
Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 1

Firebird™ Version 1.5

Release Notes v.1.5
Draft 3 August 2003

Contents

General Notes
New Features
Compatibility with Older Versions
Language Enhancements
! Data types
! Metadata
! DSQL
! PSQL
! Firebird 1.0.x
New Reserved Words
ISQL Features
External Functions (UDFs)
! in the ib_udf library
! in the fbudf library
New Configuration File—firebird.conf
! Filesystem-related parameters
! Resource-related
! Communications-related
! POSIX-specific
! Windows-specific
! Sort space
! Compatibility
DB File Aliasing
! Connecting using an aliased path
! Naming databases on Windows
Installation Notes
! Windows 32-bit
! Linux/UNIX
! Solaris
! MacOS X
! FreeBSD
Further Information
Tools and Drivers
Documentation
Fixed Bugs



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 2

General Notes

The Firebird™ database engine has been developed by an independent team of voluntary developers
from the InterBase™ source code that was released by Borland under the InterBase Public License v.1.0
on 25 July 2000.

The Firebird 1.5 Binaries
The Firebird binaries can be downloaded through the Firebird website -

http://sourceforge.net/project/showfiles.php?group_id=9028

Version Strings for Firebird 1.5  Releases

To be added.

Please refer to the Documentation section for locations of recommended documentation.

New Features

New codebase, better optimization
This release was built from code ported from the original C to C++, a process begun by Mike Nordell
back in 2000.  Extensive code cleanup and bug-fixing has continued, along with new memory
management and language enhancements.  Not least, during the v.1.5 development process, the SQL
query optimizer has undergone enhancements and fixes at the hands of Arno Brinkman and others,
resulting in reported speed improvement of 30 to 60 percent and more.

Architecture
Two significant new additions for Windows platforms are Classic server and embedded server.
•  There has not been a Classic server on Windows for nearly eight years.  This one can utilize

multiple processors, something which still eludes the Windows Superserver.  Though usable, Classic
should be regarded as experimental.

•  Embedded server is a dll that merges a single client attachment with a Firebird Superserver for
building very quick and efficient stand-alone and briefcase applications.

Several important new language features have been added since version 1.0.x, including the
conditional SQL operators CASE, COALESCE and NULLIF.  For syntax of these and other new language
implementations, please refer to the Language Enhancements section later in this document.

Installed modules and security
If you have been using Firebird 1.0.x until now, you will notice big changes in the names of modules
and the rules for accessing and locating them.  Following are some highlights;  for detailed information
on installation, disk layout and configuration, see the relevant section in this document.

1. Most modules and constants have been renamed.  In most cases, the new names involve some
variant of “firebird” or “fb”.  For example, the API library is now located in a shared library named
“fbclient.dll” on Windows and “libfbclient.so” on other platforms.  The exception that breaks the
rule is the security database, formerly named “isc4.gdb”, which is now called “security.fdb”.

2. External files used by the server (UDF libraries, BLOB filters, character set libraries, external
tables) are now subject to levels of filesystem protection that, in some cases, default to a level
that will be different to what you had under Firebird 1.0.x or InterBase.

http://sourceforge.net/project/showfiles.php?group_id=9028


Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 3

3. The new server configuration file, firebird.conf, that replaces ibconfig (Windows) and isc_config
(other platforms) contains several new configurable features along with improved self-
documentation and organisation.

4. A database-aliasing feature comes in 1.5.  Now you can optionally “soft-code” the database
location into your application code using your choice of alias to replace the path string.  Actual
path locations are stored in a text file, aliases.conf.  The main purpose of aliasing, however, is to
protect your physical paths from being maliciously “sniffed” on the wire.

5. The default (and past practice) on Windows server platforms makes it that the local system user
runs the program that installs the Firebird service at system start-up.  This could be a serious
security vulnerability if the Firebird server should be hacked, since it provides a window through
which the hacker can access the entire machine.  The 1.5 version of this program (instsvc.exe) now
accepts a Windows user log-on for the service installation.  It is strongly recommended that you
create a Firebird user for this purpose and make use of the new logon feature if your server is
connected to the Internet in any way.

Trimming of Varchar fields for remote protocols
Work was resumed and completed on this tricky feature for the 1.5 client and varchars now cross the
wire right-trimmed to actual length plus two bytes.
NOTE  As it is the client that requests the server to trim varchars, the Firebird 1.5 client (fbclient.dll or
libfbclient.so) will trim, even if connected to a pre-1.5 server version.  If you use an old client, you will
not get trimming, even if you are connected to a 1.5 or later server.

Error-reporting improvements
Where possible, error messages report the cause of SQL errors at a more detailed level.  It is
IMPORTANT to note that you will encounter bizarre messages if you use an old interbase.msg or
firebird.msg file.

Renamed files and modules

Platform Module Firebird 1.0 Firebird 1.5 Special notes

All Security
database

Isc4.gdb security.fdb

All Message file Interbase.msg firebird.msg

All Server log file interbase.log firebird.log

All ODS version 10 10.1 New ODS (10.1). doesn’t cause
any incompatibilities with
previous ODS but version is not
upgraded automatically.
Firebird 1.0 and 1.5 both can
serve ODS 10.0 and 10.1 DBs.
Nevertheless, backup/restore is
still the recommended
procedure for migrating DBs to
a different version of the
server.

Linux Classic server
binary

gds_inet_server fb_inet_server

Linux Classic lock
manager

ib_lock_mgr fb_lock_mgr

Linux Superserver
control

ibmgr.bin fbmgr.bin



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 4

Platform Module Firebird 1.0 Firebird 1.5 Special notes

Linux Superserver
binary

ibserver fbserver

Linux Configuration
file

isc_config firebird.conf

Linux Client library libgds.so libfbembed.so AUTHOR ASKS WHY?!?!?!?

Linux Client library
stub for
compatibility

N/A libgds.so

Windows Guardian ibguard.exe fbguard.exe

Windows Superserver
binary

ibserver.exe fbserver.exe Not multi-processor capable.

Windows Classic binary N/A fb_inet_server.exe Windows local connect not
available.  TCP/IP, NetBEUI OK.
Multi-processor capable.

Windows Client library gds32.dll fbclient.dll Fb 1.5 versions of server
utilities, and all new
applications, need only
fbclient.dll.
See notes below regarding
gds32.dll compatibility for old
applications.

Windows Client library
stub for
compatibility

N/A gds32.dll

Windows Configuration
file

ibconfig firebird.conf

Windows Local IPC port InterBaseIPI FirebirdIPI With default server settings you
cannot do local connect from
applications using an old client
library (gds32.dll). If
necessary, you can set up the
server to use the old name of
the IPC map, via firebird.conf.

Windows Default
Registry key

HKLM\SOFTWAR
E\InterBase\Fire
bird

HKLM\SOFTWARE\Fi
rebirdSQL\Firebird

Changes in the client library
Windows clients
The client library is now named "fbclient.dll". All server utilities (gbak, gfix, etc) use only the client
library fbclient.dll. Connect new applications to fbclient.dll, without requiring gds32.dll
(recommended).
For compatibility with existing applications, a gateway library "gds32.dll" is included in the distribution
kit. This library doesn't have any code but just redirects all calls to fbclient.dll.  Hence, for old
applications, you must have both this version of gds32.dll and fbclient.dll in either the application
program directory or OS system directory.

Linux clients
The client library is now named “libfbembed.so”.  For compatibility with existing applications, a
gateway library “libgds.so” is installed.  This library doesn’t have any code but just redirects all calls



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 5

to libfbembed.so.  Hence, for old applications, you must have both this version of libgds.so and
libfbembed.so in the /usr/lib directory. [ED – this isn’t correct but some guidance is wanted here
about how and where the symlinks are to be done]

Compatibility

The On-Disk Structure of Firebird 1.5 is designated ODS 10.1.  Certain enhancements requiring changes
to the ODS have been deferred to the version 2 release.  Meanwhile, you should be able to transport
your Firebird 1.0.x databases directly.  Take tested backups of your Firebird 1.0.x databases before
porting them to 1.5.

InterBase™ databases:  If you are planning to "play" with Firebird using an existing InterBase database,
with the intention of reverting to InterBase later, please take all precautions to back up your current
version using the appropriate InterBase version of gbak. For beginning to work with your database in
Firebird 1.5, use the Firebird 1.5 version of gbak to restore your backup.
The Operations Guide from the InterBase® 6.0 beta documentation set contains the command syntax
for the gbak backup and restore program.

File-names and locations:  in this release, a substantial number of software files have new names, as
part of a gradual replacement of names inherited from InterBase® 6. Please read the section File
Names and Locations for descriptions and recommendations.

Concurrently-running servers:  Changes done to some system object names enable FB 1.5 to be
installed and used on a computer which already has InterBase or Firebird 1.0.x installed. On Windows,
FB 1.5 also uses another Registry key. If you set up the servers to use different network ports, it is
possible run a few server instances simultaneously or run FB 1.5 simultaneously with IB or FB 1.0.x.

Because of a large number of bug-fixes, the behaviour databases might change if you downgrade a
v.1.5 DB to v.1.0.x.  Watch out for a future README detailing any such issues as might appear.

Linux Compatibilities
Because of a history of problems with the GNU C++ compiler, Firebird 1.5 Linux versions need higher
versions of the glibc runtimes than previously.  This means, unfortunately, that we are in a period
where the capability of a particular distro to install and run the 1.5 binaries is somewhat hard to
predict.  The following matrix may help.  However, we welcome further information.  Please share
your experiences with these and other distros in the firebird-devel forum.

Distro Level Classic Superserver

Red Hat 7.x No No

8.0
updated from 7.x

No No

8.0
clean install

Yes Yes

Mandrake 8.x No No

9.0 Yes, if force-patched with
glibc-2.3.1-10mdk.i586.rpm

Yes, if force-patched with
glibc-2.3.1-10mdk.i586.rpm

9.1 Yes Yes

SuSE 8.0 No No

8.1 Yes Yes



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 6

Language Enhancements

DATA TYPES

(1.5) New Native SQL Data Type

BIGINT
SQL99-compliant exact numeric type, 64-bit signed, with a scale of zero.  Available in Dialect 3 only.

Example(s)
i)
DECLARE VARIABLE VAR1 BIGINT;
ii)
CREATE TABLE TABLE1 (FIELD1 BIGINT);

METADATA

(1.5) Enhancements to named constraints
  (Dmitry Yemanov)
Indexes that enforce named constraints may now be named with user-defined identifiers.

Previously, although it was possible to created named PRIMARY, FOREIGN KEY and UNIQUE constraints,
the identifier of automatically-generated enforcing index was calculated by the system, e.g.,
RDB$FOREIGN13, and could not be altered.  This remains the default behaviour when named
constraints are not used.

However, language extensions have been added to enable
a) a system-generated index to receive automatically the same identifier as the named constraint it

enforces
b) an index which enforces a named or unnamed constraint to be explicitly assigned a custom

identifier and to be optionally constructed in DESCENDING order.
NOTE  It is not currently possible to use a pre-existing index.

Syntax

...
[ADD] CONSTRAINT [<constraint-identifier>]
<constraint-type> <constraint-definition>
[USING [ASC[ENDING] | DESC[ENDING]] INDEX <index_name>]

Examples
i) Named constraint and explicitly-named index

CREATE TABLE ATEST (
  ID BIGINT NOT NULL,
  DATA VARCHAR(10));
COMMIT;
The following statement will created a primary key constraint named PK_ATEST and an enforcing,
descending index named IDX_PK_ATEST:

ALTER TABLE ATEST
ADD CONSTRAINT PK_ATEST PRIMARY KEY(ID)
USING DESC INDEX IDX_PK_ATEST;



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 7

COMMIT;

ii)    Alternative to i) above:

CREATE TABLE ATEST (
  ID BIGINT NOT NULL,
  DATA VARCHAR(10),
  CONSTRAINT PK_ATEST PRIMARY KEY(ID)
  USING DESC INDEX IDX_PK_ATEST;

iii) This statement creates the table ATEST with the primary key PK_ATEST.  The enforcing index is
also named PK_ATEST.

CREATE TABLE ATEST (
  ID BIGINT NOT NULL,
  DATA VARCHAR(10),
  CONSTRAINT PK_ATEST PRIMARY KEY(ID));

(1.5)  UNIVERSAL TRIGGERS
  (Dmitry Yemanov)
Triggers are enhanced to enable them to handle multiple row operations.

Syntax

CREATE TRIGGER name FOR table
  [ACTIVE | INACTIVE]
  {BEFORE | AFTER} <multiple_action>
  [POSITION number]
AS trigger_body

<multiple_action> ::= <single_action> [OR <single_action> [OR <single_action>]]
<single_action> ::= {INSERT | UPDATE | DELETE}

Examples
i)
CREATE TRIGGER TRIGGER1 FOR TABLE1
[ACTIVE] BEFORE INSERT OR UPDATE AS
...;

ii)
CREATE TRIGGER TRIGGER2 FOR TABLE2
[ACTIVE] AFTER INSERT OR UPDATE OR DELETE AS
...;

ODS change
Encoding of field RDB$TRIGGER_TYPE (relation RDB$TRIGGERS) has been extended to allow complex
trigger actions. For details, refer to the document readme.universal_triggers.txt in the
/doc/sql.extensions branch of the Firebird CVS tree.
Note(s):
1. One-action triggers are fully compatible at ODS level with FB 1.0.
2. RDB$TRIGGER_TYPE encoding is order-dependant, i.e., BEFORE INSERT OR UPDATE and BEFORE

UPDATE OR INSERT will be coded differently, although they have the same semantics and will be
executed exactly the same way.

3. Both OLD and NEW contexts variables are available in multiple-action triggers. If the trigger
invocation forbids one of them (e.g. OLD context for INSERT operation), then all fields of that



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 8

context will evaluate to NULL.  If they are assigned to an improper context, a runtime exception
will be thrown.

4. The new Boolean context variables INSERTING/UPDATEING/DELETING can be used to check the
operation type at runtime.  (See below.)

(1.5)  RECREATE VIEW
Exactly the same as CREATE VIEW if the view does not already exist.  If it does exist, RECREATE VIEW
will try to drop it and create a completely new object.  RECREATE VIEW will fail if the object is in use.

Uses the same syntax as CREATE VIEW.

(1.5)  CREATE OR ALTER {TRIGGER | PROCEDURE }

Statement that will either create a new trigger or procedure (if it does not already exist) or alter it (if
it already exists) and recompile it.  The CREATE OR ALTER syntax preserves existing dependencies and
permissions.

Syntax is as for CREATE TRIGGER | CREATE PROCEDURE, respectively, except for the additional
keywords “OR ALTER”.

(1.5) SQL-99 – NULLs in unique constraints and indices
(Dmitry Yemanov)

It is now possible to apply a UNIQUE constraint or a unique index to a column that does not have the
NOT NULL constraint.  This complies with SQL-99.  Be cautious about using this if you plan to revert
your database to Firebird 1.0.x or any InterBase version.

DSQL

(1.5) Expressions and variables as procedure arguments
  (Dmitry Yemanov)

Calls to EXECUTE PROCEDURE ProcName(<Argument-list>) and
SELECT <Output-list> FROM ProcName(<Argument-list>) can now accept local variables (in PSQL) and
expressions (in DSQL and PSQL) as arguments.

(1.5) New conditional constructs
  (Arno Brinkman)
a) COALESCE
Allows a column value to be calculated by a number of expressions, from which the first expression to
return a non-NULL value is returned as the output value.

Format
<case abbreviation> ::=
    | COALESCE <left paren> <value expression> { <comma> <value expression> }... <right paren>

Syntax Rules
    i) COALESCE (V1, V2) is equivalent to the following <case specification>:
         CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END
    ii) COALESCE (V1, V2,..., Vn), for n >= 3, is equivalent to the following:
         <case specification>:
         CASE WHEN V1 IS NOT NULL THEN V1 ELSE COALESCE (V2,...,Vn) END



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 9

Examples

SELECT
    PROJ_NAME AS Projectname,
    COALESCE(e.FULL_NAME,'[> not assigned <]') AS Employeename
FROM
    PROJECT p
    LEFT JOIN EMPLOYEE e ON (e.EMP_NO = p.TEAM_LEADER);

SELECT
    COALESCE(Phone,MobilePhone,'Unknown') AS "Phonenumber"
FROM
    Relations

b) NULLIF
Returns NULL for a sub-expression if it has a specific value, otherwise returns the value of the sub-
expression.
Format
<case abbreviation> ::=
      NULLIF <left paren> <value expression> <comma> <value expression> <right paren>

Syntax Rules
NULLIF (V1, V2) is equivalent to the following <case specification>:
    CASE WHEN V1 = V2 THEN NULL ELSE V1 END

Example

UPDATE PRODUCTS
    SET STOCK = NULLIF(STOCK,0)

c)  CASE
Allow the result of a column to be determined by the outcome of a group of exclusive conditions.

Syntax
  <case expression> ::=
      <case abbreviation>  | <case specification>

  <case abbreviation> ::=
      NULLIF <left paren> <value expression> <comma> <value expression> <right paren>
    | COALESCE <left paren> <value expression> { <comma> <value expression> }... <right paren>

  <case specification> ::=
      <simple case>  | <searched case>

  <simple case> ::=
    CASE <value expression>  <simple when clause>...
      [ <else clause> ]
    END

  <searched case> ::=
    CASE <searched when clause>...
      [ <else clause> ]
    END

  <simple when clause> ::= WHEN <when operand> THEN <result>
  <searched when clause> ::= WHEN <search condition> THEN <result>



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 10

  <when operand> ::= <value expression>
  <else clause> ::= ELSE <result>
  <result> ::= <result expression>  | NULL
  <result expression> ::= <value expression>

Examples

i)  simple
SELECT
    o.ID,
    o.Description,
    CASE o.Status
      WHEN 1 THEN 'confirmed'
      WHEN 2 THEN 'in production'
      WHEN 3 THEN 'ready'
      WHEN 4 THEN 'shipped'
      ELSE 'unknown status ''' || o.Status || ''''
    END
FROM Orders o;

ii) searched
  SELECT
    o.ID,
    o.Description,
    CASE
      WHEN (o.Status IS NULL) THEN 'new'
      WHEN (o.Status = 1) THEN 'confirmed'
      WHEN (o.Status = 3) THEN 'in production'
      WHEN (o.Status = 4) THEN 'ready'
      WHEN (o.Status = 5) THEN 'shipped'
      ELSE 'unknown status ''' || o.Status || ''''
    END
  FROM Orders o;

 (1.5)  SQL Language Extension for SQL99-compliant Savepoints
   (Nickolay Samofatov, Dmitry Yemanov)

User savepoints (alternative name nested transactions) provide a convenient method to handle
business logic errors without needing to roll back the transaction.  Available only in DSQL.

Use the SAVEPOINT statement to identify a point in a transaction to which you can later roll back.

SAVEPOINT <identifier>;

<identifier> specifies the name of a savepoint to be created. After a savepoint has been created, you
can either continue processing, commit your work, roll back the entire transaction, or roll back to the
savepoint.

Savepoint names must be distinct within a given transaction. If you create a second savepoint with the
same identifer as an earlier savepoint, the earlier savepoint is erased.

ROLLBACK [WORK] TO [SAVEPOINT] <identifier>;

This statement performs the following operations:
- Rolls back changes performed in the transaction after the savepoint



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 11

- Erases all savepoints created after that savepoint. The named savepoint is retained, so you can
roll back to the same savepoint multiple times. Prior savepoints are also retained.

- Releases all implicit and explicit record locks acquired since the savepoint. Other transactions that
have requested access to rows locked after the savepoint must continue to wait until the
transaction is committed or rolled back. Other transactions that have not already requested the
rows can request and access the rows immediately.
Note: this behaviour may change in future product versions.

The Savepoint undo log may consume significant amounts of server memory, especially if you update
the same records in the same transaction multiple times. Use the RELEASE SAVEPOINT statement to
release system resources consumed by savepoint maintenance.

RELEASE SAVEPOINT <identifier> [ONLY];

RELEASE SAVEPOINT statement erases the savepoint <identifer> from the transaction context. Unless
you specify the ONLY keyword, all savepoints established since the savepoint <identifier> are erased
too.

Example using savepoints

create table test (id integer);
commit;
insert into test values (1);
commit;
insert into test values (2);
savepoint y;
delete from test;
select * from test; -- returns no rows
rollback to y;
select * from test; -- returns two rows
rollback;
select * from test; -- returns one row

Internal savepoints
By default, the engine uses an automatic transaction-level system savepoint to perform transaction
rollback.  When you issue a ROLLBACK statement, all changes performed in this transaction are backed
out via a transaction-level savepoint and the transaction is then committed.  This logic reduces the
amount of garbage collection caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (10^4-10^6
records affected) the engine releases the transaction-level savepoint and uses the TIP mechanism to
roll back the transaction if needed.  If you expect the volume of changes in your transaction to be
large, you can use the TPB flag isc_tpb_no_auto_undo to avoid the transaction-level savepoint being
created.

Savepoints and PSQL
Implementing user savepoints in PSQL layer would break the atomicity rule for statements, including
procedure call statements.  Firebird provides exception handling in PSQL to undo changes performed in
stored procedures and triggers. Each SQL/PSQL statement is executed under a system of automatic,
internal savepoints, whereby either the entire statement will complete successfully or ALL its changes
are rolled back and an exception is raised. Each PSQL exception handling block is also bounded by
automatic system savepoints.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 12

(1.5)  SQL Language Extension for EXPLICIT LOCKING
   (Nickolay Samofatov)

The addition of the optional WITH LOCK clause provides a limited explicit pessimistic locking capability
for cautious use in conditions where the affected row set is a) extremely small (ideally, a singleton)
and b) precisely controlled by the application code.

NOTE  Firebird is an optimistic-locking system, with existing, proven capability to isolate one user’s
changes from another’s and to prevent unintentional overwriting.  The normal solution to unintended
overwriting effects is to be found in correctly configuring the isolation, versioning and lock behaviour
attributes of user transactions.

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use
of this extension is considered.  It is no sense to be considered a “workalike” for the normal locking
systems employed by non-generational DBMSs, with which you may be more familiar.

Syntax

SELECT ... FROM <sometable>
  [WHERE ...]
  [FOR UPDATE [OF ...]]
  WITH LOCK;

If the WITH LOCK clause succeeds, it will secure a lock on the selected rows and prevent any other
transaction from obtaining write access to any of those rows, or their dependants, until your
transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, as it is fetched
into the server-side row cache.  It becomes possible, then, that a lock which appeared to succeed
when requested will nevertheless fail subsequently, when an attempt is made to fetch a row which
becomes locked by another transaction.

It is essential to understand the effects of transaction isolation and other transaction attributes before
attempting to implement explicit locking in your application.

The SELECT... WITH LOCK construct is available in DSQL and PSQL.  It can succeed only in a top-level,
single-table SELECT statement.  It is not available in a subquery specification, nor for joined sets.  It
cannot be specified with the DISTINCT operator, a GROUP BY clause or any other aggregating
operation.  It cannot be used in or with a view, nor with an external table, nor with the output of a
selectable stored procedure.

Understanding the WITH LOCK clause

As the engine considers, in turn, each record falling under an explicit lock statement, it returns either
the record version that is the most currently committed, regardless of database state when the
statement was submitted, or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block.

TPB mode Behavior
isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and are

ignored

isc_tpb_concurrency
+ isc_tpb_nowait

If a record is modified by any transaction that was committed since the
transaction attempting to get explicit lock started, or an active transaction has
performed a modification of this record, an update conflict exception is raised



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 13

immediately

isc_tpb_concurrency
+ isc_tpb_wait

If record is modified by any transaction that has committed since the transaction
attempting to get explicit lock started, an update conflict exception is raised
immediately.
If an active transaction is holding ownership on this record (via explicit lock or by
a normal optimistic write-lock) the transaction attempting the explicit lock waits
for outcome of the blocking transaction and, when it finishes, attempts to get the
lock on the record again. This means that, if the blocking transaction committed a
modification of this record, an update conflict exception will be raised.

isc_tpb_read_committed
+ isc_tpb_nowait

If there is active transaction holding ownership on this record (via explicit lock or
normal update), update conflict exception is raised immediately.

isc_tpb_read_committed
+ isc_tpb_wait

If there is active transaction holding ownership on this record (via explicit lock or
by a normal optimistic write-lock), the transaction attempting the explicit lock
waits for the outcome of blocking transation and when it finishes, attempts to get
the lock on the record again. Update conflict exceptions can never be raised by an
explicit lock statement in this TPB mode.

When an UPDATE statement steps on a record that is locked by another transaction, it either raises an
update conflict exception or waits for the locking transaction to finish, depending on TPB mode.
Engine behaviour here is the same as if this record had already been modified by the locking
transaction.

The engine guarantees that all records returned by an explicit lock statement are actually locked and
DO meet the search conditions specified in WHERE clause, as long as the search conditions do not
depend on any other tables, via joins, subqueries, etc.  It also guarantees that rows not meeting the
search conditions will not be locked by the statement. It can NOT  guarantee that there are no rows
which, though meeting the search conditions, are not locked.  This situation can arise if other, parallel
transactions commit their changes during the course of the locking statement’s execution.

The engine locks rows at fetch time. This has important consequences if you lock several rows at once.
Many access methods for Firebird databases default to fetching output in packets of a few hundred
rows (“buffered fetches”). Most data access components cannot bring you the rows contained in the
last-fetched packet, where an error occurred.

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the
OF <column-names> to enable positioned updates.  Alternatively, it may be possible in your access
components to set the size of the fetch buffer to 1.  This would enable you to process the currently-
locked row before the next is fetched and locked,  or to handle errors without rolling back your
transaction.

Rolling back of an implicit or explicit savepoint releases record locks that were taken under that
savepoint, but it doesn't notify waiting transactions. Applications should not depend on this behaviour
as it may get changed in the future.

While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.
Most applications do not need explicit locks at all. The main purposes of explicit locks are (1) to
prevent expensive handling of update conflict errors in heavily loaded applications and (2) to maintain
integrity of objects mapped to relational database in clustered environment.  If your use of explicit
locking doesn't fall in one of these two categories, then it’s the wrong way to do the task in Firebird.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 14

Explicit locking is an advanced feature, do not misuse it !  While solutions for these kinds of problems
may be very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems
operating in large corporations, most application programs do not need to work in such conditions.

Examples

i) (simple)
  SELECT * FROM DOCUMENT WHERE ID=? WITH LOCK

ii) (multiple rows, one-by-one processing with DSQL cursor)
  SELECT * FROM DOCUMENT WHERE PARENT_ID=? FOR UPDATE WITH LOCK

(1.5)  SQL Language Extension:  Improved aggregate handling
   (Arno Brinkman)

Originally, grouped sets could be grouped only on named columns.   In Firebird 1.0, it became possible
to group by a UDF expression.  In 1.5, several further extensions to the handling of aggregate functions
and the GROUP BY clause now allow groupings to be made by the degree of columns in the output
specification (their 1-based “ordinal left-to-right position”, as in the ORDER BY clause) or by a variety
of expressions.
NOTE: Not all expressions are currently allowed inside the GROUP BY list.  For example, concatenation
is not allowed.

Group By syntax

SELECT ... FROM .... [GROUP BY group_by_list]

group_by_list : group_by_item [, group_by_list];

group_by_item : column_name
| degree (ordinal)
| udf
| group_by_function;

group_by_function : numeric_value_function
| string_value_function
| case_expression
;

numeric_value_function : EXTRACT '(' timestamp_part FROM value ')';

string_value_function :  SUBSTRING '(' value FROM pos_short_integer ')'
| SUBSTRING '(' value FROM pos_short_integer FOR

nonneg_short_integer ')'
| KW_UPPER '(' value ')'
;

The group_by_item cannot be a reference to any aggregate-function (including any that are buried
inside an expression) from the same context.

HAVING
The having clause only allows aggregate functions or valid expressions that are part of the GROUP BY
clause.  Previously it was allowed to use columns that were not part of the GROUP BY clause and to use
non-valid expressions.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 15

ORDER BY
When the context is an aggregate statement, the ORDER BY clause only allows valid expressions that
are aggregate functions or expression parts of the GROUP BY clause.  Previously it was allowed to use
non-valid expressions.

Aggregate functions inside subqueries
It is now possible to use an aggregate function or expression contained in the GROUP BY clause inside a
subquery.

Examples
SELECT
    r.RDB$RELATION_NAME,
    MAX(r.RDB$FIELD_POSITION),
    (SELECT
       r2.RDB$FIELD_NAME
     FROM
       RDB$RELATION_FIELDS r2
     WHERE
       r2.RDB$RELATION_NAME = r.RDB$RELATION_NAME and
       r2.RDB$FIELD_POSITION = MAX(r.RDB$FIELD_POSITION))
  FROM
    RDB$RELATION_FIELDS r
  GROUP BY
    1

  SELECT
    rf.RDB$RELATION_NAME AS "Relationname",
    (SELECT
       r.RDB$RELATION_ID
     FROM
       RDB$RELATIONS r
     WHERE
       r.RDB$RELATION_NAME = rf.RDB$RELATION_NAME) AS "ID",
    COUNT(*) AS "Fields"
  FROM
    RDB$RELATION_FIELDS rf
  GROUP BY
    rf.RDB$RELATION_NAME

Mixing aggregate functions from different contexts
Aggregate functions from different contexts can be used inside an expression.

Example
SELECT
    r.RDB$RELATION_NAME,
    MAX(i.RDB$STATISTICS) AS "Max1",
    (SELECT
       COUNT(*) || ' - ' || MAX(i.RDB$STATISTICS)
     FROM
       RDB$RELATION_FIELDS rf
     WHERE
       rf.RDB$RELATION_NAME = r.RDB$RELATION_NAME) AS "Max2"
  FROM
    RDB$RELATIONS r
    JOIN RDB$INDICES i on (i.RDB$RELATION_NAME = r.RDB$RELATION_NAME)
  GROUP BY



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 16

    r.RDB$RELATION_NAME
  HAVING
    MIN(i.RDB$STATISTICS) <> MAX(i.RDB$STATISTICS)

Note! This query gives results in FB1.0, but they are WRONG!

Subqueries are supported inside an aggregate function
Using a singleton select expression inside an aggregate function is supported.

Example
SELECT
    r.RDB$RELATION_NAME,
    SUM((SELECT
           COUNT(*)
         FROM
           RDB$RELATION_FIELDS rf
         WHERE
           rf.RDB$RELATION_NAME = r.RDB$RELATION_NAME))
  FROM
    RDB$RELATIONS r
    JOIN RDB$INDICES i on (i.RDB$RELATION_NAME = r.RDB$RELATION_NAME)
  GROUP BY
    r.RDB$RELATION_NAME

Nested aggregate functions
Using aN aggregate function inside aNother aggregate function is possible if the inner aggregate
function is from a lower context (see example above).

Grouping by degree (ordinal number)
Using the degree number of the output column in the GROUP BY clause 'copies' the expression from the
select list (as does the ORDER BY clause). This means that, when a degree number refers to a subquery,
the subquery is executed at least twice.

(1.5)  SQL Language Extension:  ORDER BY clause can specify expressions and nulls
placement
   (Nickolay Samofatov)

The ORDER BY clause lets you specify any valid expressions to sort query results. If the expression is
consisted of a single number, it is interpreted as column (degree) number, as previously.
The ordering of nulls in the result set can be controlled using the nulls placement clause.  Results can
be sorted so that nulls are placed either above (NULLS FIRST) or below (NULLS LAST) the sorted non-
nulls.
Behaviour when nulls_placement is unspecified is NULLS LAST.

Syntax

SELECT ... FROM .... ORDER BY order_list ....;
order_list : order_item [, order_list];
order_item : <expression> [order_direction] [nulls_placement]
order_direction : ASC | DESC;
nulls_placement : NULLS FIRST | NULLS LAST;

Restrictions
•  If NULLS FIRST is specified, no index will be used for sorting.
•  The results of a sort based on values returned from a UDF or a stored procedure will be

unpredictable if the values returned cannot be used to determine a logical sorting sequence.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 17

•  The number of procedure invocations from specifying a sort based on a UDF or stored procedure
will be unpredictable, regardless of whether the ordering is specified by the expression itself or by
an ordinal number representing an expression in the column-list specification.

•  An ordering clause for sorting the output of a union query may use only ordinal (degree) numbers to
refer to the ordering columns.

Examples
i)
  SELECT * FROM MSG
  ORDER BY PROCESS_TIME DESC NULLS FIRST

ii)
  SELECT FIRST 10 * FROM DOCUMENT
  ORDER BY STRLEN(DESCRIPTION) DESC

iii)
  SELECT DOC_NUMBER, DOC_DATE FROM PAYORDER
  UNION ALL
  SELECT DOC_NUMBER, DOC_DATA FROM BUDGORDER
  ORDER BY 2 DESC NULLS LAST, 1 ASC NULLS FIRST

PSQL (Stored procedure and trigger language)

(1.5)  EXECUTE STATEMENT
  (Alex Peshkov)
PSQL extension which takes a string which is a valid dynamic SQL statement and executes it as if it had
been submitted to DSQL.
Available in triggers and stored procedures.

The syntax may have three forms.

Syntax 1
Executes <string> as SQL operation that does not return any data rows, viz. INSERT, UPDATE, DELETE,
EXECUTE PROCEDURE or any DDL statement except CREATE/DROP DATABASE.

EXECUTE STATEMENT <string>;

Example

CREATE PROCEDURE DynamicSampleOne (Pname VARCHAR(100))
AS
DECLARE VARIABLE Sql VARCHAR(1024);
DECLARE VARIABLE Par INT;
BEGIN
   SELECT MIN(SomeField) FROM SomeTable INTO :Par;
   Sql = ’EXECUTE PROCEDURE ’ || Pname || ’(’;
   Sql = Sql || CAST(Par AS VARCHAR(20)) || ’)’;
   EXECUTE STATEMENT Sql;
END

Syntax 2
Executes <string> as SQL operation, returning single data row. Only singleton SELECT operators may be
executed with this form of EXECUTE STATEMENT.

EXECUTE STATEMENT <string> INTO :var1, […, :varn] ;



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 18

Example

CREATE PROCEDURE DynamicSampleTwo (TableName VARCHAR(100))
AS
DECLARE VARIABLE Par INT;
BEGIN
   EXECUTE STATEMENT ’SELECT MAX(CheckField) FROM ’ || TableName INTO :Par;
   IF (Par > 100) THEN
      EXCEPTION Ex_Overflow ’Overflow in ’ || TableName;
END

Syntax 3
Executes <string> as SQL operation, returning multiple data rows. Any SELECT operator may be
executed with this form of EXECUTE STATEMENT.

FOR EXECUTE STATEMENT <string> INTO :var1, …, :varn DO
   <compound-statement>;

Example

CREATE PROCEDURE DynamicSampleThree (
   TextField VARCHAR(100),
   TableName VARCHAR(100))
RETURNING_VALUES (Line VARCHAR(32000))
AS
DECLARE VARIABLE OneLine VARCHAR(100);
BEGIN
Line = ’’;
FOR EXECUTE STATEMENT
   ’SELECT ’ || TextField || ’ FROM ’ || TableName INTO :OneLine
   DO
      IF (OneLine IS NOT NULL) THEN
         Line = Line || OneLine || ’ ’;
   SUSPEND;
END

Additonal notes about EXECUTE STATEMENT

The ‘EXECUTE STATEMENT’ DSQL string cannot contain any parameters in any syntax variation. All
variable substitution into the static part of the SQL statement should be performed before the
execution of EXECUTE STATEMENT.

EXECUTE STATEMENT is potentially unsafe in several ways:
1. There is no way to check the enclosed statement for correct syntax.
2. Dependency checks will not discover tables or columns which have been dropped.
3. Operations will be slow because the embedded statement has to be prepared every time it is

executed.
4. Return values are not checked for reasonableness, although they are strictly checked for data type

in order to avoid unpredictable type-casting exceptions.  For example, the string ’1234’ would
convert to an integer, 1234, but ’abc’ would give a conversion error.

This feature is intended only for very cautious use and should be used with all factors taken into
account.  It should be a a rule of thumb to use EXECUTE STATEMENT only when other methods are
impossible, or perform even worse than EXECUTE STATEMENT.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 19

(1.5)  NEW CONTEXT VARIABLES
  (Dmitry Yemanov)
CURRENT_CONNECTION
and
CURRENT_TRANSACTION

Each of these context variables returns the system identifier of the active connection or the current
transaction context, respectively.  Return type is INTEGER.  Available in DSQL and PSQL.  Because
these values are stored on the database header page, they will be reset after a database restore.
Syntax
CURRENT_CONNECTION
CURRENT_TRANSACTION

Examples

SELECT CURRENT_CONNECTION FROM RDB$DATABASE;
NEW.CONN_ID = CURRENT_TRANSACTION;
EXECUTE PROCEDURE P_LOGIN(CURRENT_CONNECTION);

ROW_COUNT
Returns an integer, the number of rows affected by the last DML statement.  Available in PSQL, in the
context of the procedure or trigger module.  Currently returns zero from a SELECT statement.

Syntax

ROW_COUNT

Example

UPDATE TABLE1 SET FIELD1 = 0 WHERE ID = :ID;
IF (ROW_COUNT = 0) THEN
   INSERT INTO TABLE1 (ID, FIELD1) VALUES (:ID, 0);

SQLCODE
GDSCODE

Each context variable returns an integer which is the numeric error code for the active exception.
Available in PSQL, within the scope of the particular exception handling block.  Both will evaluate to
zero outside the block.

The GDSCODE variable returns a numeric representation of the GDS (ISC) error code, e.g. ‘335544349L’
will return 335544349.

A 'WHEN SQLCODE' or ‘WHEN ANY’ exception block will catch a non-zero value for the SQLCODE
variable and return zero for GDSCODE.  Only a ‘WHEN GDSCODE’ block will catch a non-zero GDSCODE
variable (and will return zero in SQLCODE).  If a user-defined exception is thrown, both SQLCODE and
GDSCODE variables contain zero, regardless of the exception handling block type.

Syntax

SQLCODE
GDSCODE

Example
BEGIN
   ...



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 20

   WHEN SQLCODE -802 THEN
     EXCEPTION E_EXCEPTION_1;
   WHEN SQLCODE -803 THEN
     EXCEPTION E_EXCEPTION_2;
   WHEN ANY DO
     EXECUTE PROCEDURE P_ANY_EXCEPTION(SQLCODE);
END

See also the EXCEPTION HANDLING ENHANCEMENTS, below, and the document
README.exception_handling in the firebird2/doc/sql.extensions branch of the Firebird CVS tree.

INSERTING
UPDATING
DELETING

Three pseudo-Boolean expressions that can be tested to determine the type of DML operation being
executed.  Available in PSQL, only in triggers.  Intended for use with universal triggers (see METADATA,
above).

Syntax

INSERTING
UPDATING
DELETING

Example
IF (INSERTING OR DELETING) THEN
  NEW.ID = GEN_ID(G_GENERATOR_1, 1);

(1.5)  ENHANCEMENTS TO EXCEPTION HANDLING IN PSQL
   (Dmitry Yemanov)

The common syntax for an EXCEPTION statement in PSQL is:

  EXCEPTION {[name] | [value]};

The enhancements in 1.5 allow you to
1) define a run-time message for a named exception.
2) re-initiate (re-raise) a caught exception within the scope of the exception block
3) Obtain a numeric error code for a caught exception

1) Run-time exception messaging

Syntax
EXCEPTION <exception_name> <message_value>;

Examples
i)
EXCEPTION E_EXCEPTION_1 'Error!';
ii)
EXCEPTION E_EXCEPTION_2 'Wrong type for record with ID=' || new.ID;

2) Re-raising an exception
Note – this has no effect outside an exception  block.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 21

Syntax
EXCEPTION;

Examples
i)
BEGIN
  ...
  WHEN SQLCODE -802 THEN
    EXCEPTION E_ARITH_EXCEPT;
  WHEN SQLCODE -802 THEN
    EXCEPTION E_KEY_VIOLATION;
  WHEN ANY THEN
    EXCEPTION;
END
ii)
WHEN ANY DO
BEGIN
   INSERT INTO ERROR_LOG (...) VALUES (SQLCODE, ...);
   EXCEPTION;
END

3)  Run-time error codes
See SQLCODE / GDSCODE (above).

(1.5) LEAVE | BREAK statement

Terminates the flow in a process block, causing flow of control to move to the statement following the
END statement that completes that block.  The SQL-99 standard keyword LEAVE deprecates the existing
BREAK.  Available in triggers as well as stored procedures.

Syntax
BEGIN
   <statements>;
   IF (<conditions>) THEN
     BREAK;
   <statements>;
END

(1.5)  LEAVE | BREAK and EXIT statements can now be used in triggers

(1.5)  Valid PLAN statements can now be included in triggers

(1.5) Empty BEGIN..END blocks

Empty BEGIN..END blocks in PSQL modules are now legal.  For example, you can now write “stub”
modules like

CREATE TRIGGER BI_ATABLE FOR ATABLE
ACTIVE BEFORE INSERT POSITION 0
AS
BEGIN
END ^



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 22

(1.5) Declare and define local variable in single statement
  (Claudio Valderrama)
Simplifies syntax and allows local variables to be declared and defined (or initialized) in one
statement.

Syntax
DECLARE [VARIABLE] name <variable_type> [{'=' | DEFAULT} value];

Example
DECLARE my_var INTEGER = 123;

LANGUAGE EXTENSIONS CARRIED OVER FROM FIREBIRD 1.0.x
The following language extensions, introduced in Firebird 1.0.x, are reproduced here for your
convenience.

(1.0) CURRENT_USER and CURRENT_ROLE

These two new context variables have been added to reference the USER and (if implemented1) the
ROLE of the current connection context.

CREATE GENERATOR GEN_USER_LOG;
CREATE DOMAIN INT_64 AS NUMERIC(18,0);
COMMIT;
CREATE TABLE USER_LOG(
  LOG_ID  INT_64 PRIMARY KEY NOT NULL,
  OP_TIMESTAMP TIMESTAMP,
  LOG_TABLE VARCHAR(31),
  LOG_TABLE_ID INT_64,
  LOG_OP CHAR(1),
  LOG_USER VARCHAR(8),
  LOG_ROLE VARCHAR(31));

COMMIT;

CREATE TRIGGER ATABLE_AI FOR ATABLE
ACTIVE AFTER INSERT POSITION O AS
BEGIN
  INSERT INTO USER_LOG VALUES(
    GEN_ID(GEN_USER_LOG, 1),
    CURRENT_TIMESTAMP,
    'ATABLE',
    NEW.ID,
    'I',
    CURRENT_USER,
    CURRENT_ROLE);
END

CURRENT_USER is a DSQL synonym for USER that appears in the SQL standard.  They are identical.
There is no advantage of CURRENT_USER over USER.

1 If you insist on using an InterBase v.4.x or 5.1 database with Firebird, ROLE is not supported, so
current_role will be NONE (as mandated by the SQL standard in absence of an explicit role) even if the
user passed a role name.  If you use IB 5.5, IB 6 or Firebird, the ROLE passed is verified.  If the role
does not exist, it is reset to NONE without returning an error.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 23

This means that in FB you can never get an invalid ROLE returned by CURRENT_ROLE, because it will be
reset to NONE. This is in contrast with IB, where the bogus value is carried internally, although it is not
visible to SQL.

(1.0) DROP GENERATOR
Enables unused generators to be removed from the database.  Storage will be freed for re-use upon the
next RESTORE.  Available in SQL and DSQL.

DROP GENERATOR <generator name>;

(1.0) GROUP BY UDF

It is now possible to aggregate a SELECT by grouping on the output of a UDF.
e.g.

select strlen(rtrim(rdb$relation_name)), count(*) from rdb$relations
group by strlen(rtrim(rdb$relation_name))
order by 2

A side-effect of the changes enabling grouping by UDFs is that, whereas previously you could not call
built-in Firebird functions in GROUP BY, now, by creating a dummy UDF wrapper, you can do:

select count(*)
from rdb$relations r
group by bin_or((select count(rdb$field_name) from rdb$relation_fields f
where f.rdb$relation_name = r.rdb$relation_name),1)

(1.0) RECREATE PROCEDURE

This new DDL command lets you create a new stored procedure with the same name as an existing
procedure, replacing the old procedure, without needing to drop the old procedure first.  The syntax is
identical to CREATE PROCEDURE.
Available in SQL and DSQL.
RECREATE TABLE

This new DDL command lets you create a new structure for an existing table without needing to drop
the old table first.  The syntax is identical to CREATE TABLE.

Observe that RECREATE TABLE does not preserve the data in the old table.

Available in SQL and DSQL.

(1.0) SELECT [FIRST (<integer expr m>)] [SKIP (<integer expr n>)]

Retrieves the first m rows of the selected output set.  The optional SKIP clause will cause the first n
rows to be discarded and return an output set of m rows starting at n + 1.    In the simplest form, m
and n are integers but any Firebird expression that evaluates to an integer is valid.  A identifier that
evaluates to an integer may also be used in GDML, although not in SQL or DSQL.

Parentheses are required for expression arguments and optional otherwise.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 24

They can also bind variables, e.g. SKIP ? * FROM ATABLE returns the remaining dataset after discarding
the n rows at the top, where n is passed in the "?" variable.  SELECT FIRST ? COLUMNA, COLUMNB FROM
ATABLE returns the first m rows and discards the rest.

The FIRST clause is also optional, i.e. you can include SKIP in a statement without FIRST to get an
output set that simply excludes the rows appointed to SKIP.

Available in SQL and DSQL except where otherwise indicated.

Examples:

SELECT SKIP (5+3*5) * FROM MYTABLE;

SELECT FIRST (4-2) SKIP ? * FROM MYTABLE;

SELECT FIRST 5 DISTINCT FIELD FROM MYTABLE;

A Gotcha with SELECT FIRST

This

    delete from TAB1 where PK1 in (select first 10 PK1 from TAB1);

will delete all of the rows in the table.  Ouch! the sub-select is evaluating each 10 candidate rows for
deletion, deleting them, slipping forward 10 more...ad infinitum, until there are no rows left.

Beware!

(1.0) SUBSTRING( <string expr> FROM <pos> [FOR <length>])

Internal function implementing the ANSI SQL SUBSTRING() function.  It will return a stream consisting
of the byte at <pos> and all subsequent bytes up to the end of the string.  If the option  FOR <length>
is specified, it will return the lesser of <length> bytes or the number of bytes up to the end of the
input stream.

The first argument can be any expression, constant or identifier that evaluates to a string.
<pos> must evaluate to an integer.
<pos> starts at 1, like other SQL commands.
Neither <pos> nor <length> can be query parameters.

Because <pos> and <length> are byte positions, the identifier can be a binary blob,  or a sub_type 1
text blob with an underlying one-byte-per-character charset.  The function currently does not handle
text blobs with Chinese (2 byte/char maximum) or Unicode (3 byte/char maximum) character sets. For
a string argument (as opposed to a blob), the function will tackle ANY charset.

Available in SQL and DSQL.

UPDATE ATABLE
SET COLUMNB = SUBSTRING(COLUMNB FROM 4 FOR 99)
WHERE ...

Please refer also to the section on External Functions (UDFs) following this, for details of changes and
additions to external substring functions in the standard UDF library.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 25

(1.0) Character set enhancements

! Added case insensitive Hungarian collation set, developed and tested by Sandor Szollosi
(ssani@freemail.hu).

! Firebird now supports character set ISO8859-2 (for Czech language).

(1.0) New Comment marker

for use in scripts, DSQL, stored procedures and triggers.

-- This is a comment

This new marker can be used for "commenting out" a single line of code in a script, DDL/DML
statement, stored procedure or trigger.

The logic is to ignore characters is as follows:

1. Skip '--' if it is found as the first character pair following an end-of-line marker (LF on Linux/Unix,
CRLF on Windows)

2. Continue skipping characters until the next end-of-line marker

This logic is NOT intended for mixing with the block comment logic ( /* a comment */ ).  In other
words, don't use the '--' style of commenting within a block comment and don't use the block-style of
commenting within a '--' line.

INTERACTIVE ISQL SESSIONS:  Keep this in mind when working in an interactive isql session.  isql will
accept pieces of a statement in separate continuation segments, displaying the 'CON>' prompt until it
receives the terminator symbol (normally ';').  If you type a '--' pair at the start of a continuation line,
the ignoring logic will finish at the end-of-line marker that is printed to the screen or your OUTPUT file
when you press Enter.  There is potential for errors if you subsequently add a continuation, expecting it
to be ignored.

The problem with isql arises because it has its own special commands that should be parsed only by
isql.  If they are not recognized due to tricky placement of "--", then they are passed to the engine.
Obviously, the engine doesn't understand isql's SET and SHOW commands and rejects them.

(1.0) Alter Trigger no longer increments the change count on table

When the count of metadata changes on any single table reaches the maximum of 255, the database
becomes unavailable.  Backup and restore are required in order to reset the change count and make
the database once again available.  The intention of this feature is to enforce a database cleanup when
table structures have undergone a lot of changes, not to inhibit useful capabilities in the engine.

Previously, each time a trigger was set ACTIVE|INACTIVE by an ALTER TRIGGER statement, the change
count for the associated table would be incremented.  This affected the usefulness of disabling and re-
enabling trigger code for regular operations, since it would cause the change count to rise quickly.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 26

New Reserved Words

The following new Firebird keywords should be added to the list of reserved words published for
InterBase 6.0.1.  Those marked with asterisk (*) are reserved for planned future use.

ABS * BIGINT (1.5) BOOLEAN *
BOTH * CASE (1.5) CHAR_LENGTH *
CHARACTER_LENGTH  * CURRENT_CONNECTION CURRENT_ROLE
CURRENT_TRANSACTION CURRENT_USER FALSE *
IIF * LEADING * OCTET_LENGTH *
RECREATE ROW_COUNT (1.5) RELEASE
SAVEPOINT TRIM * TRAILING *
TRUE *

The following keywords were reserved words in Firebird 1.0 and are no longer reserved in Firebird 1.5:

BREAK DESCRIPTOR FIRST
SKIP SUBSTRING

The following non-reserved words are recognised in 1.5 as keywords when used in their respective
structural contexts:

COALESCE DELETING INSERTING
LAST LEAVE LOCK
NULLIF NULLS STATEMENT
UPDATING USING

The following new InterBase 6.5 and 7 keywords (not reserved in Firebird) should also be treated as if
they were reserved, for compatibility:

BOOLEAN FALSE GLOBAL
PERCENT PRESERVE ROWS
TEMPORARY TIES TRUE

ISQL Features

“readline” capability in the isql shell
Command history support (like Unix readline) has been added to the isql shell.  Now you can use the Up
and Down arrow keys to step back or forward through the commands submitted in the isql session.

User-defined Functions

In ib_udf

rpad (instring, length, padcharacter)
Right-pads the supplied string instring by appending padcharacters until the result string has the given
length.  the input string can be any length less than 32766 bytes.  Length must not exceed 32765 bytes.

Declaration
DECLARE EXTERNAL FUNCTION rpad



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 27

CSTRING(80), INTEGER, CSTRING(1)
RETURNS CSTRING(80) FREE_IT
ENTRY_POINT 'IB_UDF_rpad' MODULE_NAME 'ib_udf';

lpad (instring, length, padcharacter)
Left-pads the supplied string instring by prepending padcharacters until the result string has the given
length.  the input string can be any length less than 32766 bytes.  Length must not exceed 32765 bytes.
Declaration
DECLARE EXTERNAL FUNCTION lpad

CSTRING(80), INTEGER, CSTRING(1)
RETURNS CSTRING(80) FREE_IT
ENTRY_POINT 'IB_UDF_lpad' MODULE_NAME 'ib_udf';

log (x, y)
This function had an old bug, whereby the arguments x and y were erroneously reversed.  It should
returns the logarithm base x of y but in fact it returned the log base y of x.  It has been corrected.

If it was used in your applications previously, PLEASE CHECK YOUR APPLICATION CODE!  it either
returned the wrong results;  or someone, at some point, did a workaround and reversed the arguments
deliberately in order to get the right calculation.

In fb_udf

The *NVL and *NULLIF functions remain for backward compatibility, but are deprecated by the
introduction of the new internal functions CASE, COALESCE and NULLIF.

New Configuration File – firebird.conf

Parameters
Default values are applicable to most parameters. Parameter names and values are case-sensitive on
Linux but not on Windows. To set any parameter to a non-default setting, delete the comment (#)
marker and edit the value. You can edit the configuration file while the server is running.  To activate
configuration changes, it is necessary to stop and restart the service.
Entries are in the form:

parameter_name value

•  parameter_name is a string that contains no whitespace and names a property of the server being
configured.

•  value is a number, Boolean (1=True, 0=False) or string that specifies the value for the parameter

The Firebird Root Directory
The root directory of your Firebird installation is used in many ways, both during installation and as an
attribute that server routines, configuration parameters and clients depend on.  Because several ways
exist to tell the server where to find a value for this attribute,  developers and system administrators
should be aware of the precedence trail that the server follows at startup, to determine it correctly.
1) FIREBIRD environment variable:  On any platform, the first place the server looks is the (optional)

global environment variable FIREBIRD.  If it finds this variable, its value is used unconditionally.
2) If the FIREBIRD environment variable is not present, the next signpost on the trail applies to

Windows platforms only.  It seeks the Registry key
   HKEY_LOCAL_MACHINE\SOFTWARE\FirebirdSQL\Firebird\CurrentVersion.

and looks for the field RootDirectory.  If it finds this field, this is the value used.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 28

Other platforms do not have an equivalent signpost.

3) If the root directory is still not detected, then the interim root directory is assumed to be the level
above the running process (..\ on Windows, ../ or the link to /proc/self/exe on POSIX, as
applicable)

4) The startup procedure now looks in this location for the firebird.conf file. If it finds firebird.conf,
it looks for the RootDirectory parameter. If this is present, its value becomes the final root
directory; otherwise the interim value in step 3 becomes final.

CAUTION  If firebird.conf is not found in this location, it may mean that the root directory has been

incorrectly detected because of a non-standard installation.  The engine must find the root directory files.  If

you encounter security or filesystem errors when logging in or during runtime, you should review your

installation paths to ensure that the steps above will correctly resolve the location of the root files and sub-

directories.

June 2003 the root directory resolution sequence is under review.

Filesystem-related parameters

RootDirectory
String, the absolute path to a directory root on the local filesystem.  It should remain commented
unless you want to force the startup procedure to override the path to the root directory of the
Firebird server installation, that it would otherwise detect for itself.

DatabaseAccess
Supports the database-aliasing feature. In previous versions, the server could attach to any database in
its local filesystem and was accessed by applications passing the file's absolute filesystem path.  This
parameter provides options to restrict the server's access to aliased databases only, or to only
databases located in specific filesystem trees.
DatabaseAccess may be None, Restrict or Full.
Full (the default) permits database files to be accessed anywhere on the local filesystem.
None permits the server to attach only databases that are listed in aliases.conf.
Restrict allows you to configure the locations of attachable database files to a specified list of
filesystem tree-roots. Supply a list of one or more tree-roots, separated by semi-colons, to define one
or more permissible locations.
For example,
Unix: /db/databases;/userdir/data
Windows:  D:\data
Relative paths are treated as relative to the path that the running server recognizes as the root
directory.  For example, on Windows, if the root directory is C:\Program Files\Firebird, then the
following value will restrict the server to accessing database files only if they are located under
C:\Program Files\Firebird\userdata:

ExternalFileAccess = Restrict userdata

ExternalFileAccess
Provides three levels of security regarding EXTERNAL FILES (fixed format text files that are to be
accessed as database tables).  The value is a string, which may be None, Full or Restrict.
None (the default value) disables any use of external files on your server.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 29

Restrict provides the ability to restrict the location of external files for database access to specific
path-trees.  Supply a list of one or more tree-roots, separated by semi-colons (;),  within and beneath
which external files may be stored.
For example,
Unix: /db/extern;/mnt/extern
Windows:  C:\ExternalTables
Relative paths are treated as relative to the path that the running server recognizes as the root
directory of the Firebird installation.
For example, on Windows, if the root that the running server recognizes as the root directory of the
Firebird installation is C:\Program Files\Firebird, then the following value will restrict the server to
accessing external files only if they are located in C:\Program Files\Firebird\userdata\ExternalTables:

ExternalFileAccess = Restrict userdata\ExternalTables

Full permits external files to be accessed anywhere on the system.

UdfAccess
Replaces not just the name of the earlier parameter, external_function_directory but also the form in
which the values are presented.  The purpose of the changes was to enable optional levels of
protection for external user-defined library modules, a recognized target for malicious intruder
attacks. UdfAccess may be None, Restrict or Full.
None disallows all use of user-defined external libraries.
Restrict (the default setting) retains the functionality provided by the external_function_directory
parameter in Firebird 1.0, to restrict the location of callable external libraries to specific filesystem
locations. Supply a list of one or more tree-roots, separated by semi-colons (;),  within and beneath
which UDF, BLOB filter and character set definitions may be stored.
For example,
Unix: /db/extern;/mnt/extern
Windows:  C:\ExternalModules
Relative paths are treated as relative to the path that the running server recognizes as the root
directory of the Firebird installation.  For example, on Windows, if the root of the Firebird installation
is C:\Program Files\Firebird, then the following value will restrict the server to accessing external files
only if they are located in C:\Program Files\Firebird\userdata\extern:

ExternalFileAccess = Restrict userdata\ExternalModules

Full permits external libraries to be accessed anywhere on the system.

Resource-related parameters

CpuAffinityMask
With Firebird SuperServer on Windows and possibly on some POSIX platforms, there is a problem with
the operating system continually swapping the entire SuperServer process back and forth between
processors on SMP machines. This ruins performance. This parameter can be used to set Firebird
SuperServer's processor affinity to a single CPU.
CpuAffinityMask takes one integer, the CPU mask.
Example:
CpuAffinityMask = 1
only runs on the first CPU (CPU 0).

CpuAffinityMask = 2
only runs on the second CPU (CPU 1).



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 30

CpuAffinityMask = 3
runs on both first and second CPU.

Calculating the affinity mask value
You can use this flag to set Firebird's affinity to any single processor or (on Classic server) any
combination of the CPUs installed in the system.
Consider the CPUs as an array numbered from 0 to n-1, where n is the number of processors installed
and i is the array number of a CPU.  M is another array, containing the MaskValue of each selected
CPU.  The value A is the sum of the values in M.
Use the following formula to arrive at M and calculate the MaskValue A:

Mi = 2
I

A = M1 + M2 + M3. . .

For example, to select the first and fourth processors (processor 0 and processor 3) calculate as
follows:

A = 20 + 23 = 1 + 8 = 9

CAUTION  Firebird servers, up to and including Release 1.5, do not support the Hyperthreading feature of

later-model motherboards.  To avoid balancing problems, you should disable hyperthreading at system BIOS

level.

DeadlockTimeout
Number of seconds (integer) that the lock manager will wait after a conflict has been encountered,
before purging locks from dead processes and doing a further deadlock scan cycle. Normally, the
engine detects deadlocks instantly.  The deadlock timeout kicks in only if something goes wrong.

The default of 10 seconds is about right for most conditions.  Setting it lower does not necessarily
improve the speed with which problem deadlocks return a conflict exception.  If it is too low, the
effect may be unnecessary extra scans which degrade system performance.

DefaultDbCachePages
Server-wide default (integer) number of database pages to allocate in memory, per database. The
configured value can be overridden at database level.
The default value for SuperServer is 2048 pages.  For Classic, it is 75.
SuperServer and Classic use the cache differently.  SS pools its cache for use by all connections;
Classic allocates a static cache to each connection.

EventMemSize
Integer, representing number of bytes of memory reserved for the event manager.  Default is 65536 (64
Kb).

LockAcquireSpins
Relevant only on SMP machines running Classic server.  In Classic server, only one client process may
access the lock table at any time.  A mutex governs access to the lock table.  Client processes may
request the mutex conditionally or unconditionally.  If it is conditional, the request fails and must be
retried.  If it is unconditional, the request will wait until it is satisfied. LockAcquireSpins  establishes
the number of attempts that will be made if the mutex request is conditional.
Integer.  The default is 0 (unconditional).  There is no recommended minimum or maximum.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 31

LockHashSlots
Use this parameter for tuning the lock hash list.  Under heavy load, throughput might be improved by
raising the number of hash slots to disperse the list in shorter hash chains.  Integer—prime number
values are recommended.  The default is 101.

LockMemSize
This integer parameter represents the number of bytes of shared memory allocated for the lock
manager.  For a Classic server, the LockMemSize gives the initial allocation, which will grow
dynamically until memory is exhausted ("Lock manager is out of room").

In SuperServer, the memory allocated for the lock manager does not grow.
The default size on Linux and Solaris is 98304 bytes (96 Kb). On Windows, it is 262144 (256 Kb).

LockGrantOrder
When a connection wants to lock an object, it gets a lock request block which specifies the object and
the lock level requested. Each locked object has a lock block. Request blocks are connected to those
lock blocks either as requests that have been granted, or as pending requests.
The LockGrantOrder parameter is a Boolean.  The default (1=True) indicates that locks are to be
granted on a first-come-first-served basis.  The False setting (0), emulating InterBase v3.3 behavior,
grants the lock as soon as it becomes available.  It can result in lock requests being "starved".

LockSemCount
Integer parameter, specifying the number of semaphores available for interprocess communication
(IPC).  The default is 32.  Set this parameter in non-threading environments to raise or lower the
number of available semaphores.

SortMemBlockSize
This parameter allows you to configure, in bytes, the size of each memory block used by the in-memory
sorting module.  The installation default is 1 Mb; you can reconfigure it to any size up to the currently
configured maximum value set by the SortMemUpperLimit parameter (see below).

SortMemUpperLimit
The maximum amount of memory, in bytes, to be allocated by the in-memory sorting module.   The
installation default is 67108864 bytes (64 Mb) for SuperServer and 8388608 (8 Mb) for the Classic
server.

CAUTION  For Classic, bear in mind that increasing either the block size or the maximum limit affects each

client connection/server instance and will ramp up the server's memory consumption accordingly.

Communications-related parameters

ConnectionTimeout
Number of seconds to wait before abandoning an attempt to connect. Default 180.

DummyPacketInterval
Number of seconds (integer) the server should wait on a silent client connection before sending
dummy packets to request acknowledgment. Default 60.

RemoteServiceName



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 32

Default = gds_db Check this - it's inconsistent with what's actually installed in 1.5

RemoteServicePort
These two parameters provide the ability to override either the TCP/IP service name or the TCP/IP
port number used to listen for client database connection requests, if one of them differs from the
installed defaults (fb_db/tcp 3050).

Change one of the entries, not both.  The RemoteServiceName is checked first for a matching entry in
the services file.  If there is a match, the port number configured for  RemoteServicePort is used.  If
there is not a match, then the installation default, port 3050, is used.

NOTE  If a port number is provided in the TCP/IP connection string, it will always take precedence over
RemoteServicePort.

RemoteAuxPort
The inherited InterBase behavior, of passing event notification messages back to the network layer
through randomly selected TCP/IP ports, has been a persistent source of network errors and conflicts
with firewalls, sometimes to the extent of causing the server to crash under some conditions. This
parameter allows you to configure a single TCP Port for all event notification traffic.
The installation default (0) retains the traditional random port behaviour. To dedicate one specific port
for event notifications, use an integer which is an available port number.

RemoteBindAddress
By default, clients may connect from any network interface through which the host server accepts
traffic.  This parameter allows you to bind the Firebird service to requests from one single IP address
and to reject connection requests from any other network interfaces.  String, in a valid dotted IP
format.  Default value (not bound) is nil.

TcpRemoteBufferSize
The engine reads ahead of the client and can send several rows of data in a single packet. The larger
the packet size, the more rows are sent per transfer. Use this parameter—with caution and complete
comprehension of its effects on network performance!—if you need to enlarge or reduce the TCP/IP
packet size for send and receive buffers.  It affects both the client and server.
Value is an integer (size of packet in bytes) in the range 1448 to 32768.  The installation default is
8192.

POSIX-specific parameters

LockSignal
Integer parameter, UNIX signal to use for interprocess communication.  Default:  16

RemoteFileOpenAbility

USE ONLY WITH EXTREME CAUTION

Boolean parameter which, if set True, allows the engine to open database files which reside on a
networked filesystem (NFS) mounted partition.  Because the filesystem is beyond the control of the
local system, this is a very risky feature that should not be enabled for the purpose of opening any
read/write database whose survival matters to you.
The default is 0 (False, disabled) and you should leave it that way unless you are very clear about its
effects.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 33

TcpNoNagle
On Linux, by default, the socket library will minimize physical writes by buffering writes before
actually sending the data, using an internal algorithm algorithm (implemented as the TCP_NODELAY
option of the socket connection) known as Nagle's Algorithm. It was designed to avoid problems with
small packets, called tinygrams, on slow networks.
By default, TCP_NODELAY is enabled (value 0) when Firebird Superserver is installed on Linux.  On slow
networks, disabling it can actually improve speed on slow networks.  Watch out for the double
negative—set the parameter True to disable TCP_NODELAY and False to enable it.
In releases up to and including v.1.5, this feature is active only for Superserver.  To implement it for
Classic, an extra wrapper program is required.  Download from?

Windows-specific parameters

DeadThreadsCollection
A setting for the thread scheduler on Windows, this integer parameter establishes the number of
priority switching cycles (see PrioritySwitchDelay, below) that the scheduler is to execute before a
thread is destroyed (or closed).
Immediate destruction (or closure) of worker threads would require a semaphore and blocking call,
generating significant overhead.  Instead, a thread scheduler maintains threads in a pool. When a
thread has completed its task, it is marked as idle.  The idle thread is destroyed (or closed) after n
iterations of the scheduler loop, where n is the value of the DeadThreadsCollection parameter.
For a server handling a very large number of connections—in the high hundreds or more—the parameter
value will need to be raised from its default setting of 50.

GuardianOption
Boolean parameter used on Windows servers to determine whether the Guardian should restart the
server every time it terminates abnormally.  The installation default is to do so (1=True).  To disable
the restart behavior, set this parameter off (0=False).

IpcMapSize
Size in bytes of one client’s portion of the memory-mapped file used for interprocess communication
(IPC) in the connection model used for "Windows local" connection.  It has no equivalent on other
platforms. Integer, from 1024 to 8192.  The default is 4096.
Increasing the map size may improve performance when retrieving very wide or large data row sets,
such as those returning graphics BLOBs.

NOTE  If Firebird is running as an application, this setting can also be modified in the Guardian's
system tray icon dialog.  Stop and restart the server to have the new setting take effect.

IpcName
Default  value: FirebirdIPI
The name of the shared memory area used as a transport channel in local protocol.
The Release 1.5 default value—FirebirdIPI—is not compatible with older releases of Firebird nor with
InterBase®.  Use the value InterBaseIPI to restore compatibility, if necessary.

MaxUnflushedWrites
This parameter was introduced in Version 1.5 to handle a bug in the Windows server operating systems,
whereby asynchronous writes were never flushed to disk except when the Firebird server underwent a
controlled shutdown. (Asynchronous writes are not supported in Windows 9x or ME.)  Hence, on 24/7
systems, asynchronous writes were never flushed at all.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 34

This parameter determines how frequently the withheld pages are flushed to disk when Forced Writes
are disabled (asynchronous writing is enabled).  Its value is an integer which sets the number of pages
to be withheld before a flush is flagged to be done next time a transaction commits.  Default is 100 in
Windows installations and -1 (disabled) in installations for all other platforms.
If the end of the MaxUnflushedWriteTime cycle (see below) is reached before the count of withheld
pages reaches the MaxUnflushedWrites count, the flush is flagged immediately and the count of
withheld pages is reset to zero.

MaxUnflushedWriteTime
This parameter determines the maximum length of time that pages withheld for asynchronous writing
are flushed to disk when Forced Writes are disabled (asynchronous writing is enabled).  Its value is an
integer which sets the interval, in seconds, between the last flush to disk and the setting of a flag to
perform a flush next time a transaction commits.  Default is 5 seconds in Windows installations and -1
(disabled) in installations for all other platforms.

PrioritySwitchDelay
A setting for the thread scheduler on Windows, this integer establishes the time, in milliseconds, which
is to elapse before the priority of an inactive thread is reduced to  LOW or the priority of an active
thread is advanced to HIGH.  One iteration of this switching sequence represents one thread scheduler
cycle.
The default value is 100 ms, chosen on the basis of experiments on Intel PIII/P4 processors.  For
processors with lower clock speeds, a longer delay will be required.

PriorityBoost
Integer, sets the number of extra cycles given to a thread when its priority is switched to HIGH.  The
installation default is 5.

ProcessPriorityLevel
Priority level/class for the server process.  This parameter replaces the server_priority_class parameter
of pre-1.5 releases—see below—with a new implementation.
 The values are integer, as follows:
•  0 - normal priority,
•  positive value - high priority (same as -B[oostPriority] switch on instsvc.exe configure and start

options)
•  negative value - low priority.
Note: All changes to this value should be carefully tested to ensure that they actually cause the engine
to be more responsive to requests.

RemotePipeName
Applicable only for NetBEUI connections
String parameter, the name of the pipe used as a transport channel in NetBEUI protocol.  The named
pipe is equivalent to a port number for TCP/IP.  The default value—interbas— is compatible with older
releases of Firebird and with InterBase®.

Parameters for configuring temporary sort space
When the size of the internal sort buffer is too small to accommodate the rows involved in a sort
operation, Firebird needs to create temporary sort files on the server's filesystem.  By default, it will
look for the path specified in the environment variable INTERBASE_TMP .  If that variable is not
present, it will try to use the root of the /tmp filesystem on Linux/UNIX, or C:\temp on Windows
NT/2000/XP.  None of these locations can be configured for size.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 35

Firebird provides a parameter for configuring the disk space that will be used for storing these
temporary files.  It is prudent to use it, to ensure that sufficient sort space will be available under all
conditions.
All CONNECT or CREATE DATABASE requests share the same list of temporary file directories and
each creates its own temporary files. Sort files are released when the sort is finished or the request is
released.
In Release 1.5, the name of the parameter changed from tmp_directory to TempDirectories and the
syntax of the parameter value also changed.

TempDirectories
Supply a list of one or more directories, separated by semi-colons (;), under which external files may
be stored. Each item many include an optional size argument, in bytes,  to limit its storage.  If the
argument is omitted, or is invalid, Firebird will use the space in that directory until it is exhausted,
before moving on to the next listed directory.
For example,
Unix: /db/sortfiles1 100000000;/firebird/sortfiles2
Windows:  E:\sortfiles 500000000
Relative paths are treated as relative to the path that the running server recognizes as the root
directory of the Firebird installation.  For example, on Windows, if the root directory is C:\Program
Files\Firebird, then the following value will tell the server to store temporary files in C:\Program
Files\Firebird\userdata\sortfiles, up to a limit of 500 Mb:

TempDirectories = userdata\sortfiles 500000000

Compatibility parameters

CompleteBooleanEvaluation
Establishes the Boolean evaluation method (complete or shortcut).  The default (0=False) is to "short-
cut" a Boolean evaluation expression involving the AND or OR predicates by returning as soon as a result
of True or False is obtained that cannot be affected by the results of any further evaluation.
Under very rare (usually avoidable) conditions, it might happen that an operation inside an OR or an
AND condition that remains unevaluated due to the shortcut behavior has the potential to affect the
outcome of the original result.  If you have the misfortune to inherit an application that has such
characteristics in its SQL logic, you might wish to use this parameter to force complete evaluation until
you have the opportunity to perform surgery on it.  Parameter type is Boolean.

Don't overlook the fact that this flag affects all Boolean evaluations performed in any databases on the

server.

OldParameterOrdering
Version 1.5 addressed and fixed an old InterBase bug that caused output parameters to be returned to
the client with an idiosyncratic ordering in the XSQLDA structure.  The bug was of such longevity that
many existing applications, drivers and interface components have built-in workarounds to correct the
problem on the client side.
Releases 1.5 and later reflect the corrected condition in the API and are installed with
OldParameterOrdering=0 (False).  Set this Boolean parameter True if you need to revert to the old
condition for compatibility with existing code.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 36

DB   File Aliasing

Firebird release 1.5 introduced database file aliasing to improve the portability of applications and to
tighten up control of both internal and external database file access.

Aliases.conf
Configure database file aliases in the text file aliases.conf, located in the root directory of your
Firebird server installation.  The installed aliases.conf looks similar to this:
#
# List of known database aliases
# ------------------------------
#
# Examples:
#
#   dummy = c:\data\dummy.fdb
#
As in all of Firebird's configuration files, the '#' symbols are comment markers.  To configure an alias,
simply delete the '#' and change the dummy line to the appropriate database path:
# fbdb1 is on a Windows server:
fbdb1 = c:\Firebird\sample\Employee.fdb
# fbdb2 is on a Linux server
fbdb2 = /opt/databases/killergames.fdb
#
You can edit aliases.conf whilst the server is running.  There is no need to stop and restart the server
in order for new aliases.conf entries to be recognised.

Connecting using an aliased database path
The modified connection string in your client application looks like this:

Server_name:aliasname

With the example above, the following connection string will client will ask the Firebird server running
on a Linux box named “myserver” to find and connect it to the database at the path identified in
aliases.conf as “fbdb2”:

myserver:fbdb2

Naming databases on Windows
Note that now the recommended extension for database files on Windows ME and XP is ".fdb" to avoid
possible conflicts with "System Restore" feature of Windows.  Failure to address this issue on these
platforms will give rise to the known problem of delay on first connection to a database whose primary
file and/or secondary files are named using the conventional “.gdb” extension.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 37

I N S T A L L A T I O N   N O T E S

Install Firebird 1.5 on Windows 32

The installation of FB 1.5 is similiar in principle to previous versions.
If you don't have a special setup program (it's distributed separately) the steps are the following:

- unzip the archive into the separate directory (since a few file names were changed, it doesn't
make sense to unzip v1.5 files into the directory with IB/FB1)

- change the current directory to <root>\bin (here and below <root> is the directory where v1.5 files
are located)

- run instreg.exe:
- 

      instreg.exe install <root>
    it causes the installation path to be written into the registry
    (HKLM\Software\Firebird\FirebirdSQL\CurrentVersion)
- if you want to register a service, run also instsvc.exe:
- 

      instsvc.exe install <root>
- optionally, you should copy both fbclient.dll and gds32.dll to the OS system directory
- 

Installation of Classic Server

To install the CS engine, the only difference is the additional switch for instsvc.exe:
      instsvc.exe install <root> -classic

Notice that this means that you may have only one architecture of the engine--either fbserver.exe
(Superserver) or fb_inet_server.exe (the parent process for Classic)--installed as a service.

Simplified setup

If you don't need a registered service, then you may avoid running both instreg.exe and instsvc.exe.  In
this case you should just unzip the archive into a separate directory and run the server:
    fbserver.exe -a
It should treat its parent directory as the root directory in this case.

Uninstallation

To remove FB 1.5 without a Windows Uninstaller you should:
- stop the server
- run "instreg.exe remove"
- run "instsvc.exe remove"
- delete installation directory
- delete fbclient.dll and gds32.dll from the OS system directory

Firebird 1.5 Embedded server (Windows only)

The embedded server is a client with a fully functional server linked as a dynamic library
(fbembed.dll). It has exactly the same features as the usual Superserver and exports the standard
Firebird API entrypoints.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 38

Registry  The Registry entries for Firebird (where the server normally looks for the location of the root
directory) are ignored. The root directory of the embedded server is the directory above where its
binary file (library) is located.

Database access  Only “true local” access is allowed. The embedded server has no support for remote
protocols, so even access via "localhost" won't work.

Authentication and security  The security database (security.fdb) is not used in the embedded server
and hence is not required. Any user is able to attach to any database. Since both the server and the
client run in the same (local) address space, security becomes a question of physical access.

SQL privileges are checked, as in other server models.

Compatibility  You may run any number of applications with the embedded server without any
conflicts. Having IB/FB server running is not a problem either.

But you should be aware that you cannot access the same database from multiple embedded servers
simultaneously, because they have SuperServer architecture and hence exclusively lock attached
databases.

Using the Embedded Server

Just copy fbembed.dll into the directory with your application. Then rename it to either fbclient.dll or
gds32.dll, depending on your database connectivity software. You should also copy firebird.msg and
firebird.conf (if necessary) to the same directory.

Then, start your application.  It will use the embedded server as a client library and will be able to
access local databases.

If external libraries, e.g. INTL support (fbintl.dll) or UDF libraries, are required for your application,
they should be located apart from the application directory. To be able to use them, place them into a
directory tree which emulates the Firebird server one, i.e., has subdirectories like /intl or /udf. Then
open your firebird.conf and set RootDirectory to the root of this directory tree.

Example

  /my_app/app.exe
  /my_app/gds32.dll
  /my_app/firebird.conf
  /my_app/fb/firebird.msg
  /my_app/fb/intl/fbintl.dll
  /my_app/fb/udf/fbudf.dll

  firebird.conf:
  RootDirectory = /my_app/fb

Below are the partly updated installation instructions, ex Firebird 1.0.x.  They are definitely
incomplete.

Superserver
Contents
•  Before installation
•  Installing on a system with InterBase



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 39

•  Installation assumptions
•  Uninstallation
•  Other Notes

Before Installation

IMPORTANT!
This installation package will try to detect if an existing version of Firebird or InterBase is installed
and/or running.  You must either STOP the current server and/or remove the currently installed version
before continuing.

Stopping the Server
•  If it is running as a service stop it via 'Control Panel | Services'.
•  If it is an application just close it.

Removing an existing server
It is recommended that you uninstall a previous version of Firebird or InterBase, but it is not a
requirement. See the Uninstallation section below for more details of the Firebird uninstallation
routine.

Installing on a system with InterBase®
It is recommended that you do NOT install Firebird over an existing InterBase® install.
Install it to a new directory.

Security database (users and passwords)
•  Use gbak to back up your old isc4.gdb security database.
•  Stop the Firebird server.
•  Restore the backed-up isc4.gdb as security.fdb.
•  Restart the server.

If you have special settings in ibconfig there may be some values which you want to transfer to
equivalent parameters in firebird.conf.  Study the notes about firebird.conf to work out what can be
copied directly and what parameters require new syntax. Don't forget that they wont take effect until
you restart the server.

Installation assumptions

•  Admin rights are needed to install Firebird as a service. This requirement does not apply to Win95,
Win98 or Win ME.

•  If an existing, newer version of GDS32.DLL exists you will be prompted to overwrite it during the
install. If you need to keep it for use with an existing Firebird 1.0 or InterBase installation, then
take a filesystem copy of it into a backup directory before running the Firebird 1.5 installation
program.  You should let the installation program overwriteanswer NO. If an existing version of
MSVCRT.DLL exists it is no longer updated. The installation will install it only if it does not exist on
the target system.

•  If certain configuration files exist in the installation directory they will preserved. The files are
security.fdb
firebird.log
firebird.conf
aliases.conf



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 40

Uninstallation
The Firebird uninstall routine preserves and renames the following key files:

renames security.gdb to ??
renames firebird.log to ??
renames firebird.conf to ??
renames aliases.conf to ??

No attempt is made to uninstall files that were not part of the original installation.
Shared files such as fbclient.dll and gds32.dll will be deleted if the share count indicates that no other
application is using them.
The Registry keys that were created will be removed.

Other Notes

Winsock2
Firebird requires WinSock2. All Win32 platforms should have this, except for Win95. A test for the
Winsock2 library is made during install. If it is not found the install will fail.  To find out how to go
about upgrading, visit this link:

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q177719

Windows ME and XP
Windows ME and XP (Home and Professional editions) there is a feature called System Restore, that
causes auto-updating (backup caching?) of all files on the system having a ".gdb" suffix.  The effect is to
slow down InterBase/Firebird database access to a virtual standstill as the files are backed up every
time an I/O operation occurs. (On XP there is no System Restore on the .NET Servers).

A file in the Windows directory of ME, c:\windows\system\filelist.xml, contains "protected file types".
".gdb" is named there. Charlie Caro originally recommended deleting the GDB extension from the
"includes" section of this file.  However, since then, it has been demonstrated that WinME might be
rebuilding this list.  In XP, it is not possible to edit filelist.xml at all.

On ME, the permanent workarounds suggested are one of:
! use FDB (Firebird DB) as the extension for your primary database files
! move the database to C:\My Documents, which is ignored by System Restore
! switch off System Restore entirely (consult Windows doc for instructions).

On Windows XP Home and Professional editions you can move your databases to a separate partition
and set System Restore to exclude that volume.

Windows XP uses smart copy, so the overhead seen in Windows ME may be less of an issue on XP, for
smaller files at least.  For larger files (e.g. Firebird database files, natch!) there doesn't seem to be a
better answer as long as you have ".gdb" files located in the general filesystem.

This leaves the security database isc4.gdb, which is considered writable by the code that should be
simply validating a user's login, in order that isc4's header be updated for that transaction.  Therefore,
WinME probably makes a backup each time a user logs in.
We are trying to get an accurate problem description and a proven workaround to publish here.  If you
can help with the description and/or workaround, please post a message to the ib-support list or to the
firebird-devel newsgroup interface at news://news.atkin.com

http://support.microsoft.com/default.aspx?scid=kb;EN-US;q177719


Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 41

Install on UNIX / Linux
(Mark O'Donohue)

This has not yet been updated for Firebird 1.5

The Firebird server comes in two forms, Classic which runs as a service,
and SuperServer which runs as a background daemon.  Although the future is likely to be SuperServer,
for the user just starting out with Firebird the Classic server is likely to prove a better platform for
initially experimenting with Firebird.

NOTES:
1) You will need to be root user to install Firebird.
2) For SuperServer to install correctly you will need to add localhost
to your /etc/hosts.equiv file.
3) If you require database access from any remote machines, you will also need to add the remote
machine names into the /etc/hosts.equiv file.

Super Server edition installs are as shown below, except that the install
files have a SS tag rather than a CS tag.

For linux rpm install

$rpm -Uvh FirebirdCS-1.0.0-nnn.i386.rpm

For linux .tar.gz install

$tar -xzf FirebirdCS-1.0.0-nnn.tar.gz
$cd install
$./install.sh

* or FirebirdSS-1.0.0-nnn

What the Linux Install will do

The Linux installations will
1. Attempt to stop any currently running server
2. If a previous installation of Firebird exists,  then it and any associated files in /usr/lib /usr/include

will be archived into the file /opt/interbase_<datetimestamp>.tar.gz and will be subsequently
deleted.

3. Install the software into the directory /opt/interbase and libraries into /usr/lib and header files
into /usr/include

4. Automatically add gds_db for port 3050 to /etc/services
5. Automatically add localhost.localdomain and HOSTNAME to /etc/host.equiv
6. SuperServer also installs a /etc/rc.d/init.d/firebird server start script. A new rcfirebird link is

created in /usr/bin for the init.d script.  This is preferred over direct execution of the Firebird
initd script, because /usr/bin is on the search path for all users.

7. The /etc/rc.config Firebird entry is created on SuSE (SuSE specific configuration for service startup
management).

Firebird should start automatically in runlevel 2, 3 and 5.
All Install packages are developed and tested for RH 7.x, MDK 7.x and SuSE 7.x and newer versions.

The .tar.gz packages do not support uninstallation.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 42

The Classic install automatically sets up the xinetd entry if the /etc/xinetd.d directory is found,
otherwise it will set up an inetd entry.  Because some distributions locate xinetd in a different location
than he /etc/xinetd.d directory, manual setup may be required in these conditions.

Testing your Linux installation

To test local access for your installation:

$cd /opt/interbase/bin
$isql -user sysdba -password <password*>

>connect /opt/interbase/examples/employee.gdb;

>select * from sales;
>select rdb$relation_name from rdb$relations;
>help;

>quit;

To test remote access:

$cd /opt/interbase/bin
$isql -user sysdba -password <password*>

>connect '<hostname>:/opt/interbase/examples/employee.gdb';

>select * from sales;
>select rdb$relation_name from rdb$relations;
>help;

>quit;

*If a password has been generated for you on installation, obtain it from the
/opt/interbase/SYSDBA.file.

Considerations for Linux

In addition to the standard install files the following three scripts are
provided in the bin directory of this release:-

( Replace XX in the two scripts with CS for Firebird Classic and SS For
  Firebird SuperServer.)

XXchangeRunUser.sh        - Create a new firebird unix user account and
                            change the owner of the Firebird install and
                            background tasks to run as to the firebird user.

XXrestoreRootRunUser.sh   - Restore the owner of the Firebird files, and the owner
                            user of the background tasks to the initial install
                            default of root user.

It is STRONGLY recommended for a secure Firebird installation that the
    server processes do NOT be run as root.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 43

    Doing so however does place some restrictions on who can initially create
    Firebird databases and where they can be created.

changeDBAPassword.sh      - Change the Firebird SYSDBA user password and, where
                            necessary, change the init script
                             /etc/rc.d/init.d/firebird
                            with the new password as well.

//end of notes on Linux/Unix

Install Firebird Classic & SuperServer on Solaris 2.7 Sparc
(Neil McCalden)

The release version uses 32-bit file access as previously, i.e. the 2Gb file size limit still applies.
However, there is a 64-bit Superserver Release 1 version on the Downloads page of the web site and I
will put up a v1.0 version as well.  It is not in the main release area because  of inadequate testing and
feed back.

Basic install steps (Classic and Super Server):

As root, extract the accompanying .tar in to the directory of your choice.

Create the links :-

ln -s /ExtractDirPath/interbase /usr/interbase
ln -s /usr/interbase /opt/interbase

cd /usr/interbase
./install

This will create links for header files, libraries and update the /etc/services and /etc/inetd.conf files.

Extra steps for Super Server

Add localhost to /etc/hosts.equiv
Create an interbas or firebird user and group
Create script in /etc/init.d|rc3.d to start server
    - for an example see /usr/interbase/bin/firebird

If you have an earlier version of InterBase(tm) installed it is probably installed in /opt/interbase, you
will need to remove the package or rename the directory as appropriate.

Note the examples files are not included in this release.  They are available from the file downloads
section on firebird.sourceforge.net.

See README file or www.firebirdsql.org for further Firebird information.

//end of notes on Solaris 2.7 Sparc



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 44

Install Firebird Classic on MacOS X / Darwin
(John Bellardo)

Last Updated 20 February 2002 – not current for v.1.5

Firebird requires MacOS X 10.1 (Darwin kernel 5.2) or later.  Download the Firebird build for Darwin.
It is distributed as a .tar.gz archive.  Most web browsers will invoke Stuffit Expander to extract the
archive automatically.  Make sure the OS X native version of Stuffit Expander is used.  If the Classic
version is used, you will have install problems.

An alternative to using Stuffit Expander to extract the archive is the following:
1. Open up terminal.
2. type "tar -zxf " and DO NOT hit return.
3. Go to the finder.  Drag the FirebirdCS-1.0.0-Beta2-Darwin.tar.gz file you just downloaded and drop

it into the terminal window.
4. Go back to the terminal window and press return.

To install the software you need to have administrator permissions.  If you don't already have
administrator permissions you can get them by:
1. go to System Preferences->Users.
2. double click your user name.
3. select the password tab.
4. Click the lock icon in the lower left corner of the window and get someone with administrator

permissions to enter their password.
5. check the "Allow user to administer this computer" checkbox.

Once you have administrator permissions you can install FB by:
1. Open terminal (you can reuse an existing open terminal window if you want)
2. Type "cd " and DO NOT hit return.
3. Go to the Finder.  Select the "firebird_install" folder created from the uncompressed download.

Drag this folder and drop it in the terminal window.
4. Go back to the terminal window and hit return.
5. Type "chmod a+x install" and hit return.
6. Type "./install" and hit return.
7. You may see an error to the effect of "no such process...".  This can safely be ignored.

If you have problems installing or otherwise using Firebird don't suffer in silence.  There are a number
of good online forums that provide excellent technical support.  In particular take a look at the "ib-
support" group hosted at http://groups.yahoo.com/.

That should be it, Firebird is installed and ready to go.

The standard Firebird command line utilities are installed in
/Library/Frameworks/Firebird.framework/Resources/bin.  You should consider adding the directory to
your path.  There are no finished GUI utilities yet.  All the usual Interbase/Firebird documentation
applies to the MacOS X port.

For the curious users, the install script make the following changes to your computer:
1. Install the firebird framework in /Library/Frameworks
2. Install and load the system v semaphore kernel extension needed by CS.  The extension is installed

in /Library/StartupItems to ensure it gets loaded every time you reboot your computer.



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 45

3. Adds a firebird user to your computer.  Wherever possible firebird servers and background
processes are run as this user for increased security.  If you install SS then the firebird user must
have read/write access to all databases.

4. Adds the gds_db entry to your /etc/services file and netinfo.
5. Installs the network database server as follows:

a. If installing the CS version, creates an entry in your inetd.conf file.
b. If installing the SS version, adds the firebird startup script to
    /Library/StartupItems and starts the server.

Uninstalling

1. There is no uninstall script.  To uninstall firebird do the following as root:
2. Delete /Library/Framework/Firebird.framework, /Library/StartupItems/FirebirdStartupItem, and

/Library/StartupItems/SysV Semaphores.
3. comment out (or delete) the firebird entry in /etc/inetd.conf and HUP inetd (you can restart the

computer in leu of HUP).
4. Delete the firebird user in System Preferences->Users (optional)
5. remove the gds_db entry from /etc/services and netinfo (optional)
6. restart the computer.  This unloads the SysV Semaphore kext.  It is currently not possible to unload

it without restarting the computer.

John Bellardo
<bellardo@cs.ucsd.edu>



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 46

Build or Install Firebird on FreeBSD
(Geoffrey Speicher, updated by Chris Knight)
Not current for Firebird 1.5

Versions of FreeBSD prior to 4.4 will need to have the DES crypt libraries installed and set as the
default crypt libraries. The easiest way to check this is:

# ls -l /usr/lib/libcrypt.so lrwxr-xr-x  1 root  wheel  14 Apr 24  2001
/usr/lib/libcrypt.so@ ->libdescrypt.so

If you have libcrypt.so after the ->, then you have the MD5 crypt libraries as default. You will need to
run sysinstall to add the crypto distribution.
This can cause problems with other programs, so test this on a box that is not in a production
environment. If you are unsure, installing Firebird on FreeBSD 4.4 or later is recommended, as the
crypt library interface is managed automatically for you.

The recommended way is to build and install the port (as root):

# cd /usr/ports/databases/firebird
# make install

An alternative is to install the downloadable version of the package (as root) with pkg_add:

# pkg_add http://prdownloads.sourceforge.net/firebird/firebird-1.0_xx.tgz

where xx is the version of FreeBSD the package has been built for.

E.g. for FreeBSD 4.5, you would run:

# pkg_add http://prdownloads.sourceforge.net/firebird/firebird-1.0_45.tgz



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 47

Further Information

More information can be found about the Firebird database engine from:
           http://firebird.sourceforge.net

or affiliated sites:
           http://firebirdsql.org
           http://www.ibphoenix.com
           http://www.cvalde.com

If you are interested in being involved in Firebird development, or would like to raise a possible bug for
discussion, please feel welcome to join our firebird-devel list.  To subscribe, simply send an empty
email message to:

          firebird-devel-request@lists.sourceforge.net

with the word 'subscribe' in the Subject field.

Please do not use the firebird-devel list for posting support questions.

For technical support, please join the ib-support list by going to
           http://www.yahoogroups.com/groups/firebird-support

For InterClient and Java development and support, there is a specialized list:
http://www.yahoogroups.com/groups/Firebird-Java

The ib-support list handles technical problems with Firebird and InterBase(R).  Please take your Delphi
and other client development environment questions to the appropriate forum.

The open source community operates several other discussion lists on various aspects of Firebird
development.  For details, please refer to the Mail Lists and Newsgroups of the Firebird community
site.

The Firebird developers' list and the general community lists, along with some other lists of interest to
Firebird and InterBase developers, are mirrored as newsgroups at
           news://news.atkin.com

Paid support worldwide for Firebird can be arranged through IBPhoenix (contact addresses and
numbers are at http://www.ibphoenix.com ).  Several members of the Firebird team are also available
for support and consultancy.  Please contact them directly.

Database recovery services for Firebird or InterBase databases can be handled by IBPhoenix.

Requests/offers for sponsored enhancements to Firebird can be taken directly to the FirebirdSQL
Foundation Inc.  Send an email to foundation@firebirdsql.org.  You may prefer to contact the Firebird
project admins initially – send an email to firebirds@users.sourceforge.net.

General discussion about FB enhancements can be handled in the Firebird-priorities list (
http://www.yahoogroups.com/community/Firebird-priorities.

IB-Architect ( http://www.yahoogroups.com/community/ib-architect )is for technical design
discussions ONLY.  Support/conversion questions are definitely off-topic there.

http://firebird.sourceforge.net/
http://firebirdsql.org/
http://www.ibphoenix.com/
http://www.cvalde.com/
mailto:firebird-devel-request@lists.sourceforge.net
http://www.yahoogroups.com/groups/ib-support
http://www.yahoogroups.com/groups/Firebird-Java
http://firebirdsql.org/
http://firebirdsql.org/
news://news.atkin.com/
http://www.ibphoenix.com/
http://www.ibphoenix.com/
mailto:firebird-contact@lists.sourceforge.net
mailto:firebirds@users.sourceforge.net
http://www.yahoogroups.com/community/Firebird-priorities
http://www.yahoogroups.com/community/ib-architect


Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 48

Tools and Drivers

Database Desktop Client Programs

Several excellent choices of GUI admin desktops for Firebird are listed in the Contributed Downloads
page at http://www.ibphoenix.com.  Some are open source, some are freeware, others are established
commercial products.

Borland’s IBConsole program is not recommended as a database administration client for Firebird 1.5.

Drivers and Components

JAVA:  The Jaybird JDBC driver project develops actively as part of the Firebird project.  It has a
released Type 4 JDBC/JCA driver and a Type 2 driver in beta.  Sources and binaries can be downloaded
from the Firebird release pages at -

http://sourceforge.net/project/showfiles.php?group_id=9028

For advice and to participate in development and testing, join up with the Firebird-java forum at
http://www.yahoogroups.com/community/firebird-java.

.NET:  Firebird has an ongoing .NET driver project. Sources and binaries can be downloaded from the
Firebird release pages at -

http://sourceforge.net/project/showfiles.php?group_id=9028

For advice and to participate in development and testing, join up with the Firebird .NET provider
forum:  http://lists.sourceforge.net/lists/listinfo/firebird-net-provider

Delphi and C++Builder:  Users have two powerful alternatives for full, direct connectivity with the
Firebird 1.5 API, both well supported with developer and peer support:

! Jason Wharton's IB Objects at http://www.ibobjects.com

! FIBPLus at http://www.devrace.com

ODBC:  A list of ODBC drivers can be found listed in the Contributed Downloads page at
http://www.ibphoenix.com.

PHP:  A group is working on bringing the old InterBase PHP extension up to standard for Firebird.  To
ask about this project, join up with the Firebird-PHP forum at
http://www.yahoogroups.com/community/firebird-php

Documentation

The documentation for InterBase v 6.0 applies also to the current FireBird release.  A beta version of
InterBase(tm) 6 manuals is available in Adobe Acrobat format from

ftp://ftpc.inprise.com/pub/interbase/techpubs/ib_60_doc.zip

A structured Documentation Index is maintained on the Firebird community site at

          http://firebird.sourceforge.net/index.php?op=doc

This is work-in-progress and all additions are welcome - send a message to

http://www.ibphoenix.com/
http://sourceforge.net/project/showfiles.php?group_id=9028
http://www.yahoogroups.com/community/firebird-java
http://sourceforge.net/project/showfiles.php?group_id=9028
http://lists.sourceforge.net/lists/listinfo/firebird-net-provider
http://www.ibobjects.com/
http://www.devrace.com/
http://www.ibphoenix.com/
http://www.yahoogroups.com/community/firebird-php
ftp://ftpc.inprise.com/pub/interbase/techpubs/ib_60_doc.zip
http://firebird.sourceforge.net/index.php?op=doc


Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 49

firebird-docs@lists.sourceforge.net

Some installation guidelines and other HowTos may be found in the documentation area which can be
linked to from
            http://www.firebirdsql.org
or more directly from
            http://sourceforge.net/projects/firebird

The main repository for user and technical issues is the IBPhoenix site -
            http://www.ibphoenix.com
IB Phoenix also publishes a comprehensive subscription CD on a regular basis, which contains manuals
published by them – Using Firebird and The Firebird Reference Guide.

Some additional documentation may be discovered by visiting the Borland techpubs area:
http://www.borland.com/techpubs/interbase/

http://www.firebirdsql.org/
http://sourceforge.net/projects/firebird
http://www.ibphoenix.com/
http://www.borland.com/techpubs/interbase/


Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 50

Bugfixes and Additions since Release 1.0

Tracker # Description Contributor
(RC3 bug) Server crash on some metadata operations A. Peshkoff
(RC3 bug) Fixed restore of backup file without required UDF(s). A. Peshkoff
(RC3 bug) Metadata cache issues related to CREATE OR ALTER statement. D. Yemanov
(RC3 bug) Broken exception handling in SPs/triggers. D. Yemanov
736318 "<value> STARTING WITH <field>" fails when using indices. D. Yemanov
(RC3 bug) When one merge was done no other merge could be generated by the

optimizer.
A. Brinkman

(RC3 bug) Various tempfile-related issues. D. Yemanov
(RC3 bug) Wrong console input processing in ISQL. Tomas Skoda
(no #) Non-existent deadlock is raised after execution of pre-(update/delete)

triggers.
A. Peshkoff

Improvement Make INSERTING/UPDATING/DELETING keywords non-reserved. N. Samofatov
Improvement Added new (more specific) error messages for some of v1.5 changes. D. Yemanov,

A. Brinkman,
A. Peshkoff

(RC3 bug) Disabled explicit SELECT locking for non-trivial queries (aggregates, SPs,
joins, unions).

D. Yemanov,
N. Samofatov

Security fix Added -login switch to instsvc allowing to install FB service as non-
localsystem account.

A. Peshkoff

(RC3 bug) 1) Made savepoints SQL99-compliant.
2) Fixed bug related to exception handling when savepoints are used.

D. Yemanov

(RC3 bug) 'no current record for fetch operation' error for queries where a MERGE
was done and/or SP/view/aggregates/unions were used together.

A. Brinkman

Improvement Re-introduced trimming of VARCHAR fields in the remote protocols. D. Yemanov
(no #) Random server crash in the case of big queries being prepared. D. Yemanov
(RC3 bug) Fixed RC3 bug regarding API compatibility. D. Sibiryakov
(RC3 bug) Fixed RC3 memory leaks. D. Yemanov
(RC3 problem Server crash on restore (caused by GCC 3.2 bug). N. Samofatov,

D. Sibiryakov
(RC2 bug) Server crash on restore of some databases. N. Samofatov
Improvement Configuration improvement – make path management in firebird.conf

conform to the OS requirements.
A. Peshkoff

(no #) Wrong UDF arguments of types DATE/TIME (dialect 3). Oleg Loa
(no #) Possible referential integrity violation. Vlad Horsun,

D. Yemanov
745090
and other RC
2 installation
issues

Permissions problem for firebird.conf (SF #745090).
Also generate aliases.conf on install;  use rpmbuild to create Linux
packages

Erik S. LaBianca,
N. Samofatov

(RC2 bug) Incorrect handling of numeric NULLs as EXCEPTION or EXECUTE
STATEMENT arguments.

D. Yemanov

(RC2 bug) UDF linkage problems on Linux. N. Samofatov
(RC2 bug) Allow C programs to use our shared libraries on POSIX platforms. N. Samofatov
(RC2 bug) Make libfbembed.so compatible with third-party tools such as Kylix. N. Samofatov
(no #) Allow easy adjustment of LockSemCount on POSIX platforms. No need to

use gds_drop or reboot machine to make new setting take effect
N. Samofatov

Improvement Make FIRST/SKIP keywords non-reserved. N. Samofatov
(RC2 bug) Problems with fbclient.dll on Win9x. A. Peshkoff
(RC2 bug) Optimizer crash when all indices of a table had the selectivity of 1. A. Brinkman
(RC2 bug) Various issues with the lock manager. N. Samofatov



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 51

Tracker # Description Contributor
(no #) Wrong attachment reference after exception in PSQL. A. Peshkoff
(no #) BREAK/LEAVE and EXIT statements are now available for usage in

triggers.
D. Yemanov

(RC2 bug) Server crash when NULL is used as EXECUTE STATEMENT argument. A. Peshkoff
(RC2 bug) Server crash when explicit pessimistic locks are used from PSQL. N. Samofatov
(no #) Possible index corruptions during garbage collection. Vlad Horsun,

D. Yemanov
(no #) Solved problems with temporary files management:

1) Security hole on all POSIX platforms except
FREEBSD/OPENBSD related to mktemp usage (possible DoS
attacks or privileges elevation)

2) Only 27 unique filenames generated on win32 (which could
cause unpredictable behavior in SS builds)

N. Samofatov

(RC1 bug) Various server crashes in the remote protocol code. N. Samofatov
(no #) Event manager change:  disabled usage of definite aux port in CS builds

due to known issues.
D. Yemanov

(no #) Enabled aggregate functions from different parent context to be used
inside another aggregate function.
Example:
SELECT MAX((SELECT COUNT(*) FROM RDB$RELATIONS))
FROM RDB$RELATIONS

A. Brinkman

(RC1 bug) Aggregates from a different parent context were not allowed in the
HAVING clause.

A. Brinkman

(no #) Possible crashes on disconnect when event notification is used. D. Yemanov
(no #) Service manager changes:  features of GSTAT/GSEC are not available

via Services API in win32 CS (until v1.6 release).
D. Yemanov

(no #) Wrong record statistics are reported when operation fails for some
reason.

D. Yemanov

(RC1 bug) Problems with the service manager being attached from different
clients simultaneously.

D. Yemanov

(RC1 bug) Various server crashes when any remote protocol is used – bug existed
in both server and client.

D. Yemanov

(no #) stdin/stdout cannot be used to redirect console I/O in win32 build of
GBAK.

A. Peshkoff

(RC1 bug) Server crash in EXECUTE STATEMENT combined with exception handling
block.

A. Peshkoff

(no #) Broken lock table resizing in CS. No more "lock manager out of room"
(Win32 CS 1.5 RC1) or crashes (possible in all other CS builds of
Interbase/Firebird).

N. Samofatov

Improvement INTL improvement:  make UPPER function work for WIN1251 charset
without explicit collations.

N. Samofatov,
D. Yemanov

(RC1 bug) Cannot connect to the service manager with non-default password. N. Samofatov
(RC1 bug) Fixed problem with CREATE OR ALTER TRIGGER. D. Yemanov
(RC1 bug) Server crashes in some cases of error handling. A. Peshkoff
BUGCHECK(291) Possible database corruption when you modify/delete the same record

in pre-trigger for which this trigger was called.
A. Peshkoff

(RC1 bug) Incorrect values returned by ROW_COUNT. D. Yemanov
(no #) Buffer overrun in isc_database_info() call. Oleg Loa
(no #) Configuration manager change:  now the server exits on missing / wrong

firebird.conf with error report in system log.
A. Peshkoff

(RC1 bug) SP with input parameters and aggregate tracking/validating methods
failed.

A. Brinkman

(RC1 bug) Crash on disconnect in the embedded server. D. Yemanov



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 52

Tracker # Description Contributor
(RC1 bug) Parameters from SPs in a subquery were not remapped to the proper

context in an aggregate query.
Example:
SELECT (SELECT SP.X FROM SP_TEST(T1.ID) SP) FROM TABLE1 T1 GROUP
BY T1.ID

A. Brinkman

(RC1 bug) Problem with start/stop commands of instsvc. D. Yemanov
(no #) Fixed Services API:  enabled statistics Services API for POSIX CS builds. N. Samofatov
(Beta 4 bug) EXECUTE STATEMENT and SQLDA > 32KB. A. Peshkoff
(no #) Changed parser.

1) ROWS_AFFECTED is renamed to ROW_COUNT
2) CONNECTION_ID/TRANSACTION_ID are renamed to

CURRENT_CONNECTION/CURRENT_TRANSACTION
        3) Some of newly introduced tokens are made non-reserved

D. Yemanov

(Beta 4 bugs) 1) subqueries inside COALESCE function
2) parameter ordering

A. Brinkman

(no #) Fixed Services API:  partly enabled Services API for win32 CS builds. D. Yemanov
(no #) Wrong type of event delivery (unnecessary usage of OOB packets). Jim Starkey,

Paul Reeves
(Beta 4 bug) Optimizer couldn't ignore bad indices in some cases. D. Yemanov
(no #) Improved lock manager:  deadlocks are now detected and reported as

soon all blocking processes received notifications, i.e. instantly in all
normal cases

N. Samofatov

(Beta 4 bug) Locking and performance issues in win32 CS. N. Samofatov
(Beta 4 bug) Error during backup with "ignore in-limbo transactions" option. D. Yemanov
(no #) Server crashes in some Services API operations. A. Brinkman
(Beta 4 bug) Problems with IP address in connection strings. D. Yemanov
(Beta 4 bug) Compatibility problems with new IBX versions. D. Yemanov
(Beta 4 bug) EXECUTE STATEMENT: numeric variables and dialect 3 databases. A. Peshkoff
(no #) Advanced security capabilities:  implemented configurable access for

databases, external tables and UDF libraries.
A. Peshkoff

(no #) Fixed resource/memory leaks. Mike Nordell,
A. Peshkoff,
N. Samofatov,
D. Yemanov

(no #) Buffer overrun with multidimensional arrays. D. Yemanov

(Beta 4 bug) RECREATE VIEW with check option. D. Yemanov

(Beta 4 bug) Problems with loading INTL plugins. Mike Nordell
213460,
678718

Various issues with events used on multihomed hosts.
NOTE  Now it's also possible to setup a definite port for event
processing.

D. Yemanov

(no #) Fixed some resource leaks. Mike Nordell,
A. Peshkoff

(Beta 3 bug) Bug with an aggregate subquery inside an IN clause. A. Brinkman

(no #) Fixed Services API:  enabled Services API for posix CS builds.
Notes:
1. Appropriate changes in Win32 CS are not ready yet
2. Backup/restore service was fixed, tested and should work
3. Database validation was partially fixed and may work
4. Other services are probably non-functional in CS builds yet

N. Samofatov

(no #) SQL enhancement:  allow NULLs in unique constraints and indices (SQL-
99 spec).

D. Yemanov,
N. Samofatov

(Beta 3 bug) Problems with RECREATE VIEW. D. Yemanov



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 53

Tracker # Description Contributor
(no #) Performance improvement:  VIO undo log now uses B+ tree to store

savepoint record data. It improves performance when doing multiple
updates of record in a single transaction just a little (usually 2-3 orders
of magnitude for 100000 records).

N. Samofatov

(no #) Database corruption when backing out the savepoint after large number
of DML operations so transaction-level savepoint is dropped) and record
was updated _not_ under the savepoint and deleted under savepoint.

N. Samofatov

(no #) Improved EXECUTE STATEMENT.  Now it's possible to return values from
the dynamic SQL.
Syntax:
EXECUTE STATEMENT <value> INTO <var_list>; (singleton form)
or
FOR EXECUTE STATEMENT <value> INTO <var_list> DO <stmt_list>;

A. Peshkoff

(Beta 3 bug) With a large amount of SQL the server crashed on generating BLR. A. Brinkman
(Beta 2 bug) EXECUTE STATEMENT doesn't work in autocommit transactions. D. Yemanov
(Beta 2 bug) Server crashes due to problems in the optimizer. A. Brinkman
(Beta 2 bug) Minor ODS upgrade is no longer critical. Now you can attach any ODS

10.0 database without errors (no need to backup/restore).
D. Yemanov

(Beta 2 bug) "Wrong page type" error during some DDL operations. D. Yemanov
(no #) Server hangs during disconnect after mass updates. D. Yemanov
(no #) Improved optimizer: Subselects in SET clause of UPDATE now can use

indices.
A. Brinkman

(no #) "Context already in use" error in the case of DISTINCT with subqueries. A. Brinkman
(no #) Enhanced isc_database_info capability:  list of currently active

transactions is now available via isc_database_info call.
N. Samofatov

(Beta 2 bug) ISQL cannot work with scripts containing character code 0xFF. D. Yemanov
(Beta 2 bug) Ineffective PLANs made by the optimizer for SPs and views. A. Brinkman
(no #) Performance improvement:  shortcut boolean evaluation.

NOTE  behaviour is controlled by "CompleteBooleanEvaluation" option of
firebird.conf. Default is 0 (shortcut evaluation).

Mike Nordell

(Beta 2 bug) Stack overflow during statement preparation. D. Yemanov,
Mike Nordell

(no #) Performance improvement for IA32 CPU architecture:  speed-up for
index operations

Mike Nordell

(Beta 2 bug) Wrong record operation statistics. Evgeny Kilin,
D. Yemanov

(Beta 2 bug) Wrong line-number statistics in DSQL. N. Samofatov
(Beta 2 bug) Server crashes during some operations. A. Peshkoff
(no #) Change in universal triggers:  allowed access to both (OLD and NEW)

contexts in universal triggers.
D. Yemanov

(no #) Improved optimizer:  when an equal-node and other nodes (geq, leq,
between...) are available for an index retrieval, then use the equal
node always instead of the others.

A. Brinkman

(no #) Long delays during connecting/disconnecting on WinXP. A. Brinkman
(Beta 2 bug) Server crash during service manager operations. D. Yemanov
(no #) Generic cleanup:  removed a lot of unused code. Blas Rodriguez

Somoza,
Erik Kunze

523589 View is affecting the result of a query.
Comment:  Problem was that RSE's (inside a view) were not flagged as
variant.

A. Brinkman

(no #) Changed behaviour of the forced writes mode:  now, if FW=off
(disabled), you can control how often dirty pages are flushed on disk
(allows better reliability when FW is disabled on Win32 platforms).

Blas Rodriguez
Somoza

(no #) The security database has been renamed to security.fdb. D. Yemanov
(no #) New configuration file: firebird.conf is finally published. D. Yemanov



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 54

Tracker # Description Contributor
(no #) New user-defined functions LPAD and RPAD added to IB_UDF library. Juan Guerrero
(Beta 1 bug) ISQL wasn't able to extract universal triggers. D. Yemanov
(no #) Sometimes GFIX didn't allow to specify "-user" and "-password" switches

("incompatible swiches" error).
D. Yemanov

(no #) Security connection cache:  connection to the security database is now
cached, thus allowing to decrease time of subsequent database
attachments.

D. Yemanov

Improvements 1. Reduce memory usage by the server.
2. Direct external I/O when the memory is not available for the

sorting.
3. Increased number of streams and predicates supported by the

optimizer.

D. Yemanov

508594 LEFT JOIN with VIEWs:  simple LEFT JOIN on a VIEW with only an ON
clause didn't use an index even if it was possible.

A. Brinkman

(Beta 1 bug) Server crashes during retrieval of the database statistics. D. Yemanov
(Beta 1 bug) Wrong context was used with FieldX IN (sub-select) predicate. A. Brinkman
(Beta 1 bug) Yet another "deadlock" error during metadata updates. D. Yemanov
(Beta 1 bug) It wasn't possible to use non-aggregate related-fields from an aggregate

query inside a sub-query.
A. Brinkman

(Beta 1 bug) The client library cannot be loaded in some cases. D. Yemanov
(Beta 1 bug) The guardian service cannot stop the server. D. Yemanov
(no #) New character sets:  DOS737, DOS775, DOS858, DOS862, DOS864,

DOS866, DOS869, WIN1255, WIN1256, WIN1257, ISO8859_3, ISO8859_4,
ISO8859_5, ISO8859_6, ISO8859_7, ISO8859_8, ISO8859_9, ISO8859_13
NOTE  Collations for the above charsets are not available yet.

Blas Rodriguez
Somoza

(no #) CREATE VIEW changes:  disallowed PLAN subclause. D. Yemanov
(no #) Changed aggregate tracking behavior --

introduced backwards compatibility within aggregates.  Deepest field
inside aggregate determines where an aggregate-context should belong.

A. Brinkman

(no #) Improved optimizer:  better optimizations of "complex" JOIN
queries (LEFT JOIN, views, SPs, etc).

A. Brinkman

(alpha 5 bug) Major memory leaks are fixed. D. Yemanov

(no #) New API functions:  IB7-compliant functions to return version of the
client library --
isc_get_client_version(), isc_get_client_major_version(),
isc_get_client_minor_version()

D. Yemanov

(no #) Sort/merge improvement:  merging (SORT MERGE plans) is now done via
in-memory sorting module.

D. Yemanov

(alpha 5 bug) "Invalid transaction handle (expecting explicit transaction start)" error. D. Yemanov
(no #) New memory manager’s internal has been changed to give us better

performance.
N. Samofatov

(no #) Win32 build changes:
1. Changed names of USER32 objects to allow the server to run

simultaneously with IB/FB1.
2. Map name for local (IPC) protocol is changed, so v1.5 client library

is no longer compatible with the previous versions via IPC.
3. All transport protocol names (INET port and service, WNET pipe,

IPC map) are now configurable via firebird.conf.

D. Yemanov

(no #) Trashed RDB$FIELD_LENGTH for views that contain concatenation of
long CHAR/VARCHAR fields.

D. Yemanov



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 55

Tracker # Description Contributor
Improvement Triggers improvement:  added runtime action checks

(INSERTING/UPDATING/DELETING predicates).
Example:
        if (INSERTING) then
          new.OPER_TYPE = 'I';
        else
          new.OPER_TYPE = 'U';

D. Yemanov

(no #) Cursors (WHERE CURRENT OF clause) could not be used in triggers. D. Yemanov
(alpha 5 bug) SAVEPOINT-related statements were allowed in PSQL via EXECUTE

STATEMENT.
D. Yemanov

221921 ORDER BY has no effect. A. Brinkman
213859 Subquery connected with 'IN' clause. A. Brinkman
(alpha 5 bug) Wrong plan is used in the case of compound indices. A. Brinkman,

D. Yemanov
(alpha 5 bug) Backward compatibility with explicit plans is broken. D. Yemanov
Improvement Allowed arbitrary expressions in the ORDER BY clause. N. Samofatov
(no #) Engine crashed when UNIONS were used in a VIEW and that VIEW was

used in the WHERE clause inside an subquery.
A. Brinkman

(alpha 5 bug) Fixed FB XDR double representation for Linux server and client.
This fixes numerous bugs with double precision columns and UDF's when
using Linux server and Jaybird or Windows client.

N. Samofatov

(alpha 5 bug) PLAN wasn't correctly returned. A. Brinkman
(alpha 5 bug) Server crash or "deadlock" error during execution of ALTER PROCEDURE

statement.
N. Samofatov

(no #) Generic code cleanup:  structures within Y-valve. A. Peshkoff,
N. Samofatov

Improvement Single-line comments (--) are now allowed in any position of the SQL
statement.

D. Yemanov

(no #) "Request sycnhronization error" with BREAK statement. D. Yemanov
625899 Bugcheck 291. A. Peshkoff
(no #) PSQL change:  EXECUTE VARCHAR is renamed to EXECUTE STATEMENT. A. Peshkoff
521952 No current record for fetch operation. A. Brinkman
(no #) QLI doesn't understand BIGINT datatype. D. Yemanov
(no #) Length of text variables inside procs/triggers wasn't copied to

descriptor structure.
A. Brinkman

(no #) FIRST/SKIP and ORDER BY changes --
1. Implemented ORDER BY clause in subqueries.
2. Disallowed FIRST/SKIP for views.
3. Allowed zero as valid argument for FIRST.

D. Yemanov

(no #) Buffer overflow (MAXPATHLEN) and rewritten local function dirname. Erik Kunze
(no #) Make SQLDA parameter mapping consistent with order and number of

parameters in source SQL string.
NOTE  You can enable older mapping behavior (for backward
compatibility) using "OldParameterOrdering" configuration manager
parameter.

N. Samofatov

(alpha 4 bug) Crash when grouping by invariant subquery. N. Samofatov

Improvement Improved optimizer:  let subqueries also use indices when their parent
is a stored procedure.

A. Brinkman

(no #) Removed request size limitation. D. Yemanov
(no #) Nulls first/last and collation handling in "order by" clause of unions N. Samofatov
(alpha 4 bug) Optimizer, LEFT OUTER JOIN and error "no current record for fetch

operation".
A. Brinkman

(alpha 4 bug) Wrong privileges checks. D. Yemanov
(alpha 4 bug) UDF node didn't contain any character set, was always NONE. A. Brinkman



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 56

Tracker # Description Contributor
(no #) Generic code cleanup;  renamings, new safe macros, support for mingw. Erik Kunze,

Ignacio J. Ortega,
D. Sibiryakov

(no #) Explicit record locking implementation finalized. Should be stable and
consistent now.

N. Samofatov

Improvement Improved optimizer:  better handling of AND nodes inside an OR node. A. Brinkman
(alpha 4 bug) Restore problem for databases having views that use procedures AND

are used by procedures
N. Samofatov

(alpha 4 bug) Bad performance of the memory manager and some memory leaks. D. Yemanov
(alpha 4 bug) Wrong ordinals of GDS32 exports. D. Yemanov
(alpha 3 bug) Database cannot be restored properly in some situations. N. Samofatov
(alpha 3 bug) Dynamic exception messages don't work properly. D. Yemanov
(no #) Exceptions inside for/while loop in triggers are not handled correctly. A. Peshkoff
623992 Double forward slash in connection string. Paul Reeves,

Mark O’Donohue
(no #) Deadlock during some database operations. A. Peshkoff
Improvement Improved optimizer:  if a few indices with much different selectivity

could be used for index retrieval, only better of them are used while
others are ignored.

D. Yemanov

(alpha 3 bug) Memory corruption that prevented restore of databases with procedures
using plan expressions with long index names.

(no #) Quoted identifiers problem in plan expressions. N. Samofatov
Improvement CS architecture is now supported on Win32, but it still cannot be

considered stable, so any feedback is welcome.
D. Yemanov

(alpha 3 bug) API routines are not accessible if gds32.dll is explicitly loaded. D. Yemanov
(no #) Stored procedures are no longer recompiled before deletion. N. Samofatov
(no #) New collation for WIN1251 charset:  WIN1251_UA for both Ukrainian and

Russian languages.
D. Yemanov

(no #) Client library change:  API routines are no longer exported by ordinals. D. Yemanov
Improvement New configuration manager:  enable the same plain file based

configuration for all supported platforms.
D. Yemanov

Improvement Improved optimizer:  added better support for using indices with "OR".
Pick the best available compound index from all "AND" nodes.

A. Brinkman

(alpha 3 bug) Database appears corrupted (damaged BLOB pages). D. Yemanov
Improvement Added support for explicit savepoint management in DSQL. N. Samofatov
(no #) Protocol cleanup:  IPX/SPX network protocol is no longer supported. Sean Leyne
(alpha 3 bug) Memory corruption when working with long record version chains. D. Yemanov
(no #) Obsolete platforms cleanup:  some platform are no longer supported by

the current source code.
DELTA, IMP, DG_X86, M88K, UNIXWARE, Ultrix, NeXT, ALPHA_NT, DGUX,
MPE/XL, DecOSF, SGI, HP700, Netware, MSDOS, SUN3_3

Sean Leyne

Improvement Improved optimizer:  added support for detecting use of index with sub-
selects in aggregate select.

A. Brinkman

Improvement Improved thread scheduler for Win32 SS:  now the server should be
more responsive under heavy load.

A. Peshkoff

Improvement Added support for explicit locking. Wait behavior in isc_tpb_wait
transaction modes is not stable yet.
Syntax:
SELECT <...> [FOR UPDATE [OF col [, col ...]] [WITH LOCK]]

N. Samofatov

558364 Triggers fail to compile if PLAN used. Ignacio J. Ortega
(no #) Distributed (2PC) transaction cannot be properly rolled back due to

network errors.
Vlad Horsun,
Erik Kunze

(alpha 2 bug) Possible buffer overrun if dynamic exception messages are used. D. Yemanov
(alpha 2 bug) Problem with subquery and GROUP BY clause. A. Brinkman
(alpha 2 bug) The server hangs with a bugcheck #284 (cannot restore singleton select

data).
D. Yemanov



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 57

Tracker # Description Contributor
(no #) Generic cleanup:  ISC_STATUS_LENGTH and MAXPATHLEN macros. Erik Kunze
(alpha 2 bug) Version information is missing in libraries and tools. D. Yemanov
(alpha 2 bug) Backported a few bits of FB1 code which have been lost. C. Valderrama,

D. Yemanov
496784 When optimizer finds indexes for LEFT JOIN, work like INNER JOIN.

Fixed problem which caused complex outer joins to produce wrong
results.

N. Samofatov

(alpha 2 bug) Changes in aliases.conf are not applied until the server is restarted. D. Yemanov
(no #) BLOB subtype is ignored in system domains generated for expression

fields in views.
D. Yemanov

(no #) Fixed installation bug:  instreg.exe doesn't create "GuardianOptions"
registry value.

D. Yemanov

(no #) Resource leaks in DDL recursive procedure handling which caused some
DDL to fail.

N. Samofatov

(no #) Check constraint which uses only one table field is now dropped
automatically when this field is dropped.

N. Samofatov

(alpha 1 bug) GROUP BY ordinal doesn't work with column aliases. A. Brinkman
(alpha 1 bug) Views are not being created correctly (missing records in

RDB$VIEW_RELATIONS).
D. Yemanov

(no #) A well-known "decompression overran buffer" error appears during the
schema creation.

Evgeny Kilin

451927 New ROWS_AFFECTED system variable in PSQL:  return number of rows
affected by the last INSERT/UPDATE/DELETE statement.
For any other statement than INSERT/UPDATE/DELETE, result is always
zero.

D. Yemanov

446240 Dynamic exception messages:  allow to throw an exception with a
message different to the one the exception was created with.
Syntax:
EXCEPTION name [value];

D. Yemanov

547383 New SQLCODE and GDSCODE system variables providing access to the
code of the caught error within the WHEN-block in PSQL.  Outside
WHEN-block, returns 0 (success).

D. Yemanov

(no #) Exception re-initiate semantics:  allows an already caught exception in
PSQL to be re-thrown from the WHEN-block.
      Syntax:
        EXCEPTION;
No effect outside WHEN-block.

“Digitman”

(no #) The server crashes during the garbage collection under heavy load. N. Samofatov
Improvement Deferred metadata compilation:  solved a lot of causes of the well-

known "object in use" error.
N. Samofatov

Improvement New NULL order handling:  allow user-defined ordering of NULLs. N. Samofatov

(no #) gstat shows wrong value for maxdup element. D. Kuzmenko

(no #) New registry key is used on win32: SOFTWARE\FirebirdSQL\Firebird. --
451925 User-defined constraint index names:  allows name of an index

enforcing a constraint to be either constraint name or user-defined
name.

D. Yemanov

Improvement New RECREATE VIEW statement:  shorthand for DROP VIEW / CREATE
VIEW coupling of statements.
Syntax:
RECREATE VIEW name <view_definition>;

D. Yemanov

(no #) Trigger which name starts with 'RDB$' cannot be altered or dropped at
all.

D. Yemanov

(no #) Renamed distribution files to make sure we're Firebird. Now they're
fbserver, fbclient, firebird.msg etc. The client library is fbclient now
and it should be used in all new FB-based projects. gds32 contains
nothing but redirected exports and is provided for compatibility only.

Various



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 58

Tracker # Description Contributor
(Minor ODS
upgrade)

Added new system indices (RDB$INDEX_41, RDB$INDEX_42,
RDB$INDEX_43), now ODS version is 10.1.

D. Yemanov,
N. Samofatov

451935 New CREATE OR ALTER statement for triggers and stored procedures,
allows creating or altering a database object according to whether it
exists or not.
Syntax:
        CREATE OR ALTER name <object_definition>;

D. Yemanov

(no #) Broken dependencies (like DB$34) appear in the database after
metadata changes.

D. Yemanov

(no #) Enhanced declaration of local variables:  simplify syntax and allow
declaring and defining variable at the same time.
Syntax:
DECLARE [VARIABLE] name <variable_type> [{'=' | DEFAULT} value];
Example:
DECLARE my_var INTEGER = 123;

Claudio Valderrama

(no #) Disabled BREAK statement for triggers (like EXIT) due to known internal
limitations.

D. Yemanov

555839,
546274

Enhanced grouping:  allow to GROUP BY internal functions and
subqueries. Also allow to GROUP BY ordinal (i.e. column position, a.k.a
degree of column in output set).

A. Brinkman

451917 New COALESCE internal function allowing a column value to be
calculated by a number of expressions, the first expression returning a
non NULL value is returned as the column value.

A. Brinkman

451917 New NULLIF internal function returns NULL for a sub-expression if it has
a specific value, otherwise returns the value of the sub-expression.

A. Brinkman

451917 New CASE internal function allows the result of a column to be
determined by a the results of a case expression.

A. Brinkman

545725 Automatic/background sweep hangs. A. Peshkoff
(no #) The server crashes when XSQLDA structures are not prepared for all

statement parameters.
D. Yemanov

(no #) PSQL: enabled support for empty BEGIN...END blocks. D. Yemanov
567931 Partly fixed metadata security hole. D. Yemanov
(no #) BigInt arrays didn’t work. Artem Petkevych
437859 Implemented execute procedure and string concat, allowing any

expression to be used as a SP parameter.
D. Yemanov

562417 Aggregate concatenated empty char. D. Yemanov
Improvement Readline (cmd history) support added to ISQL. M. O’Donohue
446206 New BIGINT datatype allowing native SQL usage of 64-bit exact

numerics (Dialect 3 only).
D. Yemanov

451922 Universal triggers allowing one trigger to be fired for a number of action
types.

D. Yemanov

446238,
446243

New CONNECTION_ID and TRANSACTION_ID system available in PSQL.
Return appropriate internal identifier stored on the database header
page.

D. Yemanov

446180 Server-side database aliases:  attach to any database using an "alias"
name instead of its physical pathname.  The list of known database
aliases is stored in aliases.conf file under the server installation root.
Example:
alias entry in the configuration file: my_database =
c:\dbs\my\database.gdb
connection string in application: localhost:my_database

D. Yemanov

(no #) New plugin manager and INTL interface. John Bellardo

Improvement In-memory sorting:  if SORT plan is used for a SQL statement, the
sorting is done in memory.  If there's not enough memory for this
operation, reverts to old method using temporary file.

D. Yemanov

538201 Crash with extract from null as date. Claudio Valderrama



Firebird 1.5  Release Notes DRAFT 2 August 2003                                                                                                          Page 59

Tracker # Description Contributor
446256 New EXECUTE VARCHAR PSQL extension statement allows execution of

dynamic SQL statements in SPs/triggers.  (Subsequently renamed to
EXECUTE STATEMENT).

A. Peshkoff

(no #) Major code cleanup. Sean Leyne,
Erik Kunze

(no #) New memory manager. John Bellardo
(no #) New exception handling logic. Mike Nordell,

John Bellardo
(no #) New autoconf-based build configuration. John Bellardo,

M. O’Donohue,
Erik Kunze

(no #) The code port from C to C++. Mike Nordell,
John Bellardo,
M. O’Donohue


	Firebird™ Version 1.5
	Release Notes v.1.5
	Contents
	General Notes
	New Features
	New codebase, better optimization
	Architecture
	Installed modules and security
	Trimming of Varchar fields for remote protocols
	Error-reporting improvements
	Renamed files and modules
	Changes in the client library
	Compatibility
	Language Enhancements
	Behavior
	New Reserved Words
	ISQL Features
	
	“readline” capability in the isql shell


	User-defined Functions
	New Configuration File – firebird.conf
	Parameters
	
	The Firebird Root Directory
	Filesystem-related parameters
	RootDirectory
	DatabaseAccess
	ExternalFileAccess
	UdfAccess

	Resource-related parameters
	CpuAffinityMask

	Calculating the affinity mask value
	DeadlockTimeout
	DefaultDbCachePages
	EventMemSize
	LockAcquireSpins
	LockHashSlots
	LockMemSize
	LockGrantOrder
	LockSemCount
	SortMemBlockSize
	SortMemUpperLimit

	Communications-related parameters
	ConnectionTimeout
	DummyPacketInterval
	RemoteServiceName
	RemoteServicePort
	RemoteAuxPort
	RemoteBindAddress
	TcpRemoteBufferSize

	POSIX-specific parameters
	LockSignal
	RemoteFileOpenAbility
	TcpNoNagle

	Windows-specific parameters
	DeadThreadsCollection
	GuardianOption
	IpcMapSize
	IpcName
	MaxUnflushedWrites
	MaxUnflushedWriteTime
	PrioritySwitchDelay
	PriorityBoost
	ProcessPriorityLevel
	RemotePipeName

	Parameters for configuring temporary sort space
	TempDirectories

	Compatibility parameters
	CompleteBooleanEvaluation
	OldParameterOrdering



	DB   File Aliasing
	Aliases.conf
	
	Connecting using an aliased database path
	Naming databases on Windows


	I N S T A L L A T I O N   N O T E S
	Install Firebird 1.5 on Windows 32

	Superserver
	Before Installation
	IMPORTANT!
	Stopping the Server
	Removing an existing server

	Installing on a system with InterBase®
	Security database (users and passwords)

	Installation assumptions
	Uninstallation
	Other Notes
	Winsock2
	Windows ME and XP

	Install on UNIX / Linux
	Install Firebird Classic & SuperServer on Solaris 2.7 Sparc
	Install Firebird Classic on MacOS X / Darwin
	Build or Install Firebird on FreeBSD

	Further Information
	Tools and Drivers
	Documentation
	Bugfixes and Additions since Release 1.0


