
Firebird 2.1 Beta 2 Release Notes
Helen Borrie (Collator/Editor)

1 Oct 2007 - Document v. 210_20 - for Firebird 2.1 Beta 2

Firebird 2.1 Beta 2 Release Notes
1 Oct 2007 - Document v. 210_20 - for Firebird 2.1 Beta 2
Helen Borrie (Collator/Editor)

iv

Table of Contents
1. General Notes .. 1

Bug Reporting ... 1
Documentation ... 2

2. New in Firebird 2.1 ... 3
New Features Implemented .. 3

Database Triggers .. 3
SQL and Objects ... 3
Procedural SQL ... 4
Security ... 4
International Language Support .. 4
Platform Support .. 5
Administrative ... 5
Remote Interface .. 5

3. Global Improvements in Firebird 2.1 .. 6
Remote Interface Improvements .. 6
API Changes .. 7

XSQLVAR .. 7
Optimization .. 7

Optimization for Multiple Index Scans .. 7
Optimize sparse bitmap operations .. 7

Configuration and Tuning ... 7
Increased Lock Manager Limits & Defaults .. 7
Page sizes of 1K and 2K Deprecated .. 8
Enlarge Disk Allocation Chunks ... 8
Bypass Filesystem Caching on Superserver ... 8

Other Global Improvements .. 9
Garbage Collector Rationalisation ... 9
Immediate Release of External Files ... 9
Synchronization of DSQL metadata cache objects in Classic server ... 9
BLOB Improvements ... 9
Type Flag for Stored Procedures ... 9

4. New Configuration Parameters and Changes .. 11
MaxFileSystemCache ... 11

5. Administrative Features .. 12
Monitoring Tables .. 12

The Concept .. 12
Scope and Security ... 12
Metadata .. 13
Usage .. 15
Cancel a Running Query .. 16

More Context Information .. 17
6. SQL Language Enhancements ... 18

Data Definition Language (DDL) .. 18
Database Triggers ... 18
Global Temporary Tables ... 19
BLOB Subtype 1 Compatibility with VarChar ... 21
Views Enhancements .. 21
SQL2003 compliance for CREATE TRIGGER .. 22

Firebird 2.1 Beta 2 Release Notes

v

SQL2003 Compliant Alternative for Computed Fields .. 22
Data Manipulation Language (DML) ... 22

Common Table Expressions .. 23
The LIST Function ... 26
The RETURNING Clause .. 27
UPDATE OR INSERT Statement ... 28
New JOIN Types ... 29
INSERT with defaults .. 30
Make RDB$DB_KEY in outer joins return NULL when appropriate 31
Data Type of an Aggregation Result ... 31
Built-in Functions ... 32
Changes in DSQL Parsing .. 33

Procedural Language Extensions (PSQL) .. 34
Domains in PSQL .. 34
COLLATE in Stored Procedures and Parameters ... 35

Optimization .. 35
7. International Language Support (INTL) ... 36

The CREATE COLLATION Command .. 36
ICU Character Sets .. 37

Registering an ICU Character Set Module ... 37
The UNICODE Collations .. 38
Specific Attributes for Collations .. 38

Collation Changes .. 39
Supported Character Sets .. 40

Character Sets Added ... 40
Metadata Text Conversion .. 40

Repairing Your Metadata Text .. 41
8. Utility Programs ... 43

New Command-line Utility fbsvcmgr .. 43
Using fbsvcmgr .. 43

Improvements to Utilities ... 46
Utilities Support for Database Triggers .. 46
gbak .. 46
isql .. 46
Services Manager ... 47
Builds and Installs .. 47

9. Security ... 48
Using Windows Security to Authenticate Users ... 48

SQL Privileges ... 48
Administrators .. 48
Configuration Parameter “Authentication” ... 49
Forcing Trusted Authentication ... 49

Other Security Improvements .. 50
isc_service_query() wrongly reveals full database file spec ... 50
Any user could view the server log through the Services API ... 50

10. Bugs Fixed ... 51
Firebird 2.1 Beta 2 ... 51

Core Engine/DSQL .. 51
Server Crashes ... 52
Windows-Specific .. 53
Data Definition Language (DDL) .. 53
Data Manipulation Language (DML) ... 53

Firebird 2.1 Beta 2 Release Notes

vi

Procedural Language (PSQL) .. 54
Remote Interface .. 55
API .. 55
International Language Support (INTL) ... 56
Database Monitoring/Admin ... 56
Security ... 57
Command-line Utilities ... 57

Firebird 2.1 Beta 1 ... 58
Core Engine/DSQL .. 59
Server Crashes ... 59
Win32-Specific .. 59
POSIX-Specific .. 60
Data Definition Language (DDL) .. 60
Data Manipulation Language (DML) ... 60
Procedural Language (PSQL) .. 61
Remote Interface .. 61
Security ... 61
Utilities .. 62
Building/Installers .. 63
Fixed Regressions .. 63
Not Fixed .. 63

Appendix A: ... 64
New Built-in Functions, Firebird 2.1 ... 64

Appendix B: ... 72
INTL Character Sets .. 72

Narrow Character Sets .. 72
ICU Character Sets .. 72

1

Chapter 1

General Notes
This is the second Beta release of Firebird 2.1. Thanks to all who have field-tested Beta 1 and reported problems.
As you can tell from the bug-fix list, you found plenty for us to do!

As with all alphas and betas, we ask you to test this one rigorously in the field on dispensable copies of your
favourite databases! Do not be tempted to put Firebird 2.1 Beta builds into your production environment, how-
ever sweet it looks at first sight.

Important

From the QA Team

With Beta 2, we're entering final phase of Firebird 2.1 development. This version is feature-complete and,
all being well, the next release is hoped to be the first Release Candidate. Developers are now focused on
optimization and bug fixing and your feedback is needed even more than before.

The 2.1 release has many interesting new features that you can play with, like database triggers, temporary
and monitoring tables, common table expressions, recursive queries and dozens of new inbuilt functions. We
encourage you to see what you can achieve with these new features and let us know about any deficiency.

You are enthusiastically invited to post to the firebird-devel list good descriptions of any bugs or beasts you
encounter, or post bug reports directly to our Issue Tracker.

To help smoothe the transition from older versions, we encourage you to test this release with your applications
and stress it with real-world data and loads, enabling as many hidden regressions or performance issues as
possible to surface and be fixed before final release.

Tell us it's OK, too!

We're interested in your feedback even if you don't find any issues. “Positive” feedback helps to shorten the
release cycle because, without it, it is hard to gauge how much the build is being tested in the field, in terms of
both scale and functionality. The “quality index” is estimated using download count, direct feedback, hearsay,
development stage, and such. If the positive feedback doesn't come in, the only way we can compensate for
it is to lengthen the release cycle.

So don't hesitate to share your successful test results with us. You can send your comments and findings to
pcisar AT users DOT sourceforge DOT net

Within reason, you can also ask support questions in firebird-devel but please restrict the questions to matters
concerning the new v.2.1 features. The firebird- devel list is not a support forum for Firebird newbies!

On the other hand, support questions about Firebird 2.1 Betas (or any other alpha or beta builds) are not welcome
in the firebird-support list, so we ask you to respect our forum rules.

Bug Reporting

• If you think you have discovered a new bug in this release, please make a point of reading the instructions
for bug reporting in the article How to Report Bugs Effectively, at the Firebird Project website.

http://tracker.firebirdsql.org
http://www.firebirdsql.org/index.php?op=devel&sub=qa&id=bugreport_howto

General Notes

2

• If you think a bug fix hasn't worked, or has caused a regression, please locate the original bug report in the
Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide details of
the OS platform. Include reproducible test data in your report and post it to our Tracker.

2. You are warmly encouraged to make yourself known as a field-tester of this alpha by subscribing to the
field-testers' list and posting the best possible bug description you can.

3. If you want to start a discussion thread about a bug or an implementation, please do so by subscribing to the
firebird-devel list. In that forum you might also see feedback about any tracker ticket you post regarding
this alpha.

Documentation

You will find README documents for many of the new features in both this Beta and for Firebird v.2.0.x. in
the doc sub-directory of your Firebird 2.1 Beta 1 installation.

An automated "Release Notes" page in the Tracker provides lists and links for all of the Tracker tickets associated
with this alpha. Use this link.

--The Firebird Project

http://tracker.firebirdsql.org
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?projectId=10000&styleName=Html&version=10041

3

Chapter 2

New in Firebird 2.1

New Features Implemented

The following new features have been implemented since the 2.0.x releases.-

Database Triggers

Newly implemented “database triggers” are user-defined PSQL modules that can be designed to fire in various
connection-level and transaction- level events. See Database Triggers.

SQL and Objects

Global Temporary Tables

SQL standards-compliant global temporary tables have been implemented. These pre-defined tables are instan-
tiated on request for connection-specific or transaction-specific use with non-persistent data, which the Firebird
engine stores in temporary files. See Global Temporary Tables.

Common Table Expressions, Recursive DSQL Queries

Standards-compliant common table expressions, which make dynamic recursive queries possible, are intro-
duced. See Common Table Expressions.

RETURNING Clause

Optional RETURNING clause for all singleton operations update, insert and delete operations. See RETURN-
ING Clause.

UPDATE OR INSERT Statements for MERGE Functionality

Now you can write a statement that is capable of performing either an update to an existing record or an insert,
depending on whether the targeted record exists. See UPDATE OR INSERT Statement.

LIST() function

A new aggregate function LIST(<SOMETHING>) retrieves all of the SOMETHINGs in a group and aggregates
them into a comma-separated list. See LIST Function.

New in Firebird 2.1

4

Lots of New Built-in Functions

Built-in functions replacing many of the UDFs from the Firebird- distributed UDF libraries. For a full list with
examples, see Built-in Functions.

At various levels of evaluation, the engine now treats text BLOBs that are within the 32,765-byte size limit
as though they were varchars. Now functions like cast, lower, upper, trim and substring will work with these
BLOBs, as well as concatenation and assignment to string types. See Text BLOB Compatibility.

Procedural SQL

Domains for Defining PSQL Variables and Arguments

PSQL local variables and input and output arguments for stored procedures can now be declared using domains
in lieu of canonical data types. See Domains in PSQL.

COLLATE in Stored Procedures and Parameters

Collations can now be applied to PSQL variables and arguments. See COLLATE in Stored Procedures.

Enhancement to PSQL error stack trace
V. Horsun

Feature request CORE-970

A PSQL error stack trace now shows line and column numbers.

Security

Windows Security to Authenticate Users

From Firebird 2.1 onward, Windows “Trusted User” security can be applied for authenticating Firebird users
on a Windows host. See Windows Trusted User Security.

International Language Support

The CREATE COLLATION Command

The DDL command CREATE COLLATION has been introduced for implementing a collation, obviating the
need to use the script for it. See CREATE COLLATION Command.

http://tracker.firebirdsql.org/browse/CORE-970

New in Firebird 2.1

5

Unicode Collations Anywhere

Two new Unicode collations can be applied to any character set using a new mechanism. See UNICODE Col-
lations.

Platform Support

Ports to Windows 2003 64-bit
D. Yemanov

Feature request CORE-819 and CORE-682

64-bit Windows platform (AMD64 and Intel EM64T) ports of Classic, Superserver and Embedded models.

Administrative

Database Monitoring via SQL

Implementation of run-time database snapshot monitoring (transactions, tables, etc.) via SQL over some new
system tables that use the new global temporary tables. See Monitoring Tables.

Included in the set of tables is one named MON$DATABASE that provides a lot of the database header infor-
mation that could not be obtained previously via SQL: such details as the on-disk structure (ODS) version, SQL
dialect, sweep interval, OIT and OAT and so on.

It is possible to use the information from the monitoring tables to cancel a rogue query. See Cancel a Running
Query.

More Context Information

Context information providing the server engine version has been added, for retrieving via SELECT calls to the
RDB$GET_CONTEXT function. See More Context Information.

Remote Interface

The remote protocol has been slightly improved to perform better in slow networks once drivers are updated to
utilise the changes. Testing showed that API round trips were reduced by about 50 percent, resulting in about
40 per cent fewer TCP round trips. See Remote Interface Improvement.

http://tracker.firebirdsql.org/browse/CORE-819
http://tracker.firebirdsql.org/browse/CORE-682

6

Chapter 3

Global Improvements
in Firebird 2.1

Some global improvements and changes have been implemented in Firebird 2.1, as engine development moves
towards the architectural changes planned for Firebird 3.

Remote Interface Improvements
V. Horsun, D. Yemanov

Feature request CORE-971

The remote protocol has been slightly improved to perform better in slow networks. In order to achieve this,
more advanced packets batching is now performed, along with some buffer transmission optimizations. In a
real world test scenario, these changes showed about 50 per cent fewer API round trips, thus incurring about
40 per cent fewer TCP roundtrips.

In Firebird 2.1 the remote interface limits the packet size of the response to various isc_XXX_info calls to the
real used length of the contained data, whereas before it sent the full specified buffer back to the client buffer,
even if only 10 bytes were actually filled. Firebird 2.1 remote interface sends back only 10 bytes in this case.

Some of our users should see a benefit from the changes, especially two-tier clients accessing databases over
the Internet.

The changes can be summarised as

a. Batched packets delivery. Requires both server and client of version v2.1, enabled upon a successful pro-
tocol handshake. Delays sending packets of certain types which can be deferred for batched transfer with
the next packet. (Allocate/deallocate statement operations come into this category, for example.)

b. Pre-fetching some pieces of information about a statement or request and caching them on the client side
for (probable) following API calls. Implemented on the client side only, but relies partly on the benefits
of reduced round trips described in (a).

It works with any server version, even possibly providing a small benefit for badly written client applica-
tions, although best performance is not to be expected if the client is communicating with a pre-V.2.1 server.

c. Reduced information responses from the engine (no trailing zeroes). As the implementation is server-side
only, it requires a V.2.1 server and any client. Even old clients will work with Firebird 2.1 and see some
benefit from the reduction of round trips, although the old remote interface, unlike the new, will still send
back big packets for isc_dsql_prepare().

The changes work with either TCP/IP or NetBEUI. They are backward-compatible, so existing client code will
not be broken. However, existing code will not enable the enhancements unless drivers are updated.

http://tracker.firebirdsql.org/browse/CORE-971

Global Improvements in Firebird 2.1

7

API Changes

XSQLVAR
A. dos Santos Fernandes

The identifier of the connection character set or, when the connection character set is NONE, the BLOB character
set, is now passed in the XSQLVAR: : sqlscale item of text BLOBs.

Optimization

Optimization for Multiple Index Scans
V. Horsun

Feature request CORE-1069

An optimization was done for index scanning when more than one index is to be scanned with AND conjunctions.

Optimize sparse bitmap operations
V. Horsun

Feature request CORE-1070

Optimization was done for sparse bitmap operations (set, test and clear) when values are mostly consecutive.

Configuration and Tuning

Increased Lock Manager Limits & Defaults
D. Yemanov

Feature requests CORE-958 and CORE-937

• the maximum number of hash slots is raised from 2048 to 65,536. Because the actual setting should be
a prime number, the exact supported maximum is 65,521 (the biggest prime number below 65,536). The
minimum is 101.

• the new default number of hash slots is 1009

• the default lock table size has been increased to 1 Mb on all platforms

http://tracker.firebirdsql.org/browse/CORE-1069
http://tracker.firebirdsql.org/browse/CORE-1070
http://tracker.firebirdsql.org/browse/CORE-958
http://tracker.firebirdsql.org/browse/CORE-937

Global Improvements in Firebird 2.1

8

Page sizes of 1K and 2K Deprecated
D. Yemanov

Feature request CORE-969

Page sizes of 1K and 2K are deprecated as inefficient.

Note

The small page restriction applies to new databases only. Old ones can be attached to regardless of their page
size.

Enlarge Disk Allocation Chunks
V. Horsun

Feature request CORE-1229

Allocate disk space in chunks larger than one page. [More info required.]

Bypass Filesystem Caching on Superserver
V. Horsun

Feature requests CORE-1381 and CORE-1480

Firebird uses and maintains its own cache in memory for page buffers. The operating system, in turn, may
re-cache Firebird's cache in its own filesystem cache. If Firebird is configured to use a cache that is large relative
to the available RAM and Forced Writes is on, this cache duplication drains resources for little or no benefit.

Often, when the operating system tries to cache a big file, it moves the Firebird page cache to the swap, causing
intensive, unnecessary paging. In practice, if the Firebird page cache size for Superserver is set to more than 80
per cent of the available RAM, resource problems will be extreme.

Note

Filesystem caching is of some benefit on file writes, but only if Forced Writes is OFF, which is not recom-
mended for most conditions.

Now, Superserver on both Windows and POSIX can be configured by a new configuration parameter, Max-
FileSystemCache, to prevent or enable filesystem caching. It may provide the benefit of freeing more memory
for other operations such as sorting and, where there are multiple databases, reduce the demands made on host
resources.

Note

For Classic, there is no escaping filesystem caching.

For details of the MaxFileSystemCache parameter, see MaxFileSystemCache.

http://tracker.firebirdsql.org/browse/CORE-969
http://tracker.firebirdsql.org/browse/CORE-1229
http://tracker.firebirdsql.org/browse/CORE-1381
http://tracker.firebirdsql.org/browse/CORE-1480

Global Improvements in Firebird 2.1

9

Other Global Improvements

Garbage Collector Rationalisation
V. Horsun

Feature request CORE-1071

The background garbage collector process was reading all back versions of records on a page, including those
created by active transactions. Since back versions of active records cannot be considered for garbage collection,
it was wasteful to read them.

Immediate Release of External Files
D. Yemanov

Feature request CORE-969

The engine will now release external table files as soon as they are no longer in use by user requests.

Synchronization of DSQL metadata cache objects in Classic server
A. dos Santos Fernandes

Feature request CORE-976

No details.

BLOB Improvements
A. dos Santos Fernandes

Feature request CORE-1169

Conversion of temporary blobs to the destination blob type now occurs when materializing.

Type Flag for Stored Procedures
D. Yemanov

Feature request CORE-779

Introduced a type flag for stored procedures, adding column RDB$PROCEDURE_TYPE to the table RDB
$PROCEDURES. Possible values are:

- 0 or NULL -
legacy procedure (no validation checks are performed)

http://tracker.firebirdsql.org/browse/CORE-1071
http://tracker.firebirdsql.org/browse/CORE-969
http://tracker.firebirdsql.org/browse/CORE-976
http://tracker.firebirdsql.org/browse/CORE-969
http://tracker.firebirdsql.org/browse/CORE-779

Global Improvements in Firebird 2.1

10

- 1 -
selectable procedure (one that contains a SUSPEND statement)

- 2 -
executable procedure (no SUSPEND statement, cannot be selected from)

11

Chapter 4

New Configuration
Parameters and Changes

MaxFileSystemCache
V. Horsun

Sets a threshold determining whether Firebird will allow the page cache to be duplicated to the filesystem cache
or not. If this parameter is set to any (integer) value greater than zero, its effect depends on the current default
size of the page cache: if the default page cache (in pages) is less than the value of MaxFileSystemCache (in
pages) then filesystem caching is enabled, otherwise it is disabled.

Note

This applies both when the page cache buffer size is set implicitly by the DefaultDBCachePages setting or
explicitly as a database header attribute.

Thus,

• To disable filesystem caching always, set MaxFileSystemCache to zero

• To enable filesystem caching always, set MaxFileSystemCache an integer value that is sufficiently large
to exceed the size of the database page cache. Remember that the effect of this value will be affected by
subsequent changes to the page cache size.

Important

The default setting for MaxFileSystemCache is 65536 pages, i.e. filesystem caching is enabled.

12

Chapter 5

Administrative Features
Firebird is gradually adding new features to assist in the administration of databases. Firebird 2.1 sees the intro-
duction of a new set of system tables through which administrators can monitor transactions and statements that
are active in a database. These facilities employ a new v.2.1 DDL feature, global temporary tables to provide
snapshots.

Monitoring Tables
Dmitry Yemanov

Firebird 2.1 introduces the ability to monitor server-side activity happening inside a particular database. The
engine offers a set of so-called “virtual” tables that provides the user with a snapshot of the current activity
within the given database.

The word “virtual” means that the table data is not materialised until explicitly asked for. However, the metadata
of the virtual table is stable and can be retrieved from the schema.

Note

Virtual monitoring tables exist only in ODS 11.1 (and higher) databases, so a migration via backup/restore is
required in order to use this feature.

The Concept

The key term of the monitoring feature is an activity snapshot. It represents the current state of the database,
comprising a variety of information about the database itself, active attachments and users, transactions, prepared
and running statements, and more.

A snapshot is created the first time any of the monitoring tables is being selected from in the given transaction
and it is preserved until the transaction ends, in order that multiple-table queries (e.g., master-detail ones) will
always return a consistent view of the data.

In other words, the monitoring tables always behave like a snapshot table stability (“consistency”) transaction,
even if the host transaction has been started with a lower isolation level.

To refresh the snapshot, the current transaction should be finished and the monitoring tables should be queried
in a new transaction context.

Scope and Security

• Access to the monitoring tables is available in both DSQL and PSQL.

• Complete database monitoring is available to SYSDBA and the database owner.

• Regular users are restricted to the information about their own attachments only—other attachments are
invisible to them.

Administrative Features

13

Metadata

MON$DATABASE (connected database)

 - MON$DATABASE_NAME (database pathname or alias)
 - MON$PAGE_SIZE (page size)
 - MON$ODS_MAJOR (major ODS version)
 - MON$ODS_MINOR (minor ODS version)
 - MON$OLDEST_TRANSACTION (OIT number)
 - MON$OLDEST_ACTIVE (OAT number)
 - MON$OLDEST_SNAPSHOT (OST number)
 - MON$NEXT_TRANSACTION (next transaction number)
 - MON$PAGE_BUFFERS (number of pages allocated in the cache)
 - MON$SQL_DIALECT (SQL dialect of the database)
 - MON$SHUTDOWN_MODE (current shutdown mode)
 0: online
 1: multi-user shutdown
 2: single-user shutdown
 3: full shutdown
 - MON$SWEEP_INTERVAL (sweep interval)
 - MON$READ_ONLY (read-only flag)
 - MON$FORCED_WRITES (sync writes flag)
 - MON$RESERVE_SPACE (reserve space flag)
 - MON$CREATION_DATE (creation date/time)
 - MON$PAGES (number of pages allocated on disk)
 - MON$BACKUP_STATE (current physical backup state)
 0: normal
 1: stalled
 2: merge
 - MON$STAT_ID (statistics ID)

MON$ATTACHMENTS (connected attachments)

 - MON$ATTACHMENT_ID (attachment ID)
 - MON$SERVER_PID (server process ID)
 - MON$STATE (attachment state)
 0: idle
 1: active
 - MON$ATTACHMENT_NAME (connection string)
 - MON$USER (user name)
 - MON$ROLE (role name)
 - MON$REMOTE_PROTOCOL (remote protocol name)
 - MON$REMOTE_ADDRESS (remote address)
 - MON$REMOTE_PID (remote client process ID)
 - MON$REMOTE_PROCESS (remote client process pathname)
 - MON$CHARACTER_SET_ID (attachment character set)
 - MON$TIMESTAMP (connection date/time)
 - MON$GARBAGE_COLLECTION (garbage collection flag)
 - MON$STAT_ID (statistics ID)

Administrative Features

14

• columns MON$REMOTE_PID and MON$REMOTE_PROCESS contains non-NULL values only if the
client library is version 2.1 or higher

• column MON$REMOTE_PROCESS can contain a non-pathname value if an application has specified
a custom process name via DPB

MON$TRANSACTIONS (started transactions)

 - MON$TRANSACTION_ID (transaction ID)
 - MON$ATTACHMENT_ID (attachment ID)
 - MON$STATE (transaction state)
 0: idle
 1: active
 - MON$TIMESTAMP (transaction start date/time)
 - MON$TOP_TRANSACTION (top transaction)
 - MON$OLDEST_TRANSACTION (local OIT number)
 - MON$OLDEST_ACTIVE (local OAT number)
 - MON$ISOLATION_MODE (isolation mode)
 0: consistency
 1: concurrency
 2: read committed record version
 3: read committed no record version
 - MON$LOCK_TIMEOUT (lock timeout)
 -1: infinite wait
 0: no wait
 N: timeout N
 - MON$READ_ONLY (read-only flag)
 - MON$AUTO_COMMIT (auto-commit flag)
 - MON$AUTO_UNDO (auto-undo flag)
 - MON$STAT_ID (statistics ID)

MON$STATEMENTS (prepared statements)

 - MON$STATEMENT_ID (statement ID)
 - MON$ATTACHMENT_ID (attachment ID)
 - MON$TRANSACTION_ID (transaction ID)
 - MON$STATE (statement state)
 0: idle
 1: active
 - MON$TIMESTAMP (statement start date/time)
 - MON$SQL_TEXT (statement text, if appropriate)
 - MON$STAT_ID (statistics ID)

• column MON$SQL_TEXT contains NULL for GDML statements

• columns MON$TRANSACTION_ID and MON$TIMESTAMP contain valid values for active state-
ments only

MON$CALL_STACK (call stack of active PSQL requests)

Administrative Features

15

 - MON$CALL_ID (request ID)
 - MON$STATEMENT_ID (top-level DSQL statement ID)
 - MON$CALLER_ID (caller request ID)
 - MON$OBJECT_NAME (PSQL object name)
 - MON$OBJECT_TYPE (PSQL object type)
 - MON$TIMESTAMP (request start date/time)
 - MON$SOURCE_LINE (SQL source line number)
 - MON$SOURCE_COLUMN (SQL source column number)
 - MON$STAT_ID (statistics ID)

• column MON$STATEMENT_ID groups call stacks by the top-level DSQL statement that initiated the
call chain. This ID represents an active statement record in the table MON$STATEMENTS.

• columns MON$SOURCE_LINE and MON$SOURCE_COLUMN contain line/column information re-
lated to the PSQL statement currently being executed

Note

Textual descriptions of all “state” and “mode” values can be found in the system table RDB$TYPES.

Usage

Creation of a snapshot is usually quite a fast operation, but some delay could be expected under high load
(especially in the Classic Server).

A valid database connection is required in order to retrieve the monitoring data. The monitoring tables return
information about the attached database only. If multiple databases are being accessed on the server, each of
them has to be connected to and monitored separately.

The system variables CURRENT_ CONNECTION and CURRENT_ TRANSACTION could be used to select data
about the caller's current connection and transaction respectively. These variables correspond to the ID columns
of the appropriate monitoring tables.

Examples

1. Retrieve IDs of all CS processes loading CPU at the moment

SELECT MON$SERVER_PID
 FROM MON$ATTACHMENTS
 WHERE MON$ATTACHMENT_ID <> CURRENT_CONNECTION
 AND MON$STATE = 1

2. Retrieve information about client applications

SELECT MON$USER, MON$REMOTE_ADDRESS,
 MON$REMOTE_PID,
 MON$TIMESTAMP
 FROM MON$ATTACHMENTS
 WHERE MON$ATTACHMENT_ID <> CURRENT_CONNECTION

Administrative Features

16

3. Get isolation level of the current transaction

SELECT MON$ISOLATION_MODE
 FROM MON$TRANSACTIONS
 WHERE MON$TRANSACTION_ID = CURRENT_TRANSACTION

4. Get statements that are currently active

SELECT ATT.MON$USER,
 ATT.MON$REMOTE_ADDRESS,
 STMT.MON$SQL_TEXT,
 STMT.MON$TIMESTAMP
 FROM MON$ATTACHMENTS ATT
 JOIN MON$STATEMENTS STMT
 ON ATT.MON$ATTACHMENT_ID = STMT.MON$ATTACHMENT_ID
 WHERE ATT.MON$ATTACHMENT_ID <> CURRENT_CONNECTION
 AND STMT.MON$STATE = 1

5. Retrieve call stacks for all connections

WITH RECURSIVE HEAD AS
 (
 SELECT CALL.MON$STATEMENT_ID,
 CALL.MON$CALL_ID,
 CALL.MON$OBJECT_NAME,
 CALL.MON$OBJECT_TYPE
 FROM MON$CALL_STACK CALL
 WHERE CALL.MON$CALLER_ID IS NULL
 UNION ALL
 SELECT CALL.MON$STATEMENT_ID,
 CALL.MON$CALL_ID,
 CALL.MON$OBJECT_NAME,
 CALL.MON$OBJECT_TYPE
 FROM MON$CALL_STACK CALL
 JOIN HEAD
 ON CALL.MON$CALLER_ID = HEAD.MON$CALL_ID
)
 SELECT MON$ATTACHMENT_ID,
 MON$OBJECT_NAME,
 MON$OBJECT_TYPE
 FROM HEAD
 JOIN MON$STATEMENTS STMT
 ON STMT.MON$STATEMENT_ID = HEAD.MON$STATEMENT_ID
 WHERE STMT.MON$ATTACHMENT_ID <> CURRENT_CONNECTION

Cancel a Running Query

Runaway and long-running queries can now be cancelled from a separate connection.

There is no API function call directed at this feature. It will be up to the SysAdmin (SYSDBA or Owner) to
make use of the data available in the monitoring tables and devise an appropriate mechanism for reining in the
rogue statements.

Administrative Features

17

Example

As a very rough example, the following statement will kill all statements currently running in the database, other
than any that belong to the separate connection that the SysAdmin is using himself:

delete from mon$statements
 where mon$attachment_id <> current_connection

More Context Information

More context information about the server and database ('SYSTEM') is available via SELECT calls to the RDB
$GET_CONTEXT function, including the engine version.

Example

SELECT RDB$GET_CONTEXT('SYSTEM', 'ENGINE_VERSION')
 FROM RDB$DATABASE

For detailed information about using these context calls, refer to the v.2.0.1 release notes.

18

Chapter 6

SQL Language Enhancements
In this chapter are the additions and improvements that have been added to the SQL language in the v.2.1
development phase.

Data Definition Language (DDL)

Several new features and improvements have been added to the DDL language set.

Database Triggers
Adriano dos Santos Fernandes

A database trigger is a PSQL module that is executed when a connection or transaction event occurs. The events
and the timings of their triggers are as follows.-

CONNECT
• Database connection is established

• A transaction is started

• Triggers are fired; uncaught exceptions roll back the transaction, disconnect the attachment and are re-
turned to the client

• The transaction is committed

DISCONNECT
• A transaction is started

• Triggers are fired; uncaught exceptions roll back the transaction, disconnect the attachment and are swal-
lowed

• The transaction is committed

• The attachment is disconnected

TRANSACTION START
Triggers are fired in the newly-created user transaction; uncaught exceptions are returned to the client and
the transaction is rolled back.

TRANSACTION COMMIT
Triggers are fired in the committing transaction; uncaught exceptions roll back the trigger's savepoint, the
commit command is aborted and the exception is returned to the client.

SQL Language Enhancements

19

Note

For two-phase transactions, the triggers are fired in the “prepare”, not in the commit.

TRANSACTION ROLLBACK
Triggers are fired during the roll-back of the transaction. Changes done will be rolled back with the trans-
action. Exceptions are swallowed

Syntax

<database-trigger> ::=
 {CREATE | RECREATE | CREATE OR ALTER}
 TRIGGER <name>
 [ACTIVE | INACTIVE]
 ON <event>
 [POSITION <n>]
 AS
 BEGIN
 ...
 END

<event> ::=
 CONNECT
 | DISCONNECT
 | TRANSACTION START
 | TRANSACTION COMMIT
 | TRANSACTION ROLLBACK

Rules and Restrictions

1. Database triggers type cannot be changed.

2. Permission to create, recreate, create or alter, or drop database triggers is restricted to the database owner
and SYSDBA.

Utilities Support for Database Triggers

A new parameter was added to gbak, nbackup and isql to suppress database triggers from running. It is available
only to the database owner and SYSDBA:

 gbak -no_dbtriggers
 isql -nodbtriggers
 nbackup -T

Global Temporary Tables
Vlad Horsun

Global temporary tables (GTTs) are tables that are stored in the system catalogue with permanent metadata, but
with temporary data. Data from different connections (or transactions, depending on the scope) are isolated from
each other, but the metadata of the GTT are shared among all connections and transactions.

SQL Language Enhancements

20

There are two kinds of GTT:

• with data that persists for the lifetime of connection in which the specified GTT was referenced; and

• with data that persists only for the lifetime of the referencing transaction.

Syntax and Rules for GTTs

CREATE GLOBAL TEMPORARY TABLE
 ...
 [ON COMMIT <DELETE | PRESERVE> ROWS]

Creates the metadata for the temporary table in the system catalogue.

The clause ON COMMIT sets the kind of temporary table:

ON COMMIT PRESERVE ROWS
Data left in the given table after the end of the transaction remain in database until the connection ends.

ON COMMIT DELETE ROWS
Data in the given table are deleted from the database immediately after the end of the transaction. ON COM-
MIT DELETE ROWS is used by default if the optional clause ON COMMIT is not specified.

CREATE GLOBAL TEMPORARY TABLE
is a regular DDL statement that is processed by the engine the same way as a CREATE TABLE statement
is processed. Accordingly, it not possible to create or drop a GTT within a stored procedure or trigger.

Relation Type

GTT definitions are distinguished in the system catalogue from one another and from permanent tables by the
value of RDB$RELATIONS. RDB$RELATION_ TYPE:

• A GTT with ON COMMIT PRESERVE ROWS option has RDB$RELATION_TYPE = 4

A GTT with ON COMMIT DELETE ROWS option has RDB$RELATION_TYPE = 5.

Note

For the full list of values, see RDB$TYPES.

Structural Feature Support

The same structural features that you can apply to regular tables (indexes, triggers, field-level and table level
constraints) are also available to a GTT, with certain restrictions on how GTTs and regular tables can interrelate.-

a. references between persistent and temporary tables are forbidden

b. A GTT with ON COMMIT PRESERVE ROWS cannot have a reference on a GTT with ON COMMIT
DELETE ROWS

c. A domain constraint cannot have a reference to any GTT.

SQL Language Enhancements

21

Implementation Notes

An instance of a GTT—a set of data rows created by and visible within the given connection or transaction—is
created when the GTT is referenced for the first time, usually at statement prepare time. Each instance has its
own private set of pages on which data and indexes are stored. The data rows and indexes have the same physical
storage layout as permanent tables.

When the connection or transaction ends, all pages of a GTT instance are released immediately. It is similar to
what happens when a DROP TABLE is performed, except that the metadata definition is retained, of course.
This is much quicker than the traditional row-by-row delete + garbage collection of deleted record versions.

Note

This method of deletion does not cause DELETE triggers to fire, so do not be tempted to define Before or After
Delete triggers on the false assumption that you can incorporate some kind of “last rites” that will be execute
just as your temporary data breathes its last!

The data and index pages of all GTT instances are placed in separate temporary files. Each connection has its
own temporary file created the first time the connection references some GTT.

Note

These temporary files are always opened with Forced Writes = OFF, regardless of the database setting for
Forced Writes.

No limit is placed on the number of GTT instances that can coexist. If you have N transactions active simulta-
neously and each transaction has referenced some GTT then you will have N instances of the GTT.

BLOB Subtype 1 Compatibility with VarChar
A. dos Santos Fernandes

At various levels of evaluation, the engine now treats text BLOBs that are within the 32,765- byte string size limit
as though they were varchars. Operations that now allow text BLOBs to behave like strings are assignments,
conversions and concatenations, as well as the functions CAST, LOWER, UPPER, TRIM and SUBSTRING.

Views Enhancements
D. Yemanov

A couple of enhancements were made to view definitions in v.2.1.-

Use Column Aliases in CREATE VIEW

Feature requestCORE-831

Column aliases can now be processed as column names in the view definition.

Example

http://tracker.firebirdsql.org/browse/CORE-831

SQL Language Enhancements

22

CREATE VIEW V_TEST AS
 SELECT ID,
 COL1 AS CODE,
 COL2 AS NAME
 FROM TAB;

CURRENT OF Now Allowed for Views

Feature request CORE-1213

. [Need some doc and an example]

SQL2003 compliance for CREATE TRIGGER
A. dos Santos Fernandes

Feature request CORE-711

Syntax for CREATE TRIGGER now complies with SQL2003. Pattern? Examples?

SQL2003 Compliant Alternative for Computed Fields
D. Yemanov

Feature request CORE-1386

SQL-compliant alternative syntax GENERATED ALWAYS AS was implemented for defining a computed
field in CREATE/ALTER TABLE.

Syntax Pattern

<column name> [<type>] GENERATED ALWAYS AS (<expr>)

It is fully equivalent semantically with the legacy form:

<column name> [<type>] COMPUTED [BY] (<expr>)

Example

CREATE TABLE T (PK INT, EXPR GENERATED ALWAYS AS (PK + 1))

Data Manipulation Language (DML)

Several new features and improvements have been added to the DML language set.

http://tracker.firebirdsql.org/browse/CORE-1213
http://tracker.firebirdsql.org/browse/CORE-711
http://tracker.firebirdsql.org/browse/CORE-1386

SQL Language Enhancements

23

Common Table Expressions

Vlad Horsun
Based on work by Paul Ruizendaal for Fyracle project

A common table expression (CTE) is like a view that is defined locally within a main query. The engine treats
a CTE like a derived table and no intermediate materialisation of the data is performed.

Benefits of CTEs

Using CTEs allows you to specify dynamic queries that are recursive:

• The engine begins execution from a non-recursive member.

• For each row evaluated, it starts executing each recursive member one-by-one, using the current values from
the outer row as parameters.

• If the currently executing instance of a recursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

The memory and CPU overhead of a recursive CTE is much less than that of an equivalent recursive stored
procedure.

Recursion Limit

Currently the recursion depth is limited to a hard-coded value of 1024.

Syntax and Rules for CTEs

select :
 select_expr for_update_clause lock_clause
select_expr :
 with_clause select_expr_body order_clause rows_clause
 | select_expr_body order_clause rows_clause
with_clause :
 WITH RECURSIVE with_list | WITH with_list
with_list :
 with_item | with_item ',' with_list
with_item :
 symbol_table_alias_name derived_column_list
 AS '(' select_expr ')'
select_expr_body :
 query_term
 | select_expr_body UNION distinct_noise query_term
 | select_expr_body UNION ALL query_term

A less formal representation:

SQL Language Enhancements

24

WITH [RECURSIVE]
 CTE_A [(a1, a2, …)]
 AS (SELECT …),

 CTE_B [(b1, b2, …)]
 AS (SELECT …),
...
SELECT ...
 FROM CTE_A, CTE_B, TAB1, TAB2 ...
 WHERE ...

Rules for Non-Recursive CTEs

• Multiple table expressions can be defined in one query

• Any clause legal in a SELECT specification is legal in table expressions

• Table expressions can reference one another

• References between expressions should not have loops

• Table expressions can be used within any part of the main query or another table expression

• The same table expression can be used more than once in the main query

• Table expressions (as subqueries) can be used in INSERT, UPDATE and DELETE statements

• Table expressions are legal in PSQL code

• WITH statements can not be nested

Example of a non-recursive CTE

WITH
 DEPT_YEAR_BUDGET AS (
 SELECT FISCAL_YEAR, DEPT_NO,
 SUM(PROJECTED_BUDGET) AS BUDGET
 FROM PROJ_DEPT_BUDGET
 GROUP BY FISCAL_YEAR, DEPT_NO
)
SELECT D.DEPT_NO, D.DEPARTMENT,
 B_1993.BUDGET AS B_1993, B_1994.BUDGET AS B_1994,
 B_1995.BUDGET AS B_1995, B_1996.BUDGET AS B_1996
 FROM DEPARTMENT D
 LEFT JOIN DEPT_YEAR_BUDGET B_1993
 ON D.DEPT_NO = B_1993.DEPT_NO
 AND B_1993.FISCAL_YEAR = 1993
 LEFT JOIN DEPT_YEAR_BUDGET B_1994
 ON D.DEPT_NO = B_1994.DEPT_NO
 AND B_1994.FISCAL_YEAR = 1994
 LEFT JOIN DEPT_YEAR_BUDGET B_1995
 ON D.DEPT_NO = B_1995.DEPT_NO
 AND B_1995.FISCAL_YEAR = 1995
 LEFT JOIN DEPT_YEAR_BUDGET B_1996
 ON D.DEPT_NO = B_1996.DEPT_NO
 AND B_1996.FISCAL_YEAR = 1996

SQL Language Enhancements

25

 WHERE EXISTS (
 SELECT * FROM PROJ_DEPT_BUDGET B
 WHERE D.DEPT_NO = B.DEPT_NO)

Rules for Recursive CTEs

• A recursive CTE is self-referencing (has a reference to itself)

• A recursive CTE is a UNION of recursive and non-recursive members:

- At least one non-recursive member (anchor) must be present

- Non-recursive members are placed first in the UNION

- Recursive members are separated from anchor members and from one another with a UNION ALL clause
[Ed. note: author, please clarify]

• References between CTEs should not have loops

• Aggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are
not allowed in recursive members

• A recursive member can have only one reference to itself and only in a FROM clause

• A recursive reference cannot participate in an outer join

Example of a recursive CTE

WITH RECURSIVE
 DEPT_YEAR_BUDGET AS
 (
 SELECT FISCAL_YEAR, DEPT_NO,
 SUM(PROJECTED_BUDGET) AS BUDGET
 FROM PROJ_DEPT_BUDGET
 GROUP BY FISCAL_YEAR, DEPT_NO
),

 DEPT_TREE AS
 (
 SELECT DEPT_NO, HEAD_DEPT, DEPARTMENT,
 CAST('' AS VARCHAR(255)) AS INDENT
 FROM DEPARTMENT
 WHERE HEAD_DEPT IS NULL

 UNION ALL

 SELECT D.DEPT_NO, D.HEAD_DEPT, D.DEPARTMENT,
 H.INDENT || ' '
 FROM DEPARTMENT D
 JOIN DEPT_TREE H
 ON D.HEAD_DEPT = H.DEPT_NO
)

 SELECT D.DEPT_NO,
 D.INDENT || D.DEPARTMENT AS DEPARTMENT,
 B_1993.BUDGET AS B_1993,
 B_1994.BUDGET AS B_1994,

SQL Language Enhancements

26

 B_1995.BUDGET AS B_1995,
 B_1996.BUDGET AS B_1996

 FROM DEPT_TREE D
 LEFT JOIN DEPT_YEAR_BUDGET B_1993
 ON D.DEPT_NO = B_1993.DEPT_NO
 AND B_1993.FISCAL_YEAR = 1993

 LEFT JOIN DEPT_YEAR_BUDGET B_1994
 ON D.DEPT_NO = B_1994.DEPT_NO
 AND B_1994.FISCAL_YEAR = 1994

 LEFT JOIN DEPT_YEAR_BUDGET B_1995
 ON D.DEPT_NO = B_1995.DEPT_NO
 AND B_1995.FISCAL_YEAR = 1995

 LEFT JOIN DEPT_YEAR_BUDGET B_1996
 ON D.DEPT_NO = B_1996.DEPT_NO
 AND B_1996.FISCAL_YEAR = 1996

The LIST Function

Oleg Loa
Dmitry Yemanov

This function returns a string result with the concatenated non-NULL values from a group. It returns NULL if
there are no non-NULL values.

Format

<list function> ::=
 LIST '(' [{ALL | DISTINCT}] <value expression> [',' <delimiter value>
] ')'

<delimiter value> ::=
 { <string literal> | <parameter> | <variable> }

Syntax Rules

1. If neither ALL nor DISTINCT is specified, ALL is implied.

2. If <delimiter value> is omitted, a comma is used to separate the concatenated values.

Other Notes

1. Numeric and date/time values are implicitly converted to strings during evaluation.

2. The result value is of type BLOB with SUB_TYPE TEXT for all cases except list of BLOB with different
subtype.

3. Ordering of values within a group is implementation-defined.

Examples

SQL Language Enhancements

27

/* A */
 SELECT LIST(ID, ':')
 FROM MY_TABLE

/* B */
 SELECT TAG_TYPE, LIST(TAG_VALUE)
 FROM TAGS
 GROUP BY TAG_TYPE

The RETURNING Clause

Dmitry Yemanov
Adriano dos Santos Fernandes

The purpose of this SQL enhancement is to enable the column values stored into a table as a result of the INSERT,
UPDATE OR INSERT, UPDATE and DELETE statements to be returned to the client.

The most likely usage is for retrieving the value generated for a primary key inside a BEFORE-trigger. The
RETURNING clause is optional and is available in both DSQL and PSQL, although the rules differ slightly.

In DSQL, the execution of the operation itself and the return of the set occur in a single protocol round trip.

Because the RETURNING clause is designed to return a singleton set in response to completing an operation on
a single record, it is not valid to specify the clause in a statement that inserts, updates or deletes multiple records.

Note

In DSQL, the statement always returns the set, even if the operation has no effect on any record. Hence, at this
stage of implementation, the potential exists to return an “empty” set. (This may be changed in future.)

Syntax Patterns

INSERT INTO ... VALUES (...)
 [RETURNING <column_list> [INTO <variable_list>]]

INSERT INTO ... SELECT ...
 [RETURNING <column_list> [INTO <variable_list>]]

UPDATE OR INSERT INTO ... VALUES (...) ...
 [RETURNING <column_list> [INTO <variable_list>]]

UPDATE ... [RETURNING <column_list> [INTO <variable_list>]]

DELETE FROM ...
 [RETURNING <column_list> [INTO <variable_list>]]

Rules for Using a RETURNING Clause

1. The INTO part (i.e. the variable list) is allowed in PSQL only, for assigning the output set to local variables.
It is rejected in DSQL.

SQL Language Enhancements

28

2. The presence of the RETURNING clause causes an INSERT statement to be described by the API as
isc_ info_ sql_ stmt_ exec_ procedure rather than isc_ info_ sql_ stmt_ insert. Existing con-
nectivity drivers should already be capable of supporting this feature without special alterations.

3. The RETURNING clause ignores any explicit record change (update or delete) that occurs as a result of
the execution of an AFTER trigger.

4. OLD and NEW context variables can be used in the RETURNING clause of UPDATE and INSERT OR
UPDATE statements.

5. In UPDATE and INSERT OR UPDATE statements, field references that are unqualified or qualified by
table name or relation alias are resolved to the value of the corresponding NEW context variable.

Examples

1.

INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2)
 RETURNING F1, F2 INTO :V1, :V2;

2.

INSERT INTO T2 (F1, F2)
 VALUES (1, 2)
 RETURNING ID INTO :PK;

3.

DELETE FROM T1
 WHERE F1 = 1
 RETURNING F2;

4.

UPDATE T1
 SET F2 = F2 * 10
 RETURNING OLD.F2, NEW.F2;

UPDATE OR INSERT Statement
Adriano dos Santos Fernandes

This syntax has been introduced to enable a record to be either updated or inserted, according to whether or not
it already exists (checked with IS NOT DISTINCT). The statement is available in both DSQL and PSQL.

Syntax Pattern

UPDATE OR INSERT INTO <table or view> [(<column_list>)]
 VALUES (<value_list>)
 [MATCHING <column_list>]
 [RETURNING <column_list> [INTO <variable_list>]]

SQL Language Enhancements

29

Examples

1.

UPDATE OR INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2);

2.

UPDATE OR INSERT INTO EMPLOYEE (ID, NAME)
 VALUES (:ID, :NAME)
 RETURNING ID;

3.

UPDATE OR INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2)
 MATCHING (F1);

4.

UPDATE OR INSERT INTO EMPLOYEE (ID, NAME)
 VALUES (:ID, :NAME)
 RETURNING OLD.NAME;

Usage Notes

1. When MATCHING is omitted, the existence of a primary key is required.

2. INSERT and UPDATE permissions are needed on <table or view>.

3. If the RETURNING clause is present, then the statement is described as isc_ info_ sql_ stmt_ exec_
procedure by the API; otherwise, it is described as isc_ info_ sql_ stmt_ insert.

Note

A “multiple rows in singleton select” error will be raised if the RETURNING clause is present and more than
one record matches the search condition.

New JOIN Types
Adriano dos Santos Fernandes

Two new JOIN types are introduced: the NAMED COLUMNS join and its close relative, the NATURAL join.

Syntax and Rules

SQL Language Enhancements

30

<named columns join> ::=
 <table reference> <join type> JOIN <table reference>
 USING (<column list>)

<natural join> ::=
 <table reference> NATURAL <join type> JOIN <table primary>

Named columns join

1. All columns specified in <column list> should exist in the tables at both sides.

2. An equi-join (<left table>.<column> = <right table>.<column>) is automatically created for all columns
(ANDed).

3. The USING columns can be accessed without qualifiers—in this case, the result is equivalent to
COALESCE(<left table>.<column>, <right table>.<column>).

4. In “SELECT *”, USING columns are expanded once, using the above rule.

Natural join

1. A “named columns join” is automatically created with all columns common to the left and right tables.

2. If there is no common column, a CROSS JOIN is created.

Examples

/* 1 */
select * from employee
 join department
 using (dept_no);

/* 2 */
select * from employee_project
 natural join employee
 natural join project;

INSERT with defaults
D. Yemanov

Feature request

It is now possible to INSERT without supplying values, if Before Insert triggers and/or declared defaults are
available for every column and none is dependent on the presence of any supplied 'NEW' value.

Example

INSERT INTO <table>
 DEFAULT VALUES

http://tracker.firebirdsql.org/browse/CORE-863

SQL Language Enhancements

31

 [RETURNING <values>]

Make RDB$DB_KEY in outer joins return NULL when appropriate
A. dos Santos Fernandes

Feature request CORE-979

[Details needed.]

Data Type of an Aggregation Result
Arno Brinkman

When aggregations, CASE evaluations and UNIONs for output columns are performed over a mix of comparable
data types, the engine has to choose one data type for the result. The developer often has to prepare a variable
or buffer for such results and is mystified when a request returns a data type exception. The srules followed by
the engine in determining the data type for an output column under these conditions are explained here.

1. Let DTS be the set of data types over which we must determine the final result data type.

2. All of the data types in DTS shall be comparable.

3. In the case that

a. any of the data types in DTS is character string

i. If all data types in DTS are fixed-length character strings, then the result is also a fixed-length
character string; otherwise the result is a variable-length character string.

The resulting string length, in characters, is equal to the maximum of the lengths, in characters,
of the data types in DTS.

ii. The character set and collation used are taken from the data type of the first character string in
DTS.

b. all of the data types in DTS are exact numeric

the result data type is exact numeric with scale equal to the maximum of the scales of the data types
in DTS and precision equal to the maximum precision of all data types in DTS.

c. any data type in DTS is approximate numeric

each data type in DTS must be numeric, otherwise an error is thrown.

d. any data type in DTS is a date/time data type

every data type in DTS must be a date/time type having the same date/time type, otherwise an error
is thrown.

e. any data type in DTS is BLOB

each data type in DTS must be BLOB and all with the same sub-type.

http://tracker.firebirdsql.org/browse/CORE-979

SQL Language Enhancements

32

Built-in Functions

Some existing built-in functions have been enhanced, while a large number of new ones has been added.

New Built-in Functions

Adriano dos Santos Fernandes
Oleg Loa
Alexey Karyakin

A number of built-in functions has been implemented in V.2.1 to replace common UDFs with the same names.
The built-in functions will not be used if the UDF of the same name is declared in the database.

Note

The choice between UDF and built-in function is decided when compiling the statement. If the statement is
compiled in a PSQL module whilst the UDF is available in the database, then the module will continue to
require the UDF declaration to be present until it is next recompiled.

The new built-in function DECODE() does not have an equivalent UDF in the libraries that are distributed
with Firebird.

The functions are detailed in Appendix A.

Enhancements to Functions
A. dos Santos Fernandes

EXTRACT(WEEK FROM DATE)
Feature request CORE-663

The EXTRACT() function is extended to support the ISO-8601 ordinal week numbers. For example:

EXTRACT (WEEK FROM date '30.09.2007')

returns 39

Specify the Scale for TRUNC()
Feature request CORE-1340

In Beta 1 the implementation of the TRUNC() function supported only one argument, the value to be trun-
cated. From Beta 2, an optional second argument can be supplied to specify the scale of the truncation. For
example:

select
 trunc(987.65, 1),
 trunc(987.65, -1)
 from rdb$database;

http://tracker.firebirdsql.org/browse/CORE-663
http://tracker.firebirdsql.org/browse/CORE-1340

SQL Language Enhancements

33

returns 987.60, 980.00

For other examples of using TRUNC() with and without the optional scale argument, refer to the alphabetical
listing of functions in Appendix A.

Milliseconds Handling for EXTRACT(), DATEADD() and DATEDIFF()
Feature request CORE-1387

From v.2.1 Beta 2, EXTRACT(), DATEADD() and DATEDIFF() can operate with milliseconds (represent-
ed as an integer number). For example:

EXTRACT (MILLISECOND FROM timestamp '01.01.2000 01:00:00.1234')

returns 123

DATEADD (MILLISECOND, 100, timestamp '01.01.2000 01:00:00.0000')
DATEDIFF (MILLISECOND, timestamp '01.01.2000 02:00:00.0000', timestamp '01.01.2000 01:00:00.0000')

For more explanatory examples of using DATEADD() and DATEDIFF(), refer to the alphabetical listing
of functions in Appendix A.

DATEADD and DATEDIFF Expanded Form Semantics
Improvement request CORE-1490

The semantics used in the choice of keywords for the expanded form of the DATEDIFF() function syntax
will be changed in the next beta or release candidate. In the pattern:

DATEDIFF(<timestamp_part> FROM <date_time> FOR <date_time>)

the keywords FROM and FOR will be changed to:

DATEDIFF(<timestamp_part> FROM <date_time> TO <date_time>)

The contracted form is not affected.
Similarly, the FOR keyword in the expanded form of DATEADD() will be changed to TO.

Changes in DSQL Parsing

Sorting on BLOB and ARRAY Columns is Now Disallowed
Dmitry Yemanov

Previous versions of the engine allowed BLOBs and arrays to be sorted on. While both GROUP BY and ORDER
BY on BLOBs could be prepared successfully, a run-time error was thrown for GROUP BY, due to inability to
convert a blob to a sortable type. ORDER BY "worked" (after a fashion) in all versions, with the sort operating
on the BLOB_ID.

http://tracker.firebirdsql.org/browse/CORE-1387
http://tracker.firebirdsql.org/browse/CORE-1490

SQL Language Enhancements

34

Such a level of tolerance produces wrong or undesirable results. Due to the sorter restrictions, re-implementing
it in any way that makes sense in practice is not possible. Hence, from v.2.1 onwards, any sorting operation that
involves a BLOB or ARRAY type column is rejected at the PREPARE stage.

Procedural Language Extensions (PSQL)

The highlight of PSQL changes in v.2.1 is the ability to use domains when declaring variables and arguments
in procedures and triggers. A handful of other improvements have been added to the PSQL extensions.

Domains in PSQL
Adriano dos Santos Fernandes

It is now possible to use a domain when declaring the data types of arguments and variables in PSQL modules.
Depending on your requirements, you can declare the argument or variable using

• the domain identifier alone, in lieu of the native data type identifier, to have the variable inherit all of the
attributes of the domain; or

• the data type of the domain, without inheriting CHECK constraints and the DEFAULT value (if declared in
the domain), by including the TYPE OF keyword in the declaration (see the syntax below)

Syntax

data_type ::=
 <builtin_data_type>
 | <domain_name>
 | TYPE OF <domain_name>

Examples

CREATE DOMAIN DOM AS INTEGER;

CREATE PROCEDURE SP (
 I1 TYPE OF DOM,
 I2 DOM)
RETURNS (
 O1 TYPE OF DOM,
 O2 DOM)
AS
 DECLARE VARIABLE V1 TYPE OF DOM;
 DECLARE VARIABLE V2 DOM;

BEGIN
 ...
END

Note

A new field RDB$VALID_BLR was added in RDB$RELATIONS and RDB$TRIGGERS to indicate whether
the procedure/trigger is valid after an ALTER DOMAIN operation. The value of RDB$VALID_BLR is shown
in the ISQL commands SHOW PROCEDURE or SHOW TRIGGER.

SQL Language Enhancements

35

COLLATE in Stored Procedures and Parameters
A. dos Santos Fernandes

Collations can now be applied to PSQL variables, including stored procedure parameters.

Optimization

Optimization improvements in v.2.1 include:

Economising on Indexed Reads for MIN() and MAX()
Indexed MIN/MAX aggregates would produce three indexed reads instead of the expected single read. So,
with an ASC index on the non-nullable COL, the query

 SELECT MIN(COL) FROM TAB

should be completely equivalent, to

 SELECT FIRST 1 COL FROM TAB
 ORDER BY 1 ASC

with both performing a single record read. However, formerly, the first query required three indexed reads
while the second one required just the expected single read. Now, they both resolve to a single read.

The same optimization applies to the MAX() function when mapped to a DESC index.

36

Chapter 7

International Language
Support (INTL)

Adriano dos Santos Fernandes

In this chapter are the additions and improvements that have been added to the v.2.0.x international language
support system (INTL) in the v.2.1 development phase. Most notably, it is no longer necessary to use the script
misc/intl.sql for implementing a collation, since the DDL command CREATE COLLATION has been introduced
for this task.

Further capabilities have been implemented for

1. using ICU charsets through fbintl

2. UNICODE collation (charset_UNICODE) being available for all fbintl charsets

3. using collation attributes

4. CREATE/DROP COLLATION statements

5. SHOW COLLATION and collation extraction in ISQL

6. Verifying that text blobs are well-formed

7. Transliterating text blobs automatically

The CREATE COLLATION Command

Syntax for CREATE COLLATION

CREATE COLLATION <name>
 FOR <charset>
 [FROM <base> | FROM EXTERNAL ('<name>')]
 [NO PAD | PAD SPACE]
 [CASE SENSITIVE | CASE INSENSITIVE]
 [ACCENT SENSITIVE | ACCENT INSENSITIVE]
 ['<specific-attributes>']

Note

Specific attributes should be separated by semicolon and are case sensitive.

Examples

International Language Support (INTL)

37

/* 1 */
CREATE COLLATION UNICODE_ENUS_CI
 FOR UTF8
 FROM UNICODE
 CASE INSENSITIVE
 'LOCALE=en_US';
/* 2 */
CREATE COLLATION NEW_COLLATION
 FOR WIN1252
 PAD SPACE;

/* NEW_COLLATION should be declared in .conf file
 in $root/intl directory */

ICU Character Sets

All non-wide and ASCII-based character sets present in ICU can be used by Firebird. To reduce the size of
the distribution kit, we customize ICU to include only essential character sets and any for which there was a
specific feature request.

If the character set you need is not included, you can replace the ICU libraries with another complete module,
found at our site or already installed in your operating system.

Registering an ICU Character Set Module

To use an alternative module, you first need to register it in intl/ fbintl. conf, as follows.-

<charset NAME>
 intl_module fbintl
 collation NAME [REAL-NAME]
</charset>

To register the module in databases, run the procedure sp_ register_ character_ set, the source for which
can be found in misc/ intl. sql.

Note

You need to know how many bytes a single character can occupy in the encoding.

Example

<charset GB>
 intl_module fbintl
 collation GB GB18030
</charset>

execute procedure sp_register_character_set ('GB', 4);

International Language Support (INTL)

38

The UNICODE Collations

The UNICODE collations (case sensitive and case insensitive) can be applied to any character set that is present
in fbintl. They are already registered in fbintl. conf, but you need to register them in the databases, with
the desired associations and attributes.

Naming Conventions

The naming convention you should use is charset_ collation. For example,

create collation win1252_unicode
 for win1252;

create collation win1252_unicode_ci
 for win1252
 from win1252_unicode
 case insensitive;

Note

The character set name should be as in fbintl.conf (i.e. ISO8859_1 instead of ISO88591, for example).

Specific Attributes for Collations

Note

Some attributes may not work with some collations, even though they do not report an error.

DISABLE-COMPRESSIONS
Disable compressions (aka contractions) changing the order of a group of characters.

Valid for collations of narrow character sets.

Format: DISABLE-COMPRESSIONS={0 | 1}

Example

DISABLE-COMPRESSIONS=1

DISABLE-EXPANSIONS
Disable expansions changing the order of a character to sort as a group of characters.

Valid for collations of narrow character sets.

Format: DISABLE-EXPANSIONS={0 | 1}

Example

DISABLE-EXPANSIONS=1

International Language Support (INTL)

39

ICU-VERSION
Specify what version of ICU library will be used. Valid values are the ones defined in the config file (intl/
fbintl.conf) in entry intl_module/icu_versions.

Valid for UNICODE and UNICODE_CI.

Format: ICU-VERSION={default | major.minor}

Example

ICU-VERSION=3.0

LOCALE
Specify the collation locale.

Valid for UNICODE and UNICODE_CI. Requires complete version of ICU libraries.

Format: LOCALE=xx_XX

Example

LOCALE=en_US

MULTI-LEVEL
Uses more than one level for ordering purposes.

Valid for collations of narrow character sets.

Format: MULTI-LEVEL={0 | 1}

Example

MULTI-LEVEL=1

SPECIALS-FIRST
Order special characters (spaces, symbols, etc) before alphanumeric characters.

Valid for collations of narrow character sets.

Format: SPECIALS-FIRST={0 | 1}

Example

SPECIALS-FIRST=1

Collation Changes

Spanish
ES_ES (as well as the new ES_ES_CI_AI) collation automatically uses attributes DIS-
ABLE-COMPRESSIONS=1;SPECIALS-FIRST=1.

International Language Support (INTL)

40

Note

The attributes are stored at database creation time, so the changes do not apply to databases with ODS
< 11.1.

The ES_ES_CI_AI collation was standardised to current usage.

UTF-8
Case-insensitive collation for UTF-8. See feature request CORE-972

Supported Character Sets

See Appendix B at the end of these notes, for a listing the supported character sets.

Character Sets Added

The following character sets and/or collations have been added to the main manifest:

Case-insensitive collation for French
Feature request CORE-1366

French case-insensitive collation FR_FR_CI_AI, contributed by A. dos Santos Fernandes

--

CP943C for Japanese
Feature request CORE-1324

Japanese character set CP943C, contributed by A. dos Santos Fernandes

--

Metadata Text Conversion

Firebird versions 2.0.x had two problems related to character sets and metadata extraction:

1. When creating or altering objects, text associated with metadata was not transliterated from the client char-
acter set to the system (UNICODE_FSS) character set of these BLOB columns. Instead, raw bytes were
stored there.

The types of text affected were PSQL sources, descriptions, text associated with constraints and defaults,
and so on.

http://tracker.firebirdsql.org/browse/CORE-972
http://tracker.firebirdsql.org/browse/CORE-1366
http://tracker.firebirdsql.org/browse/CORE-1324

International Language Support (INTL)

41

Note

Even in the current version (2.1 Beta 1) the problem can still occur if CREATE or ALTER operations
are performed with the connection character set as NONE or UNICODE_FSS and you are using non-
UNICODE_FSS data.

2. In reads from text BLOBs, transliteration from the BLOB character set to the client character set was not
being performed.

Repairing Your Metadata Text

If your metadata text was created with non-ASCII encoding, you need to repair your database in order to read
the metadata correctly after upgrading it to v.2.1.

Important

The procedure involves multiple passes through the database, using scripts. It is strongly recommended that
you disconnect and reconnect before each pass.

The database should already have been converted to ODS11.1 by way of a gbak backup and restore.

Before doing anything, make a copy of the database.

Create the procedures in the database

[1] isql /path/to/your/database.fdb
[2] SQL> input 'misc/upgrade/metadata_charset_create.sql';

Check your database

[1] isql /path/to/your/database.fdb
[2] SQL> select * from rdb$check_metadata;

The rdb$check_metadata procedure will return all objects that are touched by it.

• If no exception is raised, your metadata is OK and you can go to the section “Remove the upgrade procedures”.

• Otherwise, the first bad object is the last one listed before the exception.

Fixing the metadata

To fix the metadata, you need to know in what character set the objects were created. The upgrade script will
work correctly only if all your metadata was created using the same character set.

[1] isql /path/to/your/database.fdb

International Language Support (INTL)

42

[2] SQL> input 'misc/upgrade/metadata_charset_create.sql';
[3] SQL> select * from rdb$fix_metadata('WIN1252'); -- replace WIN1252 by your charset
[4] SQL> commit;

The rdb$fix_metadata procedure will return the same data as rdb$check_metadata, but it will change the meta-
data texts.

Important

It should be run once!

After this, you can remove the upgrade procedures.

Remove the upgrade procedures

[1] isql /path/to/your/database.fdb
[2] SQL> input 'misc/upgrade/metadata_charset_drop.sql';

43

Chapter 8

Utility Programs
In this chapter are the additions and improvements that have been added to Firebird's set of command-line
utilities in the v.2.1 development phase. Of note is the new fbsvcmgr utility that enables access to the Services
API from a command shell.

New Command-line Utility fbsvcmgr
Alex Peshkov

The new utility fbsvcmgr provides a command-line interface to the Services API, providing access to any service
that is implemented in Firebird.

Although there are numerous database administration tools around that surface the Services API through graph-
ical interfaces, the new tool addresses the problem for admins needing to access remote Unix servers in broad
networks through a text-only connection. Previously, meeting such a requirement needed a programmer.

Using fbsvcmgr

fbsvcmgr does not emulate the switches implemented in the traditional “g*” utilities. Rather, it is just a front-end
through which the Services API functions and parameters can pass. Users therefore need to be familiar with the
Services API as it stands currently. The API header file—ibase.h, in the ../include directory of your Firebird
installation— should be regarded as the primary source of information about what is available, backed up by
the InterBase 6.0 beta API Guide.

Parameters

Specify the Services Manager
The first required parameter for a command line call is the Services Manager you want to connect to:

• For a local connection use the simple symbol service_ mgr

• To attach to a remote host, use the format hostname: service_ mgr

Specify subsequent service parameter blocks (SPBs)
Subsequent SPBs, with values if required, follow. Any SPB can be optionally prefixed with a single '-'
symbol. For the long command lines that are typical for fbsvcmgr, use of the '-' improves the readability
of the command line. Compare, for example, the following (each a single command line despite the line
breaks printed here):

fbsvcmgr service_mgr user sysdba password masterke
 action_db_stats dbname employee sts_hdr_pages

and

Utility Programs

44

fbsvcmgr service_mgr -user sysdba -password masterke
 -action_db_stats -dbname employee -sts_hdr_pages

SPB Syntax

The SPB syntax that fbsvcmgr understands closely matches with what you would encounter in the ibase.h
include file or the InterBase 6.0 API documentation, except that a slightly abbreviated form is used to reduce
typing and shorten the command lines a little. Here's how it works.

All SPB parameters have one of two forms: (1) isc_ spb_ VALUE or (2) isc_ VALUE 1 _ svc_ VALUE2. For
fbsvcmgr you just need to pick out the VALUE, VALUE 1 or VALUE2 part[s] when you supply your parameter.

Accordingly, for (1) you would type simply VALUE, while for (2) you would type VALUE1_VALUE2. For
example:

isc_spb_dbname => dbname
isc_action_svc_backup => action_backup
isc_spb_sec_username => sec_username
isc_info_svc_get_env_lock => info_get_env_lock

and so on.

Note

An exception is isc_ spb_ user_ name: it can be specified as either user_ name or simply user.

It is not realistic to attempt to describe all of the SPB parameters in release notes. In the InterBase 6.0 beta doc-
umentation it takes about 40 pages! The next section highlights some known differences between the operation
of fbsvcmgr and what you might otherwise infer from the old beta documentation.

fbsvcmgr Syntax Specifics

“Do's and Don'ts”
With fbsvcmgr you can perform a single action—and get its results if applicable—or you can use it to retrieve
multiple information items from the Services Manager. You cannot do both in a single command.

For example,

fbsvcmgr service_mgr -user sysdba -password masterke
 -action_display_user

will list all current users on the local firebird server:

SYSDBA Sql Server Administrator 0 0
QA_USER1 0 0
QA_USER2 0 0
QA_USER3 0 0
QA_USER4 0 0
QA_USER5 0 0
GUEST 0 0
SHUT1 0 0

Utility Programs

45

SHUT2 0 0
QATEST 0 0

...and...

fbsvcmgr service_mgr -user sysdba -password masterke
 -info_server_version -info_implementation

will report both the server version and its implementation:

Server version: LI-T2.1.0.15740 Firebird 2.1 Alpha 1
Server implementation: Firebird/linux AMD64

But an attempt to mix all of this in single command line:

fbsvcmgr service_mgr -user sysdba -password masterke
 -action_display_user -info_server_version -info_implementation

raises an error:

Unknown switch “-info_server_version”

Undocumented Items
The function isc_ spb_ rpr_ list_ limbo_ trans was omitted from the IB6 beta documentation. It is
supported in fbsvcmgr.

New Services API Items in v.2.1
Two new items were added to Firebird 2.1 and are supported by fbsvcmgr:

• isc_ spb_ trusted_ auth (type it as trusted_ auth) applies only to Windows. It forces Firebird to
use Windows trusted authentication.

• Ability to set a database name parameter ([isc_ spb_]dbname) in all actions related to the security
database, equivalent to supplying the -database switch to the gsec utility.

Note

For gsec the -database switch is mostly used to specify a remote server you want to administer. In
fbsvcmgr, the name of the server is already given in the first parameter (via the service_ mgr symbol)
so the [isc_ spb_]dbname parameter is mostly unnecessary.

Documentation Bugs
The forms supplied for some parameters in InterBase 6 beta documentation are buggy. When in trouble,
treat ibase.h as the primary source for the correct form.

Unsupported functions
• Everything to do with licensing was removed from the original InterBase 6 open source code and is

therefore not supported either in Firebird or by fbsvcmgr.

Utility Programs

46

• The old Config file view/modification functions have been unsupported since Firebird 1.5 and are not
implemented by fbsvcmgr.

Improvements to Utilities

A number of improvements were made to several utilities.

Utilities Support for Database Triggers

A new parameter was added to gbak, nbackup and isql to suppress Database Triggers from running. It is available
only to the database owner and SYSDBA:

 gbak -no_dbtriggers
 isql -nodbtriggers
 nbackup -T

gbak

gbak Made More Version-friendly
C. Valderrama

V.2.1 gbak can be used to restore a database on any version of Firebird.

Hide User Name & Password in Shell
A. Peshkov

Feature request CORE-867

GBAK now changes param0 to prevent the user name and password from being displayed in ps axf.

isql

Ctrl-C to cancel query output

M. Kubecek
A. dos Santos Fernandes

Feature request CORE-704

Output from a SELECT in an interactive isql session can now be stopped using Ctrl-C. Note, this merely stops
fetching rows from the buffer, it does not cancel the query.

http://tracker.firebirdsql.org/browse/CORE-867
http://tracker.firebirdsql.org/browse/CORE-704

Utility Programs

47

Extension of isql SHOW SYSTEM command
A. dos Santos Fernandes

Feature request CORE-978

See v.2.0.1 Release Notes.

Services Manager

Fixed Some Misbehaviour
A. Peshkov

Feature request CORE-1232

Fixed some misbehaviour of the Services Manager during backup/restore operations.

Disable Non-SYSDBA Use
A. Peshkov

Feature request CORE-787

Optionally disable non-SYSDBA use of Services API. [How?]

Builds and Installs

Parameter for Instance name added to instsvc.exe
D. Yemanov

Feature request CORE-673

instsvc.exe now supports multi-instance installations. More guff?

Revised Win32 Installer Docs
P. Reeves

See install_windows_manually.txt. More guff?

Gentoo/FreeBSD detection during install
A. Peshkov

Feature request CORE-1047

More details in v.2.0.1 release notes.

http://tracker.firebirdsql.org/browse/CORE-978
http://tracker.firebirdsql.org/browse/CORE-1232
http://tracker.firebirdsql.org/browse/CORE-787
http://tracker.firebirdsql.org/browse/CORE-673
http://tracker.firebirdsql.org/browse/CORE-1047

48

Chapter 9

Security
In this chapter are the additions and improvements that have been added to Firebird's security since v.2.0.x.

Using Windows Security to Authenticate Users
Alex Peshkov

From Firebird 2.1 onward, Windows “Trusted User” security can be applied for authenticating Firebird users
on a Windows host. The Trusted User's security context is passed to the Firebird server and, if it succeeds, it is
used to determine the Firebird security user name.

Simply omitting the user and password parameters from the DPB/SPB will automatically cause Windows Trust-
ed User authentication to be applied, in almost all cases. See the Environment section, below, for exceptions.

Illustration

Suppose you have logged in to the Windows server SRV as user 'John'. If you connect to server SRV with isql,
without specifying a Firebird user name and password:

isql srv:employee

and do:

SQL> select CURRENT_USER from rdb$database;

you will get something like:

USER
==
SRV\John

SQL Privileges

Windows users can be granted rights to access database objects and roles in the same way as regular Firebird
users, emulating the capability that has been always been available users of Unix and Linux hosted Firebird
databases.

Administrators

If a member of the built-in Domain Admins group connects to Firebird using trusted authentication, he/she will
be connected as SYSDBA.

Security

49

Configuration Parameter “Authentication”

The new parameter Authentication has been added to firebird.conf for configuring the authentication
method on Windows. Possible values are.-

Authentication = Native
Provides full compatibility with previous Firebird versions, avoiding trusted authentication.

Authentication = Trusted
The Security database is ignored and only Windows authentication is used. In some respects, on Windows
this is more secure than Native, in the sense that it is no less and no more secure than the security of the
host operating system.

Authentication = Mixed
This is the default setting.

To retain the legacy behaviour, when the ISC_ USER and ISC_ PASSWORD variables are set in the environ-
ment, they are picked and used instead of trusted authentication.

Note

Trusted authentication can be coerced to override the environment variables if they are set—refer to the
notes below.

Forcing Trusted Authentication

For the situation where trusted authentication is needed and there is a likelihood that ISC_ USER and ISC_
PASSWORD are set, there is a new DPB parameter that you can add to the DPB—isc_ dpb_ trusted_ auth.

Most of the Firebird command-line utilities support parameter by means of the switch -tru[sted] (the ab-
breviated form is available, according to the usual rules for abbreviating switches).

Note

The qli and nbackup utilities do not follow the pattern: they use single-letter switches that are somewhat arcane.
The switch of interest for qli is -K). For nbackup, watch this space. The facility to force trusted authentication
is yet to be implemented for it.

Example

C:\Pr~\bin>isql srv:db -- log in using trusted authentication
C:\Pr~\bin>set ISC_USER=user1
C:\Pr~\bin>set ISC_PASSWORD=12345
C:\Pr~\bin>isql srv:db -- log in as 'user1' from environment
C:\Pr~\bin>isql -trust srv:db -- log in using trusted authentication

Security

50

Other Security Improvements

isc_service_query() wrongly reveals full database file spec

Feature request CORE-1091

When the server is configured "DatabaseAccess = None", isc_service_query() should return an alias name in-
stead of a full database file name. This seems more like "fixing a bug of omission" than introducing an improve-
ment.

Any user could view the server log through the Services API

Feature request CORE-1148

This was a minor security vulnerability. Regular users are now blocked from retrieving the server log using the
Services API. Requests are explicitly checked to ensure that the authenticated user is SYSDBA.

http://tracker.firebirdsql.org/browse/CORE-1091
http://tracker.firebirdsql.org/browse/CORE-1148

51

Chapter 10

Bugs Fixed

Firebird 2.1 Beta 2

The following section details the bug fixes that have been applied since the Beta 1 release:

Core Engine/DSQL

(CORE-1476) Forced writes have never actually worked on Linux, leaving open the potential for system
trauma to break databases even with FW=ON. It has actually been known to happen on Linux.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1468) Database corruption was possible when database file expansion and read\write activity were
being performed simultaneously.

fixed by V. Horsun

 ~ ~ ~

(CORE-1440) Transaction options were dangerously lacking in validation.

fixed by C. Valderrama

 ~ ~ ~

(CORE-1418) Rapidly starting and shutting down could cause a race condition in the blocking AST thread
due to poor synchronization.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1401) Instances of a global temporary table were not always picking up all indices.

fixed by V. Horsun

 ~ ~ ~

(CORE-1361) Index operations for global temporary tables were not visible to the active connection.

fixed by V. Horsun

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1476
http://tracker.firebirdsql.org/browse/CORE-1468
http://tracker.firebirdsql.org/browse/CORE-1440
http://tracker.firebirdsql.org/browse/CORE-1418
http://tracker.firebirdsql.org/browse/CORE-1401
http://tracker.firebirdsql.org/browse/CORE-1361

Bugs Fixed

52

(CORE-1380) Changing the Forced Writes setting for a database would cause I/O errors if the database
had existing attachments.

fixed by V. Horsun

 ~ ~ ~

(CORE-1408) UDF names using reserved words were being extracted with the double quotes missing.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1379) Invalid parameter type ("Data type unknown" error) when passing the argument to the
CHAR_LENGTH function as a parameter.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1347) Unexpected "cannot transliterate" error.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1332) The SQLSCALE member of a text BLOB column can carry the BLOB's character set.
In some documentation it wrongly says it should always be there. Text BLOBs needed to be brought into line
with character types, i.e., if the connection character set is other than NONE and the BLOB's character set is not
NONE or OCTETS, then it should be the character set of the connection.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Server Crashes

(CORE-1470) The server would crash if a secondary file name was longer than 127 characters.

fixed by C. Valderrama

 ~ ~ ~

(CORE-1457) The server would crash when attempting to deliver events for a session that had just
disconnected.

fixed by V. Horsun, D. Yemanov

 ~ ~ ~

(CORE-1451) Using RDB$DB_KEY in the WHERE clause of a SELECT from a stored procedure would
crash the server.

fixed by A. dos Santos Fernandes

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1380
http://tracker.firebirdsql.org/browse/CORE-1408
http://tracker.firebirdsql.org/browse/CORE-1379
http://tracker.firebirdsql.org/browse/CORE-1347
http://tracker.firebirdsql.org/browse/CORE-1332
http://tracker.firebirdsql.org/browse/CORE-1470
http://tracker.firebirdsql.org/browse/CORE-1457
http://tracker.firebirdsql.org/browse/CORE-1451

Bugs Fixed

53

(CORE-1338) Connection lost (error 335544721, Unable to complete network request to host ...) when
selecting from a view having a derived field defined with ROUND().

fixed by D. Yemanov

 ~ ~ ~

(CORE-1334) Joins with a NULL RDB$DB_KEY would crash the server.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Windows-Specific

(CORE-1456) Wrong events delivery could occur where there were concurrent XNET connections.

fixed by V. Horsun, D. Yemanov

 ~ ~ ~

(CORE-1443) On 64-bit Windows 2003 Server, the embedded engine could cause an application to hang
on exit if no database access was performed.

fixed by V. Horsun

 ~ ~ ~

(CORE-1403) The server under Windows would crash if multiple events were being registered simulta-
neously by a client connected via the XNET protocol.

fixed by D. Yemanov

 ~ ~ ~

Data Definition Language (DDL)

(CORE-1395) CHECK constraints on domains were demonstrating a few problems.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1378) A number of issues were reported regarding domain names and character sets.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Data Manipulation Language (DML)

(CORE-1466) The SUBSTRING() function could return a truncated substring for some multi-byte BLOBs.

http://tracker.firebirdsql.org/browse/CORE-1338
http://tracker.firebirdsql.org/browse/CORE-1334
http://tracker.firebirdsql.org/browse/CORE-1456
http://tracker.firebirdsql.org/browse/CORE-1443
http://tracker.firebirdsql.org/browse/CORE-1403
http://tracker.firebirdsql.org/browse/CORE-1395
http://tracker.firebirdsql.org/browse/CORE-1378
http://tracker.firebirdsql.org/browse/CORE-1466

Bugs Fixed

54

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1428) Timestamp subtraction in dialect 3 was incorrect if the calculation would result in a negative
number.

fixed by V. Horsun

 ~ ~ ~

(CORE-1417) Error “Invalid BLOB ID” error could occur when performing an insert using InterBaseXpress.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1373) A recursive CTE query would produce incorrect results when the recursive member's
SELECT list contained an expression involving self-referencing fields.

fixed by V. Horsun

 ~ ~ ~

Procedural Language (PSQL)

(CORE-1434) EXECUTE STATEMENT was truncating the last two bytes of VARCHAR columns.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1419) CURRENT_TIMESTAMP was being wrongly evaluated during the execution of selectable
procedures.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1371) An EXECUTE BLOCK sequence would fail if it was passed within an EXECUTE STATE-
MENT string.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1370) Use of CTE within procedures was causing memory leaks.

fixed by V. Horsun

 ~ ~ ~

(CORE-1331) Character set transliterations would not work with EXECUTE STATEMENT.

fixed by A. dos Santos Fernandes

http://tracker.firebirdsql.org/browse/CORE-1428
http://tracker.firebirdsql.org/browse/CORE-1417
http://tracker.firebirdsql.org/browse/CORE-1373
http://tracker.firebirdsql.org/browse/CORE-1434
http://tracker.firebirdsql.org/browse/CORE-1419
http://tracker.firebirdsql.org/browse/CORE-1371
http://tracker.firebirdsql.org/browse/CORE-1370
http://tracker.firebirdsql.org/browse/CORE-1331

Bugs Fixed

55

 ~ ~ ~

Remote Interface

(CORE-1455) Crash in fbclient after an unsuccessful user management API call.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1452) The client library would crash when attempting to process an event received just before
disconnection. (Did not affect libfbembed.so.)

fixed by D. Yemanov, V. Horsun

 ~ ~ ~

(CORE-1430) Access Violation in fbclient.dll if a statement was prepared and executed right after events
were registered.

fixed by V. Horsun

 ~ ~ ~

(CORE-1388) It was not possible to attach to the Service Manager remotely if the remote engine version
was less than 2.0.

fixed by V. Horsun

 ~ ~ ~

(CORE-1349) The remote interface was not validating the client-supplied message length against the
message format length.

fixed by V. Horsun

 ~ ~ ~

API

(CORE-1485) Fixed a very ancient bug whereby the sqllen field in the xsqlvar contained length of data
in a varying structure, not its total size. In any OS environment it could cause an access violation when loading
messages in msg.fdb

fixed by A. Peshkov

 ~ ~ ~

(CORE-1416) Incorrect parameter order in a TPB was being accepted without returning an error.

fixed by C. Valderrama

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1455
http://tracker.firebirdsql.org/browse/CORE-1452
http://tracker.firebirdsql.org/browse/CORE-1430
http://tracker.firebirdsql.org/browse/CORE-1388
http://tracker.firebirdsql.org/browse/CORE-1349
http://tracker.firebirdsql.org/browse/CORE-1485
http://tracker.firebirdsql.org/browse/CORE-1416

Bugs Fixed

56

(CORE-1372) If isc_dsql_fetch() is called after isc_commit_transaction() an exception should be raised.
That was not happening.

fixed by V. Horsun

 ~ ~ ~

International Language Support (INTL)

(CORE-1484) INTL modules compiled in the Linux, gcc 4.1.2, amd64 environment would cause an access
violation in Superserver, due to use of the standard operator new but the overloaded operator delete.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1446) Problem with UNICODE collations from fbintl when using system ICU.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1431) There were some inherent issues with uppercasing certain Greek characters in cp1251.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1384) LIKE would not work correctly with collations using SPECIALS-FIRST=1.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1339) The metadata character set upgrade script was generating garbage in descriptions.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Database Monitoring/Admin

(CORE-1467) A database attachment would go into some kind of invalid state after its long-running
statement was canceled via MON$STATEMENTS, returning a 'database shutdown' error.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1441) Query cancellation feature could not interrupt a long fetch.

fixed by D. Yemanov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1372
http://tracker.firebirdsql.org/browse/CORE-1484
http://tracker.firebirdsql.org/browse/CORE-1446
http://tracker.firebirdsql.org/browse/CORE-1431
http://tracker.firebirdsql.org/browse/CORE-1384
http://tracker.firebirdsql.org/browse/CORE-1339
http://tracker.firebirdsql.org/browse/CORE-1467
http://tracker.firebirdsql.org/browse/CORE-1441

Bugs Fixed

57

(CORE-1436) Outer joins would not work properly with the MON$ tables.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1359) The server would crash at the first operation with the monitoring tables if the filesystem
lacked the necessary permissions for the shared-memory file.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1358) Operations with MON$STATEMENTS were throwing "cannot transliterate" errors.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1330) Semaphores were being double-locked when the monitoring tables were queried during
long fetches.

fixed by D. Yemanov

 ~ ~ ~

Security

(CORE-1447) Querying for database info on very long path through an isc_database_info() API call could
cause a buffer overrun.

fixed by C. Valderrama

 ~ ~ ~

(CORE-1397) A possible vulnerability was discovered in the remote server attachment.

fixed by V. Horsun

 ~ ~ ~

(CORE-1312) A remote attacker could check for the presence of a file on a system running the Firebird
server.

fixed by A. Peshkov

 ~ ~ ~

Command-line Utilities

gstat

(CORE-1400) GSTAT did not support infixing the port number in the connection string.

http://tracker.firebirdsql.org/browse/CORE-1436
http://tracker.firebirdsql.org/browse/CORE-1359
http://tracker.firebirdsql.org/browse/CORE-1358
http://tracker.firebirdsql.org/browse/CORE-1330
http://tracker.firebirdsql.org/browse/CORE-1447
http://tracker.firebirdsql.org/browse/CORE-1397
http://tracker.firebirdsql.org/browse/CORE-1312
http://tracker.firebirdsql.org/browse/CORE-1400

Bugs Fixed

58

fixed by D. Yemanov

 ~ ~ ~

(CORE-1399) GSTAT would not use the RemoteServicePort configured in firebird.conf.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1398) GSTAT was treating 'localhost' as case-sensitive in Windows.

fixed by D. Yemanov

 ~ ~ ~

gbak

(CORE-1369) Default values of procedure parameters were not being caught when downgrading a database
from ODS11.1.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1344) Error "request depth exceeded" when restoring complex metadata.

fixed by D. Yemanov

 ~ ~ ~

isql

(CORE-1465) ISQL would ignore an explicit constraint name when it was confused with an internal,
automatic name.

fixed by C. Valderrama

 ~ ~ ~

(CORE-1261) isql would ignore the index and ordering in a UNIQUE CONSTRAINT when generating
a metadata script.

fixed by C. Valderrama

 ~ ~ ~

Firebird 2.1 Beta 1

The following are rough groupings to help you find specific bug fixes that you want to check up on. In general,
expect these to be fixes that were deferred at the 2.0 release or showed up as regressions after a 2.0.x or 2.1
Alpha release.

http://tracker.firebirdsql.org/browse/CORE-1399
http://tracker.firebirdsql.org/browse/CORE-1398
http://tracker.firebirdsql.org/browse/CORE-1369
http://tracker.firebirdsql.org/browse/CORE-1344
http://tracker.firebirdsql.org/browse/CORE-1465
http://tracker.firebirdsql.org/browse/CORE-1261

Bugs Fixed

59

Core Engine/DSQL

(CORE-1248) Incorrect timestamp arithmetic was performed when one of the operands was a negative
number.

fixed by V. Horsun

 ~ ~ ~

(CORE-1228) Reports of database corruption after an out-of-disk-space condition.

fixed by V. Horsun

 ~ ~ ~

(CORE-1227) LIST() function would seem to fail if used twice or more in a query.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1215) Wrong SELECT query results using index to evaluate >= condition

fixed by V. Horsun

 ~ ~ ~

(CORE-1175) Error “Data type unknown” when any UDF argument was a built-in function containing
a DSQL parameter reference.

fixed by D. Yemanov

 ~ ~ ~

Server Crashes

(CORE-1244) Server crash on “select * from <recursive CTE>”.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Win32-Specific

(CORE-1207) FB embedded would not load without extra OS privileges.

fixed by V. Horsun

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1248
http://tracker.firebirdsql.org/browse/CORE-1228
http://tracker.firebirdsql.org/browse/CORE-1227
http://tracker.firebirdsql.org/browse/CORE-1215
http://tracker.firebirdsql.org/browse/CORE-1175
http://tracker.firebirdsql.org/browse/CORE-1244
http://tracker.firebirdsql.org/browse/CORE-1207

Bugs Fixed

60

POSIX-Specific

(CORE-1240) Any task on Darwin PPC that used libfbclient would hang on exit.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1223) Wrong message in firebird.log on Open SuSe Linux 10.2 : Open file limit increased from
1024 to 0.

fixed by V. Horsun

 ~ ~ ~

Data Definition Language (DDL)

(CORE-1292) CREATE TABLE failed if using long username and UTF8 as attachment charset.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1271) Engine was allowing creation of invalid procedures and triggers.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1183) View could not be created if its WHERE clause contained IN <subquery> with a procedure
reference.

fixed by D. Yemanov

 ~ ~ ~

(CORE-1162) Problem altering numeric field type.

fixed by C. Valderrama

 ~ ~ ~

Data Manipulation Language (DML)

(CORE-1253) LIST(DISTINCT) was concatenating VARCHAR values as CHAR

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1153) Activating an index change would cause “STARTING” to work as “LIKE” in a join
condition.

http://tracker.firebirdsql.org/browse/CORE-1240
http://tracker.firebirdsql.org/browse/CORE-1223
http://tracker.firebirdsql.org/browse/CORE-1292
http://tracker.firebirdsql.org/browse/CORE-1271
http://tracker.firebirdsql.org/browse/CORE-1183
http://tracker.firebirdsql.org/browse/CORE-1162
http://tracker.firebirdsql.org/browse/CORE-1253
http://tracker.firebirdsql.org/browse/CORE-1153

Bugs Fixed

61

fixed by A. dos Santos Fernandes

 ~ ~ ~

Procedural Language (PSQL)

(CORE-1267) Small bug with default value for domains in PSQL

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1256) Table columns were hiding the destination variables for RETURNING INTO.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1165) WHEN <list of exceptions> was tracking dependencies only on the first exception in PSQL.

fixed by C. Valderrama

 ~ ~ ~

Remote Interface

(CORE-1218) isc_dsql_info(isc_info_sql_stmt_type) did not set isc_info_end at the end of the passed
user's buffer

fixed by V. Horsun

 ~ ~ ~

(CORE-1196) Long SQL statements were breaking the TCP/IP connection.

fixed by V. Horsun, A. Peshkov, D. Yemanov

 ~ ~ ~

Security

(CORE-885) It was impossible to revoke rights on update of a column.

fixed by A. Peshkov

 ~ ~ ~

(CORE-856) Could not set FName, MName, LName fields in the Security database to blank.

fixed by A. Peshkov

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1267
http://tracker.firebirdsql.org/browse/CORE-1256
http://tracker.firebirdsql.org/browse/CORE-1165
http://tracker.firebirdsql.org/browse/CORE-1218
http://tracker.firebirdsql.org/browse/CORE-1196
http://tracker.firebirdsql.org/browse/CORE-885
http://tracker.firebirdsql.org/browse/CORE-856

Bugs Fixed

62

Utilities

nBackup

(CORE-1151) Error “database file not available” when running NBackup.

fixed by N. Samofatov

 ~ ~ ~

isql

(CORE-703) Using DEL-Key in isql under Linux would give “~”

fixed by A. Peshkov

 ~ ~ ~

gbak

(CORE-1237) gbak would fail to create a backup in service_mgr mode if there was no space on disk,
but reported no error.

fixed by A. Peshkov

 ~ ~ ~

(CORE-1205) v2.1 gbak would crash the server when attempting to perform a backup.

fixed by D. Yemanov, C. Valderrama

 ~ ~ ~

(CORE-1174) gbak would restore NULL rdb$description in rdb$functions as blob (0, 0).

fixed by C. Valderrama

 ~ ~ ~

(CORE-949) Restore would fail with a UDF call in a 'COMPUTED BY' field.

fixed by D. Sibiryakov

 ~ ~ ~

(CORE-132) Restore would fail on external table.

fixed by V. Horsun

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1151
http://tracker.firebirdsql.org/browse/CORE-703
http://tracker.firebirdsql.org/browse/CORE-1237
http://tracker.firebirdsql.org/browse/CORE-1205
http://tracker.firebirdsql.org/browse/CORE-1174
http://tracker.firebirdsql.org/browse/CORE-949
http://tracker.firebirdsql.org/browse/CORE-132

Bugs Fixed

63

gfix

(CORE-1249) Full shutdown mode failed on Classic if there were other connections to the database.

fixed by D. Yemanov

 ~ ~ ~

Building/Installers

(CORE-981) x86_64 RPM package missing “provides”.

fixed by A. Peshkov

 ~ ~ ~

(CORE-107) An instance of fb_lock_mgr would be left running after a build.

fixed by A. Peshkov

 ~ ~ ~

Fixed Regressions

(CORE-1286) Bug with COMPUTED BY fields.

fixed by A. dos Santos Fernandes

 ~ ~ ~

(CORE-1167) Character set GBK was not getting installed.

fixed by A. dos Santos Fernandes

 ~ ~ ~

Not Fixed

(CORE-1079) Every attach of fbclient/fbembed library to the host process leaks 64KB of memory

No information available.

 ~ ~ ~

http://tracker.firebirdsql.org/browse/CORE-1249
http://tracker.firebirdsql.org/browse/CORE-981
http://tracker.firebirdsql.org/browse/CORE-107
http://tracker.firebirdsql.org/browse/CORE-1286
http://tracker.firebirdsql.org/browse/CORE-1167
http://tracker.firebirdsql.org/browse/CORE-1079

64

Appendix A:

New Built-in Functions, Firebird 2.1

Function Format Description

ABS ABS(<number>) Returns the absolute value of a number.

 select abs(amount) from transactions;

ACOS ACOS(<number>) Returns the arc cosine of a number. Argument to
ACOS must be in the range -1 to 1. Returns a value
in the range 0 to PI.

 select acos(x) from y;

ASCII_CHAR ASCII_CHAR(<number>) Returns the ASCII character with the specified
code. The argument to ASCII_CHAR must be in the
range 0 to 255. The result is returned in character set
NONE.

 select ascii_char(x) from y;

ASCII_VAL ASCII_VAL(<string>) Returns the ASCII code of the first character of the
specified string.

1. Returns 0 if the string is empty

2. Throws an error if the first character is mul-
ti-byte

 select ascii_val(x) from y;

ASIN ASIN(<number>) Returns the arc sine of a number. The argument to
ASIN must be in the range -1 to 1. It returns a result
in the range -PI/2 to PI/2.

 select asin(x) from y;

ATAN ATAN(<number>) Returns the arc tangent of a number. Returns a value
in the range -PI/2 to PI/2.

 select atan(x) from y;

ATAN2 ATAN2(<number>, <number>)

65

Function Format Description

Returns the arc tangent of the first number / the sec-
ond number. Returns a value in the range -PI to PI.

 select atan2(x, y) from z;

BIN_AND BIN_AND(<number>
[, <number> ...])

Returns the result of a binary AND operation per-
formed on all arguments.

 select bin_and(flags, 1) from x;

BIN_OR BIN_OR(<number>
[, <number> ...])

Returns the result of a binary OR operation per-
formed on all arguments.

 select bin_or(flags1, flags2) from x;

BIN_SHL BIN_SHL(<number>,
<number>)

Returns the result of a binary shift left operation per-
formed on the arguments (first << second).

 select bin_shl(flags1, 1) from x;

BIN_SHR BIN_SHR(<number>,
<number>)

Returns the result of a binary shift right operation
performed on the arguments (first >> second).

 select bin_shr(flags1, 1) from x;

BIN_XOR BIN_XOR(<number>
[, <number> ...])

Returns the result of a binary XOR operation per-
formed on all arguments.

 select bin_xor(flags1, flags2) from x;

CEIL |
CEILING

{ CEIL | CEILING }(<number>) Returns a value representing the smallest integer that
is greater than or equal to the input argument.

 1) select ceil(val) from x;
 2) select ceil(2.1), ceil(-2.1) from rdb$database; -- returns 3, -2

COS COS(<number>) Returns the cosine of a number. The angle is speci-
fied in radians and returns a value in the range -1 to
1.

 select cos(x) from y;

COSH COSH(<number>) Returns the hyperbolic cosine of a number.

66

Function Format Description

 select cosh(x) from y;

COT COT(<number>) Returns 1 / tan(argument).

 select cot(x) from y;

DATEADD See below Returns a date/time/timestamp value increased (or
decreased, when negative) by the specified amount
of time.

Format:

DATEADD(<number> <timestamp_part> FOR <date_time>)
/* Do not use the above (expanded) syntax for any permanent code.
 The keyword FOR will be replaced with TO */
DATEADD(<timestamp_part>, <number>, <date_time>)
timestamp_part ::= { YEAR | MONTH | DAY | WEEKDAY |
 HOUR | MINUTE | SECOND | MILLISECOND }

1. YEAR, MONTH, DAY and WEEKDAY cannot be used with time values.
2. HOUR, MINUTE, SECOND and MILLISECOND cannot be used with date
 values.
3. All timestamp_part values can be used with timestamp values.
4. See the note above regarding the planned change of keyword in
 the expanded form of this function call.

Example

 select dateadd(-1, day, current_date) as yesterday
 from rdb$database;

DATEDIFF See below Returns an exact numeric value representing the in-
terval of time from the first date/time/timestamp val-
ue to the second one.

Format:

/* Expanded form: do not use, as it will be changed! */
DATEDIFF(<timestamp_part> FROM <date_time> FOR <date_time>)
/* Re-implemented expanded form, not available in Beta 2 */
DATEDIFF(<timestamp_part> FROM <date_time> TO <date_time>)
/* Contracted form: OK to use */
DATEDIFF(<timestamp_part>, <date_time>, <date_time>)
timestamp_part ::= { YEAR | MONTH | DAY | WEEKDAY |
 HOUR | MINUTE | SECOND | MILLISECOND }

67

Function Format Description

1. Returns a positive value if the second value is greater than
 the first one, negative when the first one is greater, or zero
 when they are equal.
2. Comparison of date with time values is invalid.
3. YEAR, MONTH, DAY and WEEKDAY cannot be used with time values.
4. HOUR, MINUTE, SECOND and MILLISECOND cannot be used with date values.
5. All timestamp_part values can be used with timestamp values.
**** NOTE ****
6. The keywords implemented in this beta for the expanded form
 are being changed in the next Beta to improve the semantics.

Example

 select datediff(HOUR, ('TOMORROW' -10), current_date)
 as datediffresult
 from rdb$database;

DECODE See below DECODE is a shortcut for a CASE ... WHEN ...
ELSE expression.

Format:

DECODE(<expression>, <search>, <result>
 [, <search>, <result> ...] [, <default>]

Example

 select decode(state, 0, 'deleted', 1, 'active', 'unknown') from things;

EXP EXP(<number>) Returns the exponential e to the argument.

 select exp(x) from y;

FLOOR FLOOR(<number>) Returns a value representing the largest integer that
is less than or equal to the input argument.

 1) select floor(val) from x;
 2) select floor(2.1), floor(-2.1)
 from rdb$database; -- returns 2, -3

GEN_UUID GEN_UUID() -- no arguments Returns a universal unique number.

 insert into records (id) value (gen_uuid());

HASH HASH(<value>) Returns a HASH of a value.

68

Function Format Description

 select hash(x) from y;

LEFT LEFT(<string>, <number>) Returns the substring of a specified length that ap-
pears at the start of a left-to-right string.

 select left(name, char_length(name) - 10)
 from people
 where name like '% FERNANDES';

LN LN(<number>) Returns the natural logarithm of a number.

 select ln(x) from y;

LOG LOG(<number>, <number>) LOG(x, y) returns the logarithm base x of y.

 select log(x, 10) from y;

LOG10 LOG10(<number>) Returns the logarithm base ten of a number.

 select log10(x) from y;

LPAD LPAD(<string>, <num-
ber> [, <string>])

LPAD(string1, length, string2) prepends string2 to
the beginning of string1 until the length of the result
string becomes equal to length.

1. If the second string is omitted the default value is one space.
2. If the result string would exceed the length, the second string is truncated.

Example

 select lpad(x, 10) from y;

MAXVALUE MAXVALUE(<value>
[, <value> ...])

Returns the maximum value of a list of values.

 select maxvalue(v1, v2, 10) from x;

MINVALUE MINVALUE(<value>
[, <value> ...)

Returns the minimun value of a list of values.

 select minvalue(v1, v2, 10) from x;

69

Function Format Description

MOD MOD(<number>, <number>) Modulo: MOD(X, Y) returns the remainder part of
the division of X by Y.

 select mod(x, 10) from y;

OVERLAY See below Returns string1 replacing the substring FROM start
FOR length by string2.

Format:

OVERLAY(<string1> PLACING <string2> FROM <start> [FOR <length>])

The OVERLAY function is equivalent to:

 SUBSTRING(<string1>, 1 FOR <start> - 1) || <string2> ||
 SUBSTRING(<string1>, <start> + <length>)

If <length> is not specified, CHAR_LENGTH(<string2>) is implied.

PI PI() -- no arguments Returns the PI constant (3.1459...).

 val = PI();

POSITION POSITION(<string>
IN <string>)

POSITION(X IN Y) returns the position of the sub-
string X in the string Y. Returns 0 if X is not found
within Y.

 select rdb$relation_name
 from rdb$relations
 where position('RDB$' IN rdb$relation_name) = 1;

POWER POWER(<number>, <number>) POWER(X, Y) returns X to the power of Y.

 select power(x, 10) from y;

RAND RAND() -- no argument Returns a random number between 0 and 1.

 select * from x order by rand();

REPLACE REPLACE(<stringtosearch>,
<findstring>, <replstring>)

Replaces all occurrences of <findstring> in <string-
tosearch> with <replstring>.

70

Function Format Description

 select replace(x, ' ', ',') from y;

REVERSE REVERSE(<value>) Returns a string in reverse order. Useful function
for creating an expression index that indexes strings
from right to left.

 create index people_email on people
 computed by (reverse(email));
 select * from people
 where reverse(email) starting with reverse('.br');

RIGHT RIGHT(<string>, <number>) Returns the substring, of the specified length, from
the right-hand end of a string.

 select right(rdb$relation_name, char_length(rdb$relation_name) - 4)
 from rdb$relations
 where rdb$relation_name like 'RDB$%';

ROUND ROUND(<number>, <number>) Returns a number rounded to the specified scale.

Example

 select round(salary * 1.1, 0) from people;

If the scale (second parameter) is negative, the integer part of the
value is rounded. E.g., ROUND(123.456, -1) returns 120.000.

RPAD RPAD(<string1>,
<length> [, <string2>])

Appends <string2> to the end of <string1> until the
length of the result string becomes equal to <length>.

Example

 select rpad(x, 10) from y;

1. If the second string is omitted the default value is one space.
2. If the result string would exceed the length, the final application of
 <string2> will be truncated.

SIGN SIGN(<number>) Returns 1, 0, or -1 depending on whether the input
value is positive, zero or negative, respectively.

 select sign(x) from y;

71

Function Format Description

SIN SIN(<number>) Returns the sine of an input number that is expressed
in radians.

 select sin(x) from y;

SINH SINH(<number>) Returns the hyperbolic sine of a number.

 select sinh(x) from y;

SQRT SQRT(<number>) Returns the square root of a number.

 select sqrt(x) from y;

TAN TAN(<number>) Returns the tangent of an input number that is ex-
pressed in radians.

 select tan(x) from y;

TANH TANH(<number>) Returns the hyperbolic tangent of a number.

 select tanh(x) from y;

TRUNC TRUNC(<number>
[, <number>])

Returns the integral part (up to the specified scale) of
a number.

 1) select trunc(x) from y;
 2) select trunc(-2.8), trunc(2.8)
 from rdb$database; -- returns -2, 2
 3) select trunc(987.65, 1), trunc(987.65, -1)
 from rdb$database; -- returns 987.60, 980.00

72

Appendix B:

INTL Character Sets

Listing of Character Sets supported.

Narrow Character Sets

CYRL,
DOS437, DOS737, DOS775, DOS850, DOS852, DOS857, DOS858, DOS860,
DOS861, DOS862, DOS863, DOS864, DOS865, DOS866, DOS869,
ISO8859_1, ISO8859_13, ISO8859_2, ISO8859_3, ISO8859_4,
ISO8859_5, ISO8859_6, ISO8859_7, ISO8859_8, ISO8859_9,
KOI8R, KOI8U,
NEXT,
TIS620,
WIN1250, WIN1251, WIN1252, WIN1253, WIN1254, WIN1255, WIN1256,
WIN1257 and WIN1258.

ICU Character Sets

UTF-8 ibm-1208 ibm-1209 ibm-5304 ibm-5305 windows-65001 cp1208
UTF-16 ISO-10646-UCS-2 unicode csUnicode ucs-2
UTF-16BE x-utf-16be ibm-1200 ibm-1201 ibm-5297 ibm-13488
 ibm-17584 windows-1201 cp1200 cp1201 UTF16_BigEndian
UTF-16LE x-utf-16le ibm-1202 ibm-13490 ibm-17586
 UTF16_LittleEndian windows-1200
UTF-32 ISO-10646-UCS-4 csUCS4 ucs-4
UTF-32BE UTF32_BigEndian ibm-1232 ibm-1233
UTF-32LE UTF32_LittleEndian ibm-1234
UTF16_PlatformEndian
UTF16_OppositeEndian
UTF32_PlatformEndian
UTF32_OppositeEndian
UTF-7 windows-65000
IMAP-mailbox-name
SCSU
BOCU-1 csBOCU-1
CESU-8
ISO-8859-1 ibm-819 IBM819 cp819 latin1 8859_1 csISOLatin1
 iso-ir-100 ISO_8859-1:1987 l1 819
US-ASCII ASCII ANSI_X3.4-1968 ANSI_X3.4-1986 ISO_646.irv:1991
 iso_646.irv:1983 ISO646-US us csASCII iso-ir-6 cp367 ascii7
 646 windows-20127
ISO_2022,locale=ja,version=0 ISO-2022-JP csISO2022JP
ISO_2022,locale=ja,version=1 ISO-2022-JP-1 JIS JIS_Encoding
ISO_2022,locale=ja,version=2 ISO-2022-JP-2 csISO2022JP2
ISO_2022,locale=ja,version=3 JIS7 csJISEncoding
ISO_2022,locale=ja,version=4 JIS8
ISO_2022,locale=ko,version=0 ISO-2022-KR csISO2022KR
ISO_2022,locale=ko,version=1 ibm-25546

73

ISO_2022,locale=zh,version=0 ISO-2022-CN
ISO_2022,locale=zh,version=1 ISO-2022-CN-EXT
HZ HZ-GB-2312
ISCII,version=0 x-iscii-de windows-57002 iscii-dev
ISCII,version=1 x-iscii-be windows-57003 iscii-bng windows-57006
 x-iscii-as
ISCII,version=2 x-iscii-pa windows-57011 iscii-gur
ISCII,version=3 x-iscii-gu windows-57010 iscii-guj
ISCII,version=4 x-iscii-or windows-57007 iscii-ori
ISCII,version=5 x-iscii-ta windows-57004 iscii-tml
ISCII,version=6 x-iscii-te windows-57005 iscii-tlg
ISCII,version=7 x-iscii-ka windows-57008 iscii-knd
ISCII,version=8 x-iscii-ma windows-57009 iscii-mlm
gb18030 ibm-1392 windows-54936
LMBCS-1 lmbcs
LMBCS-2
LMBCS-3
LMBCS-4
LMBCS-5
LMBCS-6
LMBCS-8
LMBCS-11
LMBCS-16
LMBCS-17
LMBCS-18
LMBCS-19
ibm-367_P100-1995 ibm-367 IBM367
ibm-912_P100-1995 ibm-912 iso-8859-2 ISO_8859-2:1987 latin2
 csISOLatin2 iso-ir-101 l2 8859_2 cp912 912 windows-28592
ibm-913_P100-2000 ibm-913 iso-8859-3 ISO_8859-3:1988 latin3
 csISOLatin3 iso-ir-109 l3 8859_3 cp913 913 windows-28593
ibm-914_P100-1995 ibm-914 iso-8859-4 latin4 csISOLatin4
 iso-ir-110 ISO_8859-4:1988 l4 8859_4 cp914 914 windows-28594
ibm-915_P100-1995 ibm-915 iso-8859-5 cyrillic csISOLatinCyrillic
 iso-ir-144 ISO_8859-5:1988 8859_5 cp915 915 windows-28595
ibm-1089_P100-1995 ibm-1089 iso-8859-6 arabic csISOLatinArabic
 iso-ir-127 ISO_8859-6:1987 ECMA-114 ASMO-708 8859_6 cp1089
 1089 windows-28596 ISO-8859-6-I ISO-8859-6-E
ibm-813_P100-1995 ibm-813 iso-8859-7 greek greek8 ELOT_928
 ECMA-118 csISOLatinGreek iso-ir-126 ISO_8859-7:1987 8859_7
 cp813 813 windows-28597
ibm-916_P100-1995 ibm-916 iso-8859-8 hebrew csISOLatinHebrew
 iso-ir-138 ISO_8859-8:1988 ISO-8859-8-I ISO-8859-8-E 8859_8
 cp916 916 windows-28598
ibm-920_P100-1995 ibm-920 iso-8859-9 latin5 csISOLatin5
 iso-ir-148 ISO_8859-9:1989 l5 8859_9 cp920 920 windows-28599
 ECMA-128
ibm-921_P100-1995 ibm-921 iso-8859-13 8859_13 cp921 921
ibm-923_P100-1998 ibm-923 iso-8859-15 Latin-9 l9 8859_15 latin0
 csisolatin0 csisolatin9 iso8859_15_fdis cp923 923 windows-28605
ibm-942_P12A-1999 ibm-942 ibm-932 cp932 shift_jis78 sjis78
 ibm-942_VSUB_VPUA ibm-932_VSUB_VPUA
ibm-943_P15A-2003 ibm-943 Shift_JIS MS_Kanji csShiftJIS
 windows-31j csWindows31J x-sjis x-ms-cp932 cp932 windows-932
 cp943c IBM-943C ms932 pck sjis ibm-943_VSUB_VPUA
ibm-943_P130-1999 ibm-943 Shift_JIS cp943 943 ibm-943_VASCII_VSUB_VPUA
ibm-33722_P12A-1999 ibm-33722 ibm-5050 EUC-JP
 Extended_UNIX_Code_Packed_Format_for_Japanese
 csEUCPkdFmtJapanese X-EUC-JP eucjis windows-51932
 ibm-33722_VPUA IBM-eucJP
ibm-33722_P120-1999 ibm-33722 ibm-5050 cp33722 33722

74

 ibm-33722_VASCII_VPUA
ibm-954_P101-2000 ibm-954 EUC-JP
ibm-1373_P100-2002 ibm-1373 windows-950
windows-950-2000 Big5 csBig5 windows-950 x-big5
ibm-950_P110-1999 ibm-950 cp950 950
macos-2566-10.2 Big5-HKSCS big5hk HKSCS-BIG5
ibm-1375_P100-2003 ibm-1375 Big5-HKSCS
ibm-1386_P100-2002 ibm-1386 cp1386 windows-936 ibm-1386_VSUB_VPUA
windows-936-2000 GBK CP936 MS936 windows-936
ibm-1383_P110-1999 ibm-1383 GB2312 csGB2312 EUC-CN ibm-eucCN
 hp15CN cp1383 1383 ibm-1383_VPUA
ibm-5478_P100-1995 ibm-5478 GB_2312-80 chinese iso-ir-58
 csISO58GB231280 gb2312-1980 GB2312.1980-0
ibm-964_P110-1999 ibm-964 EUC-TW ibm-eucTW cns11643 cp964 964
 ibm-964_VPUA
ibm-949_P110-1999 ibm-949 cp949 949 ibm-949_VASCII_VSUB_VPUA
ibm-949_P11A-1999 ibm-949 cp949c ibm-949_VSUB_VPUA
ibm-970_P110-1995 ibm-970 EUC-KR KS_C_5601-1987 windows-51949
 csEUCKR ibm-eucKR KSC_5601 5601 ibm-970_VPUA
ibm-971_P100-1995 ibm-971 ibm-971_VPUA
ibm-1363_P11B-1998 ibm-1363 KS_C_5601-1987 KS_C_5601-1989 KSC_5601
 csKSC56011987 korean iso-ir-149 5601 cp1363 ksc windows-949
 ibm-1363_VSUB_VPUA
ibm-1363_P110-1997 ibm-1363 ibm-1363_VASCII_VSUB_VPUA
windows-949-2000 windows-949 KS_C_5601-1987 KS_C_5601-1989
 KSC_5601 csKSC56011987 korean iso-ir-149 ms949
ibm-1162_P100-1999 ibm-1162
ibm-874_P100-1995 ibm-874 ibm-9066 cp874 TIS-620 tis620.2533
 eucTH cp9066
windows-874-2000 TIS-620 windows-874 MS874
ibm-437_P100-1995 ibm-437 IBM437 cp437 437 csPC8CodePage437
 windows-437
ibm-850_P100-1995 ibm-850 IBM850 cp850 850 csPC850Multilingual
 windows-850
ibm-851_P100-1995 ibm-851 IBM851 cp851 851 csPC851
ibm-852_P100-1995 ibm-852 IBM852 cp852 852 csPCp852 windows-852
ibm-855_P100-1995 ibm-855 IBM855 cp855 855 csIBM855 csPCp855
ibm-856_P100-1995 ibm-856 cp856 856
ibm-857_P100-1995 ibm-857 IBM857 cp857 857 csIBM857 windows-857
ibm-858_P100-1997 ibm-858 IBM00858 CCSID00858 CP00858
 PC-Multilingual-850+euro cp858
ibm-860_P100-1995 ibm-860 IBM860 cp860 860 csIBM860
ibm-861_P100-1995 ibm-861 IBM861 cp861 861 cp-is csIBM861
 windows-861
ibm-862_P100-1995 ibm-862 IBM862 cp862 862 csPC862LatinHebrew
 DOS-862 windows-862
ibm-863_P100-1995 ibm-863 IBM863 cp863 863 csIBM863
ibm-864_X110-1999 ibm-864 IBM864 cp864 csIBM864
ibm-865_P100-1995 ibm-865 IBM865 cp865 865 csIBM865
ibm-866_P100-1995 ibm-866 IBM866 cp866 866 csIBM866 windows-866
ibm-867_P100-1998 ibm-867 cp867
ibm-868_P100-1995 ibm-868 IBM868 CP868 868 csIBM868 cp-ar
ibm-869_P100-1995 ibm-869 IBM869 cp869 869 cp-gr csIBM869
 windows-869
ibm-878_P100-1996 ibm-878 KOI8-R koi8 csKOI8R cp878
ibm-901_P100-1999 ibm-901
ibm-902_P100-1999 ibm-902
ibm-922_P100-1999 ibm-922 cp922 922
ibm-4909_P100-1999 ibm-4909
ibm-5346_P100-1998 ibm-5346 windows-1250 cp1250
ibm-5347_P100-1998 ibm-5347 windows-1251 cp1251

75

ibm-5348_P100-1997 ibm-5348 windows-1252 cp1252
ibm-5349_P100-1998 ibm-5349 windows-1253 cp1253
ibm-5350_P100-1998 ibm-5350 windows-1254 cp1254
ibm-9447_P100-2002 ibm-9447 windows-1255 cp1255
windows-1256-2000 windows-1256 cp1256
ibm-9449_P100-2002 ibm-9449 windows-1257 cp1257
ibm-5354_P100-1998 ibm-5354 windows-1258 cp1258
ibm-1250_P100-1995 ibm-1250 windows-1250
ibm-1251_P100-1995 ibm-1251 windows-1251
ibm-1252_P100-2000 ibm-1252 windows-1252
ibm-1253_P100-1995 ibm-1253 windows-1253
ibm-1254_P100-1995 ibm-1254 windows-1254
ibm-1255_P100-1995 ibm-1255
ibm-5351_P100-1998 ibm-5351 windows-1255
ibm-1256_P110-1997 ibm-1256
ibm-5352_P100-1998 ibm-5352 windows-1256
ibm-1257_P100-1995 ibm-1257
ibm-5353_P100-1998 ibm-5353 windows-1257
ibm-1258_P100-1997 ibm-1258 windows-1258
macos-0_2-10.2 macintosh mac csMacintosh windows-10000
macos-6-10.2 x-mac-greek windows-10006 macgr
macos-7_3-10.2 x-mac-cyrillic windows-10007 maccy
macos-29-10.2 x-mac-centraleurroman windows-10029 x-mac-ce macce
macos-35-10.2 x-mac-turkish windows-10081 mactr
ibm-1051_P100-1995 ibm-1051 hp-roman8 roman8 r8 csHPRoman8
ibm-1276_P100-1995 ibm-1276 Adobe-Standard-Encoding
 csAdobeStandardEncoding
ibm-1277_P100-1995 ibm-1277 Adobe-Latin1-Encoding
ibm-1006_P100-1995 ibm-1006 cp1006 1006
ibm-1098_P100-1995 ibm-1098 cp1098 1098
ibm-1124_P100-1996 ibm-1124 cp1124 1124
ibm-1125_P100-1997 ibm-1125 cp1125
ibm-1129_P100-1997 ibm-1129
ibm-1131_P100-1997 ibm-1131 cp1131
ibm-1133_P100-1997 ibm-1133
ibm-1381_P110-1999 ibm-1381 cp1381 1381
ibm-37_P100-1995 ibm-37 IBM037 ibm-037 ebcdic-cp-us ebcdic-cp-ca
 ebcdic-cp-wt ebcdic-cp-nl csIBM037 cp037 037 cpibm37 cp37
ibm-273_P100-1995 ibm-273 IBM273 CP273 csIBM273 ebcdic-de cpibm273
 273
ibm-277_P100-1995 ibm-277 IBM277 cp277 EBCDIC-CP-DK EBCDIC-CP-NO
 csIBM277 ebcdic-dk cpibm277 277
ibm-278_P100-1995 ibm-278 IBM278 cp278 ebcdic-cp-fi ebcdic-cp-se
 csIBM278 ebcdic-sv cpibm278 278
ibm-280_P100-1995 ibm-280 IBM280 CP280 ebcdic-cp-it csIBM280
 cpibm280 280
ibm-284_P100-1995 ibm-284 IBM284 CP284 ebcdic-cp-es csIBM284
 cpibm284 284
ibm-285_P100-1995 ibm-285 IBM285 CP285 ebcdic-cp-gb csIBM285
 ebcdic-gb cpibm285 285
ibm-290_P100-1995 ibm-290 IBM290 cp290 EBCDIC-JP-kana csIBM290
ibm-297_P100-1995 ibm-297 IBM297 cp297 ebcdic-cp-fr csIBM297
 cpibm297 297
ibm-420_X120-1999 ibm-420 IBM420 cp420 ebcdic-cp-ar1 csIBM420 420
ibm-424_P100-1995 ibm-424 IBM424 cp424 ebcdic-cp-he csIBM424 424
ibm-500_P100-1995 ibm-500 IBM500 CP500 ebcdic-cp-be csIBM500
 ebcdic-cp-ch cpibm500 500
ibm-803_P100-1999 ibm-803 cp803
ibm-838_P100-1995 ibm-838 IBM-Thai csIBMThai cp838 838 ibm-9030
ibm-870_P100-1995 ibm-870 IBM870 CP870 ebcdic-cp-roece
 ebcdic-cp-yu csIBM870

76

ibm-871_P100-1995 ibm-871 IBM871 ebcdic-cp-is csIBM871 CP871
 ebcdic-is cpibm871 871
ibm-875_P100-1995 ibm-875 IBM875 cp875 875
ibm-918_P100-1995 ibm-918 IBM918 CP918 ebcdic-cp-ar2 csIBM918
ibm-930_P120-1999 ibm-930 ibm-5026 cp930 cpibm930 930
ibm-933_P110-1995 ibm-933 cp933 cpibm933 933
ibm-935_P110-1999 ibm-935 cp935 cpibm935 935
ibm-937_P110-1999 ibm-937 cp937 cpibm937 937
ibm-939_P120-1999 ibm-939 ibm-931 ibm-5035 cp939 939
ibm-1025_P100-1995 ibm-1025 cp1025 1025
ibm-1026_P100-1995 ibm-1026 IBM1026 CP1026 csIBM1026 1026
ibm-1047_P100-1995 ibm-1047 IBM1047 cpibm1047
ibm-1097_P100-1995 ibm-1097 cp1097 1097
ibm-1112_P100-1995 ibm-1112 cp1112 1112
ibm-1122_P100-1999 ibm-1122 cp1122 1122
ibm-1123_P100-1995 ibm-1123 cp1123 1123 cpibm1123
ibm-1130_P100-1997 ibm-1130
ibm-1132_P100-1998 ibm-1132
ibm-1140_P100-1997 ibm-1140 IBM01140 CCSID01140 CP01140 cp1140
 cpibm1140 ebcdic-us-37+euro
ibm-1141_P100-1997 ibm-1141 IBM01141 CCSID01141 CP01141 cp1141
 cpibm1141 ebcdic-de-273+euro
ibm-1142_P100-1997 ibm-1142 IBM01142 CCSID01142 CP01142 cp1142
 cpibm1142 ebcdic-dk-277+euro ebcdic-no-277+euro
ibm-1143_P100-1997 ibm-1143 IBM01143 CCSID01143 CP01143 cp1143
 cpibm1143 ebcdic-fi-278+euro ebcdic-se-278+euro
ibm-1144_P100-1997 ibm-1144 IBM01144 CCSID01144 CP01144 cp1144
 cpibm1144 ebcdic-it-280+euro
ibm-1145_P100-1997 ibm-1145 IBM01145 CCSID01145 CP01145 cp1145
 cpibm1145 ebcdic-es-284+euro
ibm-1146_P100-1997 ibm-1146 IBM01146 CCSID01146 CP01146 cp1146
 cpibm1146 ebcdic-gb-285+euro
ibm-1147_P100-1997 ibm-1147 IBM01147 CCSID01147 CP01147 cp1147
 cpibm1147 ebcdic-fr-297+euro
ibm-1148_P100-1997 ibm-1148 IBM01148 CCSID01148 CP01148 cp1148
 cpibm1148 ebcdic-international-500+euro
ibm-1149_P100-1997 ibm-1149 IBM01149 CCSID01149 CP01149 cp1149
 cpibm1149 ebcdic-is-871+euro
ibm-1153_P100-1999 ibm-1153 cpibm1153
ibm-1154_P100-1999 ibm-1154 cpibm1154
ibm-1155_P100-1999 ibm-1155 cpibm1155
ibm-1156_P100-1999 ibm-1156 cpibm1156
ibm-1157_P100-1999 ibm-1157 cpibm1157
ibm-1158_P100-1999 ibm-1158 cpibm1158
ibm-1160_P100-1999 ibm-1160 cpibm1160
ibm-1164_P100-1999 ibm-1164 cpibm1164
ibm-1364_P110-1997 ibm-1364 cp1364
ibm-1371_P100-1999 ibm-1371 cpibm1371
ibm-1388_P103-2001 ibm-1388 ibm-9580
ibm-1390_P110-2003 ibm-1390 cpibm1390
ibm-1399_P110-2003 ibm-1399
ibm-16684_P110-2003 ibm-16684
ibm-4899_P100-1998 ibm-4899 cpibm4899
ibm-4971_P100-1999 ibm-4971 cpibm4971
ibm-12712_P100-1998 ibm-12712 cpibm12712 ebcdic-he
ibm-16804_X110-1999 ibm-16804 cpibm16804 ebcdic-ar
ibm-1137_P100-1999 ibm-1137
ibm-5123_P100-1999 ibm-5123
ibm-8482_P100-1999 ibm-8482
ibm-37_P100-1995,swaplfnl ibm-37-s390 ibm037-s390
ibm-1047_P100-1995,swaplfnl ibm-1047-s390

77

ibm-1140_P100-1997,swaplfnl ibm-1140-s390
ibm-1142_P100-1997,swaplfnl ibm-1142-s390
ibm-1143_P100-1997,swaplfnl ibm-1143-s390
ibm-1144_P100-1997,swaplfnl ibm-1144-s390
ibm-1145_P100-1997,swaplfnl ibm-1145-s390
ibm-1146_P100-1997,swaplfnl ibm-1146-s390
ibm-1147_P100-1997,swaplfnl ibm-1147-s390
ibm-1148_P100-1997,swaplfnl ibm-1148-s390
ibm-1149_P100-1997,swaplfnl ibm-1149-s390
ibm-1153_P100-1999,swaplfnl ibm-1153-s390
ibm-12712_P100-1998,swaplfnl ibm-12712-s390
ibm-16804_X110-1999,swaplfnl ibm-16804-s390
ebcdic-xml-us

	Firebird 2.1 Beta 2 Release Notes
	Table of Contents
	General Notes
	Bug Reporting
	Documentation

	New in Firebird 2.1
	New Features Implemented
	Database Triggers
	SQL and Objects
	Global Temporary Tables
	Common Table Expressions, Recursive DSQL Queries
	RETURNING Clause
	UPDATE OR INSERT Statements for MERGE Functionality
	LIST() function
	Lots of New Built-in Functions
	

	Procedural SQL
	Domains for Defining PSQL Variables and Arguments
	COLLATE in Stored Procedures and Parameters
	Enhancement to PSQL error stack trace

	Security
	Windows Security to Authenticate Users

	International Language Support
	The CREATE COLLATION Command
	Unicode Collations Anywhere

	Platform Support
	Ports to Windows 2003 64-bit

	Administrative
	Database Monitoring via SQL
	More Context Information

	Remote Interface

	Global Improvements in Firebird 2.1
	Remote Interface Improvements
	API Changes
	XSQLVAR

	Optimization
	Optimization for Multiple Index Scans
	Optimize sparse bitmap operations

	Configuration and Tuning
	Increased Lock Manager Limits & Defaults
	Page sizes of 1K and 2K Deprecated
	Enlarge Disk Allocation Chunks
	Bypass Filesystem Caching on Superserver

	Other Global Improvements
	Garbage Collector Rationalisation
	Immediate Release of External Files
	Synchronization of DSQL metadata cache objects in
 Classic server
	BLOB Improvements
	Type Flag for Stored Procedures

	New Configuration Parameters and Changes
	MaxFileSystemCache

	Administrative Features
	Monitoring Tables
	The Concept
	Scope and Security
	Metadata
	Usage
	Cancel a Running Query

	More Context Information

	SQL Language Enhancements
	Data Definition Language (DDL)
	Database Triggers
	Utilities Support for Database Triggers

	Global Temporary Tables
	Syntax and Rules for GTTs
	Implementation Notes

	BLOB Subtype 1 Compatibility with VarChar
	Views Enhancements
	Use Column Aliases in CREATE VIEW
	CURRENT OF Now Allowed for Views

	SQL2003 compliance for CREATE TRIGGER
	SQL2003 Compliant Alternative for Computed Fields

	Data Manipulation Language (DML)
	Common Table Expressions
	Benefits of CTEs
	Recursion Limit
	Syntax and Rules for CTEs
	Rules for Non-Recursive CTEs
	Rules for Recursive CTEs

	The LIST Function
	The RETURNING Clause
	Rules for Using a RETURNING Clause

	UPDATE OR INSERT Statement
	Usage Notes

	New JOIN Types
	Syntax and Rules
	Named columns join
	Natural join

	INSERT with defaults
	Make RDB$DB_KEY in outer joins return NULL when
 appropriate
	Data Type of an Aggregation Result
	Built-in Functions
	New Built-in Functions
	Enhancements to Functions

	Changes in DSQL Parsing
	Sorting on BLOB and ARRAY Columns is Now Disallowed

	Procedural Language Extensions (PSQL)
	Domains in PSQL
	COLLATE in Stored Procedures and Parameters

	Optimization

	International Language Support (INTL)
	The CREATE COLLATION Command
	ICU Character Sets
	Registering an ICU Character Set Module
	The UNICODE Collations
	Specific Attributes for Collations

	Collation Changes
	Supported Character Sets
	Character Sets Added

	Metadata Text Conversion
	Repairing Your Metadata Text
	Create the procedures in the database
	Check your database
	Fixing the metadata
	Remove the upgrade procedures

	Utility Programs
	New Command-line Utility fbsvcmgr
	Using fbsvcmgr
	Parameters
	SPB Syntax
	fbsvcmgr Syntax Specifics

	Improvements to Utilities
	Utilities Support for Database Triggers
	gbak
	gbak Made More Version-friendly
	Hide User Name & Password in Shell

	isql
	Ctrl-C to cancel query output
	Extension of isql SHOW SYSTEM command

	Services Manager
	Fixed Some Misbehaviour
	Disable Non-SYSDBA Use

	Builds and Installs
	Parameter for Instance name added to instsvc.exe
	Revised Win32 Installer Docs
	Gentoo/FreeBSD detection during install

	Security
	Using Windows Security to Authenticate Users
	SQL Privileges
	Administrators
	Configuration Parameter “Authentication”
	Forcing Trusted Authentication

	Other Security Improvements
	isc_service_query() wrongly reveals full database
 file spec
	Any user could view the server log through the
 Services API

	Bugs Fixed
	Firebird 2.1 Beta 2
	Core Engine/DSQL
	Server Crashes
	Windows-Specific
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	Procedural Language (PSQL)
	Remote Interface
	API
	International Language Support (INTL)
	Database Monitoring/Admin
	Security
	Command-line Utilities
	gstat
	gbak
	isql

	Firebird 2.1 Beta 1
	Core Engine/DSQL
	Server Crashes
	Win32-Specific
	POSIX-Specific
	Data Definition Language (DDL)
	Data Manipulation Language (DML)
	Procedural Language (PSQL)
	Remote Interface
	Security
	Utilities
	nBackup
	isql
	gbak
	gfix

	Building/Installers
	Fixed Regressions
	Not Fixed

	Appendix A
	New Built-in Functions, Firebird 2.1

	Appendix B
	INTL Character Sets
	Narrow Character Sets
	ICU Character Sets

