extending the Borland IDE912

LISTING 23.14 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 912

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +”Process = “ +

AnsiString(Process->ProcessId)),MessageGroup);

//Process->Pause(); // Pause

//Process->Run(ormRun); // Run Normally

}

}

#endif // RunFromDebugger

}

else

{

MessageServices->AddTitleMessage(

AnsiString(GetName() +

“ - User aborted run.”),MessageGroup);

}

}

}

}

if (!MenuItem)

{

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - Unable to run application. “ \

“Project not loaded.”),MessageGroup);

}

}

// little loop processing here - but don’t tie up system (check and get out)

if (FormMemStat)

{

while (FormMemStat->Visible) // check

{

if (!ProcessActive) // process is no longer active / shut it down

{

FormMemStat->SpeedButtonStopClick(0); // final measurement

FormMemStat->Close();

}

Application->ProcessMessages(); //get out (process current messages)

}

if (ProcessActive) // wizard has been shut down, but app remains

{

Creating and Using Notifiers 913

LISTING 23.14 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 913

int result = MessageBox(NULL,

“MemStat Wizard has been shut down, but the application “\

“under test is still active. \n\n” \

“Do you wish to close application under test as well?”,

“MemStat Wizard - Terminated”,MB_YESNO);

if (result == IDYES)

{

_di_IOTAProcess Process;

Process = DebuggerServices->CurrentProcess;

if (Process)

Process->Terminate();

}

}

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

FormMemStat->GetMemoryStopFree()),MessageGroup);

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

FormMemStat->GetMemoryFinalUsage()),MessageGroup);

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

FormMemStat->GetMemoryPeakUsage()),MessageGroup);

delete FormMemStat;

}

if (debugnotifier) // little clean-up

{

debugnotifier->Destroyed();

debugnotifier = NULL;

}

MessageServices->AddTitleMessage(GetName() + “ - Completed”,MessageGroup);

}

To get a notifier we need a service interface that can provide it. In this case it is the
_di_IOTADebuggerServices interface. This interface provides a method called
AddNotifier() that we will use in the constructor for our DebugNotifer. Earlier, we
used the RegisterPackageWizard() method for registering a custom wizard. For noti-
fiers, we use the AddNotifier() method. Later, we will use the RemoveNotifer() within
our notifier’s destructor and Destroyed() method for proper clean up (release) of the
notifier.

CHAPTER 23 The Tools API: Extending the Borland IDE914

LISTING 23.14 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 914

After we instantiate a debug notifier by passing the DebuggerServices interface to the
DebugNotifier constructor, the notifier is ready to receive notification from the IDE of
debugger activities.

After the application under test is launched, and the form for MemStatus Wizard is
activated, we check within our looping process to see if the DebugNotifier object has
set our wizard’s ProcessActive flag to false. This flag identifies if the application
under test is active or not. If it is not active, we mark the memory, close the
MemStatus Wizard form, and report the memory status within our message group
window. If the form for the wizard is shutdown while the application under test is
still active, we query the user and, based on his response, we terminate the process.
This is accomplished by attaining the current process through the CurrentProcess()
property for the DebuggerServices interface. After we have the current process we can
call its Terminate() method.

Finally, we clean up by calling the Destroyed() method of our debug notifier.

With this code in place, our wizard is fully automated. Originally, we started off with
just a form that came into view requiring full user intervention. Then, we figured
out when to start the memory analysis after the application was launched by using
interface services. This time we figured out how to precisely know when to stop the
memory analysis, and how to clean up using notifiers. But the capabilities that we
can add don’t just have to stop there.

Creating and Using Creators
The Tools API also provides a way to create common IDE objects such as a file (unit),
a module, or a project by creating a class that’s derived from one its Creator inter-
faces. Suppose, in our example, we want our Wizard to dump out some text, view-
able in the IDE, that displays the memory information for each run of the loaded
application. We would need to create a file that’s included with the project associ-
ated to the application we want to test.

Let’s take a look at the various types of creator interfaces provided by the Tools API.

Table 23.6 Tools API Creator Interfaces

Creator Interface Description

IOTACreator This is the base class for all creators.

IOTAAdditionalFilesModuleCreator Used to create additional files such as documentation, a

Web page, or other text files associated with a unit.

IOTAModuleCreator Used to create a module such as a new unit, form, or

text file for a project, or to supply custom file contents or

filenames.

Creating and Using Creators 915

29 0672324806 CH23 12/12/02 2:36 PM Page 915

IOTAProjectCreator50 Used to create a default application, library, or package,

or to supply custom file contents or filenames.

IOTAProjectGroupCreator Used to create a project group, or a new module for

opening up an existing project group.

In addition to this list, one other Tools API interface that is typically used to support
a creator interface is IOTAFile. IOTAFile is used to supply custom file content, such as
source code for a new file, for a creator.

Defining a Custom Creator Class
For our wizard, IOTAModuleCreator provides the interface we need to generate a text
file. To use it, we need to create a custom class representing this interface to the
wizard_memstatus.h file as shown in Listing 23.15.

Listing 23.15 Creator Class Declaration

class Creator: public IOTAModuleCreator

{

public:

__fastcall Creator(const AnsiString creator_type,

const MemStatusWizard* wizard);

virtual __fastcall ~Creator();

// IOTAModuleCreator methods

virtual AnsiString __fastcall GetAncestorName();

virtual AnsiString __fastcall GetImplFileName();

virtual AnsiString __fastcall GetIntfFileName();

virtual AnsiString __fastcall GetFormName();

virtual bool __fastcall GetMainForm();

virtual bool __fastcall GetShowForm();

virtual bool __fastcall GetShowSource();

virtual _di_IOTAFile __fastcall NewFormFile(

const AnsiString FormIdent, const AnsiString AncestorIdent);

virtual _di_IOTAFile __fastcall NewImplSource(

const AnsiString ModuleIdent, const AnsiString FormIdent,

const AnsiString AncestorIdent);

virtual _di_IOTAFile __fastcall NewIntfSource(

const AnsiString ModuleIdent, const AnsiString FormIdent,

CHAPTER 23 The Tools API: Extending the Borland IDE916

Table 23.6 Continued

Creator Interface Description

29 0672324806 CH23 12/12/02 2:36 PM Page 916

const AnsiString AncestorIdent);

virtual void __fastcall FormCreated(

const _di_IOTAFormEditor FormEditor);

// IOTACreator methods

virtual AnsiString __fastcall GetCreatorType();

virtual bool __fastcall GetExisting();

virtual AnsiString __fastcall GetFileSystem();

virtual _di_IOTAModule __fastcall GetOwner();

virtual bool __fastcall GetUnnamed();

protected:

// override IInterface methods

virtual HRESULT __stdcall QueryInterface(const GUID&, void**);

virtual ULONG __stdcall AddRef();

virtual ULONG __stdcall Release();

private:

long ref_count;

const AnsiString creator_type;

const MemStatusWizard* wizard; // keep track of the wizard

// that owns this notifier

};

Although there are a lot of methods, the key methods we are most interested in are
the Creator constructor and the NewImplSource() method. For all the other methods
we simply return the default values. Now, let’s look at the implementation for these
methods that have been added to the wizard_memstatus.cpp file as shown in Listing
23.16.

Listing 23.16 Creator Class—Constructor Method

__fastcall Creator::Creator(const AnsiString creator_type,

const MemStatusWizard* wizard)

: ref_count(0), creator_type(creator_type), wizard(wizard)

{

#ifdef DebugMessages

char value[MAX_PATH];

sprintf(value,” - [Debug] - Creator has been created. Index = %d”,index);

wizard->MessageServices->AddTitleMessage(

AnsiString(wizard->GetName() + value),wizard->MessageGroup);

Creating and Using Creators 917

LISTING 23.15 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 917

#endif

}

In our constructor, we pass in the type of module we are going to create, and also a
pointer to our wizard so that we can access some of the data we want to display. It’s
important to identify the proper type of module to be created. Table 23.7 identifies
the various creator types.

Table 23.7 Tools API Creator Types

Creator Type Description

sApplication Used to create a default application. Applies to IOTAProjectCreator interface.

sConsole Used to create a default console application. Applies to IOTAModuleCreator inter-

face.

sForm Used to create a default form. Applies to IOTAModuleCreator interface.

sLibrary Used to create a default library. Applies to IOTAProjectCreator interface.

sPackage Used to create a default package. Applies to IOTAProjectCreator interface.

sText Used to create an empty text file. Applies to IOTAModuleCreator interface.

sUnit Used as a default unit source file. Applies to IOTAModuleCreator interface.

In our example, we will use the SText creator type.

The method that actually generates and fills in the text for the Wizard’s result file is
the NewImplSource() function, which has been added to the wizard_memstatus.cpp
source file and is shown in Listing 23.17.

Listing 23.17 Creator Class—NewImplSource() Method

_di_IOTAFile __fastcall Creator::NewImplSource(

const AnsiString ModuleIdent, const AnsiString FormIdent,

const AnsiString AncestorIdent)

{

AnsiString dtstring;

TDateTime adatetime;

adatetime = adatetime.CurrentDateTime();

dtstring = adatetime.FormatString(“mm/dd/yyyy hh:nn:ss am/pm”);

// let’s grab data from Wizard that we want in the text file.

AnsiString form_source = “Memory Analysis Results \n\n”;

form_source += “Project = “ + wizard->projectname + “\n”;

CHAPTER 23 The Tools API: Extending the Borland IDE918

LISTING 23.16 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 918

form_source += “Run Date = “ + dtstring + “\n”;

form_source += wizard->memtotal + “\n”;;

form_source += wizard->memstartfree + “\n”;;

form_source += wizard->memstopfree + “\n”;;

form_source += wizard->memfinalusage + “\n”;;

form_source += wizard->mempeakusage + “\n\n\n”;;

form_source += “Enter your notes below...”;;

_di_IOTAFile file = new File(form_source);

return file; // Expand(form_source, ModuleIdent, FormIdent, AncestorIdent);

}

You’ll notice in this method that we access some of the public data we are now
providing in our wizard class. This method returns a new file to our wizard for the
current project. To support our NewImplSource() method we need a way to generate
an _di_IOTAFile interface. This requires another custom class as shown in Listing
23.18, which has been added to the wizard_memstatus.h file.

Listing 23.18 File Class Declaration

class File : public IOTAFile {

public:

__fastcall File(const AnsiString source);

virtual __fastcall ~File();

AnsiString __fastcall GetSource();

System::TDateTime __fastcall GetAge();

protected:

// override IInterface methods

virtual HRESULT __stdcall QueryInterface(const GUID&, void**);

virtual ULONG __stdcall AddRef();

virtual ULONG __stdcall Release();

private:

long ref_count;

System::TDateTime age;

AnsiString source;

};

Utilizing Our Creator
Although that might have seemed like a lot of effort to create a couple of classes,
utilizing our creator class is fairly simple. The bolded text in the following code

Creating and Using Creators 919

LISTING 23.17 Continued

29 0672324806 CH23 12/12/02 2:36 PM Page 919

excerpt (as shown in Listing 23.19) has been added to our wizard’s Execute() method
within the wizard_memstatus.cpp source file.

Listing 23.19 MemStatWizard Class—Execute() Method Custom Creator Utilization

// little loop processing here - but don’t tie up system (check and get out)

if (FormMemStat)

{

while (FormMemStat->Visible) // check

{

if (!ProcessActive) // process is no longer active / shut it down

{

FormMemStat->SpeedButtonStopClick(0); // final measurement

FormMemStat->Close();

}

Application->HandleMessage(); //get out (process current messages)

}

if (ProcessActive) // wizard has been shut down, but app remains

{

int result = MessageBox(NULL,

“MemStat Wizard has been shut down, but the application “\

“under test is still active. \n\n” \

“Do you wish to close application under test as well?”,

“MemStat Wizard - Terminated”,MB_YESNO);

if (result == IDYES)

{

_di_IOTAProcess Process;

Process = DebuggerServices->CurrentProcess;

if (Process)

Process->Terminate();

}

}

memstopfree = FormMemStat->GetMemoryStopFree();

memfinalusage = FormMemStat->GetMemoryFinalUsage();

mempeakusage = FormMemStat->GetMemoryPeakUsage();

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

memstopfree),MessageGroup);

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

memfinalusage),MessageGroup);

CHAPTER 23 The Tools API: Extending the Borland IDE920

29 0672324806 CH23 12/12/02 2:36 PM Page 920

MessageServices->AddTitleMessage(

AnsiString(GetName() + “ - “ +

mempeakusage),MessageGroup);

// dump out log file with memory performance data

_di_IOTAModule module = ModServices->CreateModule(new Creator(sText,this));

delete FormMemStat;

}

if (debugnotifier) // little clean-up

{

debugnotifier->Destroyed();

debugnotifier = NULL;

}

MessageServices->AddTitleMessage(GetName() + “ - Completed”,MessageGroup);

}

In this newly added code, we call the CreateModule() associated to the project module
we found earlier using ModServices, by passing in an instance to our Creator class. To
instantiate this Creator object, we pass the type of file we want to create, sText, and
the pointer to the wizard, which is represented by the this clause. This triggers a call
to the NewImplSource() method for our Creator object, and produces our results text
file, as shown in Figure 23.6.

Creating and Using Creators 921

LISTING 23.19 Continued

Figure 23.6 New text file associated to project, which contains results of memory
performance.

29 0672324806 CH23 12/12/02 2:36 PM Page 921

Using Editors
The Tools API also provides a way to gain access to the various IDE Editors. For our
Wizard example, we won’t be demonstrating any of the interfaces that are available,
but let’s take a look at the various types of editor interfaces provided by the Tools
API, as shown in Table 23.18.

Table 23.8 Tools API Editor Interfaces

Editor Interface Description

IOTAEditor This is the base class for all editors.

INTAFormEditor Used to gain direct access to the form designer.

IOTAFormEditor Used to gain access to the form editor at design time.

IOTASourceEditor Used to access a source file within the IDE.

IOTATypeLibEditor Used to access a type library file.

IOTAProjectResource Used to access and change a projects resource file.

In addition to this list, one other Tools API interface that is typically used to support
editing is IOTAComponent. IOTAComponent is used to examine and modify component
properties, select the component in the form editor, delete the component, and do
almost anything the user can do in the form editor.

INTAComponent is a native interface for a component. You can cast an IOTAComponent
interface to INTAComponent instance using QueryInterface() or Supports() method. This
will enable you to access the component instance directly.

Debugging Your IDE Extensions
Before you install your wizard as a package, you may find yourself wanting to debug
your code. This can be accomplished by setting the C++Builder executable as the
host application for your package as illustrated in Figure 23.7.

CHAPTER 23 The Tools API: Extending the Borland IDE922

Figure 23.7 Run Parameters Dialog—Setting up to debug a Wizard package.

29 0672324806 CH23 12/12/02 2:36 PM Page 922

With this added, when you run your package, another instance of C++Builder will
load up. In that new instance, you’ll need to install your Wizard package (the bpl
file) using the Components\Install Package menu item. Any breakpoints you set in
your wizard code will now be accessible in the original instance of C++Builder.
Within this instance of C++Builder, you should be able to trace into [F7], step
over [F8], and reach breakpoints in your code just as you would with a normal
application.

However, there are a few caveats to make sure this works properly. First, make sure
that the package is not already installed. If it is, you can remove it by selecting
Install Packages from the Component menu. This will open a filtered version of the
Project Options dialog, which contains only an enabled Packages view. This is illus-
trated in Figure 23.8.

Building and Deploying DLLs 923

Figure 23.8 Packages view.

To remove a package, simply select the Remove button.

Also make sure you include all the debug libraries by enabling them in your project
options. Finally, make sure you have enough memory. Remember that you’re loading
a second instance of C++Builder, which requires a little bit of memory.

Building and Deploying DLLs
We’ve focused solely on creating packages for representing IDE extensions such as
wizards, but a standard DLL can also be used to host IDE extensions. The DLL that
you create must export a function initialization function called INITWIZARD0001. An
example implementation for this function is shown here.

extern “C” bool __stdcall __declspec(dllexport) INITWIZARD0001(

const _di_IBorlandIDEServices services,

29 0672324806 CH23 12/12/02 2:36 PM Page 923

TWizardRegisterProc RegisterProc,

TWizardTerminateProc&)

{

LocalIDEServices = services;

RegisterProc(new MemStatusWizard());

return true;

}

The IDE looks for this function when it loads the DLL. So we can differentiate
between a package and a DLL, the following code, shown in Listing 23.20, has been
added to the wizard_memstatus.cpp source file.

Listing 23.20 Handling Builds Between Packages and DLLs

#ifndef DLL // it’s a package

namespace Wizard_memstatus

{

void __fastcall PACKAGE Register()

{

RegisterPackageWizard(new MemStatusWizard());

}

}

#endif

#ifdef DLL // it’s a dll

extern “C” bool __stdcall __declspec(dllexport) INITWIZARD0001(

const _di_IBorlandIDEServices services,

TWizardRegisterProc RegisterProc,

TWizardTerminateProc&)

{

LocalIDEServices = services; // found in ToolsAPIEx

RegisterProc(new MemStatusWizard());

return true;

}

#endif

If we build a standard DLL, we no longer need the PACKAGE Register() function. To
identify the type of build to be performed, the ToolsAPIEx.h file contains the follow-
ing definition.

//#define DLL // enable this if building a DLL

#ifdef DLL // we’ll need this for building a DLL

CHAPTER 23 The Tools API: Extending the Borland IDE924

29 0672324806 CH23 12/12/02 2:36 PM Page 924

#define BorlandIDEServices LocalIDEServices

extern _di_IBorlandIDEServices LocalIDEServices;

#endif

Notice the #define DLL line commented out. If we remove the comment qualifier,
and recompile and link our program, a DLL with a .bpl file extension will be
produced for our wizard.

Next, the key is for the DLL to be identified in the Windows Registry with the IDE
for the IDE extension to take affect. This is accomplished by adding an entry to the
registry under the following key:

HKEY_CURRENT_USER\Software\Borland\C++Builder\6.0\Experts

Always use a unique name for the entry such as the ID string that was set using our
wizard’s GetIDString() method. Also, include the full path to the DLL for the value
field. Figure 23.9 illustrates the entry made in the registry.

Building and Deploying DLLs 925

Figure 23.9 The Registry Editor.

The next time C++Builder launches, it will load the library files it encounters in the
registry.

WHICH ONE—PACKAGE OR DLL?

Most developers find that it’s simpler to incorporate an IDE extension inside a package rather
than a DLL. Furthermore, it is easier to reload design-time packages rather than DLLS when
you’re developing your extension because you can see your results immediately (no need to
close and reopen the IDE). However, the one drawback with packages is that unit name and
form name clashes are more susceptible than a DLL implementation. Therefore, one recom-
mendation is to port your code into a DLL for final delivery when you’re happy with your IDE
extension. Keep in mind that the DLL should always be built with the VCL runtime package if
it uses any of the Native Tool API interfaces.

29 0672324806 CH23 12/12/02 2:36 PM Page 925

Recommended Readings
Although the Tools API is not broadly discussed within the C++Builder community,
there are several resources identified in the following listing that you might find
useful.

• C++Builder Developer’s Guide Manual—http://www.bcbdev.com Don’t confuse the
book you’re reading with the manual that comes with the C++Builder 6 Pro
and C++Builder 6 Enterperise. There is an excellent chapter on Extending the
IDE that focuses on the Tools API (see Chapter 28).

• C++Builder Help File—http://www.bcbdev.com Much of what can be found in
the Developer’s Guide manual, is provided in the C++Builder Help. Index on
Tools API.

• Tools API Source Code—You can learn a lot by looking at the source code for the
Tools API. Open and look at the ToolsAPI.pas and ToolsAPI.hpp files both found
under the CBuilder6\Source\ToolsAPI\ folder to familiarize yourself with the
available interfaces.

• Delphi 6 Developer’s Guide, Xavier Pacheco and Steve Teixeira, (2001), Sams, pp.
1169, ISBN 0672321157—It might be Delphi focused, but this book provides
excellent examples on using the Tools API (see Chapter 17).

• Erik’s Open Tools API FAQ and Resources—http://gexperts.org/opentools/ This
is one of the better resources on the Internet for Tools API information. Most of
the examples are in Delphi though.

• Tempest Software—Open Tools API—http://www.tempest-sw.com/opentools/

Author Ray Lischner, who manages this site, is one of the strongest advocates
and experts on the Tools API. His site provides a solid tutorial and a number of
Delphi examples. Ray has also written several Delphi books that tackle the
Tools API.

• Hidden Paths of Delphi 3: Experts, Wizards, and the Open Tools API, Ray Lischner,
Danny Thorpe (Editor), Lori Ash (Editor), (1997), Informant Communications
Group, pp. 350, ISBN 0965736601—This provides an excellent resource on the
Open Tools API supported by Delphi 3, which is still relevant.

• Borland Newsgroups—news://newsgroups.borland.com There are several Borland
newsgroup discussion forums on the Tools API. They include
Borland.public.delphi.nativeapi, Borland.public.delphi.opentoolsapi,
Borland.public.cppbuilder.nativeapi, and Borland.public.cppbuilder.

opentoolsapi. The Delphi.opentoolsapi forum has been around the longest, and
probably contains the most information. The other forums have only recently
been added (September 2002). C++Builder developers should be able to pick up
quite a bit of knowledge from the Delphi focused forums.

CHAPTER 23 The Tools API: Extending the Borland IDE926

29 0672324806 CH23 12/12/02 2:36 PM Page 926

Summary
In this chapter, we’ve touched on the various elements of the Tools API such as
wizards, notifiers, services, creators, and editors. We have provided some practical
examples on how to use the Tools API. The more you play around with the Tools
API, the more comfortable you’ll become in hacking and extending the IDE. (Note:
Always hack responsibly). If you come up with an idea that adds a great new feature
to the IDE, you’re encouraged to build it, wrap it up in a DLL, and share it with the
rest of the Borland community. That way we all benefit, Delphi developers included.

There’s no doubt Borland has provided a fairly significant piece of technology in the
Tools API. Being able to extend an IDE’s capability using COM-like interfaces is a
clever approach for Borland allowing their engineers to more easily add improve-
ments to their development environments as well as opening the door for third-
party developers to provide new IDE plug-ins. One of the benefits is that a DLL that
hosts an IDE extension can be designed to work for future releases, as long as it’s not
dependent on any Native Tools API interfaces. The bottom line is that the flexibility
of the Tools API can be used to further the capabilities of your C++Builder IDE—and
that’s a good thing!

Summary 927

29 0672324806 CH23 12/12/02 2:36 PM Page 927

29 0672324806 CH23 12/12/02 2:36 PM Page 928

PART VI

Appendixes

IN THIS PART

A C++Builder Example Applications

B C++ Mobile Application Development

C Information Resources

D Enabling TXMLDocument for C++Builder
Professional

30 0672324806 PTVI 12/12/02 2:41 PM Page 929

30 0672324806 PTVI 12/12/02 2:41 PM Page 930

IN THIS APPENDIX

• Overview of C++Builder
Example Applications

• “Apps” Example Applications

• “DBTask” Example
Applications

• “Doc” Example Applications

• “WebSnap” Example
Applications

A

C++Builder Example
Applications

by Paul Gustavson

The set of example applications included with
C++Builder 6 is perhaps one of the best available resources
for developers. You can find these examples in your instal-
lation directory under the example folder. Unfortunately,
very little documentation accompanies the product CD
that describes these examples. In this appendix we will
highlight the capabilities provided by these examples.

Overview of C++Builder Example
Applications

The examples provided with C++Builder 6 are identified
and briefly described in Table A.1.

TABLE A.1 Borland C++Builder Example Applications

Folder Description

Ado Contains two examples related to using ActiveX

Data Objects (ADO): Briefcase and Shape.

AppEvents This example demonstrates the use of the

TApplicationEvents component including inter-

cepting application messages, exposing event

handlers, and posting text to list boxes.

Apps There are too many to list in this table. See Table

A.2 for more details.

CodeGuard An application containing a memory leak, which

is used to demonstrate the effectiveness of

CodeGuard.

31 0672324806 APPA 12/12/02 2:36 PM Page 931

APPENDIX A C++Builder Example Applications932

Controls Contains four folders demonstrating various types of controls. The SingleInst

folder provides a control for limiting the number of instances of an application.

The Source folder provides a set of packages (and source code) that represent

the controls found on the Samples tab of the VCL palette. The Traydemo

provides an example application showing various effects that can be made to

the system tray. The VersionInfo folder provides a set of packages that repre-

sent controls for identifying version info elements for an application such as

product version, file description, generic label, copyright label, and comments.

ConvertIt An application demonstrating the conversion of various units related to area,

distance, mass, temperature, time, and volume. (See Figure A.1 for an illustra-

tion of this example).

TABLE A.1 Continued

Folder Description

FIGURE A.1 The ConvertIt example application.

Corba Contains two applications demonstrating the effectiveness of Corba: atm and

corbamidas.

CustomDraw A custom draw TreeView example that demonstrates how to change font and

background including assigning a bitmap to the canvas of a TTreeView control.

DBTasks Contains a number of applications related to database tasks. There are too many

to list in this table; see Table A.3 for more details.

DDraw Contains a number of C++Builder DirectDraw examples.

Doc Contains a mix of applications related to document elements. There are too

many to list in this table; see Table A.4 for more details.

Docking Application shows how docking works in several scenarios, including conjoined

tab hosts.

31 0672324806 APPA 12/12/02 2:36 PM Page 932

Experts Contains an application illustrating the development of experts, and miscella-

neous C++Builder component operations.

FastNet Contains a number of applications using NetMaster components.

Games Contains three game examples for C++Builder: a Pong-like game in the

EarthPng folder, Coleco-like football game in the Football folder, and a game

called Swat! in the Swat folder. (See Figure A.2 for an illustration of the Football

example.)

Overview of C++Builder Example Applications 933

TABLE A.1 Continued

Folder Description

FIGURE A.2 The Football game application.

Indy Contains a number of examples that demonstrate the Indy network compo-

nents.

Internet Contains two Internet-based applications: Chat and a Hello World Dynamic

Shared Object (DSO) for Apache.

MFC Contains five Microsoft Foundation Class (MFC) library usage examples.

Midas Contains seven useful examples demonstrating Midas technologies.

OpenGL Contains two OpenGL API examples: Drawing and Rotate.

PWordDemo Demonstrates automation of Microsoft Word services within a C++Builder app.

ShellControls Contains package source for Shell controls, and an example that demonstrates

the use of these Shell controls.

StdLib A Standard Template Library (STL) example that runs miscellaneous demos of

STL algorithms and types.

Teechart An example application that demonstrates the Tee Chart Pro component.

Toolsapi Contains a set of examples demonstrating how to use Borland’s Tools API using

C++Builder. Examples include extensions to filters, action lists, native tool

services, and key bindings.

VirtualListView This program demonstrates how to create a file explorer application.

WebServ An example of a Common Gateway Services application for Web servers.

31 0672324806 APPA 12/12/02 2:36 PM Page 933

WebServices Contains three Web Services examples: EchoService, PostSOAP, and

SOAPDataModule. EchoService provides two example ISAPI and CGI servers, and

a client application.

WebSnap Contains a number of useful WebSnap examples. There are too many to list

here. See Table A.5 for details.

WinTools A C++Builder Command Line Tools GUI example. (See Figure A.3 for an illustra-

tion of this example.)

APPENDIX A C++Builder Example Applications934

TABLE A.1 Continued

Folder Description

FIGURE A.3 The WinTools command-line GUI application.

Let’s drill down further and identify some of the other examples that were too broad
to list in Table A.1.

”Apps” Example Applications
A number of examples are found under the Examples/Apps folder where C++Builder is
installed. These are identified and briefly described in Table A.2.

TABLE A.2 Apps Example Applications

Folder Description

Autocon Example of an OLE Automation Controller, which uses both VTable methods

and Dispatch methods to access a COM object. Requires the automation server

within the Autosrv folder to be registered (built and run) to execute. (See

Figure A.4 for an illustration of this example.)

31 0672324806 APPA 12/12/02 2:36 PM Page 934

Autosrv A simple COM Automation Server, which is used by the example Automation

Controller provided within the Autocon folder. (See Figure A.4 for an illustration

of this example.)

”Apps” Example Applications 935

TABLE A.2 Continued

Folder Description

FIGURE A.4 Demonstration of COM automation using the AutoCon and Autosrv
applications.

Canvas Demonstrates the rotation of lines drawn on a canvas over time.

Colordlg Demonstrates the use of the Color common dialog to change the color of a

form.

Cursors An example that demonstrates how to toggle the shape of a cursor.

Doodle A doodle paint program. (See Figure A.5 for an illustration of this example.)

FIGURE A.5 The Doodle program.

31 0672324806 APPA 12/12/02 2:36 PM Page 935

FindRep Demonstrates how to use the Find and Replace Dialogs within a RichEdit appli-

cation.

Header An example that uses a HeaderControl to resize the objects contained within

each column.

ImageView An example application used to navigate a hard disk to view image files (BMP,

ICO, WMF, and EMF).

IpcDemos Contains two applications, monitor and client, which demonstrate interprocess

communication (IPC) in Win32. Communication is accomplished between these

two applications using Threads, Events, Mutexes, and Shared memory.

MiniComp Example of a small, nonvisual counter component.

MultiPag A multipage dialog application that demonstrates the capabilities provided by a

TPageControl.

OwnerList This example provides a WYSIWG display of the fonts available on a system

demonstrating how to create and use an owner drawn list box.

Printing Demonstrates how to send text within a memo control to a printer. Uses

TPrintDialog.

ProcView An example that lists the processes that are running on a machine, and provides

the capability to kill them. Uses the Win32 API: EnumWindows(),

GetClassName(), GetWIndowText(), and TerminateProcess().

RichEdit A Rich Text word-processor example very similar to WordPad. Includes an

English, French, and Dutch version. (See Figure A.6 for an illustration of this

example.)

APPENDIX A C++Builder Example Applications936

TABLE A.2 Continued

Folder Description

FIGURE A.6 The RichEdit word processor program.

Scrollbar Demonstrates the use of a ScrollBar control.

Switch A simple example that demonstrates how to dynamically change event handlers

at runtime.

31 0672324806 APPA 12/12/02 2:36 PM Page 936

SysSound Enumerates the system sounds installed within Windows and demonstrates how

to play them using the Win32 API MessageBeep().

Tab A multipage dialog application that demonstrates the capabilities provided by a

TTabControl.

Threads Demonstrates how to derive a class from TThread to perform three types of

sorts: Bubble Sort, Selection Sort, and Quick Sort.

TrayIcon Demonstrates how to place an active icon for an application in the system tray,

and toggle the icon’s state.

TwoForms A simple application demonstrating how to instantiate and activate a second

form on a button clicked from the main form.

Wpm Example test application that measures the number of words per minute you can

type.

”DBTask” Example Applications
A few examples are found under the Examples/DBTask folder where C++Builder is
installed. These are identified and briefly described in Table A.3.

TABLE A.3 DBTasks Example Applications

Folder Description

BkQuery Demonstrates how to perform a background query on an SQL database using

threads.

CachedUp This example demonstrates how cached updates can be used in conjunction

with live data using the BDE and nonlive data using the UpdateSQL component.

Requires Interbase Server.

Contacts An example app demonstrating how customer orders are managed using

TQuery, TTable, and TDataSource. (See Figure A.7 for an illustration of this

example.)

CSDemos An example Internet Client application. Requires Interbase Server and SQL Links.

CtrlGrid A simple app, which displays database fields in a grid using TDBGrid,

TDBCtrlGrid, TDBNavigator, and TDBEdit.

DBErrors An example that demonstrates how to use Data Modules to centralize coding.

Includes a one-to-many form and illustrates how to trap and control database

errors.

Filter An application that demonstrates how to filter records using a Data Module with

a Query linked through a Datasource. Uses TDBGrid and TDBNavigator.

Find Demonstrates how to find records in a database. Uses TDBNavigator,

TDataSource, and TDBGrid.

”DBTask” Example Applications 937

TABLE A.2 Continued

Folder Description

31 0672324806 APPA 12/12/02 2:36 PM Page 937

FIGURE A.7 The Contacts database application.

APPENDIX A C++Builder Example Applications938

TABLE A.3 Continued

Folder Description

FishFact An example application that accesses a database of fish facts. Uses TDBImage,

TDataSource, TDBGrid, and TDBText. (See Figure A.8 for an illustration of this

example.)

FIGURE A.8 The FishFact database application.

Gds The Global Dive Supply example that shows two views of data and filter capabil-

ities. Uses TDataModule, TDataSet, and TDBGrid.

GDSDemo Another Global Dive Supply example that uses TTable, TDatabase,

TDataSource, TDBNavigator, and much more. A bit more sophisticated

than Gds.

IBDemo An application that demonstrates how to use InterBase event alerts.

31 0672324806 APPA 12/12/02 2:36 PM Page 938

LookUp Demonstrates how to use lookup fields and calculated fields using

TDBNavigator, TDBGrid, TdataSource, and TCurrencyField.

MastApp A very sophisticated database example that uses QuickReports with multiple

data. Uses TTable, TDataSource, TQuery, TDataBase, TQuickReport, and more.

MstPool Demonstrates how to pool database objects and measure the amount of time

needed to open and close a database connection.

NavMDI An MDI database example that uses TDBNavigator, TDataSource, TDBGrid, and

more.

NavSDI A multiform SDI database example that uses TDBNavigator, TDataSource,

TDBGrid, and more.

NDXBuild Shows how to build indexes for database tables using TTable, and more.

QBFDemo Demonstrates how to enable users to define their own queries. Uses TDBGrid,

TDBNavigator, and TDataSource.

QJoin Demonstrates how to join two tables by using an SQL query. Uses TQuery,

TDataSource, and TDBGrid.

QuickRpt Demonstrates how to use QuickReport types for viewing and printing. Uses

TQuickRep, TQRGroup, TQRExpr, TQRDetailLink, and much more. (See Figure

A.9 for an illustration of this example.)

”DBTask” Example Applications 939

TABLE A.3 Continued

Folder Description

FIGURE A.9 The QuickRpt print preview.

31 0672324806 APPA 12/12/02 2:36 PM Page 939

TextData Demonstrates how to create and use a DataSet component to work with text

files. Uses TDataSet.

”Doc” Example Applications
A few examples are found under the Examples/Doc folder where C++Builder is
installed. These are identified and briefly described in Table A.4.

TABLE A.4 Doc Example Applications

Folder Description

AutoProj An OLE automation server example that demonstrates how to set a property

and call a method of an automation server (SRVR) from an automation client

(TESTAP).

CBrowse Calendar Browser application that uses the TCalendar component.

DirOutIn An example application that uses TDirectoryOutline and TFileListBox. (See

Figure A.10 for an illustration of this example.)

APPENDIX A C++Builder Example Applications940

TABLE A.3 Continued

Folder Description

FIGURE A.10 The DirOutIn example application.

Filmanex A file manager–example application that also uses TDirectoryOutline.

GraphEx An application that demonstrates how to draw lines on a canvas, which can be

saved as a bitmap.

OleCtnrs Actually, two projects that demonstrate effective ways to use a TOLEContainer.

One is an SDI app, and the other an MDI. (See Figure A.11 for an illustration of

this example.)

31 0672324806 APPA 12/12/02 2:36 PM Page 940

FIGURE A.11 The OLEMDI example application.

”WebSnap” Example Applications 941

TABLE A.4 Continued

Folder Description

OLEWord1 Demonstrates an OLE automation controller that uses MS Word when it is

running.

OLEWord2 Similar to OLEWord1, but with a few more bells and whistles. Word also doesn’t

need to be running ahead of time for this application to run.

TextEdit A sample MDI application that uses RichEdit controls. Also demonstrates how to

print and change font attributes of text.

VarArray An application that demonstrates how to use one-dimensional and two-

dimensional Variant Arrays.

VarLock Demonstrates how to create and display contents of a Variant Array.

VarToInt Demonstrates how to instantiate an Automation object representing MS Word

using CreateOleObject(), and then assign Word’s IDispatch interface pointer

to a variant.

”WebSnap” Example Applications
WebSnap components and wizards, which are provided with C++Builder Enterprise,
are used to build advanced Web server applications that interact with a Web browser.
Some useful WebSnap examples are found under the Examples/WebSnap folder where
C++Builder is installed. These are identified and briefly described in Table A.5. Keep
in mind these applications require C++Builder Enterprise to build.

31 0672324806 APPA 12/12/02 2:36 PM Page 941

TABLE A.5 WebSnap Example Applications

Folder Description

Biolife Biolife Server-side examples, which includes a login prompt for browser

access into a database. Uses TApplicationAdapter, TAdapterDispatcher,

TPageProducer, TPageDispatcher, TWebAppComponents, and much more.

(See Figure A.12 for an illustration of this example.)

APPENDIX A C++Builder Example Applications942

FIGURE A.12 Web page access to the Biolife data base.

CountryEditor Server-side examples that use the TDataSetAdapter and

TAdapterPageProducer to demonstrate how to build a grid page and a form

page to edit a country table.

CountryReport Server-side examples that use TDataSetAdapter and custom JavaScript to

display a simple report using a country table.

DumpModules Server-side examples that demonstrate how to use JavaScript to traverse the

modules, adapters, and fields, and actions in a Web application. The

JavaScript is contained in the DumpModulesInc.html.

LocateFileService Server-side examples that demonstrate how HTML templates and server

side–include files can be retrieved by a client using the

TLocateFileService.OnFindStream event.

31 0672324806 APPA 12/12/02 2:36 PM Page 942

MasterDetail Server-side examples that demonstrate how to view and edit master-detail

relationship using TDataSetAdapter through a Web page. (See Figure A.13

for an illustration of this example.)

PhotoGallery Code for building a server-side application that provides a Web-based photo

gallery. (See Figure A.14 for an illustration of this example.)

StreamImage Server-side examples that demonstrates how to stream an image from a

server to a Web page.

”WebSnap” Example Applications 943

TABLE A.5 Continued

Folder Description

FIGURE A.13 Editing database information via the Web page via the MasterDetail
server.

Most of these examples contain one ISAPI server-side project and a Web Debugger
server-side project. To run the Web App Debugger version of any of the projects
contained within these example folders, compile the project (with the project name
ending in Debugger) and run it once to register it.

31 0672324806 APPA 12/12/02 2:36 PM Page 943

FIGURE A.14 Accessing the PhotoGallery via a Web browser.

Summary
In addition to the examples we’ve demonstrated within this book, the examples
provided by Borland with the C++Builder product provide another tangible resource
you can leverage. You’re encouraged to try out these examples, and “look under the
hood” to see how they are put together.

APPENDIX A C++Builder Example Applications944

31 0672324806 APPA 12/12/02 2:36 PM Page 944

IN THIS APPENDIX

• C++ Mobile Edition Overview

• Creating a Mobile Application

• Mobile Project Composition

• Deploying a Mobile
Application

• The Symbian OS

• Future Borland C++ Mobile
Products

• Additional Resources

B

C++ Mobile Application
Development

by Paul Gustavson

At the time of this writing, Borland is preparing to
deliver a new C++ environment for mobile application
development called C++ Mobile Edition. The initial release
for this environment, formerly known as Edison, will be
provided as a plug-in for C++Builder 6. This plug-in will
support the development of C++ applications for mobile
devices such as Nokia’s Series 60 platform, which is run on
the Symbian Operating System (OS). Future C++ mobile
releases will include a new Borland ARM C++ compiler
supporting additional mobile devices such as Microsoft CE
devices, Palm and Embedded Linux, along with Mobile
CLX components to help rapidly compose mobile
applications.

The first public preview of the Edison technology was at
the 13th Annual Borland Conference (BorCon) in May
2002 in Anaheim, California. However, Borland first
provided development support for mobile applications in
Java with the release of Borland JBuilder MobileSet 2.0 in
January 2001.

Although Java support is first to market for Borland, C++ is
seen as an ideal language for native, phone-specific appli-
cations. The C++ Mobile Edition will provide deployment
support from within the C++Builder development environ-
ment, simplifying the task of deploying C++ applications
to 2.5 and 3G phones.

In this appendix, we will take a look at C++ Mobile Edition
and what’s required to begin developing mobile applica-
tions for a wireless market that continues to explode. We’ll
also look ahead to see what else Borland is planning to put
in the hands of mobile application developers.

32 0672324806 APPB 12/12/02 2:41 PM Page 945

APPENDIX B C++ Mobile Application Development946

NOTE

As you peruse through this appendix a caveat should be mentioned. The descriptions and
examples provided in this appendix are based on an early development version of the C+
Mobile Edition that was provided by Borland at the time of this writing. It’s quite likely that
the official release of the C++ Mobile Edition will offer a slightly different look and feel and
might provide further extensions. However, the functionality and techniques provided in this
text should be very much applicable to the release version of the C++ Mobile Edition.

C++ Mobile Edition Overview
Borland C++ Mobile Edition is a plug-in that works for any edition of C++Builder 6
(Personal, Professional, Enterprise). However, you might find some features that are
not available in all editions. Regardless, the C++ Mobile Edition plug-in will enable
you to develop mobile applications within the C++Builder 6 development environ-
ment, as illustrated in Figure B.1.

FIGURE B.1 C++Builder IDE with the C++ Mobile Edition plug-in.

Let’s briefly look at what’s required to begin to develop mobile applications.

• Windows 2000 or Windows XP Professional

• C++Builder 6 Service Update 3 or later

32 0672324806 APPB 12/12/02 2:41 PM Page 946

• Symbian SDK (such as the Nokia Series 60 C++ Toolkit or Symbian Quartz 6.1)

• Java Runtime Environment (JRE) 1.31 or later

• Perl 5.6.1 or later

• Borland C++ Mobile Edition (Edison) Plug-In

Hopefully, you already have the first two items in the list. Next, the Symbian SDK,
such as the Nokia Series 60 C++ Toolkit, must be installed prior to installing the C++
Mobile Edition plug-in. You might be surprised to see that the Java Runtime
Environment (JRE) and Perl are also identified in this list. Both Java and Perl are
required to support the Symbian build process. Some of the Symbian SDK utilities are
Java applications, and, to use these utilities, the JRE needs to be installed.
Furthermore, the Symbian build scripts that are used during compilation are written
in Perl.

Fortunately, Borland will release a combined setup that includes the Nokia Series 60
C++ Toolkit, the JRE, Perl, the C++ Mobile Edition plug-in, and a Series 60 emulator,
which we’ll talk more about in a moment.

Symbian SDK
A Symbian Software Development ToolKit (SDK) provides a development framework
for the Symbian OS within Windows, which includes APIs, documentation, develop-
ment tools and scripts for supporting mobile application development. One of the
more popular SDKs is the Nokia Series 60 C++ Toolkit, which is a native C++ devel-
opment framework for the Symbian OS that is centered on Nokia’s Series 60 plat-
form. The Toolkit contains a phone emulator, APIs and documentation, and is used
to support development for smart-phone devices such as the Nokia 3650, which is
illustrated in Figure B.2.

One of the things that you might come across in the SDK documentation is that the
Nokia Series 60 SDK requires Microsoft Visual C++. This can be disregarded, given
that Borland provides the necessary wrappers and linkage into the SDK enabling you
to not only develop your mobile application, but to test and debug your application
within the C++Builder environment using the C++ Mobile Edition plug-in.

Another SDK supported by the C++ Mobile Edition is the Symbian Quartz 6.1 SDK. It
is anticipated that other SDKs closely tied with the Symbian OS and specific mobile
devices will be offered in the near future.

C++ Mobile Edition Overview 947

32 0672324806 APPB 12/12/02 2:41 PM Page 947

FIGURE B.2 The Nokia 3650 Symbian OS-based smart phone.

C++ Mobile Edition Plug-In
After a Symbian SDK is installed, the C++ Mobile Edition can then be installed.
When you install the C++ Mobile Edition plug-in for C++ Builder, the EPOCROOT and
Path environment variables will be set to allow proper access to the Symbian SDK
and Emulator, if one is present. This will ensure mobile applications can compile
and build properly within C++Builder.

NOTE

EPOC was the original name for the Symbian OS. References to EPOC are really aliases to the
Symbian OS components.

NOTE

One of the things that is possible within the C++ Mobile Edition is to use multiple mobile
SDKs in your development. However, when building mobile applications, you will need to
change your path variables to identify the appropriate SDK that represents the mobile device
you are trying to target.

With the first C++ Mobile Edition release, there are no VCL or CLX components that
you can drop on to a form representing the mobile application you are developing,

APPENDIX B C++ Mobile Application Development948

32 0672324806 APPB 12/12/02 2:41 PM Page 948

as you could for a Windows or Linux application that you are developing. Therefore,
you’ll need to develop your mobile application the old-fashion way and incorporate
the Symbian SDK API routines within your code. Fortunately, you will at least be
within the familiar C++Builder environment containing the integrated code editor,
compiler, debugger, a project manager, and an emulator, which enables you to debug
and test your mobile application. Furthermore, the wizard support provided by the
C++ Mobile Edition plug-in provides assistance in establishing new mobile projects
and importing existing mobile projects from the examples provided by the Nokia
Series 60 SDK and other SDKs.

Even if you don’t have a Symbian OS-based mobile device, you can still go through
the motions of developing and testing a mobile application. In fact, there are three
potential ways to test a mobile application.

• Use a software Emulator

• Use a software-based hardware Simulator

• Deploy to an actual mobile device

The first two items represent ways to test and run your application without the
actual hardware, whereas the last bullet should be obvious. In fact, it’s possible to
even debug a mobile application on a mobile device.

Emulator Versus Simulator
At this point you might be asking, “What’s the difference between an emulator and
simulator? Aren’t they basically the same?”

Actually, no; there is a distinction between the two. Although both are pieces of soft-
ware that run on the development machine and appear to replicate the appearance
and operation of a mobile device, they are fundamentally different. An emulator
provides the general operations and capabilities associated to a mobile device, but not
at the same fidelity or authenticity as a simulator, which fully mimics the hardware.

In more general terms, an emulator provides a constructive software environment for
testing and debugging your mobile applications, whereas a simulator provides a
virtual hardware environment for testing your mobile applications. The C++ Mobile
Edition can support both emulators and simulators within the IDE. The emulator
support is provided out of the box when you install because it is typically provided
with SDK. To support a simulator, however, the C++ Mobile Edition needs to detect
its presence within the system registry.

NOTE

A hardware simulator is not included with the initial release of the C++ Mobile Edition plug-in.
However, the C++ Mobile Edition should be capable of supporting simulators that are
currently available on the market such as the Virtio or the ARMulator virtual platforms.

C++ Mobile Edition Overview 949

32 0672324806 APPB 12/12/02 2:41 PM Page 949

You should notice a difference in the performance of your mobile application
between an emulator and a simulator. Because a simulator is fully mimicking the
hardware and running on top of an existing operating system, it can be more proces-
sor intensive and slower than the real hardware or even an emulator. The benefit of
a simulator, however, is that it provides a more authentic environment for validating
and verifying your application with the mobile device on which your application
will be deployed.

An emulator is useful for testing your mobile application before it’s been targeted for
the actual mobile device. To test your mobile application when it’s been targeted for
the actual device, you can use a simulator. In a moment, we’ll show you how to
select the target for your mobile application when it’s being built.

Creating a Mobile Application
Let’s now examine the specifics of creating a mobile application. With the C++
Mobile Edition there are two ways to establish a project. Either import an existing
mobile application project, such as one of the projects that can be found in the SDK
installation folders, or create a brand-new project. For learning, the easiest thing to
do is to import an existing SDK example. You can also load the sample Hello World
project provided on the companion CD-ROM for this book. This project can found
under the MadeInBorland folder for this appendix.

The process of establishing a mobile project within C++Builder is performed by
selecting File/New/Other from the main menu, and then by selecting the Mobile Tab
on the New Items dialog. This is illustrated in Figure B.3.

APPENDIX B C++ Mobile Application Development950

FIGURE B.3 New Items dialog—Mobile Tab.

If you select the New Mobile Application glyph and press OK within this Dialog view, a
brand-new mobile application will be generated representing a mobile dll project

32 0672324806 APPB 12/12/02 2:41 PM Page 950

consisting of a .cpp and .res file. You can then begin to use the Borland text editor
to code your application. Be sure to refer to the SDK documentation for details on
utilizing the Symbian OS API classes.

If you select the Import Mobile Application glyph and press OK within this Dialog
view, an open dialog will appear as illustrated in Figure B.4.

Creating a Mobile Application 951

FIGURE B.4 Open dialog.

The folders ending with the Ex tag identify the available mobile examples that can
be imported. The epoc32ex folder contains generic Symbian OS examples, whereas
the Series60Ex folder contains examples pertinent to not only the Symbian OS but
also the Nokia Series 60-based phones. Borland recommends you use the projects
found in the Series60Ex folder, unless you are developing for a pen-based mobile
device.

NOTE

Many of the examples contained within the epoc32ex folder were written by Symbian for use
with the Symbian OS 6.1, Quartz user interface. Quartz is a pen-based UI, with a different
form factor from the Series 60. Because the Series 60 Emulator presents a one-handed,
buttons only interface it is nearly impossible to interact with most of the pen-based examples.

These two options, New Items dialog and Mobile Tab, illustrate how to establish a
new project within C++Builder. For our purposes, we will use the Hello World
mobile application provided with the companion CD to highlight the build and test
process, and to understand the composition of a mobile application.

32 0672324806 APPB 12/12/02 2:41 PM Page 951

NOTE

If you’re yearning for more (after we examine the Hello World application), it’s recommended
that you further explore and learn by importing example applications such as the Query
example, which can be found with the Nokia Series 60 SDK under the
Series60Ex\Query\group folder. Select the BLD.INF file within this folder. C++Builder, in
concert with the Mobile Edition plug-in, will load this project. Build and run as described in
the “Building a Mobile Application” section.

Let’s now look specifically how to load and build the Hello World project, and test
the application using the Nokia emulator.

Loading the Hello World Example
We have already described the step of importing an existing project. The Hello
World mobile application provided on the companion CD-ROM can either be loaded
using this import method by selection of the BLD.INF file associated to the project, or
it can be loaded directly by using the Open Project menu item and selecting the
MadeInBorland_Project project group file.

If you choose the import method, you will be prompted for a Project and a Project
Group filename when you go to build the project. You’re free to choose any name
you’d like, but keep in mind that names have already been prescribed for the project
as provided on the CD-ROM.

Building a Mobile Application
One of the first steps in building a mobile application is to make sure the project
options are set properly. The project options dialog for the C++ Mobile Edition is
shown in Figure B.5.

APPENDIX B C++ Mobile Application Development952

FIGURE B.5 Project Options dialog—Preferences Tab.

32 0672324806 APPB 12/12/02 2:41 PM Page 952

You’ll notice that the project options dialog is quite a bit different from the project
options dialog associated with a typical C++Builder application. At this stage, C++
Mobile Edition is dependent on the Symbian and Nokia tools and scripts and less
reliant on its own utilities. Furthermore, the Symbian OS is a different animal than
Windows and requires fewer settings.

To test our mobile application locally on a Windows platform, we need to set the
target Device type to WINS and the Build Type to Debug.

WINS identifies that a Windows OS will be used to host the mobile application, in
other words the application will be compiled to run on the emulator. To test an
application on a simulator or deploy to a mobile device, the Target you must select
within the build options is the ARM target. ARM identifies the type of processor utilized
by the mobile device. A Nokia 3650, for example, uses an ARM-based processor.
When you select the ARM target, C++Builder will actually use the GNU ARM C++
compiler provided with the Symbian SDK to compile the source code, and the
Symbian OS utilities to link the project.

After the mobile project options are set, we can now build the mobile application.
Under the Project menu within the IDE, select the Build menu item pertaining to
the loaded project. Then, you will see C++Builder’s Compiling dialog identifying the
various phases of the build process within the Status field. When it’s complete, you
should see a “Project Build Successful” status.

WARNING

When creating a new project, consider saving the project beneath the EPOCROOT folder.
Otherwise, the mobile project might not compile and load properly within the Nokia
emulator.

Testing the Application
You’re now ready to test run the Hello World mobile application. This is achieved
simply by selecting the Run button on the C++Builder IDE toolbar. The Nokia emula-
tor will begin to load. The load is complete after you see the main menu for the
Nokia emulator appear as illustrated in emulator phone display on the left side of
Figure B.6.

This figure illustrates how to access the Hello World application that was built within
the C++Builder IDE and loaded by the Nokia emulator. From the main menu within
the Nokia emulator, select the Other glyph using the O keypad button, and then
select the HelloWorld glyph, which represents the Hello World application.

Creating a Mobile Application 953

32 0672324806 APPB 12/12/02 2:41 PM Page 953

FIGURE B.6 Nokia Emulator—Displays.

TIP

Occasionally, a project that has been built and loaded within the emulator might not reflect
future changes if it is modified and rebuilt again within the C++Builder IDE. In these circum-
stances, you can delete the folder representing the mobile application that was built from the
Symbian OS System folder. To locate this folder, go to where the Symbian SDK was installed
and trace down the following path:

Series60\Epoc32\Release\winsb\UDEB\Z\SYSTEM\apps

You should then see a list of folders, one of which represents your application. Simply delete
the specific folder representing your mobile application and rebuild it within C++Builder. The
folder will then be regenerated and when you run the Nokia emulator the updated applica-
tion should appear with the Other menu.

WARNING

If you modify a file related to your mobile project, selecting Run will not necessarily automati-
cally rebuild the project. Instead, select either Make or Build prior to selecting Run.

Mobile Project Composition
Now, let’s examine the project file structure for our “Made in Borland” Hello World
application.

The obvious way to view files that are associated to a project in C++Builder is by
examining the Project Manager dialog as illustrated in Figure B.7.

APPENDIX B C++ Mobile Application Development954

32 0672324806 APPB 12/12/02 2:41 PM Page 954

FIGURE B.7 Project Manager Dialog for the “Made in Borland” Hello World Application.

There are a number of different types of files used to represent a project for a mobile
application. They include one or more Mobile Management Project (MMP) files, a
component description file identified as BLD.INF, and a Package Description (PKG)
file. In addition to these three types of files, traditional source (CPP) and header (H)
files are created by the developer to represent the aspects of the mobile application.
Also, a resource (RSS) file containing UI definitions can be used and created within a
mobile application project.

MOBILE EDITOR

The Project Files tab found on the Mobile Options dialog, which we used earlier to
modify the project options, displays the principal files associated to our mobile project and is
illustrated in Figure B.8.

Mobile Project Composition 955

FIGURE B.8 Project Options dialog—Project Files Tab.

In this figure, two files are identified: HelloWorld.mmp and bld.inf. One of the tools Borland
has provided with the C++ Mobile Edition is the Mobile Editor dialog. If you select view for
either one of the two files listed in the Project Files tab the Mobile Editor dialog will appear, as
illustrated in Figure B.9.

32 0672324806 APPB 12/12/02 2:41 PM Page 955

FIGURE B.9 Mobile Editor.

The Mobile Editor is a useful tool for constructing and adding elements to MMP, INF, and PKG
files. The left column identifies the key elements that can be added to the file that is displayed
on the right panel, which serves as an editor. By double-clicking a key element it will be
reflected at the cursor position within the editor on the right side.

MMP Files
An MMP file defines the properties of a mobile application project. An example is
provided in Listing B.1.

LISTING B.1 The MadeInBorland.MMP File

TARGET MadeInBorland.app

TARGETTYPE app

UID 0x100039CE 0x10004299

TARGETPATH \system\apps\MadeInBorland

SOURCEPATH .

SOURCE MadeInBorland _Main.cpp

SOURCE MadeInBorland _Application.cpp

SOURCE MadeInBorland _Document.cpp

SOURCE MadeInBorland _AppUi.cpp

SOURCE MadeInBorland _AppView.cpp

APPENDIX B C++ Mobile Application Development956

32 0672324806 APPB 12/12/02 2:41 PM Page 956

USERINCLUDE .

SYSTEMINCLUDE \epoc32\include

RESOURCE MadeInBorland.rss

LIBRARY euser.lib apparc.lib cone.lib eikcore.lib

Within this file, there are no dependencies on the intended target platform or the
compiler. It typically identifies the target filename, the target type, a Unique ID for
the project, the source path indicating the location of the source files, the names of
the source files being used, the location of the user and system include files, and any
resource or library files that might be required. Comments within the MMP file can
be made using C++ style comments.

Multiple MMP files can be included within a mobile application project. If your
mobile application contains more than one module or DLL, you should include sepa-
rate MMP files.

BLD.INF File
Every mobile application project has a BLD.INF file, which identifies all the compo-
nents of the projects. The BLD.INF file enables you to specify the MMP files required
for building the components associated to the mobile application. Table B.1 identi-
fies the elements of a BLD.INF file.

TABLE B.1 BLD.INF Elements

Element Description

PRJ_PLATFORMS Identifies the type of platform to which you are deploying.

PRJ_EXPORTS Used to specify the source file.

PRJ_MMPFILES Used to identify the MMP files.

PRJ_TESTMMPFILES Used to identify MMP files for test only.

In our example, the BLD.INF file is shown in Listing B.2.

LISTING B.2 The MadeInBorland BLD.INF File

// BLD.INF

//

// Made In Borland - Hello World app for

// C++Builder Deverloper’s Guide

// Paul Gustavson

//

// Based on the HelloWorld example provided with the Symbian SDK

Mobile Project Composition 957

LISTING B.1 Continued

32 0672324806 APPB 12/12/02 2:41 PM Page 957

//

PRJ_MMPFILES

HelloWorld.mmp

You’ll notice this BLD.INF file is very simple. We only needed to identify the MMP file
using PRJ_MMPFILES tag. As your confidence grows in developing mobile applications,
you’ll find that your BLD.INF file will become meatier.

Source Code Files
Like standard C++ applications, a mobile project contains one or more header files,
source files, resource files and, sometimes, localization files.

Header File
In our example, we have one central header file that identifies the key classes
required for our Hello World application. This header file is provided in Listing B.3.

LISTING B.3 The “Made in Borland” HelloWorld.h File

// HelloWorld.h

// ——————

//

// Made In Borland - Hello World app for

// C++Builder Deverloper’s Guide

// Paul Gustavson

//

// Based on the HelloWorld example provided with the Symbian SDK

//

//

// MadeInBorland (HelloWorld app)

// —————

//

//

// The class definitions for the simple example application

// containing a single view with the text “Made In Borland” drawn

// on it.

//

APPENDIX B C++ Mobile Application Development958

LISTING B.2 Continued

32 0672324806 APPB 12/12/02 2:41 PM Page 958

// The class definitions are:

//

// CExampleApplication

// CExampleAppUi

// CExampleAppView

// CExampleDocument

//

//

//

#ifndef __HELLOWORLD_H

#define __HELLOWORLD_H

#include <coeccntx.h>

#include <eikenv.h>

#include <eikappui.h>

#include <eikapp.h>

#include <eikdoc.h>

#include <eikmenup.h>

#include <eikon.hrh>

#include <helloworld.rsg>

#include “helloworld.hrh”

//

//

// CExampleApplication

//

//

class CExampleApplication : public CEikApplication

{

private:

// Inherited from class CApaApplication

CApaDocument* CreateDocumentL();

TUid AppDllUid() const;

};

Mobile Project Composition 959

LISTING B.3 Continued

32 0672324806 APPB 12/12/02 2:41 PM Page 959

//

//

// CExampleAppView

//

//

class CExampleAppView : public CCoeControl

{

public:

static CExampleAppView* NewL(const TRect& aRect);

CExampleAppView();

~CExampleAppView();

void ConstructL(const TRect& aRect);

private:

// Inherited from CCoeControl

void Draw(const TRect& /*aRect*/) const;

private:

HBufC* iExampleText;

};

//

//

// CExampleAppUi

//

//

class CExampleAppUi : public CEikAppUi

{

public:

void ConstructL();

~CExampleAppUi();

private:

// Inherirted from class CEikAppUi

void HandleCommandL(TInt aCommand);

private:

CCoeControl* iAppView;

};

APPENDIX B C++ Mobile Application Development960

LISTING B.3 Continued

32 0672324806 APPB 12/12/02 2:41 PM Page 960

//

//

// CExampleDocument

//

//

class CExampleDocument : public CEikDocument

{

public:

static CExampleDocument* NewL(CEikApplication& aApp);

CExampleDocument(CEikApplication& aApp);

void ConstructL();

private:

// Inherited from CEikDocument

CEikAppUi* CreateAppUiL();

};

#endif

This header file identifies the classes that are defined within the multiple source files
associated to our mobile project.

Source Files
A mobile application is typically composed of a number of C++ source files. In our
example, each source file defines one of the specific classes identified by our
HelloWorld.h header file. Rather than examining each source file pertaining to our
example, we’ll look strictly at the HelloWorld_AppView.cpp source file that defines the
CExampleAppView class. This file is shown in Listing B.4.

LISTING B.4 The “Made in Borland” HelloWorld_AppView.cpp File

// HelloWorld_CExampleAppView.cpp

// ———————————————

//

//

//

// Source file for the implementation of the

// application view class - CExampleAppView

//

//

#include “HelloWorld.h”

Mobile Project Composition 961

LISTING B.3 Continued

32 0672324806 APPB 12/12/02 2:41 PM Page 961

//

// Constructor for the view.

//

CExampleAppView::CExampleAppView()

{

}

// Static NewL() function to start the standard two

// phase construction.

//

CExampleAppView* CExampleAppView::NewL(const TRect& aRect)

{

CExampleAppView* self = new(ELeave) CExampleAppView();

CleanupStack::PushL(self);

self->ConstructL(aRect);

CleanupStack::Pop();

return self;

}

//

// Destructor for the view.

//

CExampleAppView::~CExampleAppView()

{

delete iExampleText;

}

// Second phase construction.

//

void CExampleAppView::ConstructL(const TRect& aRect)

{

// Fetch the text from the resource file.

iExampleText = iEikonEnv->AllocReadResourceL(R_EXAMPLE_TEXT_HELLO);

// Control is a window owning control

CreateWindowL();

// Extent of the control. This is

// the whole rectangle available to application.

// The rectangle is passed to us from the application UI.

APPENDIX B C++ Mobile Application Development962

LISTING B.4 Continued

32 0672324806 APPB 12/12/02 2:41 PM Page 962

SetRect(aRect);

// At this stage, the control is ready to draw so

// we tell the UI framework by activating it.

ActivateL();

}

// Drawing the view - in this example,

// consists of drawing a simple outline rectangle

// and then drawing the text in the middle.

// We use the Normal font supplied by the UI.

//

// In this example, we don’t use the redraw

// region because it’s easier to redraw to

// the whole client area.

//

void CExampleAppView::Draw(const TRect& /*aRect*/) const

{

// Window graphics context

CWindowGc& gc = SystemGc();

// Area in which we shall draw

TRect drawRect = Rect();

// Font used for drawing text

const CFont* fontUsed;

// Start with a clear screen

gc.Clear();

// Draw an outline rectangle (the default pen

// and brush styles ensure this) slightly

// smaller than the drawing area.

drawRect.Shrink(10,10);

gc.DrawRect(drawRect);

// Use the title font supplied by the UI

fontUsed = iEikonEnv->TitleFont();

gc.UseFont(fontUsed);

// Draw the text in the middle of the rectangle.

TInt baselineOffset=(drawRect.Height() - fontUsed->HeightInPixels())/2;

gc.DrawText(*iExampleText,drawRect,baselineOffset,CGraphicsContext::ECenter,

➥0);

// Finished using the font

Mobile Project Composition 963

LISTING B.4 Continued

32 0672324806 APPB 12/12/02 2:41 PM Page 963

gc.DiscardFont();

}

In the ConstructL() method for the CExampleAppView class provided in this code
listing, text identified by the R_EXAMPLE_TEXT_HELLO is fetched from the resource file
and contained in the iExampleText class property. In a moment we will look at this
resource file that contains this string.

In the Draw() method, a Symbian windows graphics context is created. A rectangle
and the string associated to the iExampleText is then drawn to this graphics context.
Notice the use of Symbian OS API calls in many of these methods.

Resource File
Let’s now take a look at the resource file associated for our “Made in Borland” Hello
World project. The MadeInBorland.RSS file is provided in Listing B.5.

LISTING B.5 The “Made in Borland” HelloWorld.RSS Resource File

// HelloWorld.RSS

//

// Made In Borland - Hello World app for

// C++Builder Deverloper’s Guide

// Paul Gustavson

//

// Based on the HelloWorld example provided with the Symbian SDK

NAME HEWO

#include <eikon.rh>

#include <eikcore.rsg>

#include “helloworld.hrh”

RESOURCE RSS_SIGNATURE { }

RESOURCE TBUF { buf=””; }

RESOURCE EIK_APP_INFO

{

hotkeys=r_example_hotkeys;

menubar=r_example_menubar;

APPENDIX B C++ Mobile Application Development964

LISTING B.4 Continued

32 0672324806 APPB 12/12/02 2:41 PM Page 964

}

RESOURCE HOTKEYS r_example_hotkeys

{

control=

{

HOTKEY { command=EEikCmdExit; key=’e’; }

};

}

RESOURCE MENU_BAR r_example_menubar

{

titles=

{

MENU_TITLE { menu_pane=r_example_first_menu; txt=”MBorland”; }

};

}

RESOURCE MENU_PANE r_example_first_menu

{

items=

{

MENU_ITEM { command=EExampleItem0; txt=”Item 0”; },

MENU_ITEM { command=EExampleItem1; txt=”Item 1”; },

MENU_ITEM { command=EExampleItem2; txt=”Item 2”; }

};

}

RESOURCE TBUF r_example_text_Hello { buf=”Made In Borland®”; }

RESOURCE TBUF r_example_text_Item0 { buf=”Item 0”; }

RESOURCE TBUF r_example_text_Item1 { buf=”Item 1”; }

RESOURCE TBUF r_example_text_Item2 { buf=”Item 2”; }

Notice the r_example_text_Hello resource string that identifies the tag that we want
displayed when this application is launched.

Mobile Project Composition 965

LISTING B.5 Continued

32 0672324806 APPB 12/12/02 2:41 PM Page 965

Additional Files
There are other files associated to a mobile project that you might encounter as well.
One, for example, is a multi-bitmap (MBM) file, which represents the Symbian OS
icon used for a mobile application. The common tool used to create and modify
MBM files is the Icon Designer that is part of AIF Builder utility application provided
with the Symbian OS SDK. The AIF builder is a Java application (thus another reason
for the JRE). Another file is an Application Information File (AIF), which is used to
describe the application features such as icons and captions. This AIF file is gener-
ated from an RSS file.

In a moment we’ll also talk about the Package Description (PKG) files and Symbian
Installation System (SIS) files used for deploying a mobile application.

GUIDELINES FOR MOBILE DEVELOPMENT

Keep in mind that a mobile device does not have as much functionality or screen space as a
desktop or laptop. Furthermore, the functionality and screen space varies greatly among
mobile devices such as cell phones and Personal Digital Assistants (PDAs). For instance, the
standard form factor for a Series 60 device, such as the Nokia 3650, provides a screen size
resolution of 176×208 pixels, which is relatively large for a cell phone. A typical PocketPC,
however, provides a resolution of 320×240 pixels.

If you’re developing for the Series 60 device, the good news is that the same user interface
and form factor can be used by all series 60 licenses, including Nokia, Siemens, Samsung, and
Matsushita (Panasonic). This allows applications targeted for a Series 60 device immediate
portability across the major phone manufacturers.

Therefore, the mobile applications you develop need to be practical and easy to use. In addi-
tion, the majority of mobile devices have limited keyboards, memory space, and power
capacity. The design of a mobile application needs to consider these attributes. Focus on easy
navigation and efficient memory management. It’s recommended that you refer to the mobile
SDK documentation during design and development, which provides an API reference and
Style guides for the device you’re targeting.

Deploying a Mobile Application
At some point you’ll eventually want to deploy your application to a mobile device.
After an application has been developed and tested using an emulator (or simulator),
it’s ready to go through the process of being deployed to a mobile device.

PKG and SIS Files
For an application to be installed and loaded on a mobile device, a Symbian
Installation System (SIS) file needs to be generated representing the mobile applica-
tion. This is accomplished through the creation of a Package Description (PKG) file
that identifies the installation information for the mobile application. It contains a

APPENDIX B C++ Mobile Application Development966

32 0672324806 APPB 12/12/02 2:41 PM Page 966

unique identifier (UID) for the mobile application that must be included to differen-
tiate one app from another. Again, this PKG file is used to build the SIS file, which
calls the deployment tool (for example, epocinst.exe, the EPOC install program).

There are several ways to create a PKG file using C++Builder:

• Use the standard editor to create a PKG file by hand.

• Use the Mobile Editor provided by the C++ Mobile Edition.

• Use the Nokia Developer’s Suite (NDS) utilities.

The most promising method identified is using the NDS utilities. NDS is geared to
automate the process of creating the SIS file. This includes configuring a package,
generating a package, and deploying a package to a mobile device. At the time of this
writing, Borland is working out the issues for providing the NDS utilities as a wizard
that can be accessed from the Tools menu in the C++Builder IDE. Borland is hopeful
that the NDS wizard will be available for the first release of C++ Mobile Edition,
although it might not appear until a later release.

Tools and Methods
An application can be deployed to the target device in two ways. Either the SIS file
can be copied to the device, and then installed locally, or the installation can be
done remotely using the connection software (for example, PC Suite for Nokia 7650).
Two items are required to accomplish either one of these activities:

• Symbian OS-based mobile device

• Connectivity tool such as Nokia 7650 PC Suite

The connectivity tool is a software application that will enable you to download
your mobile application to your mobile device, usually via infrared (IrDA),
Bluetooth, or even RS-232. The Nokia 7650 PC Suite is a programming interface
between your PC and Nokia GSM mobile phones. Specifically, the SDK enables
communication with Nokia GSM phones and development of PC applications that
utilize the features supported by the phones.

The NDS utilities, described earlier, can be used to leverage this connectivity tool and
deploy the SIS file to the host using IrDA, RS232, or Bluetooth.

Symbian OS
Our discussion thus far has centered largely on developing mobile applications for
the Symbian OS. It’s important to understand the community interest and architec-
ture associated to this OS.

Symbian OS 967

32 0672324806 APPB 12/12/02 2:41 PM Page 967

The Symbian OS is the most widely licensed operating system among manufacturers
of next-generation mobile phones. The Symbian OS effort is the brainchild of
Ericsson, Nokia, Motorola, and Psion, and has been licensed to Samsung, Sony
Ericsson, Fujitsu, and Matsushita (Panasonic). It is a full-fledged 32-bit multitasking
operating system that provides the following capabilities for mobile devices.

• data management

• communications

• graphics

• multimedia

• security

• application engines

• messaging engine

• Bluetooth support

• browser engines support

• data synchronization and internationalization

Symbian-based phones support GSM, GPRS, and in the future WCMDA, CDMA 2000
(see sidebar on Mobile Technology Acronyms). Borland’s C++ support for Symbian OS is
geared to facilitate the development of 2.5G/3G mobile device applications and take
advantage of these aforementioned capabilities and technologies.

MOBILE TECHNOLOGY ACRONYMS

There are lots of confusing acronyms associated to mobile industry. A handful of some of the
more common and emerging acronyms is provided in Table B.2.

TABLE B.2 Mobile Technology Acronyms

Acronym Definition

2G Second-Generation technology

3G Third-Generation technology

BSSGP Base Station Subsystem GPRS Protocol

CDMA Code Division Multiple Access

CDPD Cellular Digital Packet Data

DSP Digital Signal Processor

EDGE Enhanced Data Rates for GSM

GPRS General Packet Radio Service

GSM Global System for Mobile Communications

GTP GPRS Tunneling Protocol

APPENDIX B C++ Mobile Application Development968

32 0672324806 APPB 12/12/02 2:41 PM Page 968

HDR High Data Rate

HSCSD High-Speed, Circuit-Switched Data

IXRTT One Times Radio Transmission Technology

L2CAP Logical Link Control and Adaptation Protocol

LLC Logical Link Control

MMS Multimedia Message Service

PCS Personal Communications System Evolution

PDA Personal Digital Assistant

RLC/MAC Radio Link Control/Medium Access Control

SMS Short Message Service

SNDCP SubNetwork Dependent Convergence Protocol

SoC Systems-on-a-Chip

TETRA TErrestrial Trunked RAdio

WAP Wireless Access Protocol

WCMDA Wideband CDMA

WML Wireless Markup Language

Borland’s support includes the capability to develop applications for different form
factors and for different uses. Figure B.2 provided an illustration of one of the more
recent Symbian OS products developed by Nokia. A list of current products is also
provided here.

• Nokia 9210/9210i—Nokia 9290

• Sony Ericsson P800

• Nokia 3650/7650

An excellent white paper titled “Getting Started with C++ on the Nokia 9200 Series
Communicator,” which is available online, will get you started in developing C++
mobile apps even if you don’t have the C++ Mobile Edition. You can find this white
paper at http://www.symbian.com/developer/techlib/papers/cpp_9200/C++_Nokia_9200.
html. To develop the Hello World example that’s described in this online paper, you
should obtain the Nokia 9200 Series Software Development Kit (SDK) for Symbian
OS (see http://www.forum.nokia.com/).

NOTE

The Nokia 9200 Series SDK provides documentation, tools, sample code, and a Microsoft
Windows–hosted emulator to facilitate development of mobile apps. In the absence of C++
Mobile Edition, the SDK is essential for developing, testing, and debugging C++ applications.

Symbian OS 969

TABLE B.2 Continued

Acronym Definition

32 0672324806 APPB 12/12/02 2:41 PM Page 969

Future Borland C++ Mobile Products
The C++ Mobile Edition is just the beginning for Borland. Current plans include an
IDE project code named Kittyhawk that will include a Borland ARM C++ compiler
and Mobile CLX components.

Borland ARM C++ Compiler
The initial release of C++ Mobile Edition uses the GNU C++ Compiler to generate
ARM-executable instruction code. This compiler is currently used to target Symbian
OS-based devices that use the ARM-based chipset. Borland, however, has bigger plans
than strictly supporting application development for Symbian OS-based devices.
Their goal is to support a variety of ARM-based chipset devices including WinCE
devices such as a PocketPC, Embedded Linux devices, and next-generation Palm
Pilots. To achieve this objective, Borland is creating a brand-new C++ compiler that
produces applications with ARM executable instruction code that can be targeted
and run on various devices.

Borland’s recent efforts with the compact .NET framework, and the current develop-
ment of this ARM C++ compiler satisfies one of the long-time desires of C++Builder
developers. The common wish that has been echoed within the newsgroups for the
past few years is the capability to develop applications for the PocketPC and Palm
using C++Builder. It appeared for a while that this capability would remain only a
wish by developers; however, Borland’s emphasis over the last several years has been
focused on cross-platform development, which now includes the wireless and hand-
held market. Borland’s ARM C++ Complier will enable applications to be developed
and deployed for handheld devices that use the ARM-based processor such as the
PocketPC. This is only one of the exciting things to expect from Borland.

Mobile CLX Framework
In the near future, Borland plans to develop and release the Mobile RAD environ-
ment, which consists of brand-new Mobile RAD IDE and Mobile CLX components.
The Mobile CLX components are expected to be a subset of the CLX (and VCL)
components provided with C++Builder 6 and Kylix 3. However, in addition to
embracing a set of the common CLX components, there will be new components
that are exclusive to supporting mobile development, which will consist of wrappers
around existing Symbian OS API classes and frequently used Symbian third party
libraries. Anticipated examples include components for managing phone calls, text
messages, multimedia, calendar, and location-based services. These Mobile CLX
components will be designed for portability to other Symbian OS-based platforms.
Mobile CLX components for other ARM-based devices are anticipated as well.

APPENDIX B C++ Mobile Application Development970

32 0672324806 APPB 12/12/02 2:41 PM Page 970

Additional Resources
A number of useful resources are available online that contain more information
regarding mobile devices. Here are just a few that are relevant to C++ mobile applica-
tion development.

• www.symbian.com

• www.forum.nokia.com

• portals.devx.com/Nokia/Door/6213

• www.ericsson.com/mobilityworld/

Summary
Borland has made some significant strides in putting together a RAD environment
for mobile application development for both Java and C++ developers. The ability to
use a familiar environment such as C++Builder to develop C++ applications for
Symbian OS-based smart phones, and, in the near future, hand-held computing
devices is extremely appealing. The advent of Mobile CLX components should also
be well received.

In foresight, Borland’s focus on RAD development tools for the mobile market is well
timed. It is anticipated that the number of people using wireless devices to stay
connected and access the Internet will exceed a half billion by the year 2005. What
will draw the interest of these half billion users will be cutting-edge applications that
utilize Web-based technologies such as Multimedia Message Service (MMS). A RAD
mobile application development environment that enables the creation of these
types of applications will be a welcomed capability for developers and those involved
in the wireless industry.

Summary 971

32 0672324806 APPB 12/12/02 2:41 PM Page 971

32 0672324806 APPB 12/12/02 2:41 PM Page 972

IN THIS APPENDIX

• Borland-Sponsored Web Sites

• Useful Developer Web Sites

• Newsgroups

• Books and Magazines

• The Borland Developers
Conference (BorCon)

C

Information Resources

by Paul Gustavson

This appendix will point you to many of the useful
resources available online or in print regarding C++Builder
development. We’ll look at resources ranging from Web
sites, newsgroups, magazines, and books dedicated exclu-
sively to C++Builder, as well as resources focused on C++,
VCL, and CLX development, Windows technologies such
as COM and DirectX, and much more. Much of the infor-
mation available in the resources provided here will help
direct you to answers to your C++Builder development-
related issues.

Borland-Sponsored Web Sites
Let’s start off with Borland-sponsored Web sites. Borland,
obviously, provides some of the most focused and current
information for C++Builder available on the Internet. They
have several sites that we’ll examine briefly.

• Borland Home Page—http://www.borland.com

• Borland Developer Network—http://bdn.borland.com

• CodeCentral—http://codecentral.borland.com

• QualityCentral—http://qc.borland.com

Borland Home Page
The first site listed is Borland’s corporate site (as shown in
Figure C.1) where you can find product and company
information, press releases, technical support contacts, and
the latest C++Builder downloads and patches including
Help file updates. Be sure to check this site periodically for
product updates.

33 0672324806 APPC 12/12/02 2:38 PM Page 973

APPENDIX C Information Resources974

FIGURE C.1 The Borland corporate home page (http://www.borland.com).

Also, vendors who produce shrink-wrapped and downloadable software that support
Borland products such as C++Builder can partner with Borland and list their prod-
ucts on the Borland Web site. To get a listing of the Tools and Components provided
by these developers, look for the Partners, Partner Directory Link and select the
product of interest (which is C++Builder). This will open a Web page with links to a
wide range of tool and component areas including ActiveX Controls, Case Tools,
Installation, Software Utilities, and Web Tools.

Borland Developer Network
The second Web site listed is the Borland Developer Network (BDN), which was
formerly known as the Borland Community Web site. BDN contains many relevant
articles from staff and independent writers on development topics specific to
Borland products and technologies such as Web services, VCL, .NET, and templates.
This, by far, is the must-see site for any Borland developer.

Figure C.2 shows the main BDN page as it looks at the time of this writing. Down
the left side you’ll find links to general areas of interest including a Search window,
Shopping area, Chat area, Editorials, and much more. Across the top you can drill
down to a particular product area (AppServer, C++, CORBA, Delphi & Kylix,
Interbase, Java, Linux, and TeamSource DSP).

33 0672324806 APPC 12/12/02 2:38 PM Page 974

FIGURE C.2 The main page of the Borland Developer Network
(http://bdn.borland.com).

NOTE

To fully benefit and access all the areas of BDN, sign up as a Borland Community member,
which is free. Membership provides access to the Downloads page, enables you to get
involved in the online chats, provides access to CodeCentral (covered later in the
“CodeCentral” section), and lets you participate in the surveys. Furthermore, BDN member-
ship is required upon product registration for qualifying and receiving product updates.

TIP

One of the great opportunities to learn about some of the advanced features of C++Builder is
to fire questions at the Borland R&D (Research and Development) team through the regular
live chats that are held on specific topics. The schedule of upcoming live chats is available
from the Chat page. Some previous topics include the C++Builder compiler, libraries, debug-
ger, and ActiveX. Transcripts of past chats are available.

If you drill down into the C++ area, a list of Neighborhoods will be listed on the left-
hand side that include discussion on the following:

Borland-Sponsored Web Sites 975

33 0672324806 APPC 12/12/02 2:38 PM Page 975

• Components

• Databases

• Distributed Computing

• Higher Education

• Multimedia/Graphics

• Platforms

• Programming

• Tools

• Web Technologies

Access into many of these Neighborhoods will reveal a listing of Streets. For
example, if you drill down into the Components Neighborhood, the following
Streets will be listed.

• ActiveX

• Linux

• Motif

• OWL

• VCL

No matter which Neighborhood or Street you are on, the Web site will offer access to
relevant White Papers, FAQs (Frequently Asked Questions), and TIPs (Technical
Information Papers).

TIP

Because of the similarities between C++Builder and Delphi, you should also look at related
Delphi articles and information on the Web. Typically, what’s applicable to Delphi 6, for
example, can be applied and used within C++Builder 6. Even the VCLs, which are written in
Object Pascal, can be compiled and used by C++Builder. The same also applies for CLX
components, which are now supported by C++Builder 6.

CodeCentral
CodeCentral, as shown in Figure C.3, is a Web-based repository for code samples
related to Borland development products. It’s an excellent resource for developers. If
you’re looking for a code sample on how to make something work, CodeCentral is

APPENDIX C Information Resources976

33 0672324806 APPC 12/12/02 2:38 PM Page 976

the place to go. More importantly, if you have discovered a solution to a
technical/programming problem with a Borland product you’re encouraged to share
it with the rest of the world by posting your example code and an explanation on
CodeCentral.

Borland-Sponsored Web Sites 977

FIGURE C.3 CodeCentral Web site—(http://codecentral.borland.com).

CodeCentral provides a links matrix delineated across the top by Product and down
the left side by Categories. It’s quite simple, and yet very effective. You can also
query for code samples by authors or search for a code sample based on a topic.

NOTE

You must be a member of BDN (membership is free) for full access to the CodeCentral and
QualityCentral services.

QualityCentral
The fourth and final Borland site to mention is QualityCentral. QualityCentral
provides a community-supported repository to capture issues, suggestions, bugs,
feature requests, ideas, and feedback for Borland products. In essence it’s a bug-
tracking system. If you’re an active user of Borland development tools such as
C++Builder, and you want to identify issues you’ve stumbled upon and help shape

33 0672324806 APPC 12/12/02 2:38 PM Page 977

the next version of C++Builder, download and use the QualityCentral GUI at the
QualityCentral site. The GUI, as illustrated in Figure C.4, is a client-side application
used to submit and track bugs and suggestions to Borland using Web services.

APPENDIX C Information Resources978

FIGURE C.4 The QualityCentral GUI application, which is available at
http://qc.borland.com.

Useful Developer Web Sites
While we are on the subject of Web sites, it’s a good time to mention some other
Web sites useful for C++Builder developers. There’s a mix of the types of Web sites
categorized into the following:

• C++Builder

• C++ Resources

• Components and Tools

• Web Services

• Windows Technologies

33 0672324806 APPC 12/12/02 2:38 PM Page 978

C++Builder Sites
Let’s start off by recognizing some of the Web sites developed and supported by
fellow developers who have a passion for Borland and C++Builder. These sites
contain how-to’s, technical articles, and answers to frequently asked questions. Some
of the best Web sites are provided in the following list.

• BCBDev.COM—http://www.bcbdev.com This site, managed by Harold Howe a
TeamB member, is a favorite of many C++Builder developers. Harold has assem-
bled an FAQ that provides, arguably, the most concise and useful information
available online. He also has many unique articles on effective ways to use
C++Builder.

• BCB–CAQ—http://bcbcaq.bytamin-c.com/ The BCB CAQ, managed by Damon
Chandler and hosted by Bytamin-C, provides answers to Commonly Asked
Questions. Damon, an active member of TeamB, has done a phenomenal job
on this site. It contains news, tips, and tricks, and lots of example code related
to C++Builder.

• Dr.Bob’s C++Builder Gate —http://www.drbob42.com/cbuilder Our own Bob
Swart, a co-author of this book, and his cohort Ruurd Pels, manage the
C++Builder Gate Web site, which is part of the extremely popular Dr. Bob’s
Programming Clinic. Dr. Bob keeps this site updated regularly with the latest
information regarding Borland and C++Builder. It features a number of useful
articles on C++Builder and Delphi. Many of the Delphi topics are also applica-
ble to C++Builder.

• Temporal Doorway— http://www.temporaldoorway.com/programming/cbuilder

This site is managed by our own Mark Cashman, a co-author of this book and a
prominent TeamB member. Mark has a number of useful articles and Quick
Tips applicable to C++Builder.

• BCB––An Intro to Cultural Simulation and Visualization—
http://www.sscnet.ucla.edu/geog/gessler/borland/ This site is managed by
Nicholas Gessler, and provides a number of useful C++Builder tips and code
examples related to simulations and artificial worlds, which is a focus of several
courses in Human Complex Systems offered at UCLA.

• The BITS C++Builder Information and Tutorials Site—http://www.thebits.org

This site provides a number of tutorials on various C++Builder topics.

This, by no means, is an exhaustive list. Many members of the Borland community,
sometimes referred to as the Borland Nation, have devoted Web space to C++Builder.
Unfortunately, there is not ample room or time to list them all in this appendix.

Useful Developer Web Sites 979

33 0672324806 APPC 12/12/02 2:38 PM Page 979

C++ Resources
The number of C++–focused sites is vast, but the following provides just a few of the
more useful resource sites related to object-oriented C++ development.

• C++.org—http://www.cplusplus.org/ Certainly these guys lucked out with the
domain name. Fortunately, they live up to the name by providing a good start-
ing point—a portal—for C++ development. The site includes well-organized
links to a wide variety of FAQs, C++ resources, and articles.

• cprogramming.com—http://www.cprogramming.com/ This Web site is designed to
help individuals learn C or C++ and provide you with C and C++ programming
resources. It contains a number of tutorials and source code.

• Dr. Dobb’s Journal C/C++ Programming—http://www.ddj.com/topics/cpp This
site hosted by Dr. Dobb’s magazine has reasonable activity with a number of
relevant articles and C++ links.

Components and Tools
A number of independent and vendor Web sites provide very useful components
and tools that you can use with C++Builder. Keep in mind that C++Builder can
compile and use Delphi code. Therefore, C++Builder developers have an abundance
of third-party components from which to choose. The following Web sites are just a
few of the more popular resources that provide components and tools that you can
use with C++Builder.

• ComponentSource—http://www.componentsource.com

ComponentSource provides an online store featuring thousands of compo-
nents for multiple development environments, including VCL, CLX, and
ActiveX components for Borland C++Builder and Delphi.

• Delphi Pages—http://www.delphipages.com The Delphi Pages is a comprehen-
sive component and resource site for C++Builder and Delphi, listing more than
1,500 components in various categories.

• DelphiSource—http://www.delphisource.com

DelphiSource provides a large repository of components for C++Builder and
Delphi supporting many categories.

• Delphi Super Page—http://delphi.icm.edu.pl/ One of the more popular
component resources for all versions of C++Builder and Delphi. It contains
more than 5,500 files to download and attracts more than 30,000 visitors per
week.

APPENDIX C Information Resources980

33 0672324806 APPC 12/12/02 2:38 PM Page 980

• Eagle Software—http://eagle-software.com/ Eagle Software offers a number of
useful tools and components including CodeRush, a plug-in editor available for
Delphi, and the Component Developer’s Kit (CDK).

• Indy (Internet Direct) Components—http://www.nevrona.com/Indy Indy is a set of
free Internet VCL components and comes with full source.

• Raize Software—http://www.raize.com Home of the Raize Components native
VCL component suite, containing a slew of VCL and CLX visual components,
and the popular CodeSite debugging tool.

• Torry’s Delphi Pages—http://www.torry.net/ This is another popular site
providing components, apps, source code and tools for all versions of
C++Builder and Delphi. There are over 9,000 files to download from this site.

• TurboPower Software Company—http://www.turbopower.com TurboPower is
renowned for its award-winning component suites and tools. Products include
Abbrevia, a set of data compression components; AsyncProfessional for serial,
FTP, Fax, and paging communications; MemorySleuth for defect tracking;
Internet Professional for Internet communications; LockBox for data encryp-
tion; Orpheus, a set of visual components; and much more.

• TMS Software—http://www.tmssoftware.com TMS Software offers some excep-
tional components including a very popular Advanced StringGrid, and many
other visual components (and nonvisual components) that can be easily
dropped onto C++Builder and Delphi applications.

• QaDRAM.Delphi—http://delphi.qadram.com/ This is an extremely useful repos-
itory site for Borland-related articles and components.

• Woll2Woll—http://www.woll2woll.com Woll2Woll produces several award-
winning component suites for C++Builder and Delphi, including InfoPower, a
set of greatly enhanced, data-aware components including grid and combo-
lookup controls, and many other components.

The components provided by these repositories and vendors can save you time (and
money) by saving you the hassle of reinventing existing functionality. This is the
idea of component reuse. Some components are free, whereas others are sold as
shareware or commercial products. If you buy a VCL or CLX component, be sure the
vendor includes the source code as well the binary packing for debugging and
extending a component’s capabilities.

Web Services
Clearly one of the hottest technologies emerging in the 21st century is Web Services.
The most recent versions of C++Builder and Delphi provide Web service support

Useful Developer Web Sites 981

33 0672324806 APPC 12/12/02 2:38 PM Page 981

using XML, the Simple Object Access Protocol (SOAP) and the Web Service
Description Language (WSDL). The following sites are focused on Web services.

• XMethods—http://xmethods.net/ XMethods is a Web services directory used
frequently by Delphi and C++Builder developers. This site provides an access
point to many of the Web services implemented using Delphi, C++Builder, and
a myriad of other development tools. You’re encouraged to develop SOAP
client examples that interface with services listed at XMethods.

• World Wide Web Consortium (W3C)— http://www.w3.org The W3C represents a
standards body for interoperable technologies including specifications, guide-
lines, software, and tools that are focused to lead the Web to its full potential.
It’s an invaluable resource for developers who want to stay abreast of the latest
Web-based interoperability standards including XML, WSDL, and SOAP.

• WebServices.org (W3C)—http://www.webservices.org Stay informed with the
latest Web service news at WebServices.org. Includes papers, discussions on
architectures, press releases. Furthermore, WebServices.org is host for the
annual XML World Conference.

Windows Technologies
Although it’s anticipated that a growing number of developers will target the Linux
platform with CLX-based applications, the majority of development using
C++Builder will likely continue to be targeted for the Windows platform. Access to
information on Windows-related technology will be vital for some time to come.
The following provides a few of the many Windows Technologies–related Web sites.

• Microsoft Developer Network (MSDN)—http://www.msdn.microsoft.com The
MSDN Web site provides a wealth of developer-related information on the
latest Windows technologies. The site provides links to articles, downloads
including SDKs and ActiveX components, and the MSDN Library as illustrated
in Figure C.5.

• Microsoft COM Technologies— http://www.microsoft.com/com/ This site provides
information about COM-based technologies including COM+, DCOM, and
ActiveX Controls. A personal favorite found at this site is Dr. GUI’s Gentle
Guide to COM, located at http://www.microsoft.com/com/news/drgui.asp.

Numerous sites provide Windows development information, but none that are quite
as extensive as what Microsoft provides—the MSDN Library in particular.

APPENDIX C Information Resources982

33 0672324806 APPC 12/12/02 2:39 PM Page 982

FIGURE C.5 Microsoft’s MSDN Library, which is available at
http://msdn.microsoft.com.

The navigation tree on the left side panel of the MSDN Web site provides access to
the various elements of the MSDN Library including COM, DCOM, DirectX, .NET,
Windows, and XML. Search queries can also be performed on topics of interest.

In addition to the MSDN Library, Microsoft also offers the MSDN Code Center,
which contains example code for various Windows-related technologies. This is illus-
trated in Figure C.6.

Like the MSDN Library, a navigation tree is provided to access various code examples
as they relate to specific technologies. Quite often, Visual C++ examples can be used
with C++Builder.

The technology components themselves, such as the DirectX SDK, the .NET
Platform, and Microsoft XML Parser can be downloaded from the MSDN Downloads
link as illustrated in Figure C.7.

Useful Developer Web Sites 983

33 0672324806 APPC 12/12/02 2:39 PM Page 983

FIGURE C.6 Microsoft’s MSDN Code Center, which is available at
http://msdn.microsoft.com.

APPENDIX C Information Resources984

FIGURE C.7 Microsoft’s MSDN Downloads, which are available at
http://msdn.microsoft.com.

33 0672324806 APPC 12/12/02 2:39 PM Page 984

Newsgroups
Borland hosts a large set of newsgroups, covering just about every aspect of their
products. These newsgroups can be accessed via newsgroups.borland.com—Borland’s
own news server. Figure C.8 illustrates the variety of topics covered for C++Builder
users through the Borland Newsgroups.

Newsgroups 985

FIGURE C.8 Borland newsgroups accessed through Outlook Express.

NOTE

The Borland newsgroups are probably the most useful collaboration resource for developers.
More information on these newsgroups can be found on the Borland Web site at
http://www.borland.com/newsgroups, including general newsgroup etiquette and advice.

Many other general newsgroups are supported by most news services, which provide
an excellent forum for topics such as C++, Windows, graphics, DirectX, XML, and
much more. Some of these include the following:

• comp.lang.c++

• comp.lang.c++.moderated

• comp.std.c++

• comp.os.ms-windows.programmer.graphics

33 0672324806 APPC 12/12/02 2:39 PM Page 985

• comp.os.ms-windows.programmer.win32

• microsoft.public.win32.programmer.directx.sdk

These are just a handful of useful newsgroups. You’re encouraged to browse through
the available newsgroups provided by Usenet by visiting
http://www.ibiblio.org/usenet-i/. The Microsoft newsgroup in the previous listing is
supported independently through msnews.microsoft.com news server, which also
provides excellent resource.

By far, one of the most helpful mechanisms for performing newsgroup queries is the
Google Groups Web page located at http://groups.google.com. When presented with
a programming problem, I frequently use Google Groups to search for previous posts
that might provide quick answers to my dilemma. I’m very seldom disappointed; if
the answers aren’t there, I’ll post my question to the applicable Borland newsgroup
using my newsreader (i.e. Outlook Express) that’s configured for the Borland news-
groups. Invariably, an answer is returned within a few hours to a few days. Often
times a member of TeamB provides the answer, and sometimes an answer is provided
by a Borland engineer.

NOTE

While Google Groups provides an excellent mechanism for performing queries, posting a
message to the Borland newsgroups via Google Groups will invariably result in your post
never reaching the Borland News Server, which is managed solely by Borland. Instead, use
your mail program that can act as a newsreader such as Outlook Express or Euduora, to post
your messages.

Special recognition of TeamB, however, is warranted in this text. TeamB members are
dedicated to answering technical support questions. They seem to always be check-
ing posts, and providing support answers. They are skilled and yet perform this
activity as volunteers. Hats off to you guys! There’s no doubt that you are a key part
of what makes the Borland community so strong.

Books and Magazines
Perhaps the most popular source of information on software development is found
in books and magazines. Books tend to contain a large amount of relevant informa-
tion, and magazines provide a constant stream of regular articles. Both cover a wide
variety of topics.

In this section, we will look at several books and magazines related to C++Builder.
Detailed information on books, online purchasing, and book reader reviews can be
found at reputable online book stores, such as Amazon.com (http://www.amazon.com),
FatBrain (http://www.fatbrain.com), or Barnes and Noble (http://www.bn.com/).

APPENDIX C Information Resources986

33 0672324806 APPC 12/12/02 2:39 PM Page 986

TIP

Excerpts from many books published by Pearson imprints (Sams, Que, and so on) can be
found at InformIT. The excerpts include selected chapters and, in some cases, the entire book!
Join for free and read at http:// safari.informit.com.

C++Builder Books
To date, there have been close to a dozen books written about C++Builder, including
this one. Although this book provides a lot of in-depth material and practical exam-
ples, it is, by no means, exhaustive. Some of the previously published C++Builder
books listed here provide additional insight that might still be relevant under
C++Builder 6.

• Borland C++Builder 4 Unleashed, Reisdorph, K. (1999), Sams, pp. 1248, ISBN
0672315106—This book covers many topics, from beginner to advanced expe-
rience levels, with the focus on the intermediate level. It covers databases and
distributed programming quite well, which account for almost 30% of the
content. Borland C++Builder 4 Unleashed is a perfect companion to C++Builder 6
Developer’s Guide.

• C++Builder How-To: The Definitive C++Builder Problem Solver, Miano, J., Cabanski,
T. and Howe, H. (1997), Waite Group, pp. 822, ISBN 157169109X—Somewhat
dated, this book still contains many useful how-to’s and techniques for
C++Builder programmers. When it was first published, it was the C++Builder
book to own. Unfortunately, it only covers features of Borland C++Builder 3,
many of which have changed in later versions of C++Builder. However, this
book is still practical.

• Sams Teach Yourself Borland C++Builder 4 in 24 Hours, Reisdorph, K. & Gill, B.
(1999), Sams, pp. 451, ISBN 0672316269—Aimed at beginner-intermediate
programmers, this book is all about learning how to program with C++Builder.
It provides a general overview to the most common programming tasks and
techniques.

Because of the similarities between C++Builder and Delphi, books written on Delphi
can also be very relevant. Here are a few that you might find as useful resources.

• Delphi 6 Developer’s Guide, Teixeira, S., Teixeira, J., and Pacheco, X. (2002),
Sams, pp. 1169, ISBN 0672321157—This is a fantastic resource for Delphi devel-
opers and for C++Builder developers who want to understand the technology
behind CLX, BizSnap, DataSnap, and SOAP.

• Mastering Delphi 6, Cantu, M. (2002), SYBEX, pp. 1104, ISBN 0782128742—For
another perspective on Delphi that covers many of the features also supported

Books and Magazines 987

33 0672324806 APPC 12/12/02 2:39 PM Page 987

by C++Builder 6, Marco Cantu’s book can be an extremely helpful resource.
Although it’s not quite as advanced as Delphi 6 Developer’s Guide, it still covers a
wide range of topics including COM, XML, and SOAP.

We mention these books because C++Builder and Delphi share a lot of common
features: similar IDE and Wizards, compatible Delphi components, equivalent SOAP
client/server capabilities, and much more. In fact, the primary difference between
C++Builder 6 and Delphi 6 is the programming language itself. If you are versed in
C++, it is not too difficult to understand Delphi’s Object Pascal and apply it to your
C++ development. For a list of other relevant books available, try searching the
online bookstores for C++Builder or Delphi. In fact, excerpts from Delphi 6 Developer’s
Guide, and Delphi 5 Developer’s Guide are available online at InformIt.

General C++ Books
A vast number of C++ books are available and in print that developers find
extremely useful. The most popular (and arguably the best) are listed here with brief
comments.

• Sams Teach Yourself Borland C++ in 21 Days (Fourth Edition), Liberty, J. (1999),
Sams, pp. 912, ISBN 067232072—Aimed at beginner-intermediate program-
mers, this might be the most practical reference for both C++ neophytes and
C++ veterans. It covers the latest ANSI/ISO Standard C++ and provides a solid
foundation on object-oriented development techniques with C++.

• Thinking in C++, Vol. 1 (Second Edition), Eckel, B. (2000), Prentice-Hall, pp.
720, ISBN 0139798099—In this, the second edition of his Thinking in C++ tuto-
rial, Bruce Eckel explains the ins and outs of the C++ programming language in
a clear and concise manner that has proved invaluable to novices and experts
alike. It is provided for free on the companion CD-ROM that ships with
C++Builder Professional and Enterprise, and it is also available online from
http://www.mindview.net/Books/TICPP/ThinkingInCPP2e.html.

• Effective C++ (Second Edition), Meyers, S. (1997), Addison-Wesley, pp. 304, ISBN
0201924889—This is also a must-have book for C++ developers. It isn’t
designed to teach the C++ language but, with great use of examples, it gives
tips on improving your C++ programming techniques, particularly class design.

• The C++ Programming Language (Third Edition), Stroustrup, B. (1997), Addison-
Wesley, pp. 928, ISBN 0201889544—The creator of C++, Bjarne Stroustrup,
presents the full specification of the language and standard template library.
This is not really a book for the beginner, but it is the ultimate C++ reference
and is essential for everyone who is serious about programming with C++.

APPENDIX C Information Resources988

33 0672324806 APPC 12/12/02 2:39 PM Page 988

For details on other C++–related books, search for C++ on the online bookstores
previously mentioned. The full copy of Sams Teach Yourself C++ in 21 Days, Third
Edition, and various excerpts from other C++ books are available at InformIT.

Magazines
There are several magazines relevant to C++Builder. One devoted entirely to
C++Builder, whereas others contain articles on C++ in general. There are also several
Delphi magazines. Some of the most relevant magazines are described in the follow-
ing list.

• C++Builder Developer’s Journal—Published by Bridges Publishing, provides a
monthly periodical containing tips and techniques for C++Builder. This journal
contains many high-quality articles from prominent developers each month. It
is available in print via subscription. Registered customers can access back
issues online. For a list of back issues, and subscription information, visit
http://www.bridgespublishing.com/.

• C/C++ Users Journal—This monthly magazine is available in print, and several
articles each month are made available online. For more information visit
http://www.cuj.com.

• Delphi Informant—This monthly magazine focused on Delphi is available in
print, and many articles are made available online. We mention it here because
many of the concepts associated to Delphi are applicable to C++Builder. For
information visit http://www.delphizine.com/.

The Borland Developers Conference (BorCon)
Each year Borland puts together an amazing developer’s conference called BorCon
(as shown in Figure C.9). Arguably, it might be the most definitive resource on
the planet for getting information regarding Borland products and technologies.
Although multiple BorCon’s are held at several locations around the world each year,
the BorCon that gets all the attention is held in the United States. The thirteenth
annual U.S. conference, which was held in May 2002, attracted more than 2,000
attendees. BorCons have also been held in countries such as Australia, France,
Germany, and the UK.

BorCons are feature-packed. Over the course of five days, dozens of tutorials and tech-
nical sessions are presented on emerging technologies and Borland products—includ-
ing C++Builder—by experts including Borland engineers. Often, the hardest part is
deciding which of the great sessions to attend! Apart from the tutorials and technical
sessions, there are opening and closing keynotes, product addresses, exhibitor
sessions, informal “birds of a feather” sessions, special (not to be missed) events, and a
computer lab allowing attendees to test drive the latest Borland products.

The Borland Developers Conference (BorCon) 989

33 0672324806 APPC 12/12/02 2:39 PM Page 989

FIGURE C.9 BorCon 2001—Long Beach, California.

In short, BorCon is one of the best places to get intense training on a variety of
topics and provides an excellent opportunity to talk to Borland engineers, fellow
C++Builder developers, authors, and speakers face-to-face. For information on the
upcoming BorCon in 2003, visit http://www.borland.com/conf2003/.

Summary
It’s impossible to mention all the practical resources available online or in print for
C++Builder. Search engines such as Yahoo! and InfoSeek will certainly reveal more
useful sites, and Amazon will reveal many more books. However, the Borland news-
group is really one of the best places to start if you have questions or concerns. It
provides a two-way forum for collaboration. Borland has also done a phenomenal
job with the combination of the BDN, CodeCentral, and QualityCentral Web sites.

One thing not mentioned in this Appendix is the applicability of the Borland Help
file provided with C++Builder. Additionally, the Microsoft Win32 SDK Help file
provides pertinent information as well. Keep in mind the documentation shipped
with the C++Builder product, specifically the Developer’s Guide (which should not
be confused with this book), also provides a lot of meaty information. Finally,
throughout this book itself, in many of the chapters on specific topics such as COM
and the Tools API, references to various Web sites and literature are made that might
have not been reiterated in this Appendix.

APPENDIX C Information Resources990

33 0672324806 APPC 12/12/02 2:39 PM Page 990

If you stumble and you can’t find an answer to an issue, you’re encouraged to go
back to the chapter within this book that deals with the subject of interest, and load
up the code provided on the accompanying CD. More often than not, as developers,
our questions can be self-answered when time is taken out trying to examine and
play with the code. And, if you come up with an answer to a difficult problem or a
frequently asked question, you’re encouraged to share it with the rest of the world.

Summary 991

33 0672324806 APPC 12/12/02 2:39 PM Page 991

33 0672324806 APPC 12/12/02 2:39 PM Page 992

IN THIS APPENDIX

• TXMLDocument VCL
Registration Code

• TXMLDocument VCL Package
Assembly

D

Enabling
TXMLDocument for

C++Builder Professional

by Paul Gustavson

The eXtensible Markup Language (XML) is a technology
standard that literally has exploded within the information
technology industry. XML provides a way to describe struc-
tured data in a very powerful and simple way. It can be
used as a standard text-based format for information
exchange among businesses and applications.

Seizing on the capabilities of XML, Borland developed a
VCL component called TXMLDocument that allows you, as a
developer, to take advantage of XML documents within
your applications. TXMLDocument is a component-based
wrapper to an external DOM (Document Object Model)
parser, such as the Microsoft XML Parser, the Open XML
parser, or the IBM Xerces parser. Disappointingly though,
Borland chose not to include the TXMLDocument as a regis-
tered “VCL” component in either C++Builder 6
Professional or Delphi 6 Professional.

The reason sited as to why the TXMLDocument component
was not originally considered for the Professional version is
that XML and XML technologies such as SOAP are
oriented more toward client/server development, which is
targeted exclusively by the Enterprise version. Logically,
there’s no reason why Borland shouldn’t have included it
as a component since TXMLDocument’s scope is NOT limited
to client/server enterprise development. To their credit
however, Borland did include the TXMLDocument class with
the Professional version, which can be used as a data type
within your code. But, having been spoiled by the VCL

34 0672324806 APPD 12/12/02 2:36 PM Page 993

APPENDIX D Enabling TXMLDocument for C++Builder Professional994

constructs, users prefer a TXMLDocument component that can be grabbed off the VCL
palette and modified using design-time property editors provided through the Object
Inspector.

The good news is that there’s a way to expose the TXMLDocument on your C++Builder
Professional palette. In this appendix, we will look at an “above-board” approach to
register the TXMLDocument class as a component and install it on the palette. Note: the
solution we’ll describe works for both C++Builder 6 Pro and Delphi 6.02 Pro users.

TXMLDocument VCL Registration Support
Really all that’s involved in making TXMLDocument available as a component is register-
ing it and providing the property editors. According to one Borland source, Pro users
actually have most of the property editor code needed to componentize
TXMLDocument.

In order for us to “emulate” the designer code used in the enterprise SKU we need
to create a Delphi unit, and, in the end, register the component. Keep in mind
C++Builder can compile Delphi code. Let’s take a look at this Delphi code in
Listing D.1, which can found in the code folder for this appendix on the companion
CD-ROM.

LISTING D.1 xmlcomponent.pas Package Source

{***}

{ }

{ TXMLDocument VCL Registration Support for BCB6/D6 Pro }

{ }

{ Developed by Paul Gustavson }

{ - pgustavson@simventions.com }

{ }

{ Special Thanks to Mark Edington of Borland for his }

{ guidance. }

{ }

{ This is open source. }

{ }

{***}

unit xmlcomponent;

//{$DEFINE D6BUILD} // comment this out for BCB6 build

interface

34 0672324806 APPD 12/12/02 2:36 PM Page 994

uses

Dialogs,

{$IFDEF D6BUILD}

StrEdit, // use this for Delphi compilation /

// not fully available under BCB6 compilation

{$ENDIF}

Classes, DesignEditors, DesignIntf, ToolsAPI, XMLDoc, HTTPProd,

msxmldom, oxmldom, XMLIntf;

type

{ TXMLDocumentEditor }

TVerbProc = procedure of object;

TVerbInfo = record

Description: string;

VerbProc: TVerbProc;

end;

TVerbInfoArray = array of TVerbInfo;

TXMLDocumentEditor = class(TComponentEditor)

private

FVerbs: TVerbInfoArray;

FDocument: TXMLDocument;

protected

procedure AddVerbInfo(const Description: string; const VerbProc: TVerbProc);

property Document: TXMLDocument read FDocument;

property Verbs: TVerbInfoArray read FVerbs;

public

procedure AfterConstruction; override;

procedure Edit; override;

procedure ExecuteVerb(Index: Integer); override;

function GetVerb(Index: Integer): string; override;

function GetVerbCount: Integer; override;

procedure EditXMLFile;

procedure OpenXMLFile;

procedure SaveXMLFile;

end;

{ TXMLDocumentFileProperty }

TXMLDocument VCL Registration Support 995

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 995

TXMLDocumentFileProperty = class(TStringProperty)

public

function GetAttributes: TPropertyAttributes; override;

procedure Edit; override;

end;

{ TXMLDocumentDOMVendorProperty }

TXMLDocumentDOMVendorProperty = class(TClassProperty)

public

function GetAttributes: TPropertyAttributes; override;

procedure GetValues(Proc: TGetStrProc); override;

function GetValue: string; override;

procedure SetValue(const Value: string); override;

end;

{ TXMLNodeIndentStrProperty }

TXMLNodeIndentStrProperty = class(TStringProperty)

protected

function LiteralToDesc(const Literal: string): string;

public

function GetAttributes: TPropertyAttributes; override;

procedure GetValues(Proc: TGetStrProc); override;

function GetValue: string; override;

procedure SetValue(const Value: string); override;

end;

{ TXMLProperty } // unable to support this property in BCB6

{$IFDEF D6BUILD}

TXMLProperty = class(TStringListProperty)

public

function GetValue: string; override;

end;

{$ENDIF}

{ TXMLDocumentSelectionEditor }

TXMLDocumentSelectionEditor = class(TSelectionEditor)

public

procedure RequiresUnits(Proc: TGetStrProc); override;

APPENDIX D Enabling TXMLDocument for C++Builder Professional996

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 996

end;

procedure Register; { this must appear in the interface section }

//---

//---

implementation

uses ExtActns, SysUtils, xmldom;

const

Tab = #9;

STab = ‘tab’;

SSpace = ‘ space’;

SOpenXMLTitle = ‘Open XML Document’;

SXMLExtension = ‘.xml’;

SXMLFilter = ‘XML Files (*.xml)|*.xml|XSL Files (*.xsl)|*.xsl|Schema Files

➥(*.xsd,*.xdr,*.biz)|*.xsd;*.xdr;*.biz|XML Skin Files (*.xkn)|*.xkn|HTML Files

➥(*.html)|*.html;*.htm|All files (*.*)|*.*’;

sXMLEditDataFile = ‘Edit XML file (code editor)’;

sXMLOpenDataFile = ‘Open XML file (external editor)’;

sXMLSaveDataFile = ‘Save XML file...’;

//---

{ TXMLDocumentEditor }

procedure TXMLDocumentEditor.AfterConstruction;

begin

inherited;

FDocument := GetComponent as TXMLDocument;

end;

//---

procedure TXMLDocumentEditor.AddVerbInfo(const Description: string;

const VerbProc: TVerbProc);

var

OldLen: Integer;

begin

OldLen := Length(Verbs);

TXMLDocument VCL Registration Support 997

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 997

SetLength(FVerbs, OldLen+1);

Verbs[OldLen].Description := Description;

Verbs[OldLen].VerbProc := VerbProc;

end;

//---

procedure TXMLDocumentEditor.Edit;

begin

EditXMLFile;

end;

//---

procedure TXMLDocumentEditor.EditXMLFile;

var

ActServ: IOTAActionServices;

begin

ActServ := BorlandIDEServices as IOTAActionServices;

if DesignerFileManager <> nil then

ActServ.OpenFile(DesignerFileManager.QualifyFileName(Document.FileName))

else

ActServ.OpenFile(Document.FileName)

end;

//---

procedure TXMLDocumentEditor.OpenXMLFile;

begin

with TFileRun.Create(nil) do

try

FileName := Document.FileName;

if DesignerFileManager <> nil then

FileName := DesignerFileManager.QualifyFileName(FileName);

Execute;

finally

Free;

end;

end;

//---

APPENDIX D Enabling TXMLDocument for C++Builder Professional998

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 998

procedure TXMLDocumentEditor.SaveXMLFile;

var

InitialDir, FileName: string;

begin

FileName := Document.FileName;

InitialDir := ExtractFilePath(FileName);

// if PromptForFileName(FileName, SXMLFilter, SXML, ‘’, InitialDir, True) then

if PromptForFileName(FileName, SXMLFilter, SXMLExtension, ‘’,

InitialDir, True) then

Document.SaveToFile(FileName);

end;

//---

procedure TXMLDocumentEditor.ExecuteVerb(Index: Integer);

begin

inherited;

Verbs[Index].VerbProc;

end;

//---

function TXMLDocumentEditor.GetVerb(Index: Integer): string;

begin

Result := Verbs[Index].Description;

end;

//---

function TXMLDocumentEditor.GetVerbCount: Integer;

begin

if Document.FileName <> ‘’ then

begin

if FileExists(Document.FileName) then

begin

AddVerbInfo(sXMLEditDataFile, EditXMLFile);

AddVerbInfo(sXMLOpenDataFile, OpenXMLFile);

end;

if Document.Active then

AddVerbInfo(sXMLSaveDataFile, SaveXMLFile);

end;

TXMLDocument VCL Registration Support 999

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 999

Result := Length(Verbs);

end;

//---

{ TXMLDocumentFileProperty }

function TXMLDocumentFileProperty.GetAttributes: TPropertyAttributes;

begin

Result := [paDialog, paMultiSelect];

end;

//---

procedure TXMLDocumentFileProperty.Edit;

const

SXMLExt = ‘xml’; { Do not localize }

var

FileName: string;

begin

FileName := GetValue;

if PromptForFileName(FileName, SXMLFilter, SXMLExt, SOpenXMLTitle) then

SetValue(FileName);

end;

//---

{ TXMLDocumentDOMVendorProperty }

function TXMLDocumentDOMVendorProperty.GetAttributes: TPropertyAttributes;

begin

Result := [paValueList, paMultiSelect];

end;

//---

procedure TXMLDocumentDOMVendorProperty.GetValues(Proc: TGetStrProc);

var

I: Integer;

begin

for I := 0 to DOMVendors.Count - 1 do

APPENDIX D Enabling TXMLDocument for C++Builder Professional1000

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 1000

Proc(DOMVendors[I].Description);

end;

//---

function TXMLDocumentDOMVendorProperty.GetValue: string;

begin

if Assigned(TXMLDocument(GetComponent(0)).DOMVendor) then

Result := TXMLDocument(GetComponent(0)).DOMVendor.Description else

Result := ‘’;

end;

//---

procedure TXMLDocumentDOMVendorProperty.SetValue(const Value: string);

var

DOMVendor: TDOMVendor;

begin

if Value = ‘’ then

DOMVendor := nil else

DOMVendor := DOMVendors.Find(Value);

TXMLDocument(GetComponent(0)).DOMVendor := DOMVendor;

Modified;

end;

//---

{ TXMLNodeIndentStrProperty }

function TXMLNodeIndentStrProperty.LiteralToDesc(const Literal: string):

string;

var

PropLen: Integer;

Desc: string;

begin

{ Translate the literal string into a descriptive string (‘ ‘ = <1 space>) }

if Literal = Tab then

Desc := STab

else

begin

PropLen := Length(Literal);

TXMLDocument VCL Registration Support 1001

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 1001

if StringOfChar(‘ ‘, PropLen) = Literal then

begin

Desc := IntToStr(PropLen)+ SSpace;

if PropLen > 1 then

Desc := Desc + ‘s’;

end;

end;

if Desc <> ‘’ then

Result := ‘<’+Desc+’>’

else

Result := Literal;

end;

//---

function TXMLNodeIndentStrProperty.GetAttributes: TPropertyAttributes;

begin

Result := [paValueList, paMultiSelect];

end;

//---

function TXMLNodeIndentStrProperty.GetValue: string;

begin

Result := LiteralToDesc(inherited GetValue);

end;

//---

procedure TXMLNodeIndentStrProperty.GetValues(Proc: TGetStrProc);

var

I: Integer;

begin

Proc(‘<’+STab+’>’);

Proc(‘<1’+SSpace+’>’);

for I := 2 to 8 do

Proc(‘<’+IntToStr(I)+SSpace+’s>’);

end;

//---

APPENDIX D Enabling TXMLDocument for C++Builder Professional1002

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 1002

procedure TXMLNodeIndentStrProperty.SetValue(const Value: string);

var

I: Integer;

literal: string;

begin

{ If it’s <1 space> or <tab> then translate it }

if LiteralToDesc(Tab) = Value then

inherited SetValue(Tab)

else

begin

for I := 1 to 8 do

begin

Literal := StringOfChar(‘ ‘, I);

if LiteralToDesc(Literal) = Value then

begin

inherited SetValue(Literal);

Exit;

end;

end;

{ Otherwise, just store what we got }

inherited SetValue(Value);

end;

end;

//---

{ TXMLProperty } // unable to support this property in BCB6

{$IFDEF D6BUILD}

function TXMLProperty.GetValue: string;

begin

with (GetComponent(0) as TXMLDocument) do

if (XML.Count > 0) and (FileName = ‘’) then

Result := ‘(XML)’

else

Result := ‘(xml)’;

end;

{$ENDIF}

//---

TXMLDocument VCL Registration Support 1003

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 1003

{ TXMLDocumentSelectionEditor }

procedure TXMLDocumentSelectionEditor.RequiresUnits(Proc: TGetStrProc);

begin

Proc(‘xmldom’);

Proc(‘XMLIntf’);

end;

//---

// “register” procedure...

procedure Register;

begin

RegisterComponents(‘Internet’, [TXMLDocument]);

RegisterComponentEditor(TXMLDocument, TXMLDocumentEditor);

RegisterPropertyEditor(TypeInfo(TDOMVendor), TXMLDocument,

‘DOMVendor’, TXMLDocumentDOMVendorProperty);

RegisterPropertyEditor(TypeInfo(WideString), TXMLDocument,

‘FileName’, TXMLDocumentFileProperty);

RegisterPropertyEditor(TypeInfo(WideString), TXMLDocument,

‘NodeIndentStr’, TXMLNodeIndentStrProperty);

{$IFDEF D6BUILD}

RegisterPropertyEditor(TypeInfo(TStrings), TXMLDocument,

‘XML’, TXMLProperty); // unable to support this property in BCB6

{$ENDIF}

RegisterSelectionEditor(TXMLDocument, TXMLDocumentSelectionEditor);

end;

end.

You’ll notice in this code, that a compilation flag is used to differentiate between a
C++Builder build and Delphi build. One of the issues is that C++Builder won’t
compile with StrEdit in the Uses clause. You’ll receive a Pascal Fatal Error - “File not
found: ‘StrEdit.DCU’.” However, if you compile the code under Delphi, everything
is fine. While most of the expected capabilities are supported by C++Builder, not all
the property elements are available. For those elements that are not available, we
simply choose to ignore them under C++Builder using a compile time constant that
we’ve defined called D6BUILD. Despite missing a few elements for C++Builder, there’s
still plenty of design-time support that will be provided.

APPENDIX D Enabling TXMLDocument for C++Builder Professional1004

LISTING D.1 Continued

34 0672324806 APPD 12/12/02 2:36 PM Page 1004

NOTE

There was no predefined constant that could be used to differentiate between a C++Builder
compilation and a Delphi compilation. Thus, we had to create our own.

TIP

If you have Delphi to compile this code, one of the other options is to create a Delphi
package, which will generate a .BPL file that should work just fine in C++Builder. Simply install
the BPL file using the Install Packages menu item selection.

TXMLDocument VCL Package Assembly
There are some other file elements that are needed to represent the package fully
under C++Builder. This includes a resource file containing the TXMLDocument icon, the
C++ file containing the DLL entry point function for the BPL, and the required
compiled packages that need to be linked. Figure D.1 illustrates the package assembly
needed for C++Builder.

TXMLDocument VCL Package Assembly 1005

FIGURE D.1 Package assembly for the TXMLDocument Component.

The package dialog provided by the C++Builder IDE will allow you to compile, link,
and install the package. Once installed, the TXMLDocument component will be available
off the Internet tab on the C++Builder Pro SKU’s VCL Palette.

NOTE

All the files needed for this package are found on the accompaniment CD, under the
Appendix D code folder. A Delphi package is included as well. This source code is also avail-
able at Borland’s Code Central Web site, which can be found at
http://codecentral.borland.com.

34 0672324806 APPD 12/12/02 2:36 PM Page 1005

WARNING

Users of C++Builder Professional who have not updated the IDE with the second patch update
from Borland might need to remove the bcbie.bpi library from the requires section of the
xmldocBCB6.bpk package included on the companion CD-ROM. Otherwise, the package
might not properly register and install.

Using TXMLDocument
What was once restricted to only C++Builder Enterprise, can now be accessed as a
component under C++Builder 6 Pro. This is illustrated in Figure D.2.

APPENDIX D Enabling TXMLDocument for C++Builder Professional1006

FIGURE D.2 TXMLDocument control on a form and the Object Inspector.

The object inspector allows you to tweak the properties of TXMLDocument such as
selecting a filename, or selecting a registered XML DOM parser (i.e. MSXML, Open
XML). Dr. Bob provides an excellent overview of how to use TXMLDocument in
Chapter 13.

34 0672324806 APPD 12/12/02 2:36 PM Page 1006

NOTE

Although we were able to take advantage of something available initially in the Enterprise
version, there are many other features provided exclusively by the Enterprise version that can’t
possibly be accessed and used within the Pro version. Enterprise features include the capability
to create SOAP servers, which is an XML-based technology, and much more. The Pro version
does, however, enable you to create SOAP clients and certainly has a lot of great capabilities
in its own right.

Summary
In this appendix, we’ve shown how to emulate the designer code used in the
Enterprise version for TXMLDocument in order to provide the same functionality under
C++Builder Professional. This will enable Pro users to utilize TXMLDocument as a drop-in
component within the applications they develop.

Summary 1007

34 0672324806 APPD 12/12/02 2:36 PM Page 1007

34 0672324806 APPD 12/12/02 2:36 PM Page 1008

dialog actions, 146

file actions, 145-146

format actions, 145

help actions, 145

Internet actions, 147

list actions, 146

search actions, 146

tab actions, 146

TActionMainMenuBar com-
ponent, 143

TActionToolBar component,
143-144

TAdapter component,
861-863

tools actions, 147

Web action items, 847

WebSnap Adapter actions,
850

Activate() function, 302

activation models (SOAP),
752-753

active forms, 670, 710

active server objects, 670

ActiveX controls, 670, 709-710.
See also ADO (ActiveX
Database Objects)

ActiveX libraries, 670

adapters (WebSnap)

Adapter Actions, 850

Adapter Fields, 849-850

custom adapters, 852

TAdapter, 850, 860-863

TApplicationAdapter, 851

TDataSetAdapter, 841-842,
850, 864-865

TEndUserAdapter, 851-852

Index

Symbols
[] (brackets), 201

; (semicolon), 215

_ (underscore), 14, 639

16-color displays, 592

16 million color displays, 592

256-color displays, 592

65,536-color displays, 592

A
abort() function, 98

ACanvas parameter (image-
rendering methods), 335

accepting dropped files,
215-216

access violations (AVs), 71-72

accessing

datasets, 441-445

DataSnap servers, 811-812

services, 892

TXMLDocument component,
1006

Accessing Databases Using
ADO and Delphi, 380

ACM (Audio Compression
Manager), 548

Action Manager, 143-144

Action property category, 38

actions, 27, 141-143

Action Manager, 143-144

breakpoints, 63

TEndUserSessionAdapter, 852

TLoginFormAdapter, 851

TPagedAdapter, 850

Add Breakpoint command (Run
menu), 60-62

Add Breakpoint menu com-
mands

Address Breakpoint, 61

Data Breakpoint, 62

Module Load Breakpoint, 60

AddActionList() function, 129

AddCustomer() function,
699-700

AddItem() function, 244-245

Additional page (Component
Palette), 125

Additional tab (Component
Palette), 18

AddNotifier() function, 909, 914

AddRef() function, 672, 884

Address Breakpoint command
(Add Breakpoint menu), 61

address breakpoints, 61

Address property
(TSocketConnection compo-
nent), 816-817

ADO (ActiveX Database
Objects) components, 435-436

advantages of, 436-437

cautions, 437

compared to BDE, 436

copying, 437

database applications,
447-448

database connections

connection strings, 440

defaults, 441

35 0672324806 Index 12/12/02 2:41 PM Page 1009

Providers, 439

TADOConnection compo-
nent, 439

transactions, 440

dataset access

TADOCommand compo-
nent, 444-445

TADODataSet compo-
nent, 445

TADOQuery component,
443

TADOStoredProc compo-
nent, 443-444

TADOTable component,
441-443

error handling, 450

events

TADOConnection compo-
nent, 445-446

TADOCustomDataSet
component, 446-447

inheritance, 438

multitier applications,
450-451

performance optimization

buffering, 449-450

cursor location, 449

cursor types, 449

queries, 448

TADOCommand, 438,
444-445

TADOConnection, 438-439,
445-446

TADOCustomDataSet,
446-447

TADODataSet, 438, 445

TADOQuery, 438, 443

TADOStoredProc, 438,
443-444

TADOTable, 438

adding/editing records,
442

data-source and data-
aware controls, 442

database connections, 441

filters, 442-443

finding records in, 442

iterating through, 442

opening, 442

table names, 441

transaction management,
445

TRDSConnection, 438

Ado folder, 931

ADO page (Component
Palette), 126

AfterPost event, 433

AfterSave() function, 882

AHeight parameter (image-
rendering methods), 335

AIF (Application Information
File) files, 966

aliases, 377, 398

AliasString property, 201

alignment

components, 24

screens, 138-139

All command (View menu), 37

AllEqual() function, 302

allocating arrays, 103-104

allocating memory, 100-104

Allude Connector button (Data
Diagram Editor), 390

Amazon.com Web site, 11

American National Standards
Institute (ANSI)

C++ compliance, 8-9

Web site, 9

analog clock application,
592-593

Ancestor property, 275

anchors, 139

AnimateWindow() function,
512-513

animation

Animation control, 555

windows, 512-513

Animation control, 555

Anonymous impersonation level
(DCOM), 718

ANSI (American National
Standards Institute)

C++ compliance, 8-9

Web site, 9

ANSI/ISO C++ Professional
Programmer’s Handbook: The
Complete Language, 92, 100

AnsiString class, 82-83

Apartment threading model,
695, 779

APIs (application programming
interfaces). See specific APIs

AppDynamic.bpr application,
636

FreeLibrary() function, 641

function pointers, 640-641

GetProcAddress() function,
638-639

LoadLibrary() function,
637-638

appearances of buttons, 225

Append function, 402

appending records, 402

AppEvents folder, 931

Application Information File
(AIF) files, 966

application-specific compo-
nents, 393-396

application-specific nonvi-
sual component, 395-396

generic nonvisual compo-
nent, 394-395

ADO1010

35 0672324806 Index 12/12/02 2:41 PM Page 1010

BDE (Borland Database
Engine) legacy applications,
821-822

Blanket server

BlanketClient main form,
742

BlanketInfo() function,
739, 745

CoQueryClientBlanket()
function, 740

CoRevertToSelf() func-
tion, 741

CoSetProxyBlanket() func-
tion, 745

CreateFile() function, 740,
746

MainUnit.cpp form,
742-745

SetAuthInfo() function,
745

Bug Tracker

Bugs table, 418-420

cached updates, 432

data-aware components,
432-433

database creation and
connection, 424-426

database fields, 432

database rules, 420-421

debugging, 424

delete statement, 431

generators, 421

insert statement, 431

modify statement,
430-431

refresh statement,
431-432

Revision table, 420

stored procedures,
423-424

testing, 434

transactions, 432-433

triggers, 421-422

building, 49-50

custom build tools, 50-52

order of compilation,
52-53

COM ClientExample,
682-685

COM_Restaurant, 696

AddCustomer() function,
699-700

ButtonPlaceorderClick()
function, 707

ConnectionActionImpl.cp
p source code, 697-699

FormCreate() function,
706

OnOrderRecieved() event
handler, 707

PlaceOrder() function,
700

RestaurantSink.h file,
703-705

TCustomer::timerevent()
event handler, 701-702

creating, 18-24

Button components, 19

Image component, 18

ListBox components, 21

OnClick event handler,
22

OnKeyPress event han-
dler, 22-23

OnShow event handler,
21

OpenDialog component,
18

StatusBar components, 19

TImage components, 20

cross-platform development

CLX, 28-29

EJB (Enterprise
JavaBeans), 29-30

help system integration,
29

1011

How can we make this index more useful? Email us at indexes@samspublishing.com

applications. See also databases;
projects

analog clock, 592-593

AppDynamic, 636

FreeLibrary function, 641

function pointers,
640-641

GetProcAddress function,
638-639

LoadLibrary function,
637-638

Apps, 934

Autocon folder, 934

Autosrv folder, 935

Canvas folder, 935

Colordlg folder, 935

Cursors folder, 935

Doodle folder, 935

FindRep folder, 936

Header folder, 936

ImageView folder, 936

IpcDemos folder, 936

MiniComp folder, 936

MultiPag folder, 936

OwnerList folder, 936

Printing folder, 936

ProcView folder, 936

RichEdit folder, 936

Scrollbar folder, 936

Switch folder, 936

SysSound folder, 937

Tab folder, 937

Threads folder, 937

TrayIcon folder, 937

TwoForms folder, 937

Wpm folder, 937

AppStatic

header file, 644

linking, 634-636

source file, 645-646

applications

35 0672324806 Index 12/12/02 2:41 PM Page 1011

IDL (Interface Definition
Language), 29-30

IIOP (Internet Inter-ORB
Protocol), 29-30

DBTask, 937-943

BioLife subfolder, 942

BkQuery subfolder, 937

CachedUp subfolder, 937

Contacts subfolder, 937

CountryEditor subfolder,
942

CountryReport subfolder,
942

CSDemos subfolder, 937

CtrlGrid subfolder, 937

DBErrors subfolder, 937

DumpModules subfolder,
942

Filter subfolder, 937

Find subfolder, 937

FishFact subfolder, 938

Gds subfolder, 938

GDSDemo subfolder, 938

IBDemo subfolder, 938

LocateFileService sub-
folder, 942

LookUp subfolder, 939

MastApp subfolder, 939

MasterDetail subfolder,
943

MstPool subfolder, 939

NavMDI subfolder, 939

NavSDI subfolder, 939

NDXBuild subfolder, 939

PhotoGallery subfolder,
943

QBFDemo subfolder, 939

QJoin subfolder, 939

QuickRpt subfolder, 939

StreamImage subfolder,
943

TextData subfolder, 940

debugging

Attach to Process feature,
72

AVs (access violations),
71-72

breakpoints, 60-63

Debug Inspector, 69-70

DLLs (dynamic link
libraries), 75

Evaluate/Modify dialog
box, 68-69

JIT (just-in-time) debug-
ging, 73

multithreaded applica-
tions, 58-59

remote debugging, 73-75

views, 63-68

watches, 68

Windows environments,
70-71

Doc, 940-941

DragDrop, 154-157

Examples directory

Ado folder, 931

AppEvents folder, 931

Apps folder, 931, 934-937

CodeGuard folder, 931

Controls folder, 932

ConvertIt folder, 932

Corba folder, 932

CustomDraw folder, 932

DBTask folder, 937-943

DBTasks folder, 932

DDraw folder, 932

Doc folder, 932, 940

Docking folder, 932

Experts folder, 933

FastNet folder, 933

Games folder, 933

Indy folder, 933

Internet folder, 933

MFC folder, 933

Midas folder, 933

OpenGL folder, 933

PWordDemo folder, 933

ShellControls folder, 933

StdLib folder, 933

Teechart folder, 933

Toolsapi folder, 933

VirtualListView folder,
933

WebServ folder, 933

WebServices folder, 934

WebSnap folder, 934

WinTools folder, 934

forms, 15

launching within Windows

CloseHandle() function,
541

CreateProcess() function,
538, 541

EnumWindows() func-
tion, 541

GetWinHandle_Specific()
function, 542

LookForWindowHandle()
function, 541

sample code listing, 538-
540

MDIChild_DLL.bpr

header file, 649

ShowMDIChildForm
function, 651

ShowSDIFormmodal func-
tion, 651

source file, 650-651

mobile applications, 945

AIF files, 966

BLD.INF file, 957-958

Borland ARM C++
Compiler, 970

building, 952-953

applications1012

35 0672324806 Index 12/12/02 2:41 PM Page 1012

C++ Mobile Edition
installation, 948-949

creating, 950-952

deploying, 966-967

development guidelines,
966

emulators, 949-950

header files, 958-961

loading, 952

MBM files, 966

MMP files, 956-957

Mobile CLX Framework,
970

Mobile Editor, 955-956

mobile technology
acronyms, 968-969

online resources, 971

PKG files, 966-967

project options, 952-953

resource files, 964-965

simulators, 950

SIS files, 966-967

software requirements,
946-947

source files, 961-964

Symbian OS, 947,
967-969

testing, 949, 953

MP3DemoCOM, 687-688

automation controller,
691-694

MP3FileViewerForm.cpp
source code, 692-693

MP3ObjectImpl.cpp
source file, 688-689

OpenMP3File() function,
689-690

running, 691

VCL_MESSAGE_
HANDLER template,
690

multitier applications,
450-451

resetting, 24

SOAP (Simple Object Access
Protocol)

activation model, 752-753

deploying, 755-757

Invokable Registry, 753

Web module, 751-752

Web Service interfaces,
754-755

source code, viewing, 24

starting, 564-565

testing, 18

WebSnap sample application,
839

data module, 841, 852

DataSetAdapter, 841-842

debugging, 845-846

deployment, 843-844,
872-873

EndUserSessionAdapter,
858

incorrect login, 857

linked pages, 868-871

login form, 856

login page, 855

LoginFormAdapter, 856

page modules, 842-843,
854, 865-868, 872

starting, 853

Web module, 840

WebUserList, 854

Applications tab (DCOMCnfg),
717

ApplyUpdates() function, 406,
432, 459, 487, 789-790,
824-825

Apps application

Autocon folder, 934

Autosrv folder, 935

Canvas folder, 935

Colordlg folder, 935

Cursors folder, 935

Doodle folder, 935

FindRep folder, 936

Header folder, 936

ImageView folder, 936

IpcDemos folder, 936

MiniComp folder, 936

MultiPag folder, 936

OwnerList folder, 936

Printing folder, 936

ProcView folder, 936

RichEdit folder, 936

Scrollbar folder, 936

Switch folder, 936

SysSound folder, 937

Tab folder, 937

Threads folder, 937

TrayIcon folder, 937

TwoForms folder, 937

Wpm folder, 937

AppStatic.bpr application

header file, 644

linking, 634-636

source file, 645-646

architecture

COM (Component Object
Model), 668-669

databases

client/server, 399

multitier, 379

ODBC (Open Database
Connectivity), 399-400

resources, 380

single-tier, 379, 398-399

two-tier, 379

WebSnap, 846

adapters, 849-852,
860-865

data modules, 848

architecture 1013

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1013

page modules, 847-848

producers, 852, 860-861

server-side scripting,
848-849

Web action items, 847

Web modules, 847

ARect parameter (image-ren-
dering methods), 335

ARM C++ Compiler, 970

Arrange menu commands, By
Category, 37

array properties (non-visual
components), 201-203

arrays

allocating/deallocating,
103-104

TMetaClass* open, 268

asAuthSvc parameter
(CoInitializeSecurity() func-
tion), 731

ASelected parameter (image-
rendering methods), 335

Assign() function, 602-604

AssignTo() function, 602

ATL Internals, 711

Atoms service, 516

Attach to Process feature, 72

attaching to running processes,
72

Audio Compression Manager
(ACM), 548

audio files

audio streams

reading, 619-621

retrieving pointers to,
618-619

writing to, 620-621

closing, 617-618

opening, 617-618

Audio Mixers, 548

audio output devices

audio playback, 622-625

closing, 622

opening, 622

authentication, 718

Autocon folder, 934

AutoFill() function, 302

_automated class extension, 116

automation (COM), 686-687

automation controllers, 670,
691-694

automation objects, 670

MP3DemoCOM example,
687-688

automation controller,
691-694

MP3FileViewerForm.cpp
source code, 692-693

MP3ObjectImpl.cpp
source file, 688-689

OpenMP3File() function,
689-690

running, 691

VCL_MESSAGE_
HANDLER template, 690

threading models

Apartment, 695

Both, 695

Free, 695

Neutral, 695

Single, 694

automation controllers, 670,
691-694

automation objects, 670

AutoProj folder, 940

AutoSave property
(TSQLMonitor component),
461

Autosrv folder, 935

auto_ptr class template, 91-92

AVICap, 548

AVIFile, 548

AVIFileClose() function, 618

AVIFileExit() function, 617

AVIFileGetStream() function,
618

AVIFileInit() function, 617

AVIFileOpen() function, 618

AVIStreamFormatSize() func-
tion, 619

AVIStreamInfo() function, 619

AVIStreamRead() function, 620

AVIStreamReadFormat() func-
tion, 619

AVIStreamRelease() function,
618

AVIStreamWrite() function, 620

avoiding global variables, 86-89

AVs (access violations), 71-72

AW_ACTIVATE flag, 513

AW_BLEND flag, 513

AW_CENTER flag, 513

AW_HIDE flag, 513

AW_HOR_NEGATIVE flag, 513

AW_HOR_POSITIVE flag, 513

AW_SLIDE flag, 513

AW_VER_NEGATIVE flag, 513

AW_VER_POSITIVE flag, 513

AWidth parameter (image-ren-
dering methods), 335

B
backups

backup files, 48

SHFileOperation() function,
565-569

backward compatibility

database program changes,
27

dsgnintf.hpp file, 27

architecture1014

35 0672324806 Index 12/12/02 2:41 PM Page 1014

projects, 26

STL (standard template
library), 26

bad_alloc exceptions, 101

bandwidth bottlenecks, 800-801

minimizing with
PacketRecords property,
801

minimizing with server opti-
mization, 802

BCB–An Intro to Cultural
Simulation and Visualization
Web site, 979

BCB CAQ Web site, 979

BCBDev.COM Web site, 77, 979

bcbie.bpi library, 1006

BDE (Borland Database Engine),
375-378, 397

aliases, 377, 398

cached updates, 406

client/server databases, 399

compared to ADO (ActiveX
Database Objects), 436

heterogeneous joins, 406

legacy applications, 821-822

migrating to dbExpress

components, 463-464

migration example,
465-466

ODBC (Open Database
Connectivity), 399-400

relationship with other data-
base components, 376-377

sample application, 465

single-tier databases, 398-399

supported formats, 397

TDatabase component, 401,
463

TQuery component, 403,
464

creating queries, 405

master/detail relation-
ships, 404

parameters, 404

TSession component, 401

TStoredProcedure compo-
nent, 464

TTable component, 464

adding records to, 402

editing records in, 402

master/detail tables, 403

transactions, 402-403

TUpdateSQL component,
405-406

BDE page (Component Palette),
126

BDN (Borland Developer
Network), 973-976

BeforeSave() function, 882

beginthread() function, 164

binding data

BizSnap example, 476-482

XML Data Binding Wizard,
473-475

BioLife folder, 942

BitBlt() function, 153

bitmap brushes, 589-590

Bitmap property (TBrush com-
ponent), 589

BITMAP structure, 594

bitmaps, 542, 593-594

BITMAP structure, 594

borders, 596

brushes, 589-590

code listing, 229-230

converting into PGN images,
607-609

converting PGN images to,
606-607

cropping, 600-601

DDBs (device-dependent
bitmaps), 594

DIBs (device-independent
bitmaps), 594

DIBSECTION structure, 594

flicker-free bitmap manipula-
tion, 596-598

loading, 595-596

palettes, 287

rotating, 598-600

saving, 596

TBitmap component,
594-595

tiling/stretching onto forms,
589-590

BITS C++Builder Information
and Tutorials Web site, 979

bitset containers, 30

BizSnap. See also XML docu-
ments

BizSnap.xml, 467-468

data binding

BizSnap.h file, 476-478

DisplaySection() function,
479-482

GetChapter() function,
479

LoadChapter() function,
479

NewChapter() function,
479

TButton components,
480-481

transforming into data pack-
ets, 485-488

Web Services, 749

consuming, 757-765

Google Web Service,
765-772

SOAP (Simple Object
Access Protocol) servers,
751-757

BizSnap.h file, 476-478

.bkp file extension, 48

BkQuery folder, 937

BkQuery folder 1015

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1015

Blanket server application

BlanketClient main form,
742

BlanketInfo() function, 739,
745

CoQueryClientBlanket()
function, 740

CoRevertToSelf() function,
741

CoSetProxyBlanket() func-
tion, 745

CreateFile() function, 740,
746

MainUnit.cpp form, 742-745

SetAuthInfo() function, 745

BlanketInfo() function, 739, 745

BLD.INF file, 957-958

books. See also magazines

Accessing Databases Using
ADO and Delphi, 380

ANSI/ISO C++ Professional
Programmer’s Handbook: The
Complete Language, 92, 100

ATL Internals, 711

Borland C++Builder 4
Unleashed, 987

Borland C++Builder 5
Developer’s Guide, 380

C++ FAQs, Second Edition,
89, 99

The C++ Programming
Language, 988

C++Builder 4 Unleashed, 711

C++Builder 5 Developer’s
Guide, 711, 926

C++Builder Help File, 926

C++Builder How-To: The
Definitive C++Builder
Problem Solver, 987

Data Access Dilemma, 380

Delphi 6 Developer’s Guide,
926, 987

Delphi COM Programming,
711

Delphi6 Developer’s Guide, 711

Design Patterns: Elements of
Reusable Object-Oriented
Software, 88

Effective C++, Second Edition,
988

Erik’s Open Tools API FAQ and
Resources, 926

Essential COM, 711

Exceptional C++: 47
Engineering Puzzles,
Programming Problems, and
Solutions, 91, 99-100

Hidden Paths of Delphi 3:
Experts, Wizards, and the
Open Tools API, 926

Inside COM, 711

Inside Distributed COM, 711

Large-Scale C++ Software
Design, 87-89, 108

Mastering COM and COM+,
711

Mastering Delphi 6, 987

More Effective C++: 35 New
Ways to Improve Your
Programs and Designs, 99,
103

Programming Windows, 592

Sams Teach Yourself Borland
C++ in 21 Days, 988

Sams Teach Yourself Borland
C++Builder 4 in 24 Hours,
987

Sams Teach Yourself C++ in 10
Minutes, 11

Sams Teach Yourself C++ in 21
Days, 11

Tempest Software–Open Tools
API, 926

Thinking in C++, Vol. 1, 988

Tools API Source Code, 926

Understanding COM+, 711

BorCon (Borland Developers
Conference), 989-990

borders, 596

Borland ARM C++ Compiler, 970

Borland C++Builder 4
Unleashed, 987

Borland C++Builder 5
Developer’s Guide, 380

Borland Database Engine. See
BDE

Borland Developer Network
(BDN), 973-976

Borland Developers Conference
(BorCon), 989-990

Borland Import Library (.bpi)
files, 56

Borland language extensions
(C++)

properties, 11-14

try/finally blocks, 14

Borland newsgroups, 926,
985-986

Borland Package Import Library
(.bpi) files, 48

Borland Package Library (.bpl)
files, 48, 56

Borland Web site

BDN (Borland Developer
Network), 974-976

BorCon (Borland Developers
Conference), 990

CodeCentral, 976-977, 1005

dbExpress, 454

home page, 973-974

QualityCentral, 977-978

BorlandIDEServices variable,
892

Both threading model, 695, 779

bottlenecks (DataSnap),
800-801

minimizing with
PacketRecords property,
801

minimizing with server opti-
mization, 802

Box, Don, 711

.bpi file extension, 48, 56

Blanket server application1016

35 0672324806 Index 12/12/02 2:41 PM Page 1016

.bpl file extension, 48

brackets [], 201

breakpoints

actions, 63

address breakpoints, 61

data breakpoints, 62-63

module load breakpoints, 60

briefcase model (DataSnap),
380, 785-789

browsers, opening, 563-564

brushes, 542

TBrush component, 588-590

TFont component, 590-591

buffers (ADO), 449-450

Bug Tracker sample application

Bugs table, 418-420

cached updates, 432

data-aware components,
432-433

database creation and con-
nection, 424-426

database fields, 432

database rules, 420-421

debugging, 424

delete statement, 431

generators, 421

insert statement, 431

modify statement, 430-431

refresh statement, 431-432

Revision table, 420

stored procedures, 423-424

testing, 434

transactions, 432-433

triggers, 421-422

Bugs table (Bug Tracker),
418-420

Build All Projects command
(Project menu), 25

Build command, 78

Build Tools command (Tools
menu), 50

building applications, 49-50

custom build tools, 50-52

DLLs (Dynamic Link
Libraries), 633, 923-925

existing components,
192-194

mobile applications, 952-953

order of compilation, 52-53

Button component

adding to forms, 19

event handlers, 16-17

Button1Click() function, 228

ButtonBringToFocusClick() func-
tion, 506

ButtonChangeTitleClick() func-
tion, 505

ButtonConvertToFeetClick event
handler, 635

ButtonConvertToMetersClick
event handler, 635

ButtonEnumWindowsClick()
function, 502

ButtonFontClick event handler,
591

ButtonGetVersionClick event
handler, 635

ButtonHideClick() function, 507

ButtonMaximizeClick() function,
507

ButtonMoveRightMouseDown()
function, 509

ButtonMoveRightMouseUp()
function, 510

ButtonPlaceorderClick() func-
tion, 707

buttons

appearances, 225

Data Diagram Editor, 390

event handlers, 787-789

painting, 228-229

Run button, 18

TButton component,
480-481

ButtonSystemInfoClick() func-
tion, 526

By Category command (Arrange
menu), 37

C
C option (DLL Wizard), 629

C++ extensions

_automated, 116

_classid, 117

_closure, 117-118

_declspec, 118-122

_fastcall, 122

_property, 122

_published, 122-123

C++ FAQs, Second Edition, 89,
99

C++ language

ANSI compliance, 8-9

Borland language extensions

properties, 11-14

try/finally blocks, 14

C++-related books, 11, 988

Microsoft compatibility,
10-11

Web sites, 11, 980

C++ Mobile Edition, 945

Borland ARM C++ Compiler,
970

development guidelines, 966

emulators, 949-950

installing, 948-949

mobile applications

AIF files, 966

BLD.INF file, 957-958

building, 952-953

C++ Mobile Edition 1017

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1017

creating, 950-952

deploying, 966-967

header files, 958-961

loading, 952

MBM files, 966

MMP files, 956-957

PKG files, 966-967

project options, 952-953

resource files, 964-965

SIS files, 966-967

source files, 961-964

testing, 949, 953

Mobile CLX Framework, 970

Mobile Editor, 955-956

mobile technology
acronyms, 968-969

online resources, 971

simulators, 949-950

software requirements,
946-947

Symbian OS, 967

capabilities, 968

Nokia 9200 Series SDK,
969

products, 969

Symbian SDK, 947

C++ option (DLL Wizard), 629

The C++ Programming
Language, 988

C++ Standard Library, 110

containers, 30-31

memory management, 32

C++.org Web site, 980

C++Builder 4 Unleashed, 711

C++Builder 5 Developer’s
Guide, 711

C++Builder 6 new features,
25-27

C++Builder Developer’s Guide
Manual, 926

C++Builder Developer’s Journal,
989

C++Builder Help File, 926

C++Builder How-To: The
Definitive C++Builder
Problem Solver, 987

C++Builder project file, 46

C++Builder Web site, 7, 26

C/C++ Users Journal, 989

cache

ADO (ActiveX Database
Objects), 449

cached updates, 406, 432

CachedUp folder, 937

write-through cache, 409

CachedUp folder, 937

Cachman, Mark, 979

calendars, Monthly Calendar
control, 556

Call Stack view (debugger),
65-66

calling

events, 207-208

functions, 732-734

Calvert, Charlie, 380

Cantù, Marco, 380

Canvas folder, 935

canvases (TCanvas component)

filled shapes, 584-585

lines and curves, 582-584

polygon shapes, 584

properties, 581-582

text, 585-586

CascadeWindows() function,
495

casting

const casts, 105

dynamic casts, 105-106

reinterpret casts, 105

static casts, 105-106

catch keyword, 96-97

categories of properties

Action, 38

Data, 38

Database, 38

Drag, Drop, and Docking, 38

filtering, 37

Help and Hints, 38

Input, 38

Layout, 38

Legacy, 38

Linkage, 38

Locale, 38

Localizable, 38

viewing, 37

cAuthSvc parameter
(CoInitializeSecurity() func-
tion), 731

CBrowse folder, 940

Chandler, Damon, 979

Change() function, 264

char* string, 82-83

character sets, 572

charts, VCL (Visual Component
Library), 194-195

child windows, 653-655

ChooseColor() function, 561

choosing property editors,
314-316

CIS (COM Internet Services),
718

cl3DDkShadow system color,
148

cl3DLight system color, 148

clActiveBorder system color, 148

clActiveCaption system color,
147

clAppWorkSpace system color,
148

classes. See components

_classid class extension, 117

clBackground system color, 147

C++ Mobile Edition1018

35 0672324806 Index 12/12/02 2:41 PM Page 1018

clBtnFace system color, 148

clBtnHighlight system color, 148

clBtnShadow system color, 148

clBtnText system color, 148

clCaptionText system color, 148

clHighlight system color, 148

clHighlightText system color,
148

client data sets

client/server environments,
410-412

multitier environments, 410,
413-414

performance optimization,
412-413

TBDEClientDataSet, 414

TIDBClientDataSet, 414

TSQLClientDataSet, 414

write-through cache, 409

client/server environments

advantages/disadvantages,
399

client data sets, 410-412

ClientExample application,
682-683, 685

clients. See also multitier con-
nections

client data sets

client/server environ-
ments, 410-412

multitier environments,
410, 413-414

performance optimiza-
tion, 412-413

TBDEClientDataSet, 414

TIDBClientDataSet, 414

TSQLClientDataSet, 414

write-through cache, 409

COM (Component Object
Model), 669

ClientExample applica-
tion, 682-685

examples, 685

running, 685

DataSnap, 827-828

briefcase model, 785-789

creating, 782-785

master-detail clients,
797-798

server connections,
783-784

DCOM (Distributed COM)
sample application,
725-728

DLLs (dynamic link libraries),
734

Enterprise SOAP clients,
832-834

clInactiveBorder system color,
148

clInactiveCaption system color,
147

clInactiveCaptionText system
color, 148

clInfoBk system color, 148

clInfoText system color, 148

Clipboard service, 516

clMenu system color, 147

clMenuText system color, 148

clocks, analog clock application,
592-593

Close All command (File menu),
20

Close() function, 401-402

CloseHandle() function, 537,
541

CloseWindow() function, 495

closing

audio files, 617-618

BDE (Borland Database
Engine) sessions, 401

DataSnap servers, 784

MCI (Media Control
Interface) devices, 613-614

tables, 402

Waveform audio devices, 622

_closure class extension,
117-118

clWindow system color, 147

clWindowFrame system color,
147

clWindowText system color, 148

CLX, 28-29, 123

CM_ENABLECHANGED message,
231

CM_MOUSEENTER message,
230-231

CM_MOUSELEAVE message,
230-231

Cm2Inch() function, 754-755

CMExit() function, 265

CMInch service, 752

Cm2Inch() function, 754-755

CmInchFactory() function,
753

consuming

GetICmInch() function,
765

THTTPRIO component,
763-765

ICmInch interface, 756-757

import unit, 758

ICmInch.cpp file, 761-763

ICmInch.h file, 760-761

Inch2Cm() function, 754-755

IWSDLPublish interface, 756

CmInchFactory() function, 753

COAUTHIDENTITY structure,
737-738

CoCreateInstance() function,
674, 683-684

Code Central Web site, 1005

Code Insight feature, 42

Code Insight feature 1019

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1019

code listings

AddItem() function, 244-245

API drawing functions, 226

array property read/write
functions, 202

bitmaps, 229-230

borders, 596

converting to PNG
images, 608-609

cropping, 600-601

flicker-free bitmap manip-
ulation, 597-598

loading, 595

rotating, 599

saving, 596

BizSnap.xml file, 467-468

BlankClient MainUnit.cpp,
742-745

Bug Tracker application

AfterPost() event, 433

Bugs table, 418

CreateConnectionString
function, 424

Create_Program stored
procedure, 423

Program table triggers,
422

buttons

appearances, 225

Button1Click() function,
228

painting, 228-229

Change() function, 264

_closure class extension,
117-118

CMInch service

ICmInch.cpp file,
761-763

ICmInch.h file, 760-761

CM_ENABLECHANGED mes-
sage, 231

CM_MOUSEENTER message,
230-231

CM_MOUSELEAVE message,
230-231

COM (Component Object
Model)

AddCustomer() function,
699-700

ButtonPlaceorderClick()
function, 707

ClientExample source
code, 682-683

ConnectionActionImpl.cp
p source code, 697-700

FormCreate() function,
706

MP3FileViewerForm.cpp
source code, 692-693

MP3ObjectImpl.cpp code
modification, 689-690

MP3ObjectImpl.cpp
source file, 688-690

OnOrderReceived() event
handler, 707

PlaceOrder() function,
700

RestaurantSink.h file,
703-705

TCustomer::timerevent()
event handler, 701-702

TMetricConversion
CoClass, 680-681

type library header file
declarations, 677

common control example,
557-558

common dialog example,
559-561

compiler versions, detecting,
284

component editors

Edit() function, 355-358

PrepareItem() function,
361-362

TComponentEditor-
derived definition code,
351-352

TDefaultEditor-derived
definition code, 352-353

components

Get method, 195-196

installing in Component
Palette, 192

linking, 219

Set method, 195-196

Creator class

construction method, 917

declaration, 916-917

NewImplSource() func-
tion, 918-919

custom build tool, 52

data modules

application-specific non-
visual component,
395-396

creating in DLL, 386

generic nonvisual compo-
nent interface, 394-395

inherited modules, find-
ing at runtime, 392-393

DataChange() function, 261

DataSnap

btnConnect OnClick
event handler, 787, 789

OnAfterGetRecords event
handler, 806

OnBeforeGetRecords
event handler, 804-805

OnReconcileError event
handler, 793

UpdateRegistry() func-
tion, 781-782

DblClick() function, 241-242

DebugNotifier

class declaration, 904-905

class methods, 906-909

code listings1020

35 0672324806 Index 12/12/02 2:41 PM Page 1020

_declspec class extension,
119-121

DFM files, saving as text,
43-44

DLLs (Dynamic Link
Libraries)

building, 924

class header file, 642

class methods, 642-644

DLL methods, 659-660

DLLMain function,
630-631

exporting classes, 644-646

FreeLibrary function, 641

function pointers, 640

GetProcAddress function,
639

header file, 632

loading statically, 634-635

LoadLibrary function,
637-638

MDI child window,
653-654

MDIChild_DLL header
file, 649

MDIChild_DLL source
file, 650-651

modal SDI window, 652

sample methods, 631-632

shared segmentation area
of DLL definition file,
656

shared segmentation area
of DLL source file, 656

shared segmentation
class, 659

shared variables, 657-658

docking

OnDockDrop event, 152

OnDockOver event, 151

OnEndDock event, 149

OnGetSiteInfo event han-
dler, 150

DrawButtonFace() function,
240

dropped files, accepting,
215-216

events

calling, 207-208

properties, 205

exceptions

custom exceptions,
211-212

throwing at design time,
212

File class declaration, 919

forward declarations, 198

GDI (graphical device inter-
face)

bitmap brush, 589-590

crop regions, 587-588

curved lines, 583

filled shapes, 584

fonts, 590-591

polygons, 584

GetRealString() function, 202

GetStringAlias() function,
203

horizontal scrollbars, 246

ICmInch Web Service import
unit, 761-763

JPEG images

loading, 602-603

saving, 603-604

KeyDown() function, 262

lines, 225, 229-230

LoadPage.cpp precompiled
header, 77

MCI (Media Control
Interface)

mciGetErrorString func-
tion, 610-611

MCI_CLOSE command
message, 613

MCI_OPEN command
message, 611-612

MCI_PAUSE command
message, 613

MCI_PLAY command
message, 613

MCI_SEEK command
message, 613

MCI_SET command mes-
sage, 612

MCI_STATUS command
message, 614

MCI_STOP command
message, 613

MemStatusWizard

class definition, 896

Execute() function,
893-895, 910-914,
920-921

FindCurrentProject()
function, 897-898

FindMenuItemCaption()
function, 900-901

public declarations, 906

SetProcessActive() func-
tion, 909

SetupMessageViewAccess()
function, 896

message trapping, 214

mobile applications

BLD.INF file, 957-958

HelloWorld.h file,
958-961

HelloWorld.RSS resource
file, 964-965

HelloWorld_AppView.cpp
file, 961-964

MMP file, 956-957

MouseDown() function, 262

MouseUp() function,
242-243

code listings 1021

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1021

multitier DataSnap connec-
tions

TSocketConnection com-
ponent, 817

UpdateRegistry() func-
tion, 815

namespace keyword, 213-214

network information, return-
ing, 574-575

Notification() function,
220-221

OnReconcileError event han-
dler, 412

OutputMsg() function, 220

PNG images

converting bitmaps to,
608-609

converting to bitmaps,
606-607

private variables, 195

properties

custom class property,
198-199

custom event properties,
207

dependencies, 204-205

determining if streaming
required, 274-275

getting and setting, 196

private variables, getting
and setting, 196

publishing, 199-200

ReadOnly property,
255-256

Set and Get methods, 197

version property, 200

property editors

definition code, 305-306

edit() function, 310-313

image-rendering property
editor, 333-334

ListDrawValue() function,
338-343

ListMeasureHeight() func-
tion, 337-338

ListMeasureWidth() func-
tion, 337

manually creating
TTypeInfo, 328-330

nonVCL types in single
class, 322-323

NonVCLTypeInfo.cpp,
325-327

NonVCLTypeInfo.h,
323-324

PopDrawName() function,
345-347

PopDrawValue() function,
344-345

TPropertyEditor class,
294-296

_published class extension,
123

raised or lowered appear-
ances, 227

Set source, 286-287

SetRealString() function, 202

Shell API

ShellExecute() function,
563-564

ShellExecuteEx() function,
565

SHFileOperation() func-
tion, 566-567, 570-571

stored keyword, 204

streaming unpublished prop-
erties, 271-274

strings as indexes, 201

SwapColors() function, 228

system image lists, 244

system service utilities

Drive Information,
530-533

File Information, 534-536

Memory Information, 529

System Information,
520-525

TAliasComboBox, 210

TControl mouse events,
231-232

TDBMaskEdit class

declaration from header
files, 257-258

functions from source
files, 258

TExampleButton

ExampleButton.cpp,
234-239

ExampleButton.h,
232-234

TextOut() function, 585

TextRect() function, 585

threads

GetThreadTimes() func-
tion, 177

GetTickCount() function,
176

TCriticalThread compo-
nent, 178-180

ThreadFormUnit.cpp,
162-163, 179-180

TLabelThread component,
171-172

TPriorityThread compo-
nent, 174-175

TThread component,
164-166

timer code, 552-554

TMsgLog class, 223-224

TNotifierObject

class declaration, 883

class implementation,
884-885

TPopupFrame.h, 131-133

TSHFileListBox

SHFileListBox.cpp source
file, 248-255

SHFileListBox.h header
file, 247-248

TStyleLabel class, 192

code listings1022

35 0672324806 Index 12/12/02 2:41 PM Page 1022

ViewOptions.cpp precom-
piled header, 77

Waveform Audio Interface

audio playback, 623-625

AVIFileGetStream() and
AVIStreamRelease()
functions, 619

AVIStreamReadFormat()
and
AVIStreamFormatSize()
functions, 619

opening and closing
audio devices, 622

reading and writing
streams, 620-621

windows

enumerating, 497-502

external window control,
505

message handling,
507-508

WMDropFiles event handler,
156-157

XML data binding, 476-478

xmlcomponent.pas package
source, 994-1004

CodeCentral Web site, 976-977

CodeGuard folder, 931

COFF2OMF command, 661-662

CoInitialize() function, 673

CoInitializeSecurity() function

calling, 732-734

parameters, 730-732

color

color depth, 592

RGB values, 591

TColor component, 591-592

TPen component, 586

SwapColors() function, 228

system colors, 147-148

Color property (TPen compo-
nent), 586

Colordlg folder, 935

COM (Component Object
Model), 667. See also DCOM
(Distributed COM)

active forms, 670, 710

active server objects, 670

ActiveX controls, 670,
709-710

ActiveX libraries, 670

advantages of, 667-668

architecture, 668-669

automation controllers, 670,
691-694

automation example,
686-688

automation controller,
691-694

MP3FileViewerForm.cpp
source code, 692-693

MP3ObjectImpl.cpp
source file, 688-689

OpenMP3File() function,
689-690

running, 691

VCL_MESSAGE_
HANDLER template, 690

automation objects, 670

classes, 668

clients, 669

ClientExample applica-
tion, 682-685

examples, 685

running, 685

CIS (COM Internet Services),
718

COM+, 670

componentware, 668

COM_Restaurant application,
696

AddCustomer() function,
699-700

ButtonPlaceorderClick()
function, 707

ConnectionActionImpl.
cpp source code,
697-699

FormCreate() function,
706

OnOrderRecieved() event
handler, 707

PlaceOrder() function,
700

RestaurantSink.h file,
703-705

TCustomer::timerevent()
event handler, 701-702

event sinks, 695-696

defined, 695

implementing, 702-707

in-place activation, 668

interfaces, 668

creating, 672-673,
676-678

dispinterfaces, 679

dual interfaces, 679

IDataBroker, 672

IDispatch, 672

IEnumVARIANT, 672

IFont, 672

IIDs (interface IDs),
673-674

implementing, 678-681

IPicture, 672

IProvider, 672

IStrings, 672

IUnknown, 671-673

naming, 672-673

objects, 669

online resources, 711-712

property pages, 670

recommended reading, 711

servers, 669

creating, 696-702

inproc servers, 678

COM 1023

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1023

outproc servers, 678

registering, 681

remote servers, 678

technologies, 669-670

threading models

Apartment, 695

Both, 695

Free, 695

Neutral, 695

Single, 694

type libraries, 670, 674-675

header file declarations,
676-677

importing, 685-686

Type Library Editor, 676

viewing, 675

COM Internet Services (CIS),
718

COM_Restaurant application,
696

AddCustomer() function,
699-700

ButtonPlaceorderClick()
function, 707

ConnectionActionImpl.cpp
source code, 697-699

FormCreate() function, 706

OnOrderRecieved() event
handler, 707

PlaceOrder() function, 700

RestaurantSink.h file,
703-705

TCustomer::timerevent()
event handler, 701-702

COM+, 670

CombineRgn() function,
545-547

combining

regions, 545-547

Set and Get methods, 197

commands

Add Breakpoint menu

Address Breakpoint, 61

Data Breakpoint, 62

Module Load Breakpoint,
60

Arrange menu, By Category,
37

Build, 78

COFF2OMF, 661-662

Edit menu

Lock Controls, 25

Options, 276

File menu

Close All, 20

New, 629, 647, 723

New Application, 18

New–Other, 830

Save Project As, 21

Forms menu, Save As Text,
43-44

IMPDEF, 663-664

Make, 78

Project menu

Build All Projects, 25

Import Type Library, 685

Options, 24

Run menu

Add Breakpoint, 60-62

Inspect, 62

Program Reset, 24

Run, 62

Tools menu

Build Tools, 50

Environment Options, 44

Image Editor, 24

View menu

All, 37

Debug Windows, 60

None, 37

Object Inspector, 24

Project Manager, 24

Toggle, 37

Type Library, 724

Units, 47

CommandText property
(TSQLDataSet component),
456-457

CommandType property
(TSQLDataSet component),
456-457

CommDlgExtendedError() func-
tion, 562

Comment button (Data
Diagram Editor), 390

Commit() function, 403

committing transactions, 403

CommitUpdates() function, 432

common controls (Win32 API)

Animation, 555

ControlBoxEx, 555

Date and Time Picker, 555

Drag List Box, 555

example, 557-558

Flat Scroll Bar, 555

Header Controls, 555

Hot-Key Controls, 555

Image List, 556

IP Address, 556

List View, 556

Monthly Calendar, 556

Page Scroller, 556

Progress Bars, 556

Property Sheets, 556

Rebar, 556

Status Bar, 556

COM1024

35 0672324806 Index 12/12/02 2:41 PM Page 1024

Tab Controls, 556

Toolbars, 556

Tooltip Controls, 557

Trackbars, 557

Tree View Controls, 557

Up-Down Controls, 557

VCL equivalents, 555-557

Common Controls and Win32
page (Component Palette),
125

common dialogs (Win32 API),
558-562

example, 559-561

VCL equivalents, 558

Comp3 property, 274

compilation

Borland ARM C++ Compiler,
970

compilation order, 52-53

DLLs (Dynamic Link
Libraries), 633

performance optimization,
76-79

Build command, 78

Make command, 78

precompiled headers,
76-77

versions of C++Builder,
detecting, 284-285

COMPLEXREGION return value
(CombineRng() function), 546

component editors, 291-292,
348

context menu items

custom event handlers,
362-365

submenu items, 366-368

definition code, 351-353

EnhancedEditors package,
291-293

functions

Copy(), 369-371

Edit(), 354-358

EditProperty(), 358-360

ExecuteVerb(), 368-369

GetVerb(), 360-361

GetVerbCount(), 360

PrepareItem(), 361-362

mouse responses, 349-350

NewAdditionalComponents
package, 291-294

registering, 371

virtual functions, 350-351

Component Object Model. See
COM

Component Palette, 15,
123-126, 454. See also compo-
nents

Additional tab, 18

component installation, 192

Standard tab, 19

component templates, 127-128

ComponentClass parameter
(RegisterPropertyEditor()
function), 318

components

ADO (ActiveX Database
Objects), 435-436

advantages of, 436-437

cautions, 437

compared to BDE, 436

copying, 437

database applications,
447-448

database connections,
439-441

dataset access, 441-445

error handling, 450

events, 445-447

inheritance, 438

multitier applications,
450-451

performance optimiza-
tion, 448-450

TADOCommand, 438,
444-445

TADOConnection,
438-439, 445-446

TADOCustomDataSet,
446-447

TADODataSet, 438, 445

TADOQuery, 438, 443

TADOStoredProc, 438,
443-444

TADOTable, 438, 441-443

transaction management,
445

TRDSConnection, 438

aligning, 24

AnsiString, 82-83

Button

adding to forms, 19

event handlers, 16-17

Component Palette, 15,
123-126, 454

Additional tab, 18

component installation,
192

Standard tab, 19

component templates,
127-128

Creator

class declaration, 916-917

constructor method,
917-918

creator type, 918

Execute() function,
920-921

NewImplSource() func-
tion, 918-919

components 1025

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1025

custom

building on existing com-
ponents, 192-194

creating, 191

designing, 194

registering, 266-268

CustomObjectBroker, 819

data-aware

creating, 255

data-editing control,
261-263

dataset updates, 263-265

keyboard event, 262-263

links, 256-259

mouse events, 262-263

OnDataChange event,
260-261

read access, 257-258

read-only controls,
255-256

ReadOnly property, 261

TDBCtrlGrid, 265-266

write access, 257-258

data modules, 393-396

DataLink, 256, 260

DebugNotifier

class declaration, 904-905

cleaning up, 915

executing, 910-914

methods, 906-909

defaults, 270

Exception, 211-212

exporting from DLLs

header files, 641-642

methods, 642-644

sample application,
644-647

exporting from packages, 57

File, 919

graphic, 192

hiding, 153

Image, 18

importing into packages, 57

installing in Component
Palette, 192

linking, 219

ListBox, 21

locking, 25

MemStatusWizard

class definition, 886, 896

class implementation,
887-889

registering, 889

nonvisual, 159, 191

designtime versus run-
time, 216-218

events, 205-208, 221-224

exceptions, 211-212

keywords, 213-214

linking, 218-221

messages, 214-216

methods, 208-211

order of creation, 204-205

writing, 195

OpenDialog, 18

parent, 225

properties, 11-13

arrays, 201-203

changing, 24

Delphi-style default prop-
erties, 14

getting and setting,
196-197

private variables, 196

published, 199-201

types of, 198-199

unpublished, 195-198,
272-274

shared segmentation classes,
658

SoapDataMod42, 831

StatusBar, 19

string, 82-83

TActionMainMenuBar, 143

TActionToolBar, 143-144

TAdapter, 850, 860-863

TAdapterPageProducer, 852,
860-861

TApplicationAdapter, 851

TBDEClientDataSet, 414

TBitmap, 594-595

TBrush, 588-590

TButton, 480-481

TCanvas

lines and curves, 582-584

polygon shapes, 584-586

properties, 581-582

TCaptionProperty, 296

TCharProperty, 296

TClassProperty, 296

TClientDataSet, 458, 822

client/server environ-
ments, 410-412

multitier environments,
410, 413-414

PacketRecords property,
801

performance optimiza-
tion, 412-413

properties, 412-413

write-through cache, 409

TColor, 591-592

TColorProperty, 296

TCOMConnection, 783-784

TComponent, 112

components1026

35 0672324806 Index 12/12/02 2:41 PM Page 1026

TComponentEditor

definition code, 351-352

mouse responses, 349-350

virtual functions, 350-351

TComponentProperty, 297

TConnectionBroker, 825-826

DataSnap BDE servers,
826-827

DataSnap clients, 827-828

switching connections,
828-829

TControl, 112

TCriticalThread, 178-179

TCursorProperty, 297

TCustomControl, 191

TCustomer, 701-702

TCustomFrame, 129, 463

TDatabase, 401

TDataLink, 260

TDataSetAdapter, 841-842,
850, 864-865

TDataSetProvider, 822-823

TDataSource, 823

TDBCtrlGrid, 265-266

TDBMaskEdit, 257-258, 262

TDCOMConnection,
811-812

TDefaultEditor

definition code, 352-353

mouse responses, 349-350

virtual functions, 350-351

TDriveComboBox, 218

TEndUserAdapter, 851-852

TEndUserSessionAdapter, 852

TEnumProperty, 297

TExampleButton

ExampleButton.cpp
source file, 234-239

ExampleButton.h header
file, 232-234

TFieldDataLink, 256-257

TFileListBox, 243

TFloatProperty, 297

TFont, 590-591

TFontProperty, 297

TFrame, 128

TFrames, 131, 135

TGraphicControl, 112, 192,
230

THTTPRIO, 763-765

THTTPSoapCppInvoker, 751

THTTPSoapDispatcher, 751

TIBDataSet, 429

TIBEvents, 429-430

TIBQuery, 429

TIBSQL, 429

TIBStoredProc, 429

TIBTable, 428-429

TIBUpdateSQL, 427-428

TIDBClientDataSet, 414

TImage, 20

TIntegerProperty, 297

TJPEGImage, 602

TLabelThread, 171-173

TLocalConnection, 820-821

ApplyUpdates function,
824-825

BDE legacy applications,
821-822

preparing to upgrade,
822-824

TLoginFormAdapter, 851

TMethodProperty, 297

TMsgLog, 223-224

TObject, 111-112

TOrdinalProperty, 297

TPagedAdapter, 850

TPageProducer, 852

TPaintBox, 226-227

TPen, 586-588

TPersistent, 112, 270

TPopupFrame, 131-133

TPriorityThread, 174-175

TPropertyEditor, 297

class definition, 294-296

properties, 314

TProvider, 413

TQuery, 403-405, 464

TRandomThread, 166-170

TScrollBox, 141

TScrollingWinControl, 128

TSession, 401

TSessionsService, 859, 863

TSetElementProperty, 297

TSetProperty, 297

TShellFileListItem, 245

TSHFileListBox

SHFileListBox.cpp source
file, 248-255

SHFileListBox.h header
file, 247-248

TSimpleObjectBroker,
819-820

TSOAPConnection, 829-830

Enterprise SOAP clients,
832-834

Enterprise SOAP servers,
830-832

TSocketConnection, 816-818

TSplitter, 139-141

TSQLClientDataSet, 414,
459-460

TSQLConnection, 455-456

TSQLDataSet, 456-457

TSQLMonitor, 460-463

TSQLQuery, 456

TSQLStoredProcedure, 456

TSQLTable, 456

components 1027

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1027

TStoredProcedure, 464

TStringProperty, 297

TStyleLabel, 192

TTable, 402-403, 464

TTableProducer, 852

TThread

class definition, 164-166

methods, 167

properties, 166-167

TTimer, 551

TUpdateSQL, 405-406

TWebAppDataModule, 847

TWebAppPageModule, 847

TWebConnection, 812-814

TWinControl, 112, 191

TWSDLHTMLPublish, 751

TXMLDocument, 467,
993-994

accessing, 1006

di_IDOMDocument inter-
face, 469

di_IXMLDocument inter-
face, 470

IXMLDocument interface,
470

package assembly, 1005

properties, 468-469

reading XML documents,
470-471

registering, 994-1004

writing XML documents,
471-472

xmlcomponent.pas pack-
age source, 994-1004

TXMLTransform, 486

TXMLTransformClient, 486

TXMLTransformProvider,
486

TxxxConnection, 822

variables, 195

VCL (Visual Component
Library), 14-15, 110-113,
190, 194-195

building objects with,
112-113

C++ extensions, 116-123

compared to C++ classes,
113-116

compared to CLX, 123

Component Palette,
123-126

main VCL thread,
170-172

nonpersistent data, 111

persistent data, 111

wrappers, 111

visual

graphics, 227-230

mouse messages, 230-232

parent classes, 225

TCanvas object, 225-227

windowed components,
240-255

writing, 224, 232-240

Web sites, 980-981

Win32 API common controls

Animation, 555

ControlBoxEx, 555

Date and Time Picker, 555

Drag List Box, 555

example, 557-558

Flat Scroll Bar, 555

Header Controls, 555

Hot-Key Controls, 555

Image List, 556

IP Address, 556

List View, 556

Monthly Calendar, 556

Page Scroller, 556

Progress Bars, 556

Property Sheets, 556

Rebar, 556

Status Bar, 556

Tab Controls, 556

Toolbars, 556

Tooltip Controls, 557

Trackbars, 557

Tree View Controls, 557

Up-Down Controls, 557

VCL equivalents, 555-557

windowed components, 191,
240-255

writing, 191-192

ComponentState flags, 216-218

componentware, 668

compression algorithms, 605

CompressionQuality property
(TJPEGImage component), 604

configuring

DCOM (Distributed COM)

global security settings,
717-720

per-server security set-
tings, 720-722

remote debugging, 74

Connected property

TCOMConnection compo-
nent, 783-784

TSocketConnection compo-
nent, 816

TSQLConnection compo-
nent, 456

connecting to databases

ADO (ActiveX Database
Objects)

connection strings, 440

defaults, 441

Providers, 439

TADOConnection compo-
nent, 439

transactions, 440

components1028

35 0672324806 Index 12/12/02 2:41 PM Page 1028

DataSnap, 811

dbExpress, 455-456

IEBExpress (InterBase
Express)

CreateConnectionString
function, 424

HOSTS files, 425-426

passwords, 426

connection strings (ADO), 440,
447

ConnectionActionImpl.cpp file,
697-700

ConnectionName property
(TSQLConnection compo-
nent), 455

Console Support service, 516

const casts, 105

const keyword, 92-95

constants

const casts, 105

const keyword, 92-95

_cplusplus, 633

defining, 107

consuming Web Services, 757

GetICmInch function, 765

THTTPRIO component,
763-765

WSDL Importer, 758-763

Contacts folder, 937

containers, 30-31

Contains section (packages), 54

context menu items

custom event handlers,
362-365

submenu items, 366-368

contexts, device, 542

Control property, 259

ControlBoxEx control, 555

controllers (automation), 670,
691-694

controlling external windows

ButtonBringToFocusClick()
function, 506

ButtonChangeTitleClick()
function, 505

ButtonHideClick() function,
507

ButtonMaximizeClick() func-
tion, 507

PostMessage() function, 506

sample code listing, 504-505

SendMessage() function, 506

SetForegroundWindow()
function, 506

SetWindowText() function,
505

controls. See components

Controls folder, 932

converting

bitmaps to PGN images,
607-609

PGN images to bitmaps,
606-607

ConvertIt folder, 932

Copy() function, 351, 369-371

CopyBitmap() function, 595

CopyProxy() function, 737

CopyRect() function, 593-595,
601

CoQueryClientBlanket() func-
tion, 740

Corba folder, 932

CoRevertToSelf() function, 741

CoSetProxyBlanket() function,
745

Could not find program (error
message), 75

counter technique, 89

CountryEditor folder, 942

CountryReport folder, 942

_cplusplus constant, 633

CPoints parameter
(CreatePolygonRgn() func-
tion), 547

.cpp file extension, 47

CPU view (debugger), 64-65

Create() function, 683

CreateCompatibleBitmap()
function, 594

CreateConnectionString() func-
tion, 424

CreateDC() function, 542

CreateDIBSection() function,
594

CreateEllipticRgn() function,
544-545

CreateFile() function, 536-537,
740, 746

CreateHandle() function, 595

CreateMutex() function, 182

CreateObject() function, 101

CreateParams() function, 133

CreatePolygonRgn() function,
547

CreateProcess() function, 538,
541, 900

CreateRemote() function, 683,
728

CreateRoundRectRgn() function,
543-544

CreateThread() function,
160-164

CreateWindow() function, 495

CreateWindowEx() function,
558

CreateWindowHandle() func-
tion, 134

CreateWnd() function, 134

Create_Program stored proce-
dure, 423

Creator class

class declaration, 916-917

constructor method, 917-918

Creator class 1029

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1029

creator type, 918

Execute() function, 920-921

NewImplSource() function,
918-919

creators, 915

custom Creator class

class declaration, 916-917

constructor method,
917-918

creator type, 918

Execute() function,
920-921

NewImplSource() func-
tion, 918-919

File class, 919

interfaces, 915-916

critical sections, 178-181

cropping graphics

bitmaps, 600-601

crop regions, 587-588

cross-platform data access. See
dbExpress

cross-platform development

CLX, 28-29

EJB (Enterprise JavaBeans),
29-30

help system integration, 29

IDL (Interface Definition
Language), 29-30

IIOP (Internet Inter-ORB
Protocol), 29-30

csAncestor flag, 216

CSDemos folder, 937

csDesigning flag, 216

csDesignInstance flag, 217

csDestroying flag, 217

csFixups flag, 217

csFreeNotification flag, 217

csInline flag, 217

csLoading flag, 217

csReading flag, 217

csUpdating flag, 218

csWriting flag, 217

ctDynamic cursors, 449

ctKeyset cursors, 449

ctOpenForwardOnly cursors,
449

CtrlGrid folder, 937

ctStatic cursors, 449

cursors

ctDynamic, 449

ctKeyset, 449

ctOpenForwardOnly, 449

ctStatic, 449

Cursors folder, 935

location of, 449

unidirectional cursors,
458-459

Cursors folder, 935

curves, drawing, 582, 584

CustomDraw folder, 932

customizing

adapters, 852

build tools, 50-52

class property, 198-199

component editors, 348

context menu items,
362-368

definition code, 351-353

EnhancedEditors package,
291-293

functions, 354-362,
368-371

mouse responses, 349-350

NewAdditionalComponen
ts package, 291-294

registering, 371

virtual functions, 350-351

components

C++Builder versions,
283-287

compiler versions, detect-
ing, 284-285

creating, 191

design-time-only pack-
ages, 281, 283

designing, 194

distributing, 276-278,
283-289

naming, 280-281

packaging, 187-190, 276,
279-280

palette bitmaps, 287

registering, 266-268

Sets, 285, 287

ValidCtrCheck() function,
285

Creator class

class declaration, 916-917

constructor method,
917-918

creator type, 918

Execute() function,
920-921

NewImplSource() func-
tion, 918-919

DebugNotifier class

class declaration, 904-905

cleaning up, 915

executing, 910-914

methods, 906-909

event properties, 207

exceptions, 211-212

GUIs (graphical user inter-
faces)

docking, 148-152

form backgrounds, 153

Creator class1030

35 0672324806 Index 12/12/02 2:41 PM Page 1030

hiding/displaying con-
trols, 153

system colors, 147-148

interfaces

creating, 672-673,
676-678

dispinterfaces, 679

dual interfaces, 679

IIDs (interface IDs),
673-674

implementing, 678-681

naming, 672-673

property editors

choosing, 314-316

definition code, 305-306

developing, 299

EnhancedEditors package,
291-293

exceptions, 316-317

functions, 301-314

image rendering, 331-347

NewAdditionalCompone
nts package, 291-294

overriding, 330-331

properties, 314

registering, 317-319

TCaptionProperty compo-
nent, 296

TCharProperty compo-
nent, 296

TClassProperty compo-
nent, 296

TColorProperty compo-
nent, 296

TComponentProperty
component, 297

TCursorProperty compo-
nent, 297

TEnumProperty compo-
nent, 297

TFloatProperty compo-
nent, 297

TFontProperty compo-
nent, 297

TIntegerProperty compo-
nent, 297

TMethodProperty compo-
nent, 297

TOrdinalProperty compo-
nent, 297

TPropertyAttributes Set
values, 299-301

TPropertyEditor compo-
nent, 294-297, 314

TSetElementProperty
component, 297

TSetProperty component,
297

TStringProperty compo-
nent, 297

TTypeInfo structure,
319-330

WebSnap adapters, 852

Cygwin, 79

D
Data Access page (Component

Palette), 125

data-aware components

creating, 255

data-editing control, 261-263

dataset updates, 263-265

dbExpress, 457-458

keyboard events, 262-263

links

declaring, 257-258

establishing, 256-257

initializing, 259

mouse events, 262-263

OnDataChange event,
260-261

read access, 257-258

ReadOnly property, 261

read-only controls, 255-256

TADOTable, 442

TDBCtrlGrid, 265-266

write access, 257-258

data binding

BizSnap example, 476-482

XML Data Binding Wizard,
473-475

Data Breakpoint command (Add
Breakpoint menu), 62

data breakpoints, 62-63

Data Controls page
(Component Palette), 125

Data Diagram Editor, 389-390

data-editing control, 261-263

Data Module Designer, 388-389

data modules, 848

advantages of, 384-385

application-specific compo-
nents, 393-396

application-specific non-
visual component, 395-
396

generic nonvisual compo-
nent, 394-395

nondatabase controls, 387

creating in DLLs, 386-387

Data Diagram Editor,
389-390

Data Module Designer,
388-389

defined, 383

dependencies, 393

design and development
techniques, 391

form inheritance, 391-393

purpose and goals, 392

uneven form inheritance,
392-393

data modules 1031

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1031

framework components,
393-396

including in forms, 386

inherited modules, finding at
runtime, 392-393

packages, 396

properties, 387-388

data packets, transforming XML
documents into, 483-488

Data property category, 38

data sets. See datasets

Data Shared Objects (DSOs),
628

data types

HDC, 226

RGBTRIPLE, 600

Database property
(TSQLConnection compo-
nent), 455

Database property category, 38

databases, 375

ADO (ActiveX Database
Objects) components,
435-436

advantages of, 436-437

cautions, 437

compared to BDE, 436

copying, 437

database applications,
447-448

database connections,
439-441

dataset access, 441-445

error handling, 450

events, 445-447

inheritance, 438

multitier applications,
450-451

performance optimiza-
tion, 448-450

TADOCommand, 438,
444-445

TADOConnection,
438-439, 445-446

TADOCustomDataSet,
446-447

TADODataSet, 438, 445

TADOQuery, 438, 443

TADOStoredProc, 438,
443-444

TADOTable, 438, 441-443

transaction management,
445

TRDSConnection, 438

backward compatibility, 27

BDE (Borland Database
Engine), 375-378, 397

aliases, 377, 398

cached updates, 406

client/server databases,
399

heterogeneous joins, 406

legacy applications,
821-822

migrating to dbExpress,
463-466

ODBC (Open Database
Connectivity), 399-400

sample application, 465

single-tier databases,
398-399

supported formats, 397

TDatabase component,
401, 463

TQuery component,
403-405, 464

TSession component, 401

TStoredProcedure compo-
nent, 464

TTable component,
402-403, 464

TUpdateSQL component,
405-406

client/server database archi-
tecture, 399

connecting to

ADO (ActiveX Database
Objects), 439-441

DataSnap, 811

dbExpress, 455-456

IEBExpress (InterBase
Express), 424-426

cursors, 449

data modules

advantages of, 384-385

application-specific com-
ponents, 393-396

components, 387

creating in DLLs, 386-387

Data Diagram Editor,
389-390

Data Module Designer,
388-389

defined, 383

dependencies, 393

design and development
techniques, 391

form inheritance, 391-393

framework components,
393-396

including in forms, 386

inherited modules, find-
ing at runtime, 392-393

packages, 396

properties, 387-388

datasets, 409-410

accessing with ADO
(ActiveX Database
Objects), 441-445

client/server environ-
ments, 410-412

master-detail datasets,
796-797

multitier environments,
410, 413-414

performance optimiza-
tion, 412-413

data modules1032

35 0672324806 Index 12/12/02 2:41 PM Page 1032

TADOCustomDataSet,
446-447

TADODataSet, 438, 445

TBDEClientDataSet, 414

TIDBClientDataSet, 414

TSQLClientDataSet, 414,
459-460

TSQLDataSet, 456-457

write-through cache, 409

DataSnap, 379, 775-777

applying database
updates, 789-790

bandwidth bottlenecks,
800-802

briefcase model, 785-789

deploying, 808-809

error handling, 790-794

master-detail clients,
797-798

master-detail datasets,
796-797

master-detail servers,
794-796

nested tables, 798-800

server optimization, 802

simple clients, 782-785

simple servers, 777-784

stateless DataSnap,
803-808

dbExpress, 27, 376, 453-455

data-aware controls,
457-458

drivers, 453-454

migrating from BDE,
463-466

sample application,
465-466

TSQLClientDataSet com-
ponent, 459-460

TSQLConnection compo-
nent, 455-456

TSQLDataSet component,
456-457

TSQLMonitor component,
460-463

TSQLQuery component,
456

TSQLStoredProcedure
component, 456

TSQLTable component,
456

unidirectional cursors,
458-459

Web site, 454

dbGo, 376, 379

IBExpress (InterBase Express),
375, 417

database creation and
connection, 424-426

database rules, 420-421

debugging, 424

generators, 421

InterBase Objects, 418

schema setup, 418-420

stored procedures,
423-424

TIBDataSet component,
429

TIBEvents component,
429-430

TIBQuery component,
429

TIBSQL component, 429

TIBStoredProc compo-
nent, 429

TIBTable component,
428-429

TIBUpdateSQL compo-
nent, 427-428

transactions, 427

triggers, 421-422

joins, 406

multitier database architec-
ture, 379-380

ODBC (Open Database
Connectivity), 399-400

queries

cached updates, 406

creating, 405-406

performance optimiza-
tion, 448

TADOQuery, 438, 443

TQuery component,
403-404

relationship between data-
base components, 376-377

rules, 420-421

single-tier database architec-
ture, 379, 398-399

SQL Links, 379, 399

tables

adding records to, 402

closing, 402

editing records in, 402

master/detail tables, 403

nested tables, 798-800

opening, 402

TADOTable component,
438, 441-443

transactions, 402-403

two-tier database architec-
ture, 379

unavailable database (error
message), 456

updating

cached updates, 432

DataSnap, 789-790

DataChange() function, 260-263

DataField property, 257

DataLink class, 256, 260

DataLink class 1033

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1033

datasets, 409-410

accessing with ADO (ActiveX
Database Objects)

TADOCommand compo-
nent, 444-445

TADODataSet compo-
nent, 445

TADOQuery component,
443

TADOStoredProc compo-
nent, 443-444

TADOTable component,
441-443

client/server environments,
410-412

master-detail datasets,
796-797

multitier environments, 410,
413-414

performance optimization,
412-413

TADOCustomDataSet,
446-447

TADODataSet, 438, 445

TBDEClientDataSet, 414

TIDBClientDataSet, 414

TSQLClientDataSet, 414,
459-460

TSQLDataSet, 456-457

write-through cache, 409

DataSnap, 379, 775-777, 811

applying database updates,
789-790

bandwidth bottlenecks,
800-801

minimizing with
PacketRecords property,
801

minimizing with server
optimization, 802

briefcase model, 785-789

deploying, 808-809

error handling, 790-794

master-detail clients, 797-798

master-detail datasets,
796-797

master-detail servers,
794-796

multitier connections

DCOM (Distributed
Component Object
Model), 811-812

Object Broker, 819-820

object pooling, 814-816

registered servers, 818-819

switching connections,
828-829

TConnectionBroker com-
ponent, 825-829

TDCOMConnection com-
ponent, 811-812

TLocalConnection com-
ponent, 820-825

TSOAPConnection com-
ponent, 829-834

TSocketConnection com-
ponent, 816-818

TWebConnection compo-
nent, 812-814

nested tables, 798-800

simple clients

creating, 782-785

server connections,
783-784

simple servers

accessing remotely,
811-812

closing, 784

creating, 777-781

optimizing, 802

registering, 781-782

threading models, 779

stateless DataSnap, 803-808

ClientDataSet
OnAfterGetRecords
event handler, 806

ClientDataSet
OnBeforeGetRecords
event handler, 804-805

DataSetProvider
OnAfterGetRecords
event handler, 805-806

DataSetProvider
OnBeforeGetRecords
event handler, 805

DataSnap page (Component
Palette), 125

DataSource property, 257

Date and Time Picker control,
555

DBErrors folder, 937

dbExpress, 27, 453-455

data-aware controls, 457-458

drivers, 453-454

migrating from BDE (Borland
Database Engine)

components, 463-464

migration example,
465-466

relationship with other data-
base components, 376-377

sample application, 465-466

TSQLClientDataSet compo-
nent, 459-460

TSQLConnection compo-
nent, 455-456

TSQLDataSet component,
456-457

TSQLMonitor component,
460-463

TSQLQuery component, 456

TSQLStoredProcedure com-
ponent, 456

TSQLTable component, 456

datasets1034

35 0672324806 Index 12/12/02 2:41 PM Page 1034

unidirectional cursors,
458-459

Web site, 454

dbExpress page (Component
Palette), 125

dbGo, 376-377, 379

DblClick() function, 241-242

DBTask application, 941-943

BioLife subfolder, 942

BkQuery subfolder, 937

CachedUp subfolder, 937

Contacts subfolder, 937

CountryEditor subfolder, 942

CountryReport subfolder,
942

CSDemos subfolder, 937

CtrlGrid subfolder, 937

DBErrors subfolder, 937

DumpModules subfolder,
942

Filter subfolder, 937

Find subfolder, 937

FishFact subfolder, 938

Gds subfolder, 938

GDSDemo subfolder, 938

IBDemo subfolder, 938

LocateFileService subfolder,
942

LookUp subfolder, 939

MastApp subfolder, 939

MasterDetail subfolder, 943

MstPool subfolder, 939

NavMDI subfolder, 939

NavSDI subfolder, 939

NDXBuild subfolder, 939

PhotoGallery subfolder, 943

QBFDemo subfolder, 939

QJoin subfolder, 939

QuickRpt subfolder, 939

StreamImage subfolder, 943

TextData subfolder, 940

DC (Device Context), 580

DCOM (Distributed COM),
715-716, 811-812

authentication, 718

Blanket server application

BlanketClient main form,
742

BlanketInfo() function,
739, 745

CoQueryClientBlanket()
function, 740

CoRevertToSelf() func-
tion, 741

CoSetProxyBlanket() func-
tion, 745

CreateFile() function, 740,
746

MainUnit.cpp form,
742-745

SetAuthInfo() function,
745

CIS (COM Internet Services),
718

client application example,
725-728

CoInitializeSecurity() func-
tion

calling, 732-734

parameters, 730-732

configuring

global security settings,
717-720

per-server security set-
tings, 720-722

DCOMCnfg tool

Applications tab, 717

Default Properties tab,
717-718

Default Protocols tab, 719

Default Security tab, 719

global security settings,
717-720

per-server security set-
tings, 720-722

versions, 717

DLL clients, 734

download site, 716

IClientSecurity interface,
737-738

impersonation levels, 718,
729

IServerSecurity interface,
738-739

location transparency, 716

logins, 716

permissions, 719, 728

programmatic access control,
735-737

security settings

global settings, 717-720

per-server settings,
720-722

server application example,
723-725

Windows OS family, 716

DCOMCnfg tool

Applications tab, 717

Default Properties tab,
717-718

Default Protocols tab, 719

Default Security tab, 719

global security settings,
717-720

per-server security settings,
720-722

versions, 717

DCs (device contexts), 542

DCT (Discrete Cosine
Transform), 602

DDBs (device-independent
bitmaps), 594

DDBs 1035

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1035

DDE (Dynamic Data Exchange)
service, 516

DDraw folder, 932

deallocating

arrays, 103-104

memory, 100-104

Debug Inspector, 69-70

Debug Windows command
(View menu), 60

debugging, 58. See also trou-
bleshooting

Attach to Process feature, 72

AVs (access violations), 71-72

breakpoints

actions, 63

address breakpoints, 61

data breakpoints, 62-63

module load breakpoints,
60

Debug Inspector, 69-70

DLLs (dynamic link
libraries), 75

Evaluate/Modify dialog box,
68-69

extensions, 922-923

IEBExpress (InterBase
Express), 424

JIT (just-in-time) debugging,
73

multithreaded applications,
58-59

remote debugging, 73-74

configuring, 74

errors, 75

starting, 74-75

views

Call Stack view, 65-66

CPU view, 64-65

FPU (Floating-Point Unit)
view, 67-68

Modules view, 67

Threads view, 66

watches, 68

WebAppDebugger, 835-836

running, 836-838

Web action items, 836

WebSnap sample application,
845-846

Windows environments,
70-71

Debugging service, 516

DebugNotifier class

class declaration, 904-905

cleaning up, 915

executing, 910-914

methods, 906-909

Decision Cube page
(Component Palette), 126

declarative security, 716

declaring

component editors, 351-353

constants, 107

custom property editors,
305-306

DataChange() function, 261

event properties, 205

forward declarations, 198

header files, 257-258

links, 257-258

read access, 257-258

references, 83

shared variables, 658

write access, 257-258

_declspec class extension,
118-122

DEF (definition) files, 656

default keyword, 203

default packages, 278

Default Properties tab
(DCOMCnfg), 717-718

Default Protocols tab
(DCOMCnfg), 719

Default Security tab
(DCOMCnfg), 719

defaults

ADO (ActiveX Database
Objects) database connec-
tions, 441

components, 270

DCOMCnfg, 717-719

#define directive, 108, 284-285

DefineProperties() function, 274

DefineProperty() function, 275

defining. See declaring

definition (DEF) files, 656

Delegate impersonation level
(DCOM), 718

delete keyword, 100-104, 431

DeleteObject function, 595

deleting

arrays, 104

files, 570-572

watches, 68

Delphi, 885

Delphi 6 Developer’s Guide,
926, 987

Delphi COM Programming, 711

Delphi Informant, 989

Delphi-style default properties,
14

Delphi Super Page Web site,
980

Delphi6 Developer’s Guide, 711

DELPHICLASS macro, 119

dependencies

data modules, 393

header files, 109

properties, 204-205

DDE1036

35 0672324806 Index 12/12/02 2:41 PM Page 1036

deploying

DataSnap, 808-809

DLLs (dynamic link
libraries), 923-925

mobile applications, 966-967

SOAP (Simple Object Access
Protocol) servers, 755-757

WebSnap applications,
872-873

WebSnap sample application,
843-844

depth of color, 592

deque containers, 30

design guidelines

custom components, 194,
288

data modules, 391

Design Patterns: Elements of
Reusable Object-Oriented
Software, 88

design time

adding frames at, 129-130

compared to runtime,
216-218

design-time packages, 53,
281-283

throwing exceptions at, 212

Designer property
(TPropertyEditor), 314

desktop layout files, 48

Destroyed() function, 882,
914-915

DestroyWindow() function, 495

Detach() function, 725

detail tables, 403

development

cross-platform development

CLX, 28-29

EJB (Enterprise
JavaBeans), 29-30

help system integration,
29

IDL (Interface Definition
Language), 29-30

IIOP (Internet Inter-ORB
Protocol), 29-30

mobile applications, 945

AIF files, 966

BLD.INF file, 957-958

Borland ARM C++
Compiler, 970

building, 952-953

C++ Mobile Edition
installation, 948-949

creating, 950-952

deployment, 966-967

development guidelines,
966

emulators, 949-950

header files, 958-961

loading, 952

MBM files, 966

MMP files, 956-957

Mobile CLX Framework,
970

Mobile Editor, 955-956

mobile technology
acronyms, 968-969

online resources, 971

PKG files, 966-967

project options, 952-953

resource files, 964-965

simulators, 949-950

SIS files, 966-967

software requirements,
946-947

source files, 961-964

Symbian OS, 947,
967-969

testing, 949, 953

property editors, 299

Device Context (DC), 580

device contexts, 542

device-dependent bitmaps
(DDBs), 594

device-independent bitmaps
(DIBs), 594

DFM files, 43-44, 47, 385

di naming prefix, 879

di_IDOMDocument interface,
469

di_IXMLChapterType interface,
478-479

di_IXMLDocument interface,
470

di_IXMLSectionType interface,
478

Diagram tab (Source Code
Editor), 40-42

diagrams, Data Diagram Editor,
389-390

dialog actions, 146

dialog boxes

Easy DCOM Type Library 1.0
Properties

General tab, 720

Identity tab, 722

Location tab, 721

Security tab, 721

Environment Options, 44

Evaluate/Modify, 68-69

Import Type Library, 685

New Automation Object, 724

New Items, 950-951

New Remote Data Module
Object, 778-779

OpenDialog component, 18

Project Options, 24

Win32 API common dialogs,
558-562

example, 559-561

VCL equivalents, 558

DIB section bitmaps, 594

DIB section bitmaps 1037

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1037

DIBs (device-independent
bitmaps), 594

DIBSECTION structure, 594

directives

#define, 108, 284-285

#endif, 108

#ifndef, 108

#pragma hdrstop, 76-77

#pragma package(), 57

directories

backing up, 565-569

default packages, 278

deleting, 570-572

Examples

Ado folder, 931

AppEvents folder, 931

Apps folder, 931, 934-937

CodeGuard folder, 931

Controls folder, 932

ConvertIt folder, 932

Corba folder, 932

CustomDraw folder, 932

DBTask folder, 937-943

DBTasks folder, 932

DDraw folder, 932

Doc folder, 932, 940

Docking folder, 932

Experts folder, 933

FastNet folder, 933

Games folder, 933

Indy folder, 933

Internet folder, 933

MFC folder, 933

Midas folder, 933

OpenGL folder, 933

PWordDemo folder, 933

ShellControls folder, 933

StdLib folder, 933

Teechart folder, 933

Toolsapi folder, 933

VirtualListView folder,
933

WebServ folder, 933

WebServices folder, 934

WebSnap folder, 934

WinTools folder, 934

DirOutIn folder, 940

Discrete Cosine Transform
(DCT), 602

dispinterfaces, 679

displaying

drive information

GetDiskFreeSpace() func-
tion, 533

GetDriveType() function,
533

GetVolumeInformation()
function, 533

sample code listing,
530-533

SetVolumeLabel() func-
tion, 534

file information

CloseHandle() function,
537

CreateFile() function,
536-537

GetFileInformationBy
Handle() function, 537

GetFileSize() function,
538

GetFileType() function,
537

LPBY_HANDLE_FILE_
INFORMATION struc-
ture, 537

sample code listing,
534-536

memory information,
529-530

system information

ButtonSystemInfoClick()
function, 526

ExitWindowsEx() func-
tion, 528

GetComputerName()
function, 525

GetSystemInfo() function,
526

GetSystemMetrics() func-
tion, 527

GetTempPath() function,
527

GetUseName() function,
525

GetVersionEx() function,
525

ProcessorInfo() function,
526

sample code listing,
519-525

ScreenSize() function, 527

SetComputerName() func-
tion, 528

SystemParametersInfo()
function, 527

WindowsVersion() func-
tion, 525-526

DisplaySection() function,
479-482

Distributed COM. See DCOM

distribution

components

custom components,
288-289

of C++Builder versions,
283-287

distribution files, 276-278

packages

design-time-only pack-
ages, 281-283

files required, 276

DIBs1038

35 0672324806 Index 12/12/02 2:41 PM Page 1038

DLL (Dynamic Link Library) ser-
vice, 516

.dll file extension, 627

DLL LIB Util tool, 493

DLL Wizard

DLLEntryPoint function, 628

DLLMain function, 628-631

DLL (Dynamic Link Library)
service, 516

header files, 632-633

opening, 629

options

Multi Threaded, 629

Use CLX, 629

Use VCL, 629

VC++ Style DLL, 630

sample methods, 631-632

skeleton applications, 630

source types, 629

DllEntryPoint function, 387, 628

DLLMain function, 628, 630-631

DLLs (Dynamic Link Libraries),
492

advantages, 627

building, 633, 923-925

clients, 734

compared to packages, 647

creating with DLL Wizard,
628-629

DLLEntryPoint function,
628

DLLMain function,
628-631

header files, 632-633

options, 629-630

sample methods, 631-632

skeleton application, 630

source types, 629

data modules, 386-387

debugging, 75

deploying, 923-925

exporting classes

header files, 641-642

methods, 642-644

sample application,
644-647

forms

MDI (multiple document
interface) child win-
dows, 653-655

MDIChild_DLL.bpr exam-
ple, 649-651

modal SDI (single docu-
ment interface) win-
dows, 652-653

kernel32.dll, 515

loading, 634

loading dynamically,
636-641

FreeLibrary function, 641

function pointers,
640-641

GetProcAddress function,
638-639

LoadLibrary function,
637-638

Visual C++ DLLs, 661-662

loading statically, 634-636,
662-664

shared segmentation, 655

DLL definition files, 656

DLL methods, 659-661

DLL source files, 656

shared segmentation
classes, 658

shared variables, 657-658

version numbers, 646

Visual C++/C++Builder com-
patibility

dynamic linking, 661-662

static linking, 662-664

doAttrNull flag, 469

doAutoPrefix flag, 469

doAutoSave flag, 469

Doc application, 932

AutoProj subfolder, 940

CBrowse subfolder, 940

DirOutIn subfolder, 940

Filmanex subfolder, 940

GraphEx subfolder, 940

OleCtnrs subfolder, 940

OLEWord1 subfolder, 941

OLEWord2 subfolder, 941

TextEdit subfolder, 941

VarArray subfolder, 941

VarLock subfolder, 941

VarToInt subfolder, 941

docking, 148

OnDockDrop event, 152

OnDockOver event, 151

OnEndDock event, 149-150

OnGetSiteInfo event handler,
150-151

windows, 34-36

Docking folder, 932

Document Object Model
(DOM), 469

documents (XML). See also Web
Services

BizSnap.xml example,
467-468

data binding

BizSnap example, 476-482

XML Data Binding
Wizard, 473-475

reading, 470-471

transforming into data pack-
ets, 483-488

documents 1039

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1039

TXMLDocument compo-
nent, 467, 993-994

accessing, 1006

di_IDOMDocument inter-
face, 469

di_IXMLDocument inter-
face, 470

IXMLDocument interface,
470

package assembly, 1005

properties, 468-469

registering, 994-1004

xmlcomponent.pas pack-
age source, 994-1004

writing, 471-472

XML Mapping Tool

loading documents into,
482

transformations, 483-488

doGoogleSearch() function,
769-770

DoHorizontalScrollBars() func-
tion, 246

DOM (Document Object
Model), 469

DOMVendor property
(TXMLDocument component),
468

doNamespaceDecl flag, 469

doNodeAutoCreate flag, 469

doNodeAutoIndent flag, 469

Doodle folder, 935

DoTerminate() function, 167

downloading

Cygwin, 79

DCOM (Distributed COM),
716

Dr.Bob’s C++Builder Gate Web
site, 979

drag and drop

DragAcceptFiles() function,
154-157

DragQueryFile() function,
157-158

enabling, 154

sample application, 154-157

Shell API, 562

WMDropFiles event handler,
156-157

Drag List Box control, 555

Drag, Drop, and Docking prop-
erty category, 38

DragAcceptFiles() function, 154,
562

DragDrop application, 154-155,
157

DragQueryFile() function,
157-158, 562

DragQueryPoint() function, 562

Draw() function, 595

DrawButtonFace() function, 240

DrawClockToHiddenImage()
function, 592

DrawDib, 548

drawing

curves, 582-584

filled shapes, 584-585

lines, 225, 582-584

polygon shapes, 584

text, 585-586

DriverName property
(TSQLConnection compo-
nent), 455

drivers (dbExpress), 453-454

drives, displaying information
about

GetDiskFreeSpace() function,
533

GetDriveType() function, 533

GetVolumeInformation()
function, 533

sample code listing, 530-533

SetVolumeLabel() function,
534

dropped files, accepting,
215-216

dsgnintf.hpp file, 27

DSOs (Data Shared Objects),
628

dual interfaces, 679

DumpModules folder, 942

dwAuthnLevel parameter
(CoInitializeSecurity() func-
tion), 731

dwCapabilities parameter
(CoInitializeSecurity() func-
tion), 732

dwImpLevel parameter
(CoInitializeSecurity() func-
tion), 732

dynamic casts, 105-106

Dynamic Data Exchange (DDE)
service, 516

dynamic link libraries. See DLLs

Dynamic Link Library (DLL) ser-
vice, 516

DYNAMIC methods
(TPropertyEditor), 301-303

dynamic loading

DLLs (Dynamic Link
Libraries), 636-641

FreeLibrary function, 641

function pointers,
640-641

GetProcAddress function,
638-639

LoadLibrary function,
637-638

Visual C++ DLLs, 661-662

packages, 647

documents1040

35 0672324806 Index 12/12/02 2:41 PM Page 1040

E
Eagle Software Web site, 981

Easy DCOM Type Library 1.0
Properties dialog box

General tab, 720

Identity tab, 722

Location tab, 721

Security tab, 721

EasyDCOM folder, 723

EasyDCOM sample application

client application, 725-728

identities, 729

running, 730

server application, 723-725

Eddon, Guy, 711

Eddon, Henry, 711

Edit() function, 301, 351,
354-358, 402

class properties, 309-311

int properties, 311-312

no updates, 313

Edit menu commands

Lock Controls, 25

Option, 276

EditorClass parameter
(RegisterPropertyEditor()
function), 318

editors

component editors, 291-292,
348

context menu items,
362-368

definition code, 351-353

EnhancedEditors package,
291-293

functions, 354-362,
368-371

mouse responses, 349-350

NewAdditional
Components package,
291-294

registering, 371

virtual functions, 350-351

Data Diagram Editor,
389-390

Image Editor, 24

interfaces, 922

Mobile Editor, 955-956

property editors, 291-292

choosing, 314-316

definition code, 305-306

developing, 299

EnhancedEditors package,
291-293

exceptions, 316-317

functions, 301-314

image rendering, 331-347

NewAdditional
Components package,
291-294

overriding, 330-331

properties, 314

registering, 317-319

TCaptionProperty compo-
nent, 296

TCharProperty compo-
nent, 296

TClassProperty compo-
nent, 296

TColorProperty compo-
nent, 296

TComponentProperty
component, 297

TCursorProperty compo-
nent, 297

TEnumProperty compo-
nent, 297

TFloatProperty compo-
nent, 297

TFontProperty compo-
nent, 297

TIntegerProperty compo-
nent, 297

TMethodProperty compo-
nent, 297

TOrdinalProperty compo-
nent, 297

TPropertyAttributes Set
values, 299-301

TPropertyEditor compo-
nent, 294-297, 314

TSetElementProperty
component, 297

TSetProperty component,
297

TStringProperty compo-
nent, 297

TTypeInfo structure,
319-330

Source Code Editor, 39-40

Code Insight, 42

Diagram tab, 40-42

TLE (Type Library Editor),
724

Type Library Editor, 676

EditProperty() function, 351,
358-360

Effective C++, Second Edition,
988

EJB (Enterprise JavaBeans),
29-30

Ellipse function, 585

emulators, 949-950

Enabled property, 231

EnableWindow() function, 495

enabling drag and drop, 154

end-user-defined characters
(EUDC), 572

#endif directive, 108

EnhancedEditors package,
291-293

EnterCriticalSection() function,
181

Enterprise JavaBeans (EJB),
29-30

Enterprise JavaBeans 1041

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1041

Enterprise SOAP clients,
832-834

Enterprise SOAP servers,
830-832

Enterprise version (C++Builder
6), 25

enumerating windows, 497-504

ButtonEnumWindowsClick()
function, 502

EnumWindows() function,
502

GetClassName() function,
503-504

GetWindowLong() function,
503-504

GetWindowRect() function,
504

GetWindowText() function,
503-504

GetWindowTextLength()
function, 504

GetWindowThreadProcess
ID() function, 503-504

GetWinHandleAll() function,
502

ProcessHandleInformation()
function, 503

sample code listing, 497-502

SetWindowText() function,
504

TreeView1Change() function,
503

UpdateAppInfo() function,
503

EnumWindows() function,
495-497, 502, 541

EnumWindowsProc() function,
496

Environment Options command
(Tools menu), 44

Environment Options dialog
box, 44

EOAC_NONE bitmask, 732

Erik’s Open Tools API FAQ and
Resources, 926

error handling

ADO (ActiveX Database
Objects) components, 450

DataSnap, 790-794

error messages

Error Message service, 516

Server too busy, 814

unavailable database, 456

exceptions, 95-96

bad_alloc exceptions, 101

catch keyword, 96-97

creating, 211

custom exceptions, 212

exception specifications,
101

exception-neutral code,
99

finally keyword, 97

guidelines for use, 98-99

non-visual components,
212

property editors, 316-317

specifications, 101

throw keyword, 97-98

throwing at design time,
212

try keyword, 96

unexpected exceptions,
98

unhandled exceptions, 98

VCL compared to C++,
100

MCI (Media Control
Interface), 610-611

OnReconcileError event han-
dler, 412, 790-794

remote debugging, 75

Error Message service, 516

error messages

Error Message service, 516

Server too busy, 814

unavailable database, 456

ERROR return value
(CombineRng() function), 546

Essential COM, 711

establishing links for data-aware
components, 256-257

EUDC (end-user-defined charac-
ters), 572

Evaluate/Modify dialog box,
68-69

event handlers, 15-17

adding to context menu
items, 362-365

ButtonConvertToFeetClick,
635

ButtonConvertToMeters
Click, 635

ButtonFontClick, 591

ButtonGetVersionClick, 635

event sinks, 695-696

defined, 695

implementing, 702-707

OnAfterGetRecords

ClientDataSet, 806

DataSetProvider, 805-806

OnAfterPost, 487

OnBeforeGetRecords

ClientDataSet, 804-805

DataSetProvider, 805

OnClick, 16-17, 22, 228, 239,
787-789

OnDataChange, 260-261

OnDockDrop, 152

OnDockOver, 151

OnEndDock, 149-150

OnExit, 221

OnGetSiteInfo, 150-151

Enterprise SOAP clients1042

35 0672324806 Index 12/12/02 2:41 PM Page 1042

OnKeyPress, 22-23

OnMouseOver, 231

OnMouseUp, 231

OnOrderRecieved, 707

OnReconcileError, 412,
791-793

OnShow, 21

OnTerminate, 172

OnWillChangeRecord, 447

OnWillConnect, 445

timerevent(), 701-702

TSQLMonitor component,
461-462

WMDropFiles, 156-157

Event Logging service, 516

event objects (COM+), 670

event sinks, 695-696

defined, 695

implementing, 702-707

events, 15-17

ADO (ActiveX Database
Objects), 445

TADOConnection compo-
nent, 445-446

TADOCustomDataSet
component, 446-447

AfterPost, 433

calling, 207-208

custom properties, 207

event handlers, 15-17

ButtonConvertToFeet
Click, 635

ButtonConvertToMeters
Click, 635

ButtonGetVersionClick,
635

event sinks, 695-696,
702-707

OnAfterGetRecords,
805-806

OnAfterPost, 487

OnBeforeGetRecords,
804-805

OnClick, 16-17, 22, 228,
239, 787-789

OnDataChange, 260-261

OnDockDrop, 152

OnDockOver, 151

OnEndDock, 149-150

OnExit, 221

OnGetSiteInfo, 150-151

OnKeyPress, 22-23

OnMouseOver, 231

OnMouseUp, 231

OnOrderRecieved, 707

OnReconcileError, 412,
791-793

OnShow, 21

OnTerminate, 172

OnWillChangeRecord,
447

OnWillConnect, 445

timerevent, 701-702

TSQLMonitor component,
461-462

WMDropFiles, 156-157

keyboard, 262-263

linking between non-visual
components, 221-224

mouse

data-aware components,
262-263

TControl, code to over-
ride, 231-232

non-visual components,
205-208

properties, 205

TIBEvents component,
429-430

eventsLOnMouseDown, 231

EWX_FORCE flag, 528

EWX_LOGOFF flag, 528

EWX_POWEROFF flag, 528

EWX_REBOOT flag, 528

EWX_SHUTDOWN flag, 528

ExampleButton

ExampleButton.cpp source
file, 234-239

ExampleButton.h header file,
232-234

Examples directory

Ado folder, 931

AppEvents folder, 931

Apps folder, 931

Autocon subfolder, 934

Autosrv subfolder, 935

Canvas subfolder, 935

Colordlg subfolder, 935

Cursors subfolder, 935

Doodle subfolder, 935

FindRep subfolder, 936

Header subfolder, 936

ImageView subfolder, 936

IpcDemos subfolder, 936

MiniComp subfolder, 936

MultiPag subfolder, 936

OwnerList subfolder, 936

Printing subfolder, 936

ProcView subfolder, 936

RichEdit subfolder, 936

Scrollbar subfolder, 936

Switch subfolder, 936

SysSound subfolder, 937

Tab subfolder, 937

Threads subfolder, 937

TrayIcon subfolder, 937

TwoForms subfolder, 937

Wpm subfolder, 937

Examples directory 1043

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1043

CodeGuard folder, 931

Controls folder, 932

ConvertIt folder, 932

Corba folder, 932

CustomDraw folder, 932

DBTask folder, 937, 941-943

BioLife subfolder, 942

BkQuery subfolder, 937

CachedUp subfolder, 937

Contacts subfolder, 937

CountryEditor subfolder,
942

CountryReport subfolder,
942

CSDemos subfolder, 937

CtrlGrid subfolder, 937

DBErrors subfolder, 937

DumpModules subfolder,
942

Filter subfolder, 937

Find subfolder, 937

FishFact subfolder, 938

Gds subfolder, 938

GDSDemo subfolder, 938

IBDemo subfolder, 938

LocateFileService sub-
folder, 942

LookUp subfolder, 939

MastApp subfolder, 939

MasterDetail subfolder,
943

MstPool subfolder, 939

NavMDI subfolder, 939

NavSDI subfolder, 939

NDXBuild subfolder, 939

PhotoGallery subfolder,
943

QBFDemo subfolder, 939

QJoin subfolder, 939

QuickRpt subfolder, 939

StreamImage subfolder,
943

TextData subfolder, 940

DBTasks folder, 932

DDraw folder, 932

Doc folder, 932

AutoProj subfolder, 940

CBrowse subfolder, 940

DirOutIn subfolder, 940

Filmanex subfolder, 940

GraphEx subfolder, 940

OleCtnrs subfolder, 940

OLEWord1 subfolder, 941

OLEWord2 subfolder, 941

TextEdit subfolder, 941

VarArray subfolder, 941

VarLock subfolder, 941

VarToInt subfolder, 941

Docking folder, 932

Experts folder, 933

FastNet folder, 933

Games folder, 933

Indy folder, 933

Internet folder, 933

MFC folder, 933

Midas folder, 933

OpenGL folder, 933

PWordDemo folder, 933

ShellControls folder, 933

StdLib folder, 933

Teechart folder, 933

Toolsapi folder, 933

VirtualListView folder, 933

WebServ folder, 933

WebServices folder, 934

WebSnap folder, 934

WinTools folder, 934

Exception class, 211-212

exception handling, 95-96

bad_alloc exceptions, 101

catch keyword, 96-97

creating, 211

custom exceptions, 212

exception specifications, 101

exception-neutral code, 99

finally keyword, 97

guidelines for use, 98-99

non-visual components, 212

property editors, 316-317

specifications, 101

throw keyword, 97-98

throwing at design time, 212

try keyword, 96

unexpected exceptions, 98

unhandled exceptions, 98

VCL compared to C++, 100

exception-neutral code, 99

Exceptional C++: 47
Engineering Puzzles,
Programming Problems, and
Solutions, 91, 99-100

ExecSQL() function, 403

Execute() function, 166-167

creators, 920-921

notifiers, 910-914

services, 893-895

ExecuteVerb() function, 351,
368-369

executing stored procedures,
444

existing components, building
upon, 192, 194

ExitWindowsEx() function, 528,
576-577

Experts folder, 933

Examples directory1044

35 0672324806 Index 12/12/02 2:41 PM Page 1044

exporting

classes from packages, 57

DLL (Dynamic Link Library)
classes

header files, 641-642

methods, 642-644

sample application,
644-647

master-detail datasets,
796-797

extensions

C++ extensions

_automated, 116

_classid, 117

_closure, 117-118

_declspec, 118-122

_fastcall, 122

properties, 11-14

_property, 122

_published, 122-123

try/finally blocks, 14

debugging, 922-923

file extensions

.bkp, 48

.bpi, 48, 56

.bpl, 48, 56

.cpp, 47

.dfm, 47

.h, 47

.lib, 56

.mak, 46

extern keyword, 633

external windows, controlling

ButtonBringToFocusClick()
function, 506

ButtonChangeTitleClick()
function, 505

ButtonHideClick() function,
507

ButtonMaximizeClick() func-
tion, 507

PostMessage() function, 506

sample code listing, 504-505

SendMessage() function, 506

SetForegroundWindow()
function, 506

SetWindowText() function,
505

ExtractIcon() function, 563

F
fast-forwarding MCI (Media

Control Interface) devices,
613-614

(_fastcall class extension, 122

FastNet folder, 933

feet_to_meters() function, 632

FetchOnDemand property
(TClientDataSet), 412

fields

Bug Tracker application, 432

TAdapter component, 860

WebSnap Adapter Fields,
849-850

file actions, 145-146

file association, 562

File class, 919

file extensions

.bkp, 48

.bpi, 48, 56

.bpl, 48, 56

.cpp, 47

.dfm, 47, 385

.dll, 627

.h, 47

.lib, 56

.mak, 46

.tlb, 675

File Mapping service, 516

File menu commands

Close All, 20

New, 629, 647, 723

New Application, 18

New–Other, 830

Save Project As, 21

FileName property

TSQLMonitor component,
461

TXMLDocument component,
468-469

files. See also specific file name

actions, 145-146

backing up, 565, 567-569

deleting, 570-572

DFM files, saving as text,
43-44

displaying information about

CloseHandle() function,
537

CreateFile() function,
536-537

GetFileInformationBy
Handle() function, 537

GetFileSize() function,
538

GetFileType() function,
537

LPBY_HANDLE_FILE_
INFORMATION struc-
ture, 537

sample code listing,
534-536

distribution, 276-278

DLL header files

creating, 632-633

example, 641-642

dropped files, accepting,
215-216

file association, 562

files 1045

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1045

File class, 919

file extensions

.bkp, 48

.bpi, 48, 56

.bpl, 48, 56

.cpp, 47

.dfm, 47, 385

.dll, 627

.h, 47

.lib, 56

.mak, 46

.tlb, 675

header files

dependencies, 109

precompiled headers,
76-77

HOSTS files, 425-426

mobile applications, 954-955

AIF files, 966

BLD.INF file, 957-958

header files, 958-961

MBM files, 966

MMP files, 956-957

PKG files, 966-967

resource files, 964-965

SIS files, 966-967

source files, 961-964

package files, 55-57, 276

project files

backup files, 48

desktop layout files, 48

form files, 46-47

main project files, 45-46

package project files,
47-48

sound files

audio streams, 618-621

closing, 617-618

opening, 617-618

Files service, 516

filled shapes, drawing, 584-585

Filmanex folder, 940

Filter folder, 937

filtering property categories, 37

__finally statement, 14

finally keyword, 97

Find folder, 937

FindCurrentProject() function,
897-899

FindExecutable() function, 562

FindMenuItemCaption() func-
tion, 900-901

FindRep folder, 936

FindWindow() function, 496

FindWindowEx() function, 496

FishFact folder, 938

flags

AW_ACTIVATE, 513

AW_BLEND, 513

AW_CENTER, 513

AW_HIDE, 513

AW_HOR_NEGATIVE, 513

AW_HOR_POSITIVE, 513

AW_SLIDE, 513

AW_VER_NEGATIVE, 513

AW_VER_POSITIVE, 513

ComponentState, 216-218

csAncestor, 216

csDesigning, 216

csDesignInstance, 217

csDestroying, 217

csFixups, 217

csFreeNotification, 217

csInline, 217

csLoading, 217

csReading, 217

csUpdating, 218

csWriting, 217

doAttrNull, 469

doAutoPrefix, 469

doAutoSave, 469

doNamespaceDecl, 469

doNodeAutoCreate, 469

doNodeAutoIndent, 469

EWX_FORCE, 528, 577

EWX_LOGOFF, 528, 577

EWX_POWEROFF, 528, 577

EWX_REBOOT, 528, 577

EWX_SHUTDOWN, 528, 577

FLASHW_ALL, 511

FLASHW_CAPTION, 511

FLASHW_STOP, 511

FLASHW_TIMER, 511

FLASHW_TIMERNOFG, 511

FLASHW_TRAY, 511

FOF_ALLOWUNDO, 569

FOF_FILESONLY, 569

FOF_MULTIDESTFILES, 569

FOF_NOCONFIRMATION,
569

FOF_NOCONFIRMMKDIR,
569

FOF_RENAMEON
COLLISION, 569

FOF_SILENT, 569

FOF_SIMPLEPROGRESS, 569

FOF_WANTMAPPING
HANDLE, 569

poAsyncLoad, 469

poPreserveWhiteSpace, 469

poResolveExternals, 469

poValidateOnParse, 469

RND_AND, 546

RND_COPY, 546

RND_DIFF, 546

RND_OR, 546

RND_XOR, 546

files1046

35 0672324806 Index 12/12/02 2:41 PM Page 1046

flashing windows

FlashWindow() function,
510-512

FlashWindowEx() function,
510-511

FLASHW_ALL flag, 511

FLASHW_CAPTION flag, 511

FLASHW_STOP flag, 511

FLASHW_TIMER flag, 511

FLASHW_TIMERNOFG flag, 511

FLASHW_TRAY flag, 511

FlashWindow() function,
510-512

FlashWindowEx() function,
510-511

Flat Scroll Bar control, 555

flicker-free bitmap manipula-
tion, 596-598

Floating-Point Unit (FPU) view,
67-68

FMouseInControl variable, 239

fnCombineMode parameter
(CombineRgn() function), 545

fnPolyFillMode parameter
(CreatePolygonRgn() func-
tion), 547

FO_COPY operation, 568

FO_DELETE operation, 568

FO_MOVE operation, 568

FO_RENAME operation, 568

FOF_ALLOWUNDO flag, 569

FOF_FILESONLY flag, 569

FOF_MULTIDESTFILES flag, 569

FOF_NOCONFIRMATION flag,
569

FOF_NOCONFIRMMKDIR flag,
569

FOF_RENAMEONCOLLISION
flag, 569

FOF_SILENT flag, 569

FOF_SIMPLEPROGRESS flag, 569

FOF_WANTMAPPINGHANDLE
flag, 569

folders

Ado, 931

AppEvents, 931

Apps, 931

Autocon subfolder, 934

Autosrv subfolder, 935

Canvas subfolder, 935

Colordlg subfolder, 935

Cursors subfolder, 935

Doodle subfolder, 935

FindRep subfolder, 936

Header subfolder, 936

ImageView subfolder, 936

IpcDemos subfolder, 936

MiniComp subfolder, 936

MultiPag subfolder, 936

OwnerList subfolder, 936

Printing subfolder, 936

ProcView subfolder, 936

RichEdit subfolder, 936

Scrollbar subfolder, 936

Switch subfolder, 936

SysSound subfolder, 937

Tab subfolder, 937

Threads subfolder, 937

TrayIcon subfolder, 937

TwoForms subfolder, 937

Wpm subfolder, 937

CodeGuard, 931

Controls, 932

ConvertIt, 932

Corba, 932

CustomDraw, 932

DBTask, 937, 941-943

BioLife subfolder, 942

BkQuery subfolder, 937

CachedUp subfolder, 937

Contacts subfolder, 937

CountryEditor subfolder,
942

CountryReport subfolder,
942

CSDemos subfolder, 937

CtrlGrid subfolder, 937

DBErrors subfolder, 937

DumpModules subfolder,
942

Filter subfolder, 937

Find subfolder, 937

FishFact subfolder, 938

Gds subfolder, 938

GDSDemo subfolder, 938

IBDemo subfolder, 938

LocateFileService sub-
folder, 942

LookUp subfolder, 939

MastApp subfolder, 939

MasterDetail subfolder,
943

MstPool subfolder, 939

NavMDI subfolder, 939

NavSDI subfolder, 939

NDXBuild subfolder, 939

PhotoGallery subfolder,
943

QBFDemo subfolder, 939

QJoin subfolder, 939

QuickRpt subfolder, 939

StreamImage subfolder,
943

TextData subfolder, 940

DBTasks, 932

DDraw, 932

Doc, 932

AutoProj subfolder, 940

CBrowse subfolder, 940

folders 1047

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1047

DirOutIn subfolder, 940

Filmanex subfolder, 940

GraphEx subfolder, 940

OleCtnrs subfolder, 940

OLEWord1 subfolder, 941

OLEWord2 subfolder, 941

TextEdit subfolder, 941

VarArray subfolder, 941

VarLock subfolder, 941

VarToInt subfolder, 941

Docking, 932

EasyDCOM, 723

Experts, 933

FastNet, 933

Games, 933

Indy, 933

Internet, 933

MFC, 933

Midas, 933

OpenGL, 933

PaintBox1, 226

PaintBox3, 229

PWordDemo, 933

ShellControls, 933

StdLib, 933

Teechart, 933

Toolsapi, 933

VirtualListView, 933

WebServ, 933

WebServices, 934

WebSnap, 934

WinTools, 934

fonts, 542, 590-591

form files, 46-47

format actions, 145

FormCreate() function, 706

FormDockDrop() function, 152

FormGetSiteInfo() function, 151

FormPaint function, 592

forms, 15

active forms, 670, 710

backgrounds, 153

data modules

adding, 386

form inheritance, 391-393

inherited modules, find-
ing at runtime, 392-393

in DLLs

MDI (multiple document
interface) child win-
dows, 653-655

MDIChild_DLL.bpr exam-
ple, 649-651

modal SDI (single docu-
ment interface) win-
dows, 652-653

naming, 25

nonmodal forms, 89-92

saving as text, 43-44

Forms menu commands, Save
As Text, 43-44

forward declarations, 198

FPU (Floating-Point Unit) view,
67-68

Frame3D() function, 240

frames, 127

adding at design time, 129-
130

adding at runtime, 130-131

guidelines, 137

inheritance, 135

pop-up windows, 131-135

reusing, 135-137

TCustomFrame class, 129

TFrame class, 128

TFrame decendant classes,
131

TScrollingWinControl class,
128

Free threading model, 695, 779

free() function, 100

FreeLibrary() function, 641

FreeNotification() function, 258

FreeOnTerminate property
(TThread), 167

FreePackage() function, 647

function pointers, 640-641

functions

abort(), 98

Activate(), 302

AddActionList(), 129

AddCustomer(), 699-700

AddItem(), 244-245

AddNotifier(), 909, 914

AddRef(), 672, 884

AfterSave(), 882

AllEqual(), 302

AnimateWindow(), 512-513

API drawing functions, 226

Append(), 402

ApplyUpdates(), 406, 432,
459, 487, 789-790, 824-825

Assign(), 602-604

AssignTo(), 602

AutoFill(), 302

available functions, listing,
493

AVIFileClose(), 618

AVIFileExit(), 617

AVIFileGetStream(), 618

AVIFileInit(), 617

AVIFileOpen(), 618

AVIStreamFormatSize(), 619

AVIStreamInfo(), 619

AVIStreamRead(), 620

AVIStreamReadFormat(), 619

AVIStreamRelease(), 618

folders1048

35 0672324806 Index 12/12/02 2:41 PM Page 1048

AVIStreamWrite(), 620

BeforeSave(), 882

beginthread(), 164

BitBlt(), 153

BlanketInfo(), 739, 745

Button1Click(), 228

ButtonBringToFocusClick(),
506

ButtonChangeTitleClick(),
505

ButtonEnumWindowsClick(),
502

ButtonHideClick(), 507

ButtonMaximizeClick(), 507

ButtonMoveRightMouse
Down(), 509

ButtonMoveRightMouseUp(),
510

ButtonPlaceorderClick(), 707

ButtonSystemInfoClick(),
526

CascadeWindows(), 495

Change(), 264

ChooseColor(), 561

Close(), 401-402

CloseHandle(), 537, 541

CloseWindow(), 495

Cm2Inch(), 754-755

CMExit(), 265

CmInchFactory(), 753

CoCreateInstance(), 674,
683-684

CoInitialize(), 673

CoInitializeSecurity(),
730-734

CombineRgn(), 545-547

CommDlgExtendedError(),
562

Commit(), 403

CommitUpdates(), 432

Copy(), 351, 369

CopyBitmap(), 595

CopyProxy(), 737

CopyRect(), 593-595, 601

CoQueryClientBlanket(), 740

CoRevertToSelf(), 741

CoSetProxyBlanket(), 745

Create(), 683

CreateCompatibleBitmap(),
594

CreateConnectionString(),
424

CreateDC(), 542

CreateDIBSection(), 594

CreateEllipticRgn(), 544-545

CreateFile(), 536-537, 740,
746

CreateHandle(), 595

CreateMutex(), 182

CreateObject(), 101

CreateParams(), 133

CreatePolygonRgn(), 547

CreateProcess(), 538, 541,
900

CreateRemote(), 683, 728

CreateRoundRectRgn(),
543-544

CreateThread(), 160-164

CreateWindow(), 495

CreateWindowEx(), 558

CreateWindowHandle(), 134

CreateWnd(), 134

DataChange(), 260-263

DblClick(), 241-242

DefineProperties(), 274

DefineProperty(), 275

DeleteObject(), 595

Destroyed(), 882, 914-915

DestroyWindow(), 495

Detach(), 725

DisplaySection(), 479-482

DLL (Dynamic Link Library)
functions, 642-644

DllEntryPoint(), 387, 628

DLLMain(), 628-631

doGoogleSearch(), 769-770

DoHorizontalScrollBars(),
246

DoTerminate(), 167

DragAcceptFiles(), 154, 562

DragQueryFile(), 157-158,
562

DragQueryPoint(), 562

Draw(), 595

DrawButtonFace(), 240

DrawClockToHiddenImage(),
592

Edit(), 301, 309-313, 351,
354-358, 402

EditProperty(), 351, 358-360

Ellipse(), 585

EnableWindow(), 495

EnterCriticalSection(), 181

EnumWindows(), 495-497,
502, 541

EnumWindowsProc(), 496

ExecSQL(), 403

Execute(), 166-167

creators, 920-921

notifiers, 910-914

services, 893-895

ExecuteVerb(), 351, 368-369

ExitWindowsEx(), 528,
576-577

ExtractIcon(), 563

feet_to_meters(), 632

FindCurrentProject(),
897-899

FindExecutable(), 562

functions 1049

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1049

FindMenuItemCaption(),
900-901

FindWindow(), 496

FindWindowEx(), 496

FlashWindow(), 510, 512

FlashWindowEx(), 510-511

FormCreate(), 706

FormDockDrop(), 152

FormGetSiteInfo(), 151

FormPaint(), 592

Frame3D(), 240

Free(), 100

FreeLibrary(), 641

FreeNotification(), 258

FreePackage(), 647

function macros, 107-108

Get(), 195-196

GetAttributes(), 301, 306

GetChildren(), 129

GetClassName(), 503-504

GetComputerName(), 525

GetDC(), 542, 580

GetDesktopWindow(), 134

GetDeviceCaps(), 592

GetDIB(), 607

GetDIBSizes(), 607

GetDiskFreeSpace(), 533

GetDriveType(), 533

GetEditLimit(), 302

GetFileInformationBy
Handle(), 537

GetFileSize(), 538

GetFileTitle(), 561

GetFileType(), 537

GetFloatValue(), 307

GetGoogleSearchPort(), 768

gethost(), 575

gethostbyname(), 575

GetICmInch(), 765

GetIDString(), 925

GetInt64Value(), 307

GetLength(), 197

GetLibVersion(), 646

GetMethodValue(), 307

GetName(), 303

getNumber(), 88

GetNumberOfPages(), 95

GetOrdValue(), 307

GetProcAddress(), 638-639

GetProcedureNames(), 448

GetProperties(), 303

GetPropInfo(), 320

GetRealString(), 202

GetScanLine, 595

GetStringAlias(), 202-203

GetStrValue(), 307

GetSystemInfo(), 526

GetSystemMetrics(), 527

GetTableNames(), 448

GetTempPath(), 527

GetWinHandleAll(), 497

getter functions, 11

GetThreadTimes(), 177

GetTickCount(), 176

GetUseName(), 525

GetValue(), 301, 306-307

GetValues(), 302, 313-314

GetVarValue(), 307

GetVerb(), 351, 360-361

GetVerbCount(), 350, 360

GetVersionEx(), 525

GetVisualValue(), 332

GetVolumeInformation(),
533

GetWindowLong(), 503-504

GetWindowRect(), 496, 504

GetWindowText(), 496,
503-504

GetWindowTextLength(),
504

GetWindowThreadProcessID
(), 503-504

GetWinHandleAll(), 502

GetWinHandle_Specific(),
542

get_Info(), 724-725, 728

GlobalMemoryStatus(),
529-530

HandleMessage(), 902

Image1MouseMove(), 597

Inch2Cm(), 754-755

IndexOf(), 203

InitCommonControlsEx(),
558

Initialize(), 303

InitializeImage(), 592

INITWIZARD0001, 923

InputQuery(), 728

Insert(), 202

IsBound(), 727

IsDebuggerPresent(), 71

IsImpersonating(), 738

KeyDown(), 262

KillTimer(), 551

LineTo(), 598

ListDrawValue(), 304, 332,
338-344

implementing, 340-343

overriding, 338-340

ListMeasureHeight(), 304,
332, 337-338

ListMeasureWidth(), 303,
332, 336-337

Loaded(), 209-210, 222

LoadAlterBitmap(), 562

LoadChapter(), 479

functions1050

35 0672324806 Index 12/12/02 2:41 PM Page 1050

LoadFromClipboardFormat(),
605

LoadFromFile(), 605

LoadFromStream(), 605

LoadLibrary(), 493, 637-638,
683

LoadPackage(), 647

Lock(), 168

LockWorkStation(), 576

LookForWindowHandle(),
541

malloc(), 100

mciGetErrorString(), 610

mciSendCommand(), 610

MCIWndCreate(), 550

MessageBeep(), 496

MessageBox(), 496

meters_to_feet(), 632

Modified(), 882

MouseDown(), 262

MouseUp(), 242-243

MoveTo(), 225, 582, 598

MoveWindow(), 496, 509

MsgLogOnExit(), 224

MyWndProc(), 509

NewChapter(), 479

NewImplSource(), 918-919

non-visual components,
208-209

Notification(), 219-221

OleCheck(), 728

OnBeforeGetRecords(), 806

Open(), 401-402

OpenMP3File(), 689-690

OutOfMemory(), 102

OutputDebugString(), 178

OutputMsg(), 219-220

PanelEndDock(), 150

pass-through functions, 257

Perform(), 246

PlaceOrder(), 700

PlaySound(), 550-551

PolyBezier(), 582-583

Polygon(), 584

PopDrawName(), 332,
345-347

PopDrawValue(), 332,
344-345

ported LAN Manager func-
tions, 573

Post(), 402

PostMessage(), 496, 506, 509,
695

PrepareItem(), 351, 361-362

printf(), 82-83

ProcessCreated(), 904, 909

ProcessDestroyed(), 904, 909

ProcessHandleInformation(),
503

ProcessMessages(), 896

ProcessorInfo(), 526

PropDrawName(), 304

PropDrawValue(), 304

protected methods, 209-211

public methods, 209

QueryBlanket(), 737-738

QueryInterface(), 671, 884,
892

read(), 202

ReadFileNames(), 246

read_png_to_dib(), 606

Rectangle(), 580, 582

Register(), 57, 117, 135,
267-269, 318, 889

RegisterComponentEditor(),
117, 371

RegisterComponents(),
267-269

RegisterPackageWizard(), 914

RegisterPropertyEditor(),
317-319

RegisterWindowMessage(),
496, 509, 513

Release(), 674, 884

ReleaseDC(), 580

ReleaseMutex(), 182

RemoveActionList(), 129

RemoveNotifer(), 914

Repaint(), 228

Resume(), 167

ResumeThread(), 164

RevertToSelf(), 738

Rollback(), 403

RollbackRetaining(), 433

SaveToClipboardFormat(),
605

SaveToFile(), 469, 596,
604-605

SaveToStream(), 605

ScanLine(), 600

ScreenSize(), 527

SelectCell(), 256

SelectEdit(), 256

SendMessage(), 496, 506, 610

Set(), 195-197

set_new_handler(), 102

set_terminate(), 98

set_unexpected(), 98

SetAuthInfo(), 745

SetBlanket(), 737

SetComputerName(), 528

SetDIBits(), 606

SetFloatValue(), 308

SetFocus(), 150

SetForegroundWindow(), 506

SetInt64Value(), 308

SetLength(), 197

SetMethodValue(), 308

functions 1051

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1051

setNumber(), 88

SetOrdValue(), 308

SetParent(), 129

SetProcessActive(), 909

SetRealString(), 202

SetStrValue(), 308

setter functions, 11

SetThreadPriority(), 173

SetTimer(), 551

SetupMessageViewAccess(),
896-897

SetValue(), 301, 308

SetVarValue(), 308

SetVolumeLabel(), 534

SetWindowText(), 496,
504-505

ShellExecute(), 242, 562-564

ShellExecuteEx(), 563-565

SHFileOperation(), 565-572

file backups, 566-569

flags, 569

possible operations, 568

Show(), 92, 901-902

ShowMDIChild(), 654

ShowMDIChildForm(), 651

ShowModal(), 89-90, 653

ShowSDIChild(), 652

ShowSDIForm(), 653

ShowSDIFormmodal(), 651

ShowWindow(), 496

simpleGetLibVersion(),
631-632, 641

SpeedButtonStartClick(), 902

sprintf(), 82-83, 576

StartTransaction(), 402

StretchBlt(), 153, 595

StretchDraw, 595

Supports(), 892

Suspend(), 167

SuspendThread(), 164

SwapColors(), 228

Synchronize(), 167, 170

SystemParametersInfo(), 527

terminate(), 98, 167, 170,
915

TerminateThread(), 170

TextExtent(), 586

TextOut(), 585

TextRect(), 585

ThreadFunc(), 161, 164

TileWindows(), 496

timeKillEvent(), 552

TimerProc(), 554

timeSetEvent(), 552-554

TransparentStretchBlt(), 595

TreeView1Change(), 503

Unbind(), 728

unexpected(), 98

Unlock(), 168

UpdateAppInfo(), 503

UpdateData(), 263

UpdateRegistry(), 781-782,
814-816

ValidCtrCheck(), 135, 266,
285

virtual protected methods,
209

VisibleChanging(), 134

vprintf(), 82

WaitFor(), 167

WaitForSingleObject(),
182-183

wavCalculateBufferSize(), 621

waveOutClose(), 622

waveOutOpen(), 622

waveOutPrepareHeader(),
622

waveOutWrite(), 622, 625

wavGetStreamInfo(), 621

wavOutUnprepareHeader(),
622

wavPlayOpen(), 625

WindowsVersion(), 525-526

WinMain(), 496

WmDropFiles(), 215

wmMoveAWindow(), 509

write(), 202, 239

write_dib_to_png(), 606

WSAStarup(), 575

ZeroMemory(), 570

FWX_FORCE flag, 577

FWX_LOGOFF flag, 577

FWX_POWEROFF flag, 577

FWX_REBOOT flag, 577

FWX_SHUTDOWN flag, 577

G
Games folder, 933

GDI (graphical device interface),
542-543, 579-580

analog clock application,
592-593

bitmaps, 593-594

BITMAP structure, 594

borders, 596

converting into PGN
images, 607-609

converting PGN images
to, 606-607

cropping, 600-601

DDBs (device-dependent
bitmaps), 594

DIB section bitmaps, 594

DIBs (device-independent
bitmaps), 594

functions1052

35 0672324806 Index 12/12/02 2:41 PM Page 1052

flicker-free bitmap manip-
ulation, 596-598

loading, 595-596

rotating, 598-600

saving, 596

TBitmap component,
594-595

tiling/stretching onto
forms, 589-590

color, 591-592

components

TBitmap, 594-595

TBrush, 588-590

TCanvas, 581-586

TColor, 591-592

TFont, 590-591

TPen, 586-588

cropping, 587-588

DC (Device Context), 580

device contexts, 542

GIF images, 605

JPEG images, 601-602

I/O operations, 605

loading, 602-603

properties, 604-605

saving, 603-604

specification, 602

TJPEGImage component,
602

objects, 542

PGN images

converting bitmaps to,
607, 609

converting to bitmaps,
606-607

PNGDIB conversion
library, 606

regions

CombineRgn() function,
545-547

combining, 545-547

CreateEllipticRgn() func-
tion, 544-545

CreatePolygonRgn() func-
tion, 547

CreateRoundRectRgn()
function, 543-544

defined, 543

oval regions, 544-545

polygon regions, 547

rectangular regions,
543-544

shapes

filled shapes, 584-585

lines and curves, 582-584

polygon shapes, 584

text, drawing, 585-586

Gds folder, 938

GDSDemo folder, 938

General tab (Easy DCOM Type
Library 1.0 Properties dialog
box), 720

generators, 421

Gessler, Nicholas, 979

Get() function, 195-197

GetAttributes() function, 301,
306

GetChildren() function, 129

GetClassName() function,
503-504

GetComputerName() function,
525

GetDC() function, 542, 580

GetDesktopWindow() function,
134

GetDeviceCaps() function, 592

GetDIB() function, 607

GetDIBSizes() function, 607

GetDiskFreeSpace() function,
533

GetDriveType() function, 533

GetEditLimit() function, 302

GetFileInformationByHandle()
function, 537

GetFileSize() function, 538

GetFileTitle() function, 561

GetFileType() function, 537

GetFloatValue() function, 307

GetGoogleSearchPort() func-
tion, 768

gethost() function, 575

gethostbyname() function, 575

GetICmInch() function, 765

GetIDString() function, 925

GetInt64Value() function, 307

GetLength() function, 197

GetLibVersion function, 646

GetMethodValue() function, 307

GetName() function, 303

getNumber() function, 88

GetNumberOfPages() function,
95

GetOrdValue() function, 307

GetProcAddress() function,
638-639

GetProcedureNames() function,
448

GetProperties() function, 303

GetPropInfo() function, 320

GetRealString() function, 202

GetScanLine() function, 595

GetStringAlias() function,
202-203

GetStrValue() function, 307

GetSystemInfo() function, 526

GetSystemMetrics() function,
527

GetTableNames() function, 448

GetTempPath() function, 527

getter functions, 11

GetThreadTimes() function, 177

GetTickCount() function, 176

GetTickCount() function 1053

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1053

Getting Started with C++ on
the Nokia 9200 Series
Communicator (white paper),
969

GetUseName() function, 525

GetValue() function, 301,
306-307

GetValues() function, 302,
313-314

GetVarValue() function, 307

GetVerb() function, 351,
360-361

GetVerbCount() function, 350,
360

GetVersionEx() function, 525

GetVisualValue() function, 332

GetVolumeInformation() func-
tion, 533

GetWindowLong() function,
503-504

GetWindowRect() function, 496,
504

GetWindowText() function, 496,
503-504

GetWindowTextLength() func-
tion, 504

GetWindowThreadProcessID()
function, 503-504

GetWinHandleAll() function,
502

GetWinHandleAll() function,
497

GetWinHandle_Specific() func-
tion, 542

get_Info() function, 724-725,
728

GIF (Graphics Interchange
Format) images, 605

global form pointer variables,
89-92

global security settings
(DCOM), 717-720

global variables

avoiding, 86-89

global form pointer variables,
89-92

Globally Unique Identifiers
(GUIDs), 673

GlobalMemoryStatus() function,
529-530

GNU Make for Windows, 79

Google Groups, 986

Google Web Service, 765

Google searches, 766-767

doGoogleSearch() func-
tion, 769-770

GetGoogleSearchPort()
function, 768

GoogleSearchPort inter-
face, 768-769

GoogleSearchResult type,
767, 770-772

ResultElement type, 767

ResultElementArray type,
767

Google Web APIs, 766

Search Key, 766

GoogleSearchPort interface,
768-769

GoogleSearchResult type, 767,
770-772

granting permissions, 728

GraphEx folder, 940

graphic components, 192

graphical device interface. See
GDI

graphical user interfaces. See
GUIs

graphics. See also GUIs (graphi-
cal user interfaces)

GDI (graphical device inter-
face), 542-543, 579-580

analog clock application,
592-593

bitmaps, 593-601,
606-609

color, 591-592

components, 586-595

cropping, 587-588

DC (Device Context), 580

device contexts, 542

GIF images, 605

JPEG images, 601-605

objects, 542

PGN images, 606-609

regions, 543-547

shapes, 582-585

text, drawing, 585-586

icons, 24, 563

raised or lowered appear-
ances, 227

rendering in property edi-
tors, 331-332

function parameters,
334-336

GetVisualValue() func-
tion, 332

ListDrawValue() function,
332, 338-344

ListMeasureHeight() func-
tion, 332, 337-338

ListMeasureWidth() func-
tion, 332, 336-337

PopDrawName() function,
332, 345-347

PopDrawValue() function,
332, 344-345

sample definition code,
333-334

visual components, 227-230

Graphics Interchange Format
(GIF) images, 605

GUIDs (Globally Unique
Identifiers), 673

Getting Started with C++ on the Nokia 9200 Series Communicator1054

35 0672324806 Index 12/12/02 2:41 PM Page 1054

GUIs (graphical user interfaces),
126. See also graphics

actions, 141-143

Action Manager, 143-144

dialog actions, 146

file actions, 145-146

format actions, 145

help actions, 145

Internet actions, 147

list actions, 146

search actions, 146

tab actions, 146

TActionMainMenuBar
component, 143

TActionToolBar compo-
nent, 143-144

tools actions, 147

buttons, 16-17, 787-789

component templates,
127-128

drag and drop

DragAcceptFiles() func-
tion, 154-157

DragQueryFile() function,
157-158

enabling, 154

sample application,
154-157

WMDropFiles event han-
dler, 156-157

forms, 15

active forms, 670, 710

backgrounds, 153

data modules, 386,
391-393

in DLLs, 649-655

naming, 25

nonmodal forms, 89-92

saving as text, 43-44

frames, 127

adding at design time,
129-130

adding at runtime,
130-131

guidelines, 137

inheritance, 135

pop-up windows, 131-135

reusing, 135-137

TCustomFrame class, 129

TFrame class, 128

TFrame decendant classes,
131

TScrollingWinControl
class, 128

list boxes, 21

pop-up windows, 131-135

screen layout, 137-138

alignment, 138-139

anchors, 139

scrollbars, 139-141

TScrollBox component,
141

TSplitter component,
139-141

status bars, 19

user customization

docking, 148-152

form backgrounds, 153

hiding/displaying con-
trols, 153

system colors, 147-148

H
.h file extension, 47

Handle property (TThread), 167

HandleMessage() function, 902

handles (windows), 495

Handles and Objects service,
516

Harmon, Eric, 711

HDC data type, 226

Header Controls, 555

header files

dependencies, 109

DLLs (Dynamic Link
Libraries)

creating, 632-633

example, 641-642

ExampleButton.h, 232-234

MDIChild_DLL.bpr applica-
tion, 649

mobile applications, 958-961

precompiled headers, 76-77

SHFileListBox.h, 247-248

TAliasComboBox class, 210

TDBMaskEdit class, 257-258

TMsgLog class, 223

type libraries, 676-677

Header folder, 936

heap (memory), 100

Hello World mobile application

BLD.INF file, 957-958

HelloWorld.h file, 958-961

HelloWorld.RSS resource file,
964-965

HelloWorld_AppView.cpp
file, 961-964

MadeInBorland.MMP file,
956-957

help actions, 145

Help and Hints property cate-
gory, 38

Help Support service, 517

help system integration, 29

heterogeneous joins, 406

hexagons, drawing, 584

hexagons 1055

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1055

Hidden Paths of Delphi 3:
Experts, Wizards, and the
Open Tools API, 926

hiding controls, 153

horizontal scrollbars, 246

HOSTS files, 425-426

Hot-Key Controls, 555

Howe, Harold, 979

HRESULT return type, 673

hrgn1 parameter
(CombineRgn() function), 545

hrgn2 parameter
(CombineRgn() function), 545

hrgnDest parameter
(CombineRgn() function), 545

HTTP (Hypertext Transfer
Protocol), 812-814

I
IAppServer interface, 826

IBDemo folder, 938

IBExpress (InterBase Express),
417, 375

Bug Tracker sample applica-
tion

Bugs table, 418, 420

cached updates, 432

data-aware components,
432-433

database creation and
connection, 424-426

database fields, 432

database rules, 420-421

debugging, 424

delete statement, 431

generators, 421

insert statement, 431

modify statement,
430-431

refresh statement,
431-432

Revision table, 420

stored procedures,
423-424

testing, 434

transactions, 432-433

triggers, 421-422

database creation and con-
nection

CreateConnectionString
function, 424

HOSTS files, 425-426

passwords, 426

database rules, 420-421

debugging, 424

generators, 421

relationship with other data-
base components, 376-377

schema setup, 418-420

stored procedures, 423-424

TIBDataSet component, 429

TIBEvents component,
429-430

TIBQuery component, 429

TIBSQL component, 429

TIBStoredProc component,
429

TIBTable component,
428-429

TIBUpdateSQL component,
427-428

transactions, 427

triggers, 421-422

IClientSecurity interface,
737-738

ICmInch interface, 756-757

ICmInch.cpp file, 761-763

ICmInch.h file, 760-761

icons, 24, 563

ICustomHelpViewer interface,
29

IDataBroker interface, 672

IDD naming prefix, 879

IDE (Integrated Development
Environment), 7-8, 33

compiler, 76-79

debugger, 58

Attach to Process feature,
72

AVs (access violations),
71-72

breakpoints, 60-63

Debug Inspector, 69-70

DLLs (dynamic link
libraries), 75

Evaluate/Modify dialog
box, 68-69

JIT (just-in-time) debug-
ging, 73

multithreaded application
debugging, 58-59

remote debugging, 73-75

views, 63-68

watches, 68

Windows environments,
70-71

extensions, 922-923

Forms—Save As Text feature,
43-44

main window, 33

Object Inspector, 36-37

Object Tree view, 39

property categories, 37-39

packages

Contains section, 54

design time packages, 53

importing/exporting
classes, 57

linking, 56

package files, 55-57

Hidden Paths of Delphi 3: Experts, Wizards, and the Open Tools API1056

35 0672324806 Index 12/12/02 2:41 PM Page 1056

PACKAGE macro, 57

Requires section, 54

runtime packages, 53

weak packages, 57

Project Manager, 34, 48-49

Source Code Editor, 39-40

Code Insight, 42

Diagram tab, 40-42

toolbars, 33

windows, docking, 34, 36

Identity impersonation level
(DCOM), 718

Identity tab (Easy DCOM Type
Library 1.0 Properties dialog
box), 722

IDispatch interface, 672

IDL (Interface Definition
Language), 29-30

IDs

GUIDs (Globally Unique
Identifiers), 673

IIDs (interface IDs), 673-674

message IDs, 513-514

IEnumVARIANT interface, 672

#ifndef directive, 108

IFont interface, 672

IIDs (interface IDs), 673-674

IInterface interface, 884

IIOP (Internet Inter-ORB
Protocol), 29-30

Image component, 18

Image Editor, 24

Image Editor command (Tools
menu), 24

Image List control, 556

Image1MouseMove function,
597

images. See graphics

ImageView folder, 936

IME (Input Method Editor), 572

IMPDEF command, 663-664

impdef tool, 493

Impersonate impersonation
level (DCOM), 718

impersonation levels (DCOM),
718, 729

Implib.exe tool, 662

Import Type Library command
(Project menu), 685

Import Type Library dialog box,
685

import units (Web Services),
758-763

import32.lib library, 492

import32.txt file, 492

importing

classes into packages, 57

type libraries, 685-686

in-place activation, 668

Inch2Cm() function, 754-755

Index parameter, 202

indexes, 201

IndexOf() function, 203

Indy (Internet Direct)
Components Web site, 981

Indy folder, 933

InformIT Web site, 987

inheritance

form inheritance

data modules, 391-393

purpose and goals, 392

uneven form inheritance,
392-393

TFrame class, 135

InitCommonControlsEx() func-
tion, 558

Initialize() function, 303

InitializeImage() function, 592

initializing

images, 592

Initialize() function, 303

links, 259

shared variables, 658

INITWIZARD0001 function, 923

inproc servers, 678

Input Method Editor (IME), 572

Input property category, 38

InputQuery() function, 728

insert statement, 431

Insert() function, 202

Inside COM, 711

Inside Distributed COM, 711

Inspect command (Run menu),
62

installing

C++ Mobile Edition, 948-949

components in Component
Palette, 192

INTA naming prefix, 879

INTAFormEditor interface, 922

INTAServices interface, 891

integers, storing, 31

Integrated Development
Environment (IDE), 7-8

interactive debugger. See
debugging

Interactive User accounts
(DCOM), 722

Interbase Express. See IBExpress

Interbase page (Component
Palette), 126

Interface Definition Language
(IDL), 29-30

interface-wide security (DCOM)

Blanket server application

BlanketClient main form,
742

BlanketInfo() function,
739, 745

CoQueryClientBlanket()
function, 740

interface-wide security 1057

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1057

CoRevertToSelf() func-
tion, 741

CoSetProxyBlanket()
function, 745

CreateFile() function, 740,
746

MainUnit.cpp form,
742-745

SetAuthInfo() function,
745

IClientSecurity interface,
737-738

IServerSecurity interface,
738-739

interfaces, 668, 671

creating, 672-673, 676-678

di_IDOMDocument, 469

di_IXMLChapterType,
478-479

di_IXMLDocument, 470

di_IXMLSectionType, 478

dispinterfaces, 679

dual interfaces, 679

GoogleSearchPort, 768-769

IAppServer, 826

IClientSecurity, 737-738

ICmInch, 756-757

ICustomHelpViewer, 29

IDataBroker, 672

IDispatch, 672

IEnumVARIANT, 672

IFont, 672

IIDs (interface IDs), 673-674

IInterface, 884

implementing, 678-681

INTAFormEditor, 922

INTAServices, 891

IOTAActionServices, 891

IOTAAdditionalFilesModule
Creator, 915

IOTABreakpointNotifier, 903

IOTACodeInsightServices,
891

IOTACreator, 915

IOTADebuggerNotifier, 903

IOTADebuggerServices, 891

IOTAEditLineNotifier, 903

IOTAEditor, 922

IOTAEditorNotifier, 903

IOTAEditorServices, 891

IOTAFormEditor, 922

IOTAFormNotifier, 903

IOTAFormWizard, 881

IOTAIDENotifier, 904

IOTAKeyBindingServices, 891

IOTAKeyboardServices, 891

IOTAMenuWizard, 881

IOTAMessageNotifier, 904

IOTAMessageServices, 891

IOTAModuleCreator, 915

IOTAModuleNotifier, 904

IOTAModuleServices, 891

IOTANotifier, 881-882

IOTAPackageServices, 891

IOTAProcessModNotifier, 904

IOTAProcessNotifier, 904

IOTAProjectCreator50, 916

IOTAProjectGroupCreator,
916

IOTAProjectResource, 922

IOTAProjectWizard, 881

IOTAServices, 891

IOTASourceEditor, 922

IOTAThreadNotifier, 904

IOTAToDoServices, 891

IOTAToolsFilterNotifier, 904

IOTATypeLibEditor, 922

IOTAWizard, 881

IOTAWizardServices, 891

IPicture, 672

IProvider, 672

IRemoteDataMod42, 827

IServerSecurity, 738-739

IStrings, 672

IUnknown, 671-673

IWSDLPublish, 756

IXMLDocument, 470

naming, 672-673

TWinHelpViewer, 29

international features (Win32
API), 572

Internet actions, 147

Internet folder, 933

Internet Inter-ORB Protocol
(IIOP), 29-30

Interprocess Communications.
See IPC

Invokable Registry, 753

InvRegistry object, 753

IOTA naming prefix, 879

IOTAActionServices interface,
891

IOTAAdditionalFilesModuleCreat
or interface, 915

IOTABreakpointNotifier inter-
face, 903

IOTACodeInsightServices inter-
face, 891

IOTACreator interface, 915

IOTADebuggerNotifier inter-
face, 903

IOTADebuggerServices inter-
face, 891

IOTAEditLineNotifier interface,
903

IOTAEditor interface, 922

IOTAEditorNotifier interface,
903

interface-wide security 1058

35 0672324806 Index 12/12/02 2:41 PM Page 1058

IOTAEditorServices interface,
891

IOTAFormEditor interface, 922

IOTAFormNotifier interface, 903

IOTAFormWizard interface, 881

IOTAIDENotifier interface, 904

IOTAKeyBindingServices inter-
face, 891

IOTAKeyboardServices inter-
face, 891

IOTAMenuWizard interface, 881

IOTAMessageNotifier interface,
904

IOTAMessageServices interface,
891

IOTAModuleCreator interface,
915

IOTAModuleNotifier interface,
904

IOTAModuleServices interface,
891

IOTANotifier interface, 881-882

IOTAPackageServices interface,
891

IOTAProcessModNotifier inter-
face, 904

IOTAProcessNotifier interface,
904

IOTAProjectCreator50 interface,
916

IOTAProjectGroupCreator inter-
face, 916

IOTAProjectResource interface,
922

IOTAProjectWizard interface,
881

IOTAServices interface, 891

IOTASourceEditor interface, 922

IOTAThreadNotifier interface,
904

IOTAToDoServices interface, 891

IOTAToolsFilterNotifier inter-
face, 904

IOTATypeLibEditor interface,
922

IOTAWizard interface, 881

IOTAWizardServices interface,
891

IP Address control, 556

IPC (Interprocess
Communications), 655

DLL definition files, 656

DLL methods, 659-661

DLL source files, 656

shared segmentation classes,
658

shared variables, 657-658

IpcDemos folder, 936

IPicture interface, 672

IProvider interface, 672

IRemoteDataMod42 interface,
827

IsBound() function, 727

IsDebuggerPresent() function,
71

IServerSecurity interface,
738-739

IsImpersonating() function, 738

IStrings interface, 672

iterating through tables, 442

IUnknown interface, 671-673

IWSDLPublish interface, 756

IXMLDocument interface, 470

J
JavaBeans, 29-30

JIT (just-in-time) debugging, 73

joins, 406

Joint Photographic Experts
Group. See JPEG images

journals, 989. See also books

Joysticks, 548

JPEG images, 601-602

I/O operations, 605

loading, 602-603

properties, 604-605

saving, 603-604

specification, 602

TJPEGImage component, 602

just-in-time (JIT) debugging, 73

K
Kaster, John, 454

kernel library, 515

kernel32.dll, 515

keyboard events, 262-263

KeyDown() function, 262

keys, primary, 864

keywords. See also functions

catch, 96-97

const, 92-95

default, 203

delete, 100-104

extern, 633

finally, 97

namespace, 213-214

new, 100-104

nodefault, 203-204

PACKAGE, 198

stored, 204

throw, 97-98

try, 96

KillTimer() function, 551

KillTimer() function 1059

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1059

L
Large Integer Operations ser-

vice, 517

Large-Scale C++ Software
Design, 87-89, 108

Launching User accounts
(DCOM), 722

layout (screens), 137-138

alignment, 138-139

anchors, 139

TScrollBox component, 141

TSplitter component,
139-141

Layout property category, 38

legacy applications, 821-822

Legacy property category, 38

Lempel-Ziv 78 (LZ78) compres-
sion algorithm, 605

Lempel-Ziv-Welch (LZW) com-
pression algorithm, 605

Length property, 196

.lib file extension, 56

libraries. See also DLLs
(Dynamic Link Libraries)

ActiveX, 670

bcbie.bpi, 1006

C++ Standard Library

containers, 30-31

memory management, 32

import32, 492

STL (standard template
library), 26

TLE (Type Library Editor),
724

type libraries, 670, 674-675

header file declarations,
676-677

importing, 685-686

Type Library Editor, 676

viewing, 675

VCL (Visual Component
Library), 110-111

building objects with,
112-113

C++ extensions, 116-123

compared to C++ classes,
113-116

compared to CLX, 123

Component Palette,
123-126

main VCL thread,
170-172

nonpersistent data, 111

persistent data, 111

TComponent component,
112

TControl component, 112

TGraphicControl compo-
nent, 112

TObject component,
111-112

TPersistent component,
112

TWinControl component,
112

wrappers, 111

Windows kernel library, 515

lines, drawing, 225, 582-584

LineTo() function, 598

Linkage property category, 38

LinkedEdit property, 219

linking

components, 219

data-aware components,
256-259

DLLs (Dynamic Link
Libraries), 636-641

FreeLibrary function, 641

function pointers,
640-641

GetProcAddress function,
638-639

LoadLibrary function,
637-638

static linking, 634-636,
662-664

Visual C++ DLLs, 661-662

events, 221-224

non-visual components,
218-221

packages, 56

Lischner, Ray, 926

list actions, 146

list boxes, 21

list containers, 30

List View control, 556

ListBox component, 21

ListDrawValue() function, 304,
332, 338-344

implementing, 340-343

overriding, 338-340

listing available functions, 493

listings. See code listings

ListMeasureHeight() function,
304, 332, 337-338

ListMeasureWidth() function,
303, 332, 336-337

LoadAlterBitmap() function, 562

LoadBalanced property
(TSimpleObjectBroker compo-
nent), 820

LoadChapter() function, 479

Loaded() function, 209-210, 222

LoadFromClipboardFormat()
function, 605

LoadFromFile() function, 605

LoadFromStream() function,
605

loading

bitmaps, 595-596

DLLs (Dynamic Link
Libraries), 634-636,
638-641, 661-662

Large Integer Operations service1060

35 0672324806 Index 12/12/02 2:41 PM Page 1060

FreeLibrary function, 641

function pointers,
640-641

GetProcAddress function,
638-639

LoadLibrary function,
637-638

static loading, 634-636,
662-664

JPEG images, 602-603

mobile applications, 952

packages, 647

LoadLibary() function, 493,
637-638, 683

LoadPackage() function, 647

LoadParamsOnConnection
property (TSQLConnection
component), 455

Locale property category, 38

Localizable property category,
38

LocateFileService folder, 942

Location tab (Easy DCOM Type
Library 1.0 Properties dialog
box), 721

location transparency, 716

Lock Controls command (Edit
menu), 25

Lock() function, 168

locked applications, resetting,
24

locking

components, 25

NT Workstations, 576

LockWorkStation() function,
576

LoginPrompt property
(TSQLConnection compo-
nent), 456

logins

DCOM (Distributed COM),
716

WebSnap example

EndUserSessionAdapter,
858

incorrect login, 857

login form, 856

login page, 855

LoginFormAdapter, 856

LookForWindowHandle() func-
tion, 541

Lookup Connector button (Data
Diagram Editor), 390

LookUp folder, 939

lowered appearances of graph-
ics, 227

LPBY_HANDLE_FILE_
INFORMATION structure, 537

lppt parameter
(CreatePolygonRgn() func-
tion), 547

LZ78 (Lempel-Ziv 78) compres-
sion algorithm, 605

LZW (Lempel-Ziv-Welch) com-
pression algorithm, 605

M
macros

creating, 107-108

DELPHICLASS, 119

OPENARRAY, 268

PACKAGE, 57, 267

MadeInBorland.MMP file,
956-957

magazines, 989. See also books

Mailslots service, 517

main project files, 45-46

main project source files, 46

main VCL threads, 170-172

main window, 33

.mak file extension, 46

Make command, 78

malloc() function, 100

management

managers

Action Manager, 143-144

Project Manager, 34,
48-49

memory, 100-104

windows

animation, 512-513

enumerating, 497-504

external window control,
504-507

flashing, 510-512

handles, 495

message handling,
507-510

message identifiers,
513-514

responding to messages,
514-515

window management
functions, 494-496

WinManUtil sample pro-
ject, 496-497

managers

Action Manager, 143-144

Project Manager, 34, 48-49

map containers, 30

mapping

map containers, 30

XML Mapping Tool

loading documents into,
482

transformations, 483-488

Mask property, 243

MastApp folder, 939

MastApp folder 1061

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1061

master-detail architecture,
864-865

master-detail clients, 797-798

master-detail datasets,
796-797

master-detail servers,
794-796

master-detail tables, 403

Master/Detail Connector button
(Data Diagram Editor), 390

MasterDetail folder, 943

Mastering COM and COM+,
711

Mastering Delphi 6, 987

MBM (multi-bitmap) files, 966

MCI (Media Control Interface),
548, 609

closing devices, 613-614

device status, 614-615

device time formats, 612-613

errors, 610-611

fast-forwarding devices,
613-614

messages, 610

MCI_CLOSE, 613-614

MCI_OPEN, 611-612

MCI_PAUSE, 613-614

MCI_PLAY, 612-614

MCI_SEEK, 613-614

MCI_SET, 612

MCI_STATUS, 614-615

MCI_STOP, 613-614

MM_MCINOTIFY,
615-616

MM_MCISIGNAL,
615-616

notifications, 615-616

opening devices, 611-612

playing devices, 613-614

polling devices, 615-616

rewinding devices, 613-614

stopping devices, 613-614

supported file types, 616-617

MCI_CLOSE messages, 613-614

MCI_OPEN messages, 611-612

MCI_PAUSE messages, 613-614

MCI_PLAY messages, 612-614

MCI_SEEK messages, 613-614

MCI_SET messages, 612

MCI_STATUS messages, 614-615

MCI_STOP messages, 613-614

mciGetErrorString() function,
610

mciSendCommand() function,
610

MCIWnd Window, 548

MCIWndCreate() function, 550

MDI (multiple document inter-
face) windows, 653-655

MDIChild_DLL.bpr application

header file, 649

ShowMDIChildForm func-
tion, 651

ShowSDIFormmodal func-
tion, 651

source file, 650-651

Media Control Interface. See
MCI

member variables, 11

memory, 32. See also MemStat
Wizard

allocating/deallocating,
100-104

cache

ADO (ActiveX Database
Objects), 449

cached updates, 432

displaying information
about, 529-530

heap, 100

Memory Management ser-
vice, 517

Non-POD objects, 100

shared segmentation (DLLs),
655

DLL definition files, 656

DLL methods, 659-661

DLL source files, 656

shared segmentation
classes, 658

shared variables, 657-658

Memory Management service,
517

MemStat Wizard, 880

class registration, 889

CreateProcess() function, 900

Execute() function, 893-895,
910-914, 920-921

FindCurrentProject() func-
tion, 897-899

FindMenuItemCaption()
function, 900-901

HandleMessage() function,
902

interfaces

IOTAFormWizard, 881

IOTAMenuWizard, 881

IOTANotifier, 881-882

IOTAProjectWizard, 881

IOTAWizard, 881

MemStatusWizard class

class definition, 886, 896

class implementation,
887-889

registering, 889

ProcessMessages() function,
896

public declarations, 905-906

SetProcessActive() function,
909

master-detail architecture1062

35 0672324806 Index 12/12/02 2:41 PM Page 1062

SetupMessageViewAccess()
function, 896-897

Show() function, 901-902

SpeedButtonStartClick()
function, 902

testing, 890

TNotifierObject class,
881-882

class declaration, 882-883

class implementation,
884-885

MemStatusWizard class

class definition, 886, 896

class implementation,
887-889

registering, 889

menu commands. See com-
mands

menu items

custom event handlers,
362-365

submenu items, 366-368

merging regions, 545-547

message callbacks, 495

message maps, 215

MessageBeep() function, 496

MessageBox() function, 496

messages

CM_ENABLECHANGED, 231

CM_MOUSEENTER, 230-231

CM_MOUSELEAVE, 230-231

defined, 495

error messages

Error Message service, 516

Server too busy, 814

unavailable database, 456

MCI (Media Control
Interface), 610, 615-616

MCI_CLOSE, 613-614

MCI_OPEN, 611-612

MCI_PAUSE, 613-614

MCI_PLAY, 612-614

MCI_SEEK, 613-614

MCI_SET, 612

MCI_STATUS, 614-615

MCI_STOP, 613-614

MM_MCINOTIFY,
615-616

MM_MCISIGNAL,
615-616

message callbacks, 495

message handling

ButtonMoveRightMouse
Down() function, 509

ButtonMoveRightMouse
Up() function, 510

MoveWindow() function,
509

MyWndProc() function,
509

PostMessage() function,
509

RegisterWindowMessage()
function, 509

sample code listing,
507-508

message identifiers, 513-514

responding to, 214-216,
230-232, 514-515

sending, 506

trapping, 214

WM_DROPFILES, 215

meters_to_feet() function, 632

methods. See functions

MFC folder, 933

Microsoft COM Technologies
Web site, 982

Microsoft Visual C++

dynamic linking, 661-662

Visual C++/C++Builder com-
patibility, 662-664

Microsoft Web site

DCOM95 download site, 716

Microsoft COM
Technologies, 982

MSDN (Microsoft Developer
Network), 982-983

MIDAS (Multitier Database
Architecture Services). See
DataSnap

Midas folder, 933

MIDI (Music Instrument Digital
Interface), 549

migrating to dbExpress

components, 463-464

migration example, 465-466

MiniComp folder, 936

minimizing DataSnap bottle-
necks

PacketRecords property, 801

server optimization, 802

MJFSecurity, 117

MJFSecurity package, 286

MMP files, 956-957

MM_MCINOTIFY messages,
615-616

MM_MCISIGNAL messages,
615-616

mobile applications, 945

AIF files, 966

BLD.INF file, 957-958

Borland ARM C++ Compiler,
970

building, 952-953

C++ Mobile Edition installa-
tion, 948-949

creating, 950-952

deploying, 966-967

development guidelines, 966

emulators, 949-950

header files, 958-961

loading, 952

mobile applications 1063

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1063

MBM files, 966

MMP files, 956-957

Mobile CLX Framework, 970

Mobile Editor, 955-956

mobile technology
acronyms, 968-969

online resources, 971

PKG files, 966-967

project options, 952-953

resource files, 964-965

simulators, 949-950

SIS files, 966-967

software requirements,
946-947

source files, 961-964

Symbian OS, 967

capabilities, 968

Nokia 9200 Series SDK,
969

products, 969

Symbian SDK, 947

testing, 949, 953

Mobile CLX Framework, 970

Mobile Editor, 955-956

Mobile tab (New Items dialog
box), 950-951

mobile technology acronyms,
968-969

Mode property (TPen compo-
nent), 586

Modified() function, 882

modify statement, 430

modifying windowed compo-
nents, 240-255

Module Load Breakpoint com-
mand (Add Breakpoint menu),
60

module load breakpoints, 60

modules, 87

data modules, 383

advantages of, 384-385

application-specific com-
ponents, 393-396

components, 387

creating in DLLs, 386-387

Data Diagram Editor,
389-390

Data Module Designer,
388-389

defined, 383

dependencies, 393

design and development
techniques, 391

form inheritance, 391-393

framework components,
393-396

including in forms, 386

inherited modules, find-
ing at runtime, 392-393

packages, 396

properties, 387-388

WebSnap

data modules, 841, 848

page modules, 842-843,
847-848

Web modules, 840, 847

Modules view (debugger), 67

Monthly Calendar control, 556

More Effective C++: 35 New
Ways to Improve Your
Programs and Designs, 99,
103

mouse

events

data-aware components,
262-263

TControl, 231-232

messages, responding to,
230-232, 349-350

tracking and displaying,
597-598

MouseDown() function, 262

MouseUp() function, 242-243

MoveTo() function, 225, 582,
598

MoveWindow() function, 496,
509

MP3DemoCom application,
687-688

automation controller,
691-694

MP3FileViewerForm.cpp
source code, 692-693

MP3ObjectImpl.cpp source
file, 688-689

OpenMP3File() function,
689-690

running, 691

VCL_MESSAGE_HANDLER
template, 690

MP3ObjectImpl.cpp source file,
688-689

MSDN (Microsoft Developer
Network) Web site, 982-983

MsgLogOnExit() function, 224

MstPool folder, 939

Multi Threaded option (DLL
Wizard), 629

multi-bitmap (MBM) files, 966

multimap containers, 31

multimedia, 548-549. See also
graphics

ACM (Audio Compression
Manager), 548

Audio Mixers, 548

AVICap, 548

AVIFile, 548

DrawDib, 548

Joysticks, 548

mobile applications1064

35 0672324806 Index 12/12/02 2:41 PM Page 1064

MCI (Media Control
Interface), 548, 609

closing devices, 613-614

device status, 614-615

device time formats,
612-613

errors, 610-611

fast-forwarding devices,
613-614

messages, 610-616

notifications, 615-616

opening devices, 611-612

playing devices, 613-614

polling devices, 615-616

rewinding devices,
613-614

stopping devices, 613-614

supported file types,
616-617

MCIWnd Window, 548

MIDI, 549

Multimedia File service, 549

multimedia file playback,
549-551

Multimedia Timers, 549-554

VCM (Video Compression
Manager), 549

Waveform Audio Interface,
549

audio files, 617-618

audio output devices,
622-625

audio streams, 618-621

Multimedia File service, 549

Multimedia Timers, 549-554

MultiPag folder, 936

multiple document interface.
See MDI windows

multiset containers, 30

multitasking, 159

multithreading

multithreaded applications,
58-59

threads

creating with
CreateThread() function,
160-164

main VCL threads,
170-172

priorities, 173-175

synchronizing, 170,
178-182

TCriticalThread compo-
nent, 178-179

terminating, 170

ThreadFormUnit.cpp,
162-163, 179-180

timing, 175-177

TLabelThread component,
171-173

TPriorityThread compo-
nent, 174-175

TRandomThread compo-
nent, 166-170

TThread component,
164-167

multitier applications, 379. See
also DataSnap

ADO (ActiveX Database
Objects) components,
450-451

briefcase model, 380

client data sets, 410, 413-414

DataSnap, 775-777

applying database
updates, 789-790

bandwidth bottlenecks,
800-802

briefcase model, 785-789

deploying, 808-809

error handling, 790-794

master-detail clients,
797-798

master-detail datasets,
796-797

master-detail servers,
794-796

nested tables, 798-800

server optimization, 802

simple clients, 782-785

simple servers, 777-782,
784

stateless DataSnap,
803-808

DCOM (Distributed
Component Object Model),
811-812

Object Broker, 819-820

object pooling, 814-816

registered servers, 818-819

standard multitier model,
380

switching connections,
828-829

TConnectionBroker compo-
nent, 825-826

DataSnap BDE servers,
826-827

DataSnap clients, 827-828

switching connections,
828-829

TDCOMConnection compo-
nent, 811-812

thin-client model, 380

TLocalConnection compo-
nent, 820-821

ApplyUpdates function,
824-825

BDE legacy applications,
821-822

preparing to upgrade,
822-824

multitier applications 1065

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1065

TSOAPConnection compo-
nent, 829-830

Enterprise SOAP clients,
832-834

Enterprise SOAP servers,
830-832

TSocketConnection compo-
nent, 816-818

TWebConnection compo-
nent, 812-814

Multitier Database Architecture
Services (MIDAS). See
DataSnap

Music Instrument Digital
Interface (MIDI), 549

mutexes, 182

MyWndProc() function, 509

N
n-tier computing, 776. See also

multitier databases

namespace keyword, 213-214

naming conventions, 108

custom components,
280-281

custom interfaces, 672-673

file extensions

.bkp, 48

.bpi, 48, 56

.bpl, 48, 56

.cpp, 47

.dfm, 47, 385

.dll, 627

.h, 47

.lib, 56

.mak, 46

.tlb, 675

forms, 25

package units, 279-280

packages, 279-280

Tools API, 879

National Language Support
(NLS), 572

Native Tools API (NTA), 878. See
also Tools API

navigation

drag and drop

DragAcceptFiles() func-
tion, 154-157

DragQueryFile() function,
157-158

enabling, 154

sample application,
154-157

WMDropFiles event han-
dler, 156-157

scrollbars, 139, 141

NavMDI folder, 939

NavSDI folder, 939

nBottomRect parameter

CreateEllipticRgn() function,
545

CreateRoundRectRgn() func-
tion, 544

NDXBuild folder, 939

nested tables, 798-800

NetBIOS interface, 573

Network DDE, 573

network information, returning,
573-576

network services, 572

NetBIOS interface, 573

Network DDE, 573

network information, return-
ing, 573-576

NT Workstation locking, 576

ported LAN Manager func-
tions, 573

RAS (Remote Access Service),
573

SNMP (Simple Network
Management Protocol), 573

system shutdown, 576-577

WinSock, 573

WNet, 573

Neutral threading model, 695,
779

New Application command (File
menu), 18

New Automation Object dialog
box, 724

New command (File menu),
629, 647, 723

new features (C++Builder 6),
25-27

New Items dialog box

DLL Wizard option, 629

Mobile tab, 950-951

Package option, 647

new keyword, 100-104

New Remote Data Module
Object dialog box, 778-779

New WebSnap Application
Wizard, 839

New–Other command (File
menu), 830

NewAdditionalComponents
package, 291-294

NewChapter() function, 479

NewImplSource() function,
918-919

newsgroups, 926, 985-986

nHeightEllipse parameter
(CreateRoundRectRgn() func-
tion), 544

nLeftRect parameter

CreateEllipticRgn() function,
544

CreateRoundRectRgn() func-
tion, 544

NLS (National Language
Support), 572

multitier applications1066

35 0672324806 Index 12/12/02 2:41 PM Page 1066

nodefault keyword, 203-204

NodeIndentStr property
(TXMLDocument component),
469

Nokia 9200 Series SDK, 969

None command (View menu),
37

nonmodal forms, 89-92

nonpersistent data, 111

Non-POD (Non-Plain Old Data)
objects, 100

nonVCL types, TTypeInfo struc-
ture

creating manually, 328-330

obtaining from existing
property and class, 319-328

NonVCLTypeInfoPackage pack-
age, 292

nonvisual components, 159, 191

creating, 204-205

designtime versus runtime,
216-218

events, 205-208

events, linking, 221-224

exceptions, 211-212

keywords

default, 203

namespace, 213-214

nodefault, 203-204

stored, 204

linking, 218-221

messages, responding to,
214-216

methods, 208-209

protected, 209-211

public, 209

properties

arrays, 201-203

published, 199-201

types of, 198-199

unpublished, 195-198

writing, 195

Notification() function, 219-221

notifications (MCI), 615-616

notifiers

custom DebugNotifier class

class declaration, 904-905

cleaning up, 915

executing, 910-914

methods, 906-909

defined, 903

interfaces, 903-904

nRightRect parameter

CreateEllipticRgn() function,
545

CreateRoundRectRgn() func-
tion, 544

NT Workstations, 576

NTA (Native Tools API), 878. See
also Tools API

nTopRect parameter

CreateEllipticRgn() function,
544

CreateRoundRectRgn() func-
tion, 544

NULLREGION return value
(CombineRng() function), 546

nWidthEllipse parameter
(CreateRoundRectRgn() func-
tion), 544

O
Object Broker, 819-820

Object Inspector, 15, 36-37, 219

access violations, 259

Object Tree view, 39, 388-389

opening, 24

property categories

Action, 38

Data, 38

Database, 38

Drag, Drop, and Docking,
38

filtering, 37

Help and Hints, 38

Input, 38

Layout, 38

Legacy, 38

Linkage, 38

Locale, 38

Localizable, 38

viewing, 37

Object Inspector command
(View menu), 24

object pooling, 814-816

Object Tree view, 39, 388-389

objects. See also components

ADO (ActiveX Database
Objects) components,
435-436

advantages of, 436-437

cautions, 437

compared to BDE, 436

copying, 437

database applications,
447-448

database connections,
439-441

dataset access, 441-445

error handling, 450

events, 445-447

inheritance, 438

multitier applications,
450-451

performance optimiza-
tion, 448-450

objects 1067

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1067

TADOCommand, 438,
444-445

TADOConnection,
438-439, 445-446

TADOCustomDataSet,
446-447

TADODataSet, 438, 445

TADOQuery, 438, 443

TADOStoredProc, 438,
443-444

TADOTable, 438, 441-443

transaction management,
445

TRDSConnection, 438

COM (Component Object
Model), 667

active forms, 670, 710

active server objects, 670

ActiveX controls, 670,
709-710

ActiveX libraries, 670

advantages of, 667-668

architecture, 668-669

automation controllers,
670, 691-694

automation example,
686-694

automation objects, 670

classes, 668

clients, 669, 682-685

CIS (COM Internet
Services), 718

COM+, 670

componentware, 668

COM_Restaurant applica-
tion, 696-707

event sinks, 695-696,
702-707

in-place activation, 668

interfaces, 668-679

objects, 669

online resources, 711-712

property pages, 670

recommended reading,
711

servers, 669, 678-681,
696-702

technologies, 669-670

threading models,
694-695

type libraries, 670,
674-677, 685-686

DCOM (Distributed COM),
715-716

authentication, 718

Blanket server applica-
tion, 739-747

CIS (COM Internet
Services), 718

client application exam-
ple, 725-728

CoInitializeSecurity()
function, 730-734

configuring, 717-722

DCOMCnfg tool, 717-722

DLL clients, 734

download site, 716

IClientSecurity interface,
737-738

impersonation levels, 718,
729

IServerSecurity interface,
738-739

location transparency,
716

logins, 716

permissions, 719, 728

programmatic access con-
trol, 735-737

security settings, 717-722

server application exam-
ple, 723-725

Windows OS family, 716

DSOs (Data Shared Objects),
628

InterBase Objects, 418

InvRegistry, 753

Non-POD (Non-Plain Old
Data) objects, 100

Object Broker, 819-820

Object Inspector, 15, 36-37

access violations, 259

Object Tree view, 39,
388-389

opening, 24

property categories, 37-39

pooling, 814-816

ODBC (Open Database
Connectivity), 399-400

OleCheck() function, 728

OleCtnrs folder, 940

OLEWord1 folder, 941

OLEWord2 folder, 941

OnAfterGetRecords event han-
dler

ClientDataSet, 806

DataSetProvider, 805-806

OnAfterPost event handler, 487

OnBeforeGetRecords event han-
dler

ClientDataSet, 804-805

DataSetProvider, 805

OnBeforeGetRecords() function,
806

OnClick event, 16-17, 22, 228,
239, 787, 789

OnDataChange event, 260-261

OnDockDrop event, 152

OnDockOver event, 151

OnDrop event, 222

one-dimensional arrays, 103

OnEndDock event, 149-150

OnExit event, 221

objects1068

35 0672324806 Index 12/12/02 2:41 PM Page 1068

OnGetSiteInfo event, 150-151

OnKeyPress event, 22-23

OnLogTrace event, 461

OnMouseDown event, 231

OnMouseOver event, 231

OnMouseUp event, 231

OnOrderRecieved event, 707

OnPaint event, 593

OnReconcileError event,
791-793

OnShow event, 21

OnTerminate event, 172

OnTrace event, 461

OnWillChangeRecord event,
447

OnWillConnect event, 445

Open Database Connectivity
(ODBC), 399-400

Open() function, 401-402

Open Tools API (OTA), 878. See
also Tools API

OPENARRAY macro, 268

OpenDialog component, 18

OpenGL folder, 933

opening

audio files, 617-618

BDE (Borland Database
Engine) sessions, 401

browsers, 563-564

DLL Wizard, 629

Image Editor, 24

MCI (Media Control
Interface) devices, 611-612

Object Inspector, 24

Project Manager, 24

tables, 402

TADOTable, 442

Waveform audio devices,
622-625

OpenMP3File() function,
689-690

optimizing performance. See
performance optimization

Option command (Edit menu),
276

Option source (packages), 276

Options command (Project
menu), 24

Options property

TProvider, 413

TXMLDocument, 469

order of creating non-visual
components, 204-205

OTA (Open Tools API), 878. See
also Tools API

OutOfMemory() function, 102

outproc servers, 678

output devices (Waveform API)

audio playback, 622-625

closing, 622

opening, 622

OutputDebugString() function,
178

OutputMsg() function, 219-220

oval regions, creating, 544-545

overriding

Change() function, 264

ListDrawValue() function,
338-340

ListMeasureHeight() func-
tion, 337-338

ListMeasureWidth() function,
337

property editors, 330-331

TControl mouse events,
231-232

OwnerList folder, 936

P
paAutoUpdate value

(TPropertyAttributes), 300

Pacheco, Xavier, 926

Package Description (PKG) files,
966-967

PACKAGE keyword, 198

PACKAGE macro, 57, 267

package project files, 47-48

Package Project Options (.bkp)
files, 48

package units, 279-280

packages, 53, 647

advantages/disadvantages,
647

C++Builder version 1, 285

Contains section, 54

creating, 647-649

custom components,
187-190, 276

data modules, 396

default, 278

design-time packages, 53,
188-189, 281-283

distributing, 276

DLL entry point function,
648-649

EnhancedEditors, 291-293

importing/exporting classes,
57

linking, 56

loading dynamically, 647

MJFSecurity, 286

naming, 279-280

NewAdditionalComponents,
291-294

NonVCLTypeInfoPackage,
292

Option source, 276

package files, 55-57

packages 1069

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1069

PACKAGE macro, 57

package project files, 47-48

package units, 279-280

Requires section, 54

runtime packages, 53

runtime-only, 188-189

TXMLDocument package
assembly, 1005

weak package, 57

PacketRecords property
(TClientDataSet), 412, 801

packets. See data packets

paDialog value
(TPropertyAttributes), 300

paFullWidthName value
(TPropertyAttributes), 300

page modules (WebSnap),
847-848

creating, 842-843

TWebAppPageModule com-
ponent, 847

Page Scroller control, 556

PaintBox1 folder, 226

PaintBox3 folder, 229

painting buttons, 228-229

palette bitmaps, 287

palettes, Component Palette,
15, 123-126, 454

Additional tab, 18

component installation, 192

Standard tab, 19

paMultiSelect value
(TPropertyAttributes), 300

PanelEndDock() function, 150

paReadOnly value
(TPropertyAttributes), 300

paRevertable value
(TPropertyAttributes), 300

paSortList value
(TPropertyAttributes), 300

pass-through functions, 257

passing by reference, 84-85

Password property

TSQLConnection compo-
nent, 456

TWebConnection compo-
nent, 814

passwords, assigning with
IBExpress, 426

paSubProperties value
(TPropertyAttributes), 300

paths, 542

patterns, Singleton, 88

paValueList value
(TPropertyAttributes), 301

PE (Portable Execution) service,
517

Pels, Ruurd, 979

pens, TPen component

crop regions, 587-588

properties, 586

Perform() function, 246

performance optimization

ADO (ActiveX Database
Objects) components

buffering, 449-450

cursor location, 44

cursor types, 449

queries, 448

client data sets, 412-413

compiler, 76-79

Build command, 78

Make command, 78

precompiled headers,
76-77

DataSnap bottlenecks,
800-801

minimizing with
PacketRecords property,
801

minimizing with server
optimization, 802

Performance property
(TJPEGImage component), 604

periodicals, 989. See also books

permissions (DCOM)

configuring, 719

granting, 728

per-server security settings
(DCOM), 720-722

persistent data, 111

PhotoGallery folder, 943

Pipes service, 517

PKG (Package Description) files,
966-967

PlaceOrder() function, 700

Platt, David S., 711

playing

MCI (Media Control
Interface) devices, 613-614

multimedia files, 549-551

Waveform audio, 622-625

PlaySound() function, 550-551

pmNotXor mode (TPen compo-
nent), 586

PNG (Portable Network
Graphics) images

converting bitmaps to,
607-609

converting to bitmaps,
606-607

PNGDIB conversion library,
606

PNGDIB conversion library, 606

poAsyncLoad flag, 469

POINT structure, 547

pointers, 83, 86, 640-641

global form pointer variables,
89-92

PTypeInfo pointer, 319

polling MCI (Media Control
Interface) devices, 615-616

PolyBezier() function, 582-583

packages1070

35 0672324806 Index 12/12/02 2:41 PM Page 1070

Polygon() function, 584

polygon regions, creating, 547

polygon shapes, drawing, 584

pooling objects, 814-816

pop-up windows, creating,
131-135

PopDrawName() function, 332,
345-347

PopDrawValue() function, 332,
344-345

poPreserveWhiteSpace flag, 469

poResolveExternals flag, 469

Portable Execution (PE) service,
517

Portable Network Graphics
images. See PNG images

ported LAN Manager functions,
573

Post() function, 402

PostMessage() function, 496,
506, 509, 695

poValidateOnParse flag, 469

Power Management service,
517

#pragma hdrstop directive,
76-77

#pragma package() directive, 57

precompiled headers, 76-77

Preferences tab (Environment
Options dialog box), 44

PrepareItem() function, 351,
361-362

preparing to upgrade, 822-824

preprogrammer, 106-109

primary keys, 864

printf() function, 82-83

Printing folder, 936

priorities (threads), 173-175

Priority property (TThread), 167

private variables, 195-196

PrivateDirectory property
(TPropertyEditor), 314

procedures, stored, 423-424,
438, 443-444

Process and Thread service, 517

ProcessCreated() function, 904,
909

ProcessDestroyed() function,
904, 909

ProcessHandleInformation()
function, 503

ProcessMessages() function, 896

ProcessorInfo() function, 526

ProcView folder, 936

producers (WebSnap)

TAdapterPageProducer, 852,
860-861

TPageProducer, 852

TTableProducer, 852

Professional version (C++Builder
6), 25

Program Reset command (Run
menu), 24

programmatic access control,
735-737

programmatic security, 716

Blanket server application

BlanketClient main form,
742

BlanketInfo() function,
739, 745

CoQueryClientBlanket()
function, 740

CoRevertToSelf() func-
tion, 741

CoSetProxyBlanket() func-
tion, 745

CreateFile() function, 740,
746

MainUnit.cpp form,
742-745

SetAuthInfo() function,
745

CoInitializeSecurity() func-
tion

calling, 732-734

parameters, 730-732

DLL clients, 734

IClientSecurity interface,
737-738

IServerSecurity interface,
738-739

programmatic access control,
735-737

programming in C++Builder, 82

arrays, 103-104

C++ Standard Library, 110

casting, 105-106

const keyword, 92-95

constants, 107

exception handling, 95-96

bad_alloc exceptions, 101

catch keyword, 96-97

exception-neutral code,
99

exception specifications,
101

finally keyword, 97

guidelines for use, 98-99

throw keyword, 97-98

try keyword, 96

unexpected exceptions,
98

unhandled exceptions, 98

VCL compared to C++,
100

function macros, 107-108

global variables

avoiding, 86-89

global form pointer vari-
ables, 89-92

programming in C++Builder 1071

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1071

memory

allocating/deallocating,
100-104

heap, 100

Non-POD objects, 100

multitasking, 159

pointers, 83, 86

preprogrammer, 106-109

references

declaring, 83

passing parameters by,
84-85

referents, 83

returning, 85-86

when to use, 83-86

string class, 82-83

threads

creating with
CreateThread() func-
tion, 160-164

main VCL threads, 170,
172

multithreading, 160

priorities, 173-175

synchronizing, 170,
178-182

TCriticalThread compo-
nent, 178-179

terminating, 170

ThreadFormUnit.cpp,
162-163, 179-180

timing, 175, 177

TLabelThread compo-
nent, 171-173

TPriorityThread compo-
nent, 174-175

TRandomThread compo-
nent, 166-170

TThread component,
164-167

VCL (Visual Component
Library), 110-111

building objects with,
112-113

C++ extensions, 116-123

compared to C++ classes,
113-116

compared to CLX, 123

Component Palette,
123-126

main VCL thread,
170-172

nonpersistent data, 111

persistent data, 111

TComponent component,
112

TControl component, 112

TGraphicControl compo-
nent, 112

TObject component,
111-112

TPersistent component,
112

TWinControl component,
112

wrappers, 111

Programming Windows, 592

Progress Bars control, 556

ProgressiveDisplay property
(TJPEGImage component), 605

ProgressiveEncoding property
(TJPEGImage component), 605

project files

backup files, 48

desktop layout files, 48

form files, 46-47

main project files, 45-46

package project files, 47-48

Project Manager, 24, 34, 48-49

Project Manager command
(View menu), 24

Project menu commands

Build All Projects, 25

Import Type Library, 685

Options, 24

Project Options dialog box, 24

project resource files, 46

projects. See also applications

backward compatibility, 26

building, 49-50

custom build tools, 50-52

order of compilation,
52-53

defined, 44-45

files

backup files, 48

desktop layout files, 48

form files, 46-47

main project files, 45-46

package project files,
47-48

Project Manager, 34

PropCount property
(TPropertyEditor), 314

PropDrawName() function, 304

PropDrawValue() function, 304

properties, 11-13. See also prop-
erty editors

AliasString, 201

Ancestor, 275

arrays, 201-203

changing, 24

Comp3, 274

Control, 259

custom classes, 198-199

custom events, 207

data modules, 387-388

DataField, 257

DataSource, 257

programming in C++Builder1072

35 0672324806 Index 12/12/02 2:41 PM Page 1072

Delphi-style default proper-
ties, 14

dependencies, 204-205

determining streaming
requirements, 274-275

Enabled, 231

events, 205

forward declarations, 198

getting, 196-197

JPEG images, 604-605

Length, 196

LinkedEdit, 219

Mask, 243

pass-through functions, 257

private variables, 196

property categories

Action, 38

Data, 38

Database, 38

Drag, Drop, and Docking,
38

filtering, 37

Help and Hints, 38

Input, 38

Layout, 38

Legacy, 38

Linkage, 38

Locale, 38

Localizable, 38

viewing, 37

published, 199-201

publishing, 199-200

ReadOnly

creating, 255-256

data-aware components,
261

RealString, 201

setting, 196-197

SomeProperty1, 270

SomeProperty2, 270

streaming, 112

TBrush component, 588

TCanvas component,
581-582

TClientDataSet component,
412-413, 801

TCOMConnection compo-
nent, 783-784

TFont component, 590

TPen component, 586

TPropertyEditor component,
314

TProvider component, 413

TSimpleObjectBroker compo-
nent, 820

TSocketConnection compo-
nent, 816

TSQLConnection compo-
nent, 455-456

TSQLDataSet component,
456-457

TSQLMonitor component,
460-461

TThread component,
166-167

TWebConnection compo-
nent, 813-814

TXMLDocument component,
468-469

types of, 198-199

unpublished, 195-198,
271-275

version, 200

propertiesShareImages, 244

propertiesTComponent object,
216

_property class extension, 122

Property Connector button
(Data Diagram Editor), 390

property editors, 291-292

choosing, 314-316

definition code, 305-306

developing, 299

EnhancedEditors package,
291-293

exceptions, 316-317

functions

Activate(), 302

AllEqual(), 302

AutoFill(), 302

Edit(), 301, 309-313

GetAttributes(), 301, 306

GetEditLimit(), 302

GetFloatValue(), 307

GetInt64Value(), 307

GetMethodValue(), 307

GetName(), 303

GetOrdValue(), 307

GetProperties(), 303

GetStrValue(), 307

GetValue(), 301, 306-307

GetValues(), 302, 313-314

GetVarValue(), 307

Initialize(), 303

ListDrawValue(), 304

ListMeasureHeight(), 304

ListMeasureWidth(), 303

PropDrawName(), 304

PropDrawValue(), 304

SetFloatValue(), 308

SetInt64Value(), 308

SetMethodValue(), 308

SetOrdValue(), 308

SetStrValue(), 308

SetValue(), 301, 308

SetVarValue(), 308

property editors 1073

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1073

image rendering, 331-332

function parameters,
334-336

GetVisualValue() func-
tion, 332

ListDrawValue() function,
332, 338-344

ListMeasureHeight() func-
tion, 332, 337-338

ListMeasureWidth() func-
tion, 332, 336-337

PopDrawName() func-
tion, 332, 345-347

PopDrawValue() function,
332, 344-345

sample definition code,
333-334

NewAdditionalComponents
package, 291-294

overriding, 330-331

registering, 318-319

PTypeInfo pointer, 319

RegisterPropertyEditor()
function, 317-318

TTypeInfo structure, 319

TTypeKind structure, 319

TCaptionProperty compo-
nent, 296

TCharProperty component,
296

TClassProperty component,
296

TColorProperty component,
296

TComponentProperty com-
ponent, 297

TCursorProperty component,
297

TEnumProperty component,
297

TFloatProperty component,
297

TFontProperty component,
297

TIntegerProperty component,
297

TMethodProperty compo-
nent, 297

TOrdinalProperty compo-
nent, 297

TPropertyAttributes Set val-
ues, 299-301

TPropertyEditor component,
294-297, 314

TSetElementProperty compo-
nent, 297

TSetProperty component,
297

TStringProperty component,
297

TTypeInfo structure

creating manually,
328-330

declaring, 319

obtaining from existing
property and class,
319-328

property pages, 670

Property Sheets control, 556

PropertyName parameter
(RegisterPropertyEditor()
function), 318

PropertyType parameter
(RegisterPropertyEditor()
function), 318

protected methods, 209-211

protocols

HTTP (Hypertext Transfer
Protocol), 812-814

IIOP (Internet Inter-ORB
Protocol), 29-30

NetBIOS interface, 573

SNMP (Simple Network
Management Protocol), 573

SOAP (Simple Object Access
Protocol), 749

activation model, 752-753

deploying, 755-757

Enterprise SOAP clients,
832-834

Enterprise SOAP servers,
830-832

Invokable Registry, 753

server applications,
750-751

TSOAPConnection com-
ponent, 829-834

Web module, 751-752

Web service interfaces,
754-755

TCP/IP (Transmission
Control Protocol/Internet
Protocol), 816-818

ProviderName property
(TCOMConnection compo-
nent), 784

Providers, 439

Proxy property
(TWebConnection compo-
nent), 814

ProxyByPass property
(TWebConnection compo-
nent), 814

PTypeInfo pointer, 319

public methods, 209

_published class extension,
122-123

published area (C/C++ class),
269

published properties (non-visual
components), 199-201

pVoid parameter
(CoInitializeSecurity() func-
tion), 731

PWordDemo folder, 933

property editors1074

35 0672324806 Index 12/12/02 2:41 PM Page 1074

Q
QaDRAM.Delphi Web site, 981

QBFDemo folder, 939

QJoin folder, 939

QualityCentral Web site,
977-978

queries

cached updates, 406

creating, 405-406

performance optimization,
448

TADOQuery, 438, 443

TIBQuery component, 429

TQuery component, 403

creating queries, 405

master/detail relation-
ships, 404

parameters, 404

TUpdateSQL component,
405-406

QueryBlanket() function,
737-738

QueryInterface() function, 671,
884, 892

QuickRpt folder, 939

R
raAbort action

(OnReconcileError event han-
dler), 792

raCancel action
(OnReconcileError event han-
dler), 792

raCorrect action
(OnReconcileError event han-
dler), 792

RAD (Rapid Application
Development), 269

raised appearances of graphics,
227

Raize Software Web site, 981

raMerge action
(OnReconcileError event han-
dler), 792

Rapid Application Development
(RAD), 269

raRefresh action
(OnReconcileError event han-
dler), 792

RAS (Remote Access Service),
573

raSkip action (OnReconcileError
event handler), 792

RDBMSs (Relational Database
Management Systems). See
IBExpress (InterBase Express)

read access, 257-258

read function, 202

read-only controls, 255-256

ReadFileNames() function, 246

reading

audio streams, 619-621

XML documents, 470-471

ReadOnly property

creating, 255-256

data-aware components, 261

read_png_to_dib() function, 606

RealString property, 201

Rebar control, 556

recommended reading. See
books

reconciling errors, 790-794

records, 402

Rectangle() function, 580-582

rectangular regions, creating,
543-544

Rector, Brent, 711

recycling files, 570-572

references

declaring, 83

passing parameters by, 84-85

referents, 83

returning, 85-86

when to use, 83-86

referents, 83

refresh statement, 431-432

regions, 542-543

Register() function, 57, 117,
135, 267-269, 318, 889

RegisterComponentEditor()
function, 117, 371

RegisterComponents() function,
267-269

registered servers (DataSnap),
818-819

RegisterPackageWizard() func-
tion, 914

RegisterPropertyEditor() func-
tion, 317-319

RegisterWindowMessage() func-
tion, 496, 509, 513

registration

component editors, 371

custom components,
266-268

custom wizard classes, 889

DataSnap servers, 781-782

functions

Register(), 57, 117, 135,
267-269, 318, 889

RegisterComponentEditor
(), 117, 371

RegisterComponents(),
267-269

RegisterPackageWizard(),
914

RegisterPropertyEditor(),
317-319

RegisterWindow
Message(), 496, 509, 513

property editors, 318-319

PTypeInfo pointer, 319

RegisterPropertyEditor()
function, 317-318

registration 1075

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1075

TTypeInfo structure,
319-328, 330

TTypeKind structure, 319

servers, 681

TXMLDocument compo-
nent, 994-1004

Registry

Invokable Registry, 753

Registry service, 517

reinterpret casts, 105

Reisdorph, Kent, 711

Relational Database
Management Systems. See
IBExpress (InterBase Express)

relationships, 188-189

relative scheduling priorities,
173

Release() function, 674, 884

ReleaseDC() function, 580

ReleaseMutex() function, 182

Remote Access Service (RAS),
573

remote debugging, 73-74

configuring, 74

errors, 75

starting, 74-75

remote servers, 678

RemoteServer property
(TCOMConnection compo-
nent), 784

RemoveActionList() function,
129

RemoveNotifer() function, 914

rendering images, 331-332

function parameters,
334-336

GetVisualValue() function,
332

ListDrawValue() function,
332, 338-344

ListMeasureHeight() func-
tion, 332, 337-338

ListMeasureWidth() function,
332, 336-337

PopDrawName() function,
332, 345-347

PopDrawValue() function,
332, 344-345

sample definition code,
333-334

reordering compilation, 52-53

Repaint() function, 228

RequestLive property (TQuery
component), 405-406

Requires section (packages), 54

resetting applications, 24

resource files, 46

responding to messages,
514-515

mouse messages, 230-232

non-visual components,
214-216

Restaurant application (COM),
696

AddCustomer() function,
699-700

ButtonPlaceorderClick()
function, 707

ConnectionActionImpl.cpp
source code, 697-699

FormCreate() function, 706

OnOrderRecieved() event
handler, 707

PlaceOrder() function, 700

RestaurantSink.h file,
703-705

TCustomer::timerevent()
event handler, 701-702

RestaurantSink.h file, 703-705

ResultElement type, 767

ResultElementArray type, 767

Resume() function, 167

ResumeThread() function, 164

returning references, 85-86

ReturnValue property
(TThread), 167

reusing frames, 135-137

RevertToSelf() function, 738

Revision table (Bug Tracker),
420

rewinding MCI (Media Control
Interface) devices, 613-614

RGB (red, green, blue) values,
591

RGBTRIPLE data type, 600

RGN_AND flag, 546

RGN_COPY flag, 546

RGN_DIFF flag, 546

RGN_OR flag, 546

RGN_XOR flag, 546

RichEdit folder, 936

Rofail, Ash, 711

Rogerson, Dale, 711

Rollback() function, 403

RollbackRetaining() function,
433

rolling back transactions, 403

rotating bitmaps, 598-600

RTTI (Runtime Type
Information), 111

rules (database), 420-421

Run button, 18

Run command (Run menu), 62

Run menu commands

Add Breakpoint, 60-62

Inspect, 62

Program Reset, 24

Run, 62

running

COM clients, 685

MP3DemoCOM application,
691

WebAppDebugger, 836-838

registration1076

35 0672324806 Index 12/12/02 2:41 PM Page 1076

running processes, attaching to,
72

runtime, adding frames at,
130-131

runtime-only packages, 53,
188-189, 216-218

Runtime Type Information
(RTTI), 111

S
sample applications

Ado folder, 931

AppEvents folder, 931

Apps folder, 931

Autocon subfolder, 934

Autosrv subfolder, 935

Canvas subfolder, 935

Colordlg subfolder, 935

Cursors subfolder, 935

Doodle subfolder, 935

FindRep subfolder, 936

Header subfolder, 936

ImageView subfolder, 936

IpcDemos subfolder, 936

MiniComp subfolder, 936

MultiPag subfolder, 936

OwnerList subfolder, 936

Printing subfolder, 936

ProcView subfolder, 936

RichEdit subfolder, 936

Scrollbar subfolder, 936

Switch subfolder, 936

SysSound subfolder, 937

Tab subfolder, 937

Threads subfolder, 937

TrayIcon subfolder, 937

TwoForms subfolder, 937

Wpm subfolder, 937

CodeGuard folder, 931

Controls folder, 932

ConvertIt folder, 932

Corba folder, 932

CustomDraw folder, 932

DBTask folder, 937, 941-943

BioLife subfolder, 942

BkQuery subfolder, 937

CachedUp subfolder, 937

Contacts subfolder, 937

CountryEditor subfolder,
942

CountryReport subfolder,
942

CSDemos subfolder, 937

CtrlGrid subfolder, 937

DBErrors subfolder, 937

DumpModules subfolder,
942

Filter subfolder, 937

Find subfolder, 937

FishFact subfolder, 938

Gds subfolder, 938

GDSDemo subfolder, 938

IBDemo subfolder, 938

LocateFileService sub-
folder, 942

LookUp subfolder, 939

MastApp subfolder, 939

MasterDetail subfolder,
943

MstPool subfolder, 939

NavMDI subfolder, 939

NavSDI subfolder, 939

NDXBuild subfolder, 939

PhotoGallery subfolder,
943

QBFDemo subfolder, 939

QJoin subfolder, 939

QuickRpt subfolder, 939

StreamImage subfolder,
943

TextData subfolder, 940

DBTasks folder, 932

DDraw folder, 932

Doc folder, 932

AutoProj subfolder, 940

CBrowse subfolder, 940

DirOutIn subfolder, 940

Filmanex subfolder, 940

GraphEx subfolder, 940

OleCtnrs subfolder, 940

OLEWord1 subfolder, 941

OLEWord2 subfolder, 941

TextEdit subfolder, 941

VarArray subfolder, 941

VarLock subfolder, 941

VarToInt subfolder, 941

Docking folder, 932

Examples directory, 931

Experts folder, 933

FastNet folder, 933

Games folder, 933

Indy folder, 933

Internet folder, 933

MFC folder, 933

Midas folder, 933

OpenGL folder, 933

PWordDemo folder, 933

ShellControls folder, 933

StdLib folder, 933

Teechart folder, 933

Toolsapi folder, 933

VirtualListView folder, 933

WebServ folder, 933

WebServices folder, 934

WebSnap folder, 934

WinTools folder, 934

sample applications 1077

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1077

Sams Teach Yourself Borland
C++ in 21 Days, 988

Sams Teach Yourself Borland
C++Builder 4 in 24 Hours,
987

Sams Teach Yourself C++ in 10
Minutes, 11

Sams Teach Yourself C++ in 21
Days, 11

sApplication creator type, 918

Save As Text command (Forms
menu), 43-44

Save Project As command (File
menu), 21

SaveToClipboardFormat func-
tion, 605

SaveToFile() function, 469, 596,
604-605

SaveToStream() function, 605

saving

bitmaps, 596

forms as text, 43-44

JPEG images, 603-604

ScanLine function, 600

sConsole creator type, 918

screen layout, 137-138

alignment, 138-139

anchors, 139

TScrollBox component, 141

TSplitter component,
139-141

ScreenSize() function, 527

scripts, WebSnap server-side
scripting, 848-849

Scrollbar folder, 936

scrollbars, 139-141, 246

SDI (single document interface)
windows, 652-653

search actions, 146

Search Key (Google), 766

searching Google, 766-767

doGoogleSearch() function,
769-770

GetGoogleSearchPort() func-
tion, 768

GoogleSearchPort interface,
768-769

GoogleSearchResult type,
767, 770-772

ResultElement type, 767

ResultElementArray type, 767

security

DCOM (Distributed COM)

global settings, 717-720

per-server settings,
720-722

declarative security, 716

MJFSecurity, 117

programmatic security, 716

Blanket server applica-
tion, 739-747

CoInitializeSecurity()
function, 730-734

DLL clients, 734

IClientSecurity interface,
737-738

IServerSecurity interface,
738-739

programmatic access con-
trol, 735-737

Security service, 517

Security tab (Easy DCOM Type
Library 1.0 Properties dialog
box), 721

SECURITY_DESCRIPTOR struc-
ture, 735

Select button (Data Diagram
Editor), 390

SelectCell() function, 256

SelectEdit() function, 256

Sells, Chris, 711

semicolon (;), 215

sending messages

MCI (Media Control
Interface) messages, 610

PostMessage() function, 506

SendMessage() function, 506

SendMessage() function, 496,
506, 610

server-side scripting (WebSnap),
848-849

Server too busy (error mes-
sage), 814

ServerName property
(TSocketConnection compo-
nent), 816

servers

COM (Component Object
Model), 669

AddCustomer() function,
699-700

ButtonPlaceorderClick()
function, 707

COM_Restaurant applica-
tion, 696-699

creating, 696-702

FormCreate() function,
706

inproc servers, 678

OnOrderRecieved() event
handler, 707

outproc servers, 678

PlaceOrder() function,
700

registering, 681

remote servers, 678

RestaurantSink.h file,
703-705

TCustomer::timerevent()
event handler, 701-702

DataSnap servers, 826-827

accessing remotely,
811-812

closing, 784

Sams Teach Yourself Borland C++ in 21 Days1078

35 0672324806 Index 12/12/02 2:41 PM Page 1078

creating, 777-781

master-detail servers,
794-796

multitier connections. See
multitier connections

optimizing, 802

registering, 781-782

threading models, 779

DCOM (Distributed COM)

Blanket server, 739-747

sample application,
723-725

Enterprise SOAP servers,
830-832

SOAP (Simple Object Access
Protocol), 749

activation model, 752-753

deploying, 755-757

Invokable Registry, 753

server applications,
750-751

Web module, 751-752

Web service interfaces,
754-755

Web servers. See Web server
programming

Servers property
(TSimpleObjectBroker compo-
nent), 820

services, 515

applications, launching

CloseHandle() function,
541

CreateProcess() function,
538, 541

EnumWindows() func-
tion, 541

GetWinHandle_Specific()
function, 542

LookForWindowHandle()
function, 541

sample code listing,
538-540

Atoms, 516

BorlandIDEServices variable,
892

Clipboard, 516

Console Support, 516

DDE (Dynamic Data
Exchange), 516

Debugging, 516

DLL (Dynamic Link Library),
516

drive information, displaying

GetDiskFreeSpace() func-
tion, 533

GetDriveType() function,
533

GetVolumeInformation()
function, 533

sample code listing,
530-533

SetVolumeLabel() func-
tion, 534

Error Message, 516

Event Logging, 516

file information, displaying

CloseHandle() function,
537

CreateFile() function,
536-537

GetFileInformationBy
Handle() function, 537

GetFileSize() function,
538

GetFileType() function,
537

LPBY_HANDLE_FILE_
INFORMATION struc-
ture, 537

sample code listing,
534-536

File Mapping, 516

Files, 516

Handles and Objects, 516

Help Support, 517

Large Integer Operations,
517

Mailslots, 517

memory information, dis-
playing

GlobalMemoryStatus()
function, 529-530

sample code listing, 529

Memory Management, 517

multimedia services, 548-549

ACM (Audio Compression
Manager), 548

Audio Mixers, 548

AVICap, 548

AVIFile, 548

DrawDib, 548

Joysticks, 548

MCI (Media Control
Interface), 548

MCIWnd Window, 548

MIDI, 549

Multimedia File, 549

multimedia file playback,
549-551

Multimedia Timers,
549-554

VCM (Video Compression
Manager), 549

Waveform Audio, 549

network services, 572

NetBIOS interface, 573

Network DDE, 573

network information,
returning, 573-576

NT Workstation locking,
576

ported LAN Manager
functions, 573

RAS (Remote Access
Service), 573

services 1079

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1079

SNMP (Simple Network
Management Protocol),
573

system shutdown,
576-577

WinSock, 573

WNet, 573

PE (Portable Execution), 517

Pipes, 517

Power Management, 517

Process and Thread, 517

RAS (Remote Access Service),
573

Registry, 517

Security, 517

Services, 517

String Manipulation, 518

Structured Exception
Handling, 518

Synchronization, 518

System Information, 518

system information, display-
ing

ButtonSystemInfoClick()
function, 526

ExitWindowsEx() func-
tion, 528

GetComputerName()
function, 525

GetSystemInfo() function,
526

GetSystemMetrics() func-
tion, 527

GetTempPath() function,
527

GetUseName() function,
525

GetVersionEx() function,
525

ProcessorInfo() function,
526

sample code listing,
519-525

ScreenSize() function, 527

SetComputerName() func-
tion, 528

SystemParametersInfo()
function, 527

WindowsVersion() func-
tion, 525-526

System Messages, 518

System Shutdown, 518

Tape Backup, 518

Time, 518

Tools API services, 890-891

accessing, 892

CreateProcess() function,
900

Execute() function,
893-895

FindCurrentProject()
function, 897-899

FindMenuItemCaption()
function, 900-901

HandleMessage() func-
tion, 902

interfaces, 891-892

ProcessMessages() func-
tion, 896

SetupMessageViewAccess()
function, 896-897

Show() function, 901-902

Web Services, 749

CmInch, 752-765

consuming, 757-765

Google Web Service,
765-772

SOAP (Simple Object
Access Protocol) servers,
750-757

Web sites, 981-982

Windows Stations and
Desktops, 518

WinSysUtil application, 519

Services service, 517

sessions

BDE (Borland Database
Engine), 401

TSession component, 401

WebSnap, 858

TAdapter actions, 861-863

TAdapter fields, 860

TAdapterPageProducer
component, 860-861

TSessionsService compo-
nent, 859, 863

set containers, 30

Set method, 195-197

set_new_handler() function, 102

set_terminate() function, 98

set_unexpected() function, 98

SetAuthInfo() function, 745

SetBlanket() function, 737

SetComputerName() function,
528

SetDIBits() function, 606

SetFloatValue() function, 308

SetFocus() function, 150

SetForegroundWindow() func-
tion, 506

SetGlyph() property (write func-
tion), 239

SetInt64Value() function, 308

SetLength() function, 197

SetMethodValue() function, 308

setNumber() function, 88

SetOrdValue() function, 308

SetParent() function, 129

SetProcessActive() function, 909

SetRealString() function, 202

SetStrValue() function, 308

setter functions, 11

SetThreadPriority() function,
173

SetTimer() function, 551

services1080

35 0672324806 Index 12/12/02 2:41 PM Page 1080

SetupMessageViewAccess()
function, 896-897

SetValue() function, 301, 308

SetVarValue() function, 308

SetVolumeLabel() function, 534

SetWindowText() function, 496,
504-505

sForm creator type, 918

shapes, drawing, 584-585

shared segmentation (DLLs),
655

DLL definition files, 656

DLL methods, 659-661

DLL source files, 656

shared segmentation classes,
658

shared variables

declaring and initializing,
658

identifying, 657-658

ShareImages property, 244

Shell API

drag and drop, 562

file association, 562

file backups, 565-572

icons, 563

ShellExecute() function,
563-564

ShellExecuteEx() function,
564-565

ShellControls folder, 933

ShellExecute() function, 242,
562-564

ShellExecuteEx() function,
563-565

SHFileListBox.cpp source file,
248-255

SHFileListBox.h header file,
247-248

SHFileOperation() function, 565-
572

file backups, 566-569

flags, 569

possible operations, 568

SHFILEOPSTRUCT structure, 567

Shohoud, Yasser, 711

Show() function, 92, 901-902

ShowMDIChild() function, 654

ShowMDIChildForm() function,
651

ShowModal() function, 89-90,
653

ShowSDIChild() function, 652

ShowSDIForm() function, 653

ShowSDIFormmodal() function,
651

ShowWindow() function, 496

shutting down systems, 576-577

Simple Network Management
Protocol (SNMP), 573

Simple Object Access Protocol.
See SOAP

SimpleDataSnapClient, 782-785

SimpleDataSnapServer

creating, 777-781

registering, 781-782

simpleGetLibVersion() function,
631-632, 641

SIMPLEREGION return value
(CombineRng() function), 546

simulators, 949-950

sine waves, drawing, 583

single document interface (SDI)
windows, 652-653

Single threading model, 694,
779

single-tier databases, 379,
398-399. See also dbGo

Singleton patterns, 88

sinks (event), 695-696

defined, 695

implementing, 702-707

SIS (Symbian Installation
System) files, 966-967

sites. See Web sites

sLibrary creator type, 918

Smith, Malcolm, 286

Smoothing property
(TJPEGImage component), 605

SNMP (Simple Network
Management Protocol), 573

SOAP (Simple Object Access
Protocol) servers, 749

activation model, 752-753

deploying, 755-757

Invokable Registry, 753

server applications, 750-751

TSOAPConnection compo-
nent, 829-830

Enterprise SOAP clients,
832-834

Enterprise SOAP servers,
830-832

Web module, 751-752

Web service interfaces,
754-755

SoapDataMod42 class, 831

sockets

TSocketConnection compo-
nent, 816-818

WinSock, 573

SomeProperty1, 270

SomeProperty2, 270

sound files

audio streams

reading, 619-621

retrieving pointers to,
618-619

writing to, 620-621

sound files 1081

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1081

closing, 617-618

opening, 617-618

Source Code Editor, 39-40

Code Insight, 42

Diagram tab, 40-42

source code files (mobile appli-
cations)

header files, 958-961

resource files, 964-965

source files, 961-964

source code listings. See code
listings

sPackage creator type, 918

Speedbar, 25

SpeedButtonStartClick() func-
tion, 902

speeding up compile times,
76-79

Build command, 78

Make command, 78

precompiled headers, 76-77

sprintf() function, 82-83, 576

sprocs (stored procedures),
423-424

SQL (Standard Query
Language) databases

dbExpress components,
454-455

TSQLClientDataSet,
459-460

TSQLConnection,
455-456

TSQLDataSet, 456-457

TSQLMonitor, 460-463

TSQLQuery, 456

TSQLStoredProcedure,
456

TSQLTable, 456

SQL Links, 379, 399

TIBUpdateSQL component,
427-428

SQL Links, 379, 399

SQLConnection property

TSQLDataSet component,
456

TSQLMonitor component,
460

standard actions

dialog actions, 146

file actions, 145-146

format actions, 145

help actions, 145

Internet actions, 147

list actions, 146

search actions, 146

tab actions, 146

tools actions, 147

Standard Library (C++)

containers, 30-31

memory management, 32

standard multitier database
model, 380

Standard tab (Component
Palette), 19, 124

Standard version (C++Builder
6), 25

starting

applications

CloseHandle() function,
541

CreateProcess() function,
538, 541

EnumWindows() func-
tion, 541

GetWinHandle_Specific()
function, 542

LookForWindowHandle()
function, 541

sample code listing,
538-540

ShellExecuteEx() function,
564-565

remote debugging, 74-75

transactions, 402

WebSnap applications, 853

StartTransaction() function, 402

stateless DataSnap, 803-808

ClientDataSet
OnAfterGetRecords event
handler, 806

ClientDataSet
OnBeforeGetRecords event
handler, 804-805

DataSetProvider
OnAfterGetRecords event
handler, 805-806

DataSetProvider
OnBeforeGetRecords event
handler, 805

statements (SQL)

delete, 431

insert, 431

modify, 430

refresh, 431-432

TIBUpdateSQL component,
427-428

try/finally blocks, 14

static casts, 105-106

static library (.lib) files, 56

statically loading DLLs (Dynamic
Link Libraries), 634-636,
662-664

status of MCI (Media Control
Interface) devices, 614-615

status bars, 19, 556

StdLib folder, 933

sText creator type, 918

STL (standard template library),
26

stopping MCI (Media Control
Interface) devices, 613-614

stored keyword, 204

stored procedures, 423-424,
438, 443-444

sound files1082

35 0672324806 Index 12/12/02 2:41 PM Page 1082

storing integers, 31

StreamImage folder, 943

streams

audio streams, 618

reading, 619-621

retrieving pointers to,
618-619

writing to, 620-621

properties, 112

determining if streaming
required, 274-275

unpublished properties,
271-275

streaming mechanism,
269-270

advanced requirements,
270

streaming unpublished
properties, 271-275

StretchBlt() function, 153, 595

StretchDraw() function, 595

stretching bitmaps, 589-590

String Manipulation service, 518

strings

connection strings, 440, 447

as indexes, 201

string class, 82-83

string containers, 31

String Manipulation service,
518

Stroustrup, Bjarne, 11

Structured Exception Handling
service, 518

structures

COAUTHIDENTITY, 737-738

LPBY_HANDLE_FILE_
INFORMATION, 537

POINT, 547

SECURITY_DESCRIPTOR,
735

SHFILEOPSTRUCT, 567

TTypeInfo

creating manually,
328-330

declaring, 319

obtaining from existing
property and class,
319-328

TTypeKind, 319

WAVEFORMATEX, 622

WAVEHDR, 622

Style property

TBrush component, 589

TPen component, 586

StyleLabel.h file, 192

submenu items, 366-368

subscription objects (COM+),
670

Summers, Jason, 606

sUnit creator type, 918

Supports() function, 892

Suspend() function, 167

Suspended property (TThread),
167

SuspendThread() function, 164

SwapColors() function, 228

Swart, Bob, 979

Switch folder, 936

switching connections
(DataSnap), 828-829

Symbian Installation System
(SIS) files, 966-967

Symbian OS, 967

capabilities, 968

Nokia 9200 Series SDK, 969

products, 969

Symbian SDK, 947

Synchronization service, 518

Synchronize() function, 167,
170

synchronizing threads, 170

critical sections, 178-181

mutexes, 182

SysSound folder, 937

system colors, 147-148

system image lists, 244

System Information service, 518

system information, displaying

ButtonSystemInfoClick()
function, 526

ExitWindowsEx() function,
528

GetComputerName() func-
tion, 525

GetSystemInfo() function,
526

GetSystemMetrics() function,
527

GetTempPath() function, 527

GetUseName() function, 525

GetVersionEx() function, 525

ProcessorInfo() function, 526

sample code listing, 519-525

ScreenSize() function, 527

SetComputerName() func-
tion, 528

SystemParametersInfo() func-
tion, 527

WindowsVersion() function,
525-526

System Messages service, 518

System page (Component
Palette), 125

system services, 515

applications, launching

CloseHandle() function,
541

CreateProcess() function,
538, 541

EnumWindows() func-
tion, 541

system services 1083

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1083

GetWinHandle_Specific()
function, 542

LookForWindowHandle()
function, 541

sample code listing, 538,
540

Atoms, 516

Clipboard, 516

Console Support, 516

DDE (Dynamic Data
Exchange), 516

Debugging, 516

DLL (Dynamic Link Library),
516

drive information, displaying

GetDiskFreeSpace() func-
tion, 533

GetDriveType() function,
533

GetVolumeInformation()
function, 533

sample code listing,
530-533

SetVolumeLabel() func-
tion, 534

Error Message, 516

Event Logging, 516

file information, displaying

CloseHandle() function,
537

CreateFile() function,
536-537

GetFileInformationBy
Handle() function, 537

GetFileSize() function,
538

GetFileType() function,
537

LPBY_HANDLE_FILE_
INFORMATION struc-
ture, 537

sample code listing,
534-536

File Mapping, 516

Files, 516

Handles and Objects, 516

Help Support, 517

Large Integer Operations,
517

Mailslots, 517

memory information, dis-
playing, 529-530

Memory Management, 517

PE (Portable Execution), 517

Pipes, 517

Power Management, 517

Process and Thread, 517

Registry, 517

Security, 517

Services, 517

String Manipulation, 518

Structured Exception
Handling, 518

Synchronization, 518

System Information, 518

system information, display-
ing

ButtonSystemInfoClick()
function, 526

ExitWindowsEx() func-
tion, 528

GetComputerName()
function, 525

GetSystemInfo() function,
526

GetSystemMetrics() func-
tion, 527

GetTempPath() function,
527

GetUseName() function,
525

GetVersionEx() function,
525

ProcessorInfo() function,
526

sample code listing, 519,
521-525

ScreenSize() function, 527

SetComputerName() func-
tion, 528

SystemParametersInfo()
function, 527

WindowsVersion() func-
tion, 525-526

System Messages, 518

System Shutdown, 518

Tape Backup, 518

Time, 518

Windows Stations and
Desktops, 518

WinSysUtil application, 519

system shutdown, 518, 576-577

System Shutdown service, 518

SystemParametersInfo() func-
tion, 527

T
tab actions, 146

Tab Controls control, 556

Tab folder, 937

tables

closing, 402

master/detail tables, 403

nested tables, 798-800

opening, 402

records, 402

TADOTable component, 438

adding/editing records,
442

data-source and data-
aware controls, 442

database connections, 441

filters, 442-443

finding records in, 442

system services1084

35 0672324806 Index 12/12/02 2:41 PM Page 1084

iterating through, 442

opening, 442

table names, 441

TIBTable component,
428-429

transactions

committing, 403

rolling back, 403

starting, 402

TTable component

adding records to, 402

editing records in, 402

master/detail tables, 403

transactions, 402-403

vtables, 675

TActionMainMenuBar compo-
nent, 143

TActionToolBar component,
143-144

TAdapter component, 850

actions, 861-863

fields, 860

TAdapterPageProducer compo-
nent, 852, 860-861

TADOCommand component,
438, 444-445

TADOConnection component,
438-439, 445-446

TADOCustomDataSet compo-
nent, 446-447

TADODataSet component, 438,
445

TADOQuery component, 438,
443

TADOStoredProc component,
438, 443-444

TADOTable component, 438

adding/editing records, 442

data-source and data-aware
controls, 442

database connections, 441

filters, 442-443

finding records in, 442

iterating through, 442

opening, 442

table names, 441

TAliasComboBox header file,
210

TAliasComboBox source file, 210

Tape Backup service, 518

TApplicationAdapter compo-
nent, 851

TBDEClientDataSet component,
414

TBitmap component, 594-595.
See also bitmaps

TBrowseURL action, 147

TBrush component

assigning to form canvases,
589-590

properties, 588

TButton component, 480-481

TCanvas component, 581-582

filled shapes, 584-585

lines and curves, 582-584

polygon shapes, 584

properties, 581-582

text, 585-586

TCaptionProperty component,
296

TCharProperty component, 296

TClassProperty component, 296

TClientDataSet component,
458, 822

client/server environments,
410-412

multitier environments, 410,
413-414

PacketRecords property, 801

performance optimization,
412-413

properties, 412-413

write-through cache, 409

TColor component, 591-592

TColorProperty component, 296

TCOMConnection component

DataSnap clients, 783-784

properties

Connected, 783-784

ProviderName, 784

RemoteServer, 784

TComponent component, 112,
216

TComponentEditor component

definition code, 351-352

mouse responses, 349-350

virtual functions, 350-351

TComponentProperty compo-
nent, 297

TConnectionBroker component,
825-826

DataSnap BDE servers,
826-827

DataSnap clients, 827-828

switching connections,
828-829

TControl component, 112,
231-232

TCP/IP (Transmission Control
Protocol/Internet Protocol),
816-818

TCriticalThread component,
178-179

TCursorProperty component,
297

TCustomControl, 191

TCustomer component, 701-702

TCustomFrame component, 129

TCustomizeActionBars action,
147

TCustomObjectBroker compo-
nent, 819

TCustomObjectBroker component 1085

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1085

TDatabase component, 401,
463

TdataLink class, 260

TDataSetAdapter component,
841-842, 850, 864-865

TDataSetProvider component,
822-823

TDataSource component, 823

TDBCtrlGrid component,
265-266

TDBMaskEdit control, 257-258,
262-263

TDCOMConnection component,
811-812

TDefaultEditor component

definition code, 352-353

mouse responses, 349-350

virtual functions, 350-351

TDownLoadURL action, 147

TDriveComboBox component,
218

Teechart folder, 933

Teixeira, Steve, 926

Tempest Software–Open Tools
API, 926

templates

auto_ptr class template,
91-92

component templates,
127-128

STL (standard template
library), 26

TEndUserAdapter component,
851-852

TEndUserSessionAdapter com-
ponent, 852

TEnumProperty component,
297

terminate() function, 98, 167,
170, 915

Terminated property (TThread),
167

TerminateThread() function,
170

terminating threads, 170

testing applications, 18

Bug Tracker sample applica-
tion, 434

MemStatusWizard, 890

mobile applications, 949,
953

XML transformations, 485

TExampleButton

ExampleButton.cpp source
file, 234-239

ExampleButton.h header file,
232-234

text

drawing, 585-586

saving forms as, 43-44

TFont component, 590-591

TextData folder, 940

TextEdit folder, 941

TextExtent() function, 586

TextOut() function, 585

TextRectv() function, 585

TfieldDataLink class, 256-257

TFileExit action, 146

TfileListBox class, 243

TFileOpen action, 145

TFilePrintSetup action, 145

TFileRun action, 146

TFileSaveAs action, 145

TFloatProperty component, 297

TFont component, 590-591

TFontProperty component, 297

TFrame component, 128

decendant classes, 131

inheritance, 135

TGraphicControl component,
112, 192, 230

Theivendran, Ramesh, 454

THelpContextAction compo-
nent, 145

thin-client database model, 380

Thinking in C++, Vol. 1, 988

This User accounts (DCOM),
722

THREAD_PRIORITY_ABOVE_
NORMAL priority level, 173

THREAD_PRIORITY_BELOW_
NORMAL priority level, 173

THREAD_PRIORITY_HIGHEST
priority level, 173

THREAD_PRIORITY_IDLE priority
level, 173

THREAD_PRIORITY_LOWEST pri-
ority level, 173

THREAD_PRIORITY_NORMAL
priority level, 173

THREAD_PRIORITY_TIME_
CRITICAL priority level, 173

ThreadFormUnit.cpp file,
162-163, 179-180

ThreadFunc() function, 161, 164

ThreadID property (TThread),
167

threading models, 694-695, 779

threads

creating with CreateThread()
function, 160-164

main VCL threads, 170-172

multithreading, 160

priorities, 173-175

synchronizing, 170

critical sections, 178-181

mutexes, 182

TCriticalThread component,
178-179

terminating, 170

ThreadFormUnit.cpp,
162-163, 179-180

TDatabase component1086

35 0672324806 Index 12/12/02 2:41 PM Page 1086

threading models, 694-695,
779

timing, 175-177

TLabelThread component,
171-173

TPriorityThread component,
174-175

TRandomThread compo-
nent, 166-170

TThread component

class definition, 164-166

methods, 167

properties, 166-167

Threads folder, 937

Threads view (debugger), 66

throw keyword, 97-98

throwing exceptions, 212

THTTPRIO component, 763-765

THTTPSoapCppInvoker compo-
nent, 751

THTTPSoapDispatcher compo-
nent, 751

TIBDataSet component, 429

TIBEvents component, 429-430

TIBQuery component, 429

TIBSQL component, 429

TIBStoredProc component, 429

TIBTable component, 428-429

TIBUpdateSQL component,
427-428

TIDBClientDataSet component,
414

TileWindows() function, 496

tiling bitmaps, 589-590

TImage component, 20

time formats, 612-613

Time service, 518

timeKillEvent() function, 552

timerevent() event handler,
701-702

TimerProc() function, 554

timers, 551-554

timeSetEvent() function, 552,
554

timing threads, 175-177

TIntegerProperty component,
297

titles, 25

TJPEGImage component, 602.
See also JPEG images

TLabel, 192

TLabelThread component,
171-173

.tlb file extension, 675

TLE (Type Library Editor), 724

TLocalConnection component,
820-821

ApplyUpdates() function,
824-825

BDE legacy applications,
821-822

preparing to upgrade,
822-824

TLoginFormAdapter compo-
nent, 851

TMetaClass* open array, 268

TMethodProperty component,
297

TMS Software Web site, 981

TMsgLog class, 223-224

TObject, 259

TObject component, 111-112

ToDp.xtr file, 485

Toggle command (View menu),
37

toolbars, 33, 556

Toolbars control, 556

tools. See also Tools API

actions, 147

COFF2OMF, 661-662

compiler, 76-79

custom build tools, 50-52

Data Diagram Editor,
389-390

Data Module Designer,
388-389

DCOMCnfg

Applications tab, 717

Default Properties tab,
717-718

Default Protocols tab, 719

Default Security tab, 719

global security settings,
717-720

per-server security set-
tings, 720-722

versions, 717

debugger

Attach to Process feature,
72

AVs (access violations),
71-72

breakpoints, 60-63

Debug Inspector, 69-70

DLLs (dynamic link
libraries), 75

Evaluate/Modify dialog
box, 68-69

JIT (just-in-time) debug-
ging, 73

multithreaded application
debugging, 58-59

remote debugging, 73-75

views, 63-68

watches, 68

Windows environments,
70-71

DLL LIB Util, 493

Image Editor, 24

impdef, 493, 663-664

Implib.exe, 662

WSDL Importer, 758-763

tools 1087

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1087

XML Mapping Tool

loading documents into,
482

transformations, 483-488

Tools API, 877-879

creators

custom Creator class,
916-919

Execute() function,
920-921

File class, 919

interfaces, 915-916

Delphi, 885

DLLs (dynamic link
libraries), 923-925

editors, 922

IDE extensions, debugging,
922-923

naming conventions, 879

notifiers

custom DebugNotifier
class, 904-915

defined, 903

interfaces, 903-904

NTA (Native Tools API), 878

OTA (Open Tools API), 878

recommended reading, 926

services, 890-891

accessing, 892

CreateProcess() function,
900

Execute() function,
893-895

FindCurrentProject()
function, 897-899

FindMenuItemCaption()
function, 900-901

HandleMessage() func-
tion, 902

interfaces, 891-892

ProcessMessages() func-
tion, 896

SetupMessageViewAccess
() function, 896-897

Show() function, 901-902

ToolsAPI.hpp file, 879

wizards, creating, 880

class registration, 889

custom wizard classes,
886-889

interfaces, 881

testing, 890

TNotifierObject class,
881-885

Tools API Source Code, 926

Tools menu commands

Build Tools, 50

Environment Options, 44

Image Editor, 24

Toolsapi folder, 933

ToolsAPI.hpp file, 879

Tooltip Controls, 557

TOrdinalProperty component,
297

Torry’s Delphi Pages Web site,
981

ToXml.xtr file, 485

TPagedAdapter component, 850

TPageProducer component, 852

TPaintBox, 226-227

TPen component

crop regions, 587-588

properties, 586

TPersistent component, 112,
270

TPopupFrame component,
131-133

TPriorityThread component,
174-175

TPropertyAttributes Set values,
299-301

TPropertyEditor component,
294-297, 314

TProvider component, 413

TQuery component, 403, 464

creating queries, 405

master/detail relationships,
404

parameters, 404

Trackbars control, 557

tracking mouse, 597-598

TRandomThread component,
166-170

transactional objects (COM+),
670

transactions

ADO (ActiveX Database
Objects), 440

committing, 403

IEBExpress (InterBase
Express), 427

managing with ADO
(ActiveX Database Objects),
445

rolling back, 403

starting, 402

transactional objects
(COM+), 670

transformations

transforming XML docu-
ments into data packets,
483-488

XML Mapping Tool, 483-485

creating, 485-486

example, 486-488

testing, 485

TXMLTransform compo-
nent, 486

TXMLTransformClient
component, 486

TXMLTransformProvider
component, 486

tools1088

35 0672324806 Index 12/12/02 2:41 PM Page 1088

TransparentStretchBlt function,
595

trapping messages, 214

TrayIcon folder, 937

TRDSConnection component,
438

Tree View Controls, 557

TreeView1Change() function,
503

triggers, 421-422

troubleshooting. See debugging

try keyword, 96

try/finally blocks, 14

TScrollBox component, 141

TScrollingWinControl compo-
nent, 128

TSendMail action, 147

TSession component, 401

TSessionsService component,
859, 863

TSetElementProperty compo-
nent, 297

TSetProperty component, 297

TShellFileListItem class, 245

TSHFileListBox

SHFileListBox.cpp source file,
248-255

SHFileListBox.h header file,
247-248

TSimpleObjectBroker compo-
nent, 819-820

TSOAPConnection component,
829-830

Enterprise SOAP clients,
832-834

Enterprise SOAP servers,
830-832

TSocketConnection component,
816-818

TSplitter component, 139-141

TSQLClientDataSet component,
414, 459-460

TSQLConnection component,
455-456

TSQLDataSet component,
456-457

TSQLMonitor component,
460-463

TSQLQuery component, 456

TSQLStoredProcedure compo-
nent, 456

TSQLTable component, 456

TStaticListAction action, 146

TStoredProcedure component,
464

TStringProperty component,
297

TStyleLabel component, 192

TTable components, 402-403,
464

TTableProducer component, 852

TThread component

class definition, 164-166

methods, 167

properties, 166-167

TTimer component, 551

TTypeInfo structure

creating manually, 328-330

declaring, 319

obtaining from existing
property and class, 319-328

non-VCL property types
in single class, 322-323

NonVCLTypeInfo.cpp,
324-327

NonVCLTypeInfo.h,
323-324

TTypeKind structure, 319

tuning performance. See perfor-
mance optimization

TUpdateSQL component,
405-406

TurboPower Software Company
Web site, 981

tutorials, BITS C++Builder
Information and Tutorials Web
site, 979

TVirtualListAction action, 146

TWebAppDataModule compo-
nent, 847

TWebAppPageModule compo-
nent, 847

TWebConnection component,
812-814

TWinControl component, 112,
191

TWinHelpViewer interface, 29

two-dimensional arrays, 104

two-tier database architecture,
379

TwoForms folder, 937

TWSDLHTMLPublish compo-
nent, 751

TXMLDocument component,
467, 993-994

accessing, 1006

di_IDOMDocument inter-
face, 469

di_IXMLDocument interface,
470

IXMLDocument interface,
470

package assembly, 1005

properties, 468-469

reading XML documents,
470-471

registering, 994-1004

writing XML documents,
471-472

xmlcomponent.pas package
source, 994-1004

TXMLTransform component,
486

TXMLTransformClient compo-
nent, 486

TXMLTransformProvider compo-
nent, 486

TXMLTransformProvider component 1089

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1089

TxxxConnection component,
822

type libraries, 670, 674-675

header file declarations,
676-677

importing, 685-686

Type Library Editor, 676

viewing, 675

Type Library command (View
menu), 724

Type Library Editor, 676, 724

types

HDC, 226

RGBTRIPLE, 600

U
Unable to connect to remote

host (error message), 75

unavailable database (error
message), 456

Unbind() function, 728

underscore (_), 14, 639

Understanding COM+, 711

unexpected exceptions, 98

unexpected() function, 98

unhandled exceptions, 98

Unicode, 572

unidirectional cursors
(dbExpress), 458-459

Units menu commands (View
menu), 47

Unlock() function, 168

unpublished properties,
195-198, 271-275

Up-Down Controls, 557

UpdateAppInfo() function, 503

UpdateData() function, 263

UpdateRegistry() function,
781-782, 814-816

updating databases

ApplyUpdates() function,
789-790

cached updates, 432

data-aware components,
263-265

upgrades, preparing for,
822-824

URL property (TWebConnection
component), 813

Use CLX option (DLL Wizard),
629

Use VCL option (DLL Wizard),
629

Usenet newsgroups, 985-986

user customization of GUIs, 147

docking, 148

OnDockDrop event, 152

OnDockOver event, 151

OnEndDock event,
149-150

OnGetSiteInfo event han-
dler, 150-151

form backgrounds, 153

hiding/displaying controls,
153

system colors, 147-148

user interfaces. See GUIs (graph-
ical user interfaces)

User_Name property
(TSQLConnection compo-
nent), 456

UserName property
(TWebConnection compo-
nent), 814

utilities. See tools

V
ValidCtrCheck() function, 135,

266, 285

VarArray folder, 941

variables

BorlandIDEServices, 892

DLL shared variables

declaring and initializing,
658

identifying, 657-658

global variables

avoiding, 86-89

global form pointer vari-
ables, 89-92

member variables, 11

private variables, 195-196

VarLock folder, 941

VarToInt folder, 941

VC++ Style DLL option (DLL
Wizard), 630

VCL (Visual Component
Library), 14-15, 110-113, 190,
194-195. See also components

building objects with,
112-113

C++ extensions, 116

_automated, 116

_classid, 117

_closure, 117-118

_declspec, 118-122

_fastcall, 122

_property, 122

_published, 122-123

compared to C++ classes,
113-116

main VCL thread, 170-172

nonpersistent data, 111

persistent data, 111

wrappers, 111

VCL_MESSAGE_HANDLER tem-
plate, 690

VCM (Video Compression
Manager), 549

vector containers, 30

TxxxConnection component1090

35 0672324806 Index 12/12/02 2:41 PM Page 1090

version property, 200

versions of C++Builder, 283-287

Video Compression Manager
(VCM), 549

View menu commands

All, 37

Debug Windows, 60

None, 37

Object Inspector, 24

Project Manager, 24

Toggle, 37

Type Library, 724

Units, 47

viewing

.cpp files, 47

.h files, 47

property categories, 37

source code, 24

type libraries, 675

views

Data Module Designer,
388-389

debugger views

Call Stack view, 65-66

CPU view, 64-65

FPU (Floating-Point Unit)
view, 67-68

Modules view, 67

Threads view, 66

Object Tree view, 39

virtual functions, 301-303,
350-351

Virtual Method Tables (VMTs),
675

virtual protected functions, 209

VirtualListView folder, 933

visibility of controls, 153

VisibleChanging() function, 134

Visual Component Library. See
VCL

visual components

graphics, 227-230

mouse messages, responding
to, 230-232

parent classes, 225

TCanvas object, 225-227

windowed components,
240-255

writing, 224, 232-240

VMTs (Virtual Method Tables),
675

vprintf() function, 82

vtables, 675

W
W3C (World Wide Web

Consortium) Web site, 982

WaitFor() function, 167

WaitForSingleObject() function,
182-183

watches, 68

wavCalculateBufferSize func-
tion, 621

Waveform Audio Interface, 549

audio files, 617-618

audio output devices

audio playback, 622-625

closing, 622

opening, 622

audio streams

reading, 619-621

retrieving pointers to,
618-619

writing to, 620-621

WAVEFORMATEX structure, 622

WAVEHDR structure, 622

waveOutClose() function, 622

waveOutOpen() function, 622

waveOutPrepareHeader() func-
tion, 622

waveOutWrite() function, 622,
625

wavGetStreamInfo() function,
621

wavOutUnprepareHeader()
function, 622

wavPlayOpen() function, 625

weak packages, 57

Web action items, 836, 847

Web modules

creating, 840-841

SOAP (Simple Object Access
Protocol), 751-752

TWebAppDataModule com-
ponent, 847

Web server programming
(WebSnap), 835

adapters

Adapter Actions, 850

Adapter Fields, 849-850

custom adapters, 852

TAdapter, 850, 860-863

TApplicationAdapter, 851

TDataSetAdapter,

841-842, 850, 864-865

TEndUserAdapter,
851-852

TEndUserSessionAdapter,
852

TLoginFormAdapter, 851

TPagedAdapter, 850

compared to WebBroker, 848

data modules, 841, 848

master-detail relationships,
864-865

Web server programming 1091

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1091

page modules, 847-848

creating, 842-843

TWebAppPageModule
component, 847

producers

TAdapterPageProducer,
852, 860-861

TPageProducer, 852

TTableProducer, 852

sample application, 839

data module, 841, 852

DataSetAdapter, 841-842

debugging, 845-846

deployment, 843-844,
872-873

EndUserSessionAdapter,
858

incorrect login, 857

linked pages, 868-871

login form, 856

login page, 855

LoginFormAdapter, 856

page modules, 842-843,
854, 865-868, 872

starting, 853

Web module, 840

WebUserList, 854

server-side scripting, 848-849

sessions, 858

TAdapter actions, 861-863

TAdapter fields, 860

TAdapterPageProducer
component, 860-861

TSessionsService compo-
nent, 859, 863

Web action items, 836, 847

Web modules

creating, 840-841

SOAP (Simple Object
Access Protocol),
751-752

TWebAppDataModule
component, 847

WebAppDebugger, 835-836

running, 836-838

Web action items, 836

wizards

New WebSnap
Application Wizard, 839

WebSnap Application
Wizard, 847

WebSnap Page Module
Wizard, 842

Web Services, 749

CmInch, 752

Cm2Inch function,
754-755

CmInchFactory function,
753

consuming, 763-765

ICmInch interface,
756-757

import unit, 758-763

Inch2Cm function,
754-755

IWSDLPublish interface,
756

consuming, 757

GetICmInch function,
765

THTTPRIO component,
763-765

WSDL Importer, 758-763

Google Web Service, 765

Google searches, 766-772

Google Web APIs, 766

Search Key, 766

SOAP (Simple Object Access
Protocol) servers

activation model, 752-753

deploying, 755-757

Invokable Registry, 753

Web module, 751-752

Web service interfaces,
754-755

SOAP server applications,
750-751

Web sites, 981-982

Web sites, 973

Amazon.com, 11

ANSI (American National
Standards Institute), 9

BCB CAQ, 979

BCB–An Intro to Cultural
Simulation and
Visualization, 979

BCBDEV, 77

BCBDev.COM, 979

BITS C++Builder Information
and Tutorials, 979

Borland

BDN (Borland Developer
Network), 973-976

BorCon (Borland
Developers Conference),
990

Code Central, 1005

CodeCentral, 976-977

dbExpress, 454

home page, 973-974

QualityCentral, 977-978

C++.org, 980

C++Builder, 7, 26

C++Builder Developer’s Journal,
989

C/C++ Users Journal, 989

COM (Component Object
Model) resources, 711-712

Web server programming1092

35 0672324806 Index 12/12/02 2:41 PM Page 1092

dbExpress third-party drivers,
454

Delphi Informant, 989

Delphi Super Page, 980

Dr. Bob’s C++Builder Gate,
979

Eagle Software, 981

Getting started with C++ on
the Nokia 9200 Series
Communicator (white
paper), 969

GIF (Graphics Interchange
Format), 605

Google Groups, 986

Indy (Internet Direct)
Components, 981

InformIT, 987

InterBase Objects, 418

JPEG, 602

Microsoft

COM Technologies, 982

DCOM95 download site,
716

MSDN (Microsoft
Developer Network),
982-983

MJFSecurity, 117

mobile application resources,
971

Nokia 9200 Series SDK, 969

PNGDIB conversion library,
606

QaDRAM.Delphi, 981

Raize Software, 981

Thinking in C++, Vol. 1, 988

TMS Software, 981

Torry’s Delphi Pages, 981

TurboPower Software
Company, 981

W3C (World Wide Web
Consortium), 982

WebServices.org, 982

Woll2Woll, 981

XMethods, 982

WebActionItem object, 836

WebAppDebugger, 835-836

running, 836-838

Web action items, 836

WebBroker, 848

WebServ folder, 933

WebServices folder, 934

WebServices page (Component
Palette), 126

WebServices.org Web site, 982

WebSnap, 835

adapters

Adapter Actions, 850

Adapter Fields, 849-850

custom adapters, 852

TAdapter, 850, 860-863

TApplicationAdapter, 851

TDataSetAdapter,
841-842, 850, 864-865

TEndUserAdapter,
851-852

TEndUserSessionAdapter,
852

TLoginFormAdapter, 851

TPagedAdapter, 850

compared to WebBroker, 848

data modules, 841, 848

master-detail relationships,
864-865

page modules, 847-848

creating, 842-843

TWebAppPageModule
component, 847

producers

TAdapterPageProducer,
852, 860-861

TPageProducer, 852

TTableProducer, 852

sample application, 839

data module, 841, 852

DataSetAdapter, 841-842

debugging, 845-846

deployment, 843-844,
872-873

EndUserSessionAdapter,
858

incorrect login, 857

linked pages, 868-871

login form, 856

login page, 855

LoginFormAdapter, 856

page modules, 842-843,
854, 865-868, 872

starting, 853

Web module, 840

WebUserList, 854

server-side scripting, 848-849

sessions, 858

TAdapter actions, 861-863

TAdapter fields, 860

TAdapterPageProducer
component, 860-861

TSessionsService compo-
nent, 859, 863

Web action items, 847

Web modules

creating, 840-841

SOAP (Simple Object
Access Protocol),
751-752

TWebAppDataModule
component, 847

WebAppDebugger, 835-836

running, 836-838

Web action items, 836

WebSnap folder, 934

WebSnap 1093

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1093

wizards

New WebSnap
Application Wizard, 839

WebSnap Application
Wizard, 847

WebSnap Page Module
Wizard, 842

Wharton, Jason, 418

Width property (TPen compo-
nent), 586

Win32 API, 491-494. See also
functions; GDI (graphical
device interface)

common controls

Animation, 555

ControlBoxEx, 555

Date and Time Picker,
555

Drag List Box, 555

example, 557-558

Flat Scroll Bar, 555

Header Controls, 555

Hot-Key Controls, 555

Image List, 556

IP Address, 556

List View, 556

Monthly Calendar, 556

Page Scroller, 556

Progress Bars, 556

Property Sheets, 556

Rebar, 556

Status Bar, 556

Tab Controls, 556

Toolbars, 556

Tooltip Controls, 557

Trackbars, 557

Tree View Controls, 557

Up-Down Controls, 557

VCL equivalents, 555-557

common dialogs, 558-562

example, 559, 561

VCL equivalents, 558

DLLs (dynamic link libraries),
492

GDI (graphical device inter-
face), 542-543

CombineRgn() function,
545-547

CreateEllipticRgn() func-
tion, 544-545

CreatePolygonRgn() func-
tion, 547

CreateRoundRectRgn()
function, 543-544

device contexts, 542

objects, 542

regions, 543

international features, 572

MCI (Media Control
Interface), 609

closing devices, 613-614

device status, 614-615

device time formats,
612-613

errors, 610-611

fast-forwarding devices,
613-614

messages, 610-616

notifications, 615-616

opening devices, 611-612

playing devices, 613-614

polling devices, 615-616

rewinding devices,
613-614

stopping devices, 613-614

supported file types,
616-617

messages, 495

multimedia services

ACM (Audio Compression
Manager), 548

Audio Mixers, 548

AVICap, 548

AVIFile, 548

DrawDib, 548

Joysticks, 548

MCI (Media Control
Interface), 548

MCIWnd Window, 548

MIDI, 549

Multimedia File, 549

multimedia file playback,
549-551

Multimedia Timers,
549-554

VCM (Video Compression
Manager), 549

Waveform Audio, 549

network services, 572

NetBIOS interface, 573

Network DDE, 573

network information,
returning, 573-576

NT Workstation locking,
576

ported LAN Manager
functions, 573

RAS (Remote Access
Service), 573

SNMP (Simple Network
Management Protocol),
573

system shutdown,
576-577

WinSock, 573

WNet, 573

regions

combining, 545-547

defined, 543

WebSnap1094

35 0672324806 Index 12/12/02 2:41 PM Page 1094

oval regions, 544-545

polygon regions, 547

rectangular regions,
543-544

shell features

drag and drop, 562

file association, 562

file backups, 565-569

file deletion, 570-572

icons, 563

ShellExecute() function,
563-564

ShellExecuteEx() func-
tion, 564-565

system services, 515

applications, launching,
538-542

Atoms, 516

Clipboard, 516

Console Support, 516

DDE (Dynamic Data
Exchange), 516

Debugging, 516

DLL (Dynamic Link
Library), 516

drive information, dis-
playing, 530-534

Error Message, 516

Event Logging, 516

file information, display-
ing, 534-538

File Mapping, 516

Files, 516

Handles and Objects, 516

Help Support, 517

Large Integer Operations,
517

Mailslots, 517

memory information, dis-
playing, 529-530

Memory Management,
517

PE (Portable Execution),
517

Pipes, 517

Power Management, 517

Process and Thread, 517

Registry, 517

Security, 517

Services, 517

String Manipulation, 518

Structured Exception
Handling, 518

Synchronization, 518

System Information, 518

system information, dis-
playing, 519, 521-528

System Messages, 518

System Shutdown, 518

Tape Backup, 518

Time, 518

Windows Stations and
Desktops, 518

WinSysUtil application,
519

Waveform Audio Interface

audio files, 617-618

audio output devices,
622-625

audio streams, 618-621

windows

animation, 512-513

enumerating, 497-504

external window control,
504-507

flashing, 510-512

handles, 495

message handling,
507-510

message identifiers,
513-514

responding to messages,
514-515

window management
functions, 494-496

WinManUtil sample pro-
ject, 496-497

Windows kernel library, 515

window management functions,
494-496

windowed components, 112,
191, 240-255

windows

animation, 512-513

docking, 34-36

enumerating, 497-504

ButtonEnumWindows
Click() function, 502

EnumWindows() func-
tion, 502

GetClassName() function,
503-504

GetWindowLong() func-
tion, 503-504

GetWindowRect() func-
tion, 504

GetWindowText() func-
tion, 503-504

GetWindowTextLength()
function, 504

GetWindowThreadProcess
ID() function, 503-504

GetWinHandleAll() func-
tion, 502

ProcessHandleInformatio
n() function, 503

sample code listing,
497-502

SetWindowText() func-
tion, 504

TreeView1Change() func-
tion, 503

UpdateAppInfo() func-
tion, 503

windows 1095

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1095

external window control

ButtonBringToFocus
Click() function, 506

ButtonChangeTitleClick()
function, 505

ButtonHideClick() func-
tion, 507

ButtonMaximizeClick()
function, 507

PostMessage() function,
506

sample code listing, 504-
505

SendMessage() function,
506

SetForegroundWindow()
function, 506

SetWindowText() func-
tion, 505

flashing

FlashWindow() function,
510-512

FlashWindowEx() func-
tion, 510-511

handles, 495

main window, 33

MDI (multiple document
interface) child windows,
653-655

message handling

ButtonMoveRightMouse
Down() function, 509

ButtonMoveRightMouse
Up() function, 510

MoveWindow() function,
509

MyWndProc() function,
509

PostMessage() function,
509

RegisterWindowMessage()
function, 509

sample code listing,
507-508

message identifiers, 513-514

modal SDI (single document
interface) windows,
652-653

Object Inspector, 36-37

Object Tree view, 39

property categories, 37-39

pop-up windows, 131-135

Project Manager, 34

responding to messages,
514-515

Source Code Editor, 39-40

Code Insight, 42

Diagram tab, 40-42

window layout, 137-138

alignment, 138-139

anchors, 139

TScrollBox component,
141

TSplitter component,
139-141

window management func-
tions, 494-496

WinManUtil sample project,
496-497

Windows 32-bit API. See Win32
API

Windows kernel library, 515

Windows Networking (WNet),
573

Windows operating system,
982-983. See also Win32 API

Windows Stations and Desktops
service, 518

WindowsVersion() function,
525-526

WinMain() function, 496

WinManUtil sample project,
496-497

WinSock, 573

WinSysUtil application, 519

WinTools folder, 934

wizards

creating with Tools API, 880

class registration, 889

custom wizard classes,
886-889

interfaces, 881

testing, 890

TNotifierObject class,
881-885

DLL Wizard

DLLEntryPoint function,
628

DLLMain function,
628-631

header files, 632-633

opening, 629

options, 629-630

sample methods, 631-632

skeleton applications, 630

source types, 629

MemStat Wizard, 880

class registration, 889

CreateProcess() function,
900

Execute() function,
893-895, 910-914,
920-921

FindCurrentProject()
function, 897-899

FindMenuItemCaption()
function, 900-901

HandleMessage() func-
tion, 902

interfaces, 881

MemStatusWizard class,
886-889, 896

ProcessMessages() func-
tion, 896

public declarations,
905-906

windows1096

35 0672324806 Index 12/12/02 2:41 PM Page 1096

SetProcessActive() func-
tion, 909

SetupMessageView
Access() function,
896-897

Show() function, 901-902

SpeedButtonStartClick()
function, 902

testing, 890

TNotifierObject class,
881-885

WebSnap

New WebSnap
Application Wizard, 839

WebSnap Application
Wizard, 847

WebSnap Page Module
Wizard, 842

XML Data Binding Wizard,
473-475

WMDropFiles event handler,
156-157

WmDropFiles() function, 215

wmMoveAWindow() function,
509

WM_DROPFILES messages, 215

WNet, 573

Woll2Woll Web site, 981

Workstations, locking, 576

Wpm folder, 937

wrappers, 111

write access, 257-258

write() function, 202, 239

write_dib_to_png function, 606

write-through cache, 409

writing

to audio streams, 620-621

components, 191-192

non-visual components

default keyword, 203

designtime versus run-
time, 216-218

events, 205-208, 221-224

exceptions, 211-212

keywords, 203-204,
213-214

linking, 218-221

messages, responding to,
214-216

methods, 208-211

order of creation, 204-205

properties, 195-203

RegisterComponents() func-
tion, 268

visual components, 224,
232-240

graphics, 227-230

mouse messages, respond-
ing to, 230-232

parent classes, 225

TCanvas object, 225-227

windowed components,
modifying, 240-255

XML documents, 471-472

WSAStarup() function, 575

WSDL Importer, 758-763

X-Z
XMethods Web site, 982

XML (Extensible Markup
Language) documents, 467.
See also Web Services

BizSnap.xml example,
467-468

data binding

BizSnap example, 476-482

XML Data Binding
Wizard, 473-475

reading, 470-471

transforming into data pack-
ets, 483-488

TXMLDocument component,
467, 993-994

accessing, 1006

di_IDOMDocument inter-
face, 469

di_IXMLDocument inter-
face, 470

IXMLDocument interface,
470

package assembly, 1005

properties, 468-469

registering, 994-1004

xmlcomponent.pas pack-
age source, 994-1004

writing, 471-472

XML Mapping Tool

loading documents into,
482

transformations, 483-488

XML Data Binding Wizard,
473-475

XML Mapping Tool

loading documents into, 482

transformations, 483-485

creating, 485-486

example, 486-488

testing, 485

TXMLTransform compo-
nent, 486

TXMLTransformClient
component, 486

TXMLTransformProvider
component, 486

XML property (TXMLDocument
component), 468

xmlcomponent.pas package
source, 994-1004

ZeroMemory() function, 570

ZeroMemory() function 1097

How can we make this index more useful? Email us at indexes@samspublishing.com

35 0672324806 Index 12/12/02 2:41 PM Page 1097

JBuilder™ Developer’s Guide
Michael Landy, Saleem Siddiqui, Jeff Swisher, with Erik
Nickelson and Todd Story

067232427x
$59.99US/$89.95CAN

JBuilder™ Developer’s Guide provides comprehensive coverage of the
award-winning JBuilder from the practitioner’s viewpoint. The authors
develop a consolidated application throughout the chapters, allowing con-
ceptual cohesion and illustrating the use of JBuilder to build ‘real world’
applications. The examples can be compiled and run under JBuilder
Personal edition, a free edition of JBuilder. JBuilder™ Developer’s Guide
is not version specific but explains the latest JBuilder 6 and 7 features such
as enterprise J2EE application development, CORBA, SOAP, XML tools,
Enterprise JavaBeans™, JavaServer Pages/Servlets, and JavaBeans® tech-
nology. JBuilder repeatedly wins “developer’s choice” awards as the best
visual tool for developing Java applications.

Delphi™ 6 Developer’s Guide
Xavier Pacheco and Steve Teixeira

0672321157
$64.99US/$96.95CAN

Xavier Pacheco and Steve Teixeira offer the best techniques and tricks for
Delphi 6. Learn to apply real-world applications, solutions, and projects to
your own programs to become a more efficient and better Delphi devel-
oper. Included in this edition is the latest information on CLX™,
DataSnap™, Web Services/BizSnap™, wireless application development,
and more!

Kylix™ Developer’s Guide
Charlie & Margie Calvert, John Kaster, Bob Swart

0672320606
$59.99US/$89.95CAN

The Kylix™ Developer’s Guide introduces programmers to the new
Borland® Delphi compiler for Linux. The book provides comprehendsive
coverage of CLS, a VCL-like visual programming library that runs on both
Windows and Linux. You’ll learn the Linux system environment, develop-
ment of databases with CLX, and Web development with Kylix.

4806 1 12/12/02 2:38 PM Page 1098

	Borland C++Builder 6 Developer’s Guide
	Copyright © 2003 by Sams Publishing
	Contents at a Glance
	Table of Contents

	Introduction
	Who Should Read This Book?
	How This Book Is Organized
	The Companion CD-ROM
	C++Builder System Requirements
	Conventions Used in This Book

	PART I C++Builder Essentials
	Chapter 1 Introduction to C++ Builder
	C++ Language
	The VCL, Forms, and Components
	Creating Your First Real Program
	Commonly Asked Questions
	What’s New in C++Builder 6?
	Linux, Kylix, CLX, EJB, and C++Builder
	The C++ Standard Library
	Summary

	Chapter 2 C++Builder Projects and More on the IDE
	C++Builder IDE Features
	Understanding C++Builder Projects
	Understanding and Using Packages
	Using the C++Builder Interactive Debugger
	Advanced Debugging
	Speeding Up Compile Times
	Summary

	Chapter 3 Programming in C++Builder
	Better Programming Practices in C++Builder
	VCL Overview
	Review of the Component Palette
	Creating User Interfaces
	Nonvisual Components and Programming
	Creating Multithreaded Applications
	Summary

	Chapter 4 Creating Custom Components
	Creating, Compiling, and Installing Packages
	Creating Custom Components
	The Streaming Mechanism
	Distributing Components
	Summary

	Chapter 5 Creating Property and Component Editors
	Creating Custom Property Editors
	Properties and Exceptions
	Registering Custom Property Editors
	Using Images in Property Editors
	Creating Custom Component Editors
	Registering Component Editors
	Summary

	PART II Database Programming
	Chapter 6 Borland Database Component Architecture
	Borland Database Component Types Overview
	The Borland Database Engine
	BDE Single-Tier and dbGo
	BDE/SQL Links, IBExpress, dbExpress, and dbGo (Two-Tier)
	DataSnap Distributed Databases (Multitier)
	Summary

	Chapter 7 Database Programming
	What Are Data Modules?
	Why Use a Data Module?
	How to Use a Data Module in Applications, DLLs, and Distributed Objects
	What Goes in a Data Module?
	How to Add Properties to a Data Module?
	How to Use the Data Module Designer
	The Data Diagram Editor
	Advanced Concepts in Data Module Usage
	Summary

	Chapter 8 The Borland Database Engine
	Introduction to the Borland Database Engine (BDE)
	Component Overview
	Summary

	Chapter 9 Client Datasets and Client Dataset Enhancements
	Introduction to Client Dataset Concepts
	Using Basic Client Datasets in the Client/Server Environment
	Improving Performance with Client Datasets
	Using Client Datasets in a Multitier Environment
	Specialized Types of Client Datasets
	Summary

	Chapter 10 Interbase Express
	Introduction to IBExpress Components
	Setting Up a Schema
	Database Rules
	Generators, Triggers, and Stored Procedures
	Debugging an InterBase Application
	Database Creation and Connection
	Using Transactions
	Accessing Interbase
	Setting Up Bug Tracker
	Bug Tracker Wrap Up
	Summary

	Chapter 11 ADO Express Components for C++Builder
	ADO Versus BDE
	Component Overview
	Database Connections
	Accessing Datasets
	Managing Transactions
	Using Component Events
	Creating Generic Database Applications
	Performance Optimizations
	Error Handling Issues
	Multitier Applications and ADO
	Summary

	Chapter 12 Data Access with dbExpress
	dbExpress
	dbExpress Components
	Migrating from Borland Database Engine (BDE)
	Summary

	Chapter 13 XML Document Programming and XML Mapper
	XML Document Programming
	XML Data Binding
	XML Mapping Tool
	Summary

	PART III Windows Programming
	Chapter 14 Win32 API Functional Areas
	Win32 API Background
	Windows Management
	System Services
	Graphical Device Interface
	Multimedia Services
	Common Controls and Dialogs
	Shell Features
	International Features
	Network Services
	Summary

	Chapter 15 Graphics and Multimedia Techniques
	The Graphical Device Interface (GDI)
	Working with Images
	Working with Multimedia
	Summary

	Chapter 16 DLLs
	Creating a DLL Using C++Builder
	Loading a DLL
	Exporting and Using DLL Classes
	Packages Versus DLLs
	Using Forms in a DLL
	Shared Memory Support in a DLL
	Using Microsoft Visual C++ DLLs with C++Builder
	Using C++Builder DLLs with Microsoft Visual C++
	Summary

	Chapter 17 COM Programming
	COM Fundamentals
	Creating and Using COM Interfaces
	Adding Automation
	Adding Event Sinks
	Writing the COM Server
	ActiveX Controls
	Recommended Resources
	Summary

	PART IV Distributed Computing
	Chapter 18 DCOM: Going Distributed
	What Is DCOM?
	The DCOMCnfg Utility Tool
	Field Testing DCOM
	Programming Security
	Summary

	Chapter 19 SOAP and Web Services with BizSnap
	Building Web Services
	Consuming Web Services
	Using Other Web Services
	Summary

	Chapter 20 Distributed Applications with DataSnap
	Introduction to DataSnap
	DataSnap Clients and Servers
	Stateless DataSnap
	Deployment
	Summary

	Chapter 21 DataSnap Multitier Connections
	Accessing the Server Remotely Using DCOM
	HTTP WebConnection
	TCP/IP SocketConnection
	New DataSnap Connections
	TSOAPConnection
	Summary

	Chapter 22 Web Server Programming with WebSnap
	WebAppDebugger
	WebSnap Demo
	WebSnap Architecture
	WebSnap Login
	WebSnap Sessions
	WebSnap Master-Detail Example
	Summary

	PART V Open Tools API
	Chapter 23 The Tools API: Extending the Borland IDE
	Tools API Fundamentals
	Creating a Wizard
	Creating and Using Services
	Creating and Using Notifiers
	Creating and Using Creators
	Using Editors
	Debugging Your IDE Extensions
	Building and Deploying DLLs
	Recommended Readings
	Summary

	PART VI Appendixes
	Appendix A C++Builder Example Applications
	Overview of C++Builder Example Applications
	”Apps” Example Applications
	”DBTask” Example Applications
	”Doc” Example Applications
	”WebSnap” Example Applications
	Summary

	Appendix B C++ Mobile Application Development
	C++ Mobile Edition Overview
	Creating a Mobile Application
	Mobile Project Composition
	Deploying a Mobile Application
	Symbian OS
	Future Borland C++ Mobile Products
	Additional Resources
	Summary

	Appendix C Information Resources
	Borland-Sponsored Web Sites
	Useful Developer Web Sites
	Newsgroups
	Books and Magazines
	The Borland Developers Conference (BorCon)
	Summary

	Appendix D Enabling TXMLDocument for C++Builder Professional
	TXMLDocument VCL Registration Support
	TXMLDocument VCL Package Assembly
	Using TXMLDocument
	Summary

	Index

