Firebird 2.1 Release Notes

Helen Borrie (Collator/Editor)
3 March 2008 - Document v. 0210_41 - for Firebird 2.1 RC 2

Firebird 2.1 Release Notes

3 March 2008 - Document v. 0210_41 - for Firebird 2.1 RC 2
Helen Borrie (Collator/Editor)

Table of Contents

T 0T = I N (o] (S TSP PPRPTI 1
210 To T (= 0] 1 (] oo SRR 2
Dol N[0 1< g1 = 1 o] o SRR RTTPRI 2

2 N = T T I 1= o] o T PRSP PPPPOPPPPR: 3
New Features IMPIEMENTEDcc.uiiieiiee e e e e e e e s e e e e e e e e e e e s nrrraaeeeeas 3

ON=DISK SETUCTUIE .ttt ettt ettt e et e e s sttt e e s et bt e e e e nbb e e e e snnbeeeeean 3
DT = o7z o I I 0o =S PEEPR 3
S @ =0 o [@ o= £ SRR 3
ProcedUural SOLcoooiieeiieii e —————— 4
S o 1 PP 5
International Language SUPPOITuueeeieee et e e e e e e s e e e e e e e s s s e e e e e e e s e snnrraeeeaaeessannnenes 5
L= 10T TS oo AP EEPRR P 5
AGMINISITELIVE ...ttt et e e e ettt e e e st bt e e e e st bt e e e enbb e e e e e nbbeeeeanbeeeas 5
REMOLE INEEITACE ...t e e et e e e st b e e s nba e e e eneees 6
DENVE TADIES ...t e et e et b e e e et e e e e nbre e e e ann 6
PSQL Now SUpports Named CUISOISccvuiiiiiiee e e s eciiieiee e e e e e s et e e e e e e s s aenanan e e e e e e e s e nannennees 6
Reimplemented Protocols 0N WINAOWScooiiiiiiiiiiiee e s s e e e snrvrree e e e e e e 6
Reworking of Garbage CollECHONcoviiiiiiiie e 7
Porting of the Services APl t0 ClassiC iS COMPIELEccuuvviiiiieee e 8
Lock Timeout for WAIT TranSaCtioNScccuueeieiiiiiieeiiiieee st e ettt e e e 8
New Implementation of String Search OPEratorsvvvvvevieeiiiiiiieiee e 8
Reworking of Updatalle VIEWSooi it e e 9
Additional Database Shutdown Modes INtrodUCEDc.eeeeiiiiiiiiiiiiie e 9
UDFs Improved re NULL Handlingc.ovvviiiiieo et 9
Run-time Checking for Concatenation OVErflowceveviieeiiiiiiiiiiieecee e, 10
Changes to SyNChroNISAtON LOGICuvueiieeeeiiiiiiiiieieeee e s e eiiiitee e e e e e s seiarrae e e e e e e s s ssnerrareeaaeeeeanns 10
Support for 64-bit PIatfOrMScoiiiiiiiie e 10
Record Enumeration LimitS INCrEBSEAccooiiiiiiiiiiiiiii et 10
Debugging IMPrOVEMENLSuuiiiiiieeeiiiiiiieeer e e e e s e e e e e e e e e s st e e e e e e e s s aantbraeeeaeeeesaannneees 11
Improved Connection Handling on POSIX SUPEISEIVESuveeiieeeeiiiiiiiieeeee e e e s seiirveeeeaee e e 11
PSQL Invariant Tracking REWOIKEDovviiiieiiiiiiciiec e e 11
ROLLBACK RETAIN SYyNtaxX SUPPOITuuuvuruuueuuuuuunununsnneennnnnnnsnsnnnnnnnsnnnsnnnnnnnnnsnsnnnnnnnnnnnnnnns 12
No More Registry Search 0n WIN32 SEIVEISuviiiiiii et e e e 12
More Optimizer IMPrOVEMENTSciiieiiii ittt e e e e ee e e e e e e e s s e e e e e e e s e s bbb aeeeeeaesseannnnrnees 12

3. Changes to the Firebird APl @nd ODScooiiiiiiiiieee e e e e rar e e e e e e s e e nenees 13

APl (Application Programming INtEITACE)cccuviiiiieiee e 13
Cleanup Of ThBSE.Nooi e 13
Lock Timeout for WAIT TranSaCtiONSccccueiieiiiiiieeiiiieeeeasiiee e et e s siaee e sbsee e s esnneeeesanes 13
isc_dsgl_sgl_info() Now Includes Relation AlIGSESc.cvvveeiieeeii e 13
Enhancement to isc_blob 100KUP dESC() .vvvvvereeeeiiiiiiieeee e 13
APL 1dentifieS ClIENt VEISIONcooiiiiiiieiiiiie ettt e 14
Additions to the isc_database info() SITUCIUIEccuviiiiieeeee e 14
Additions to the isc_transaction info() StFUCIUIEc.ovveeeiiee i 14
IMPrOVE SEIVICES APl ..o e e e e e e e e e e e e et e e e e e e e s e nnnraaees 15
New Function for Delivering Error TEXEuviiiiiie et 16
Accommodation of New Shutdown <state> Parameterscceeeiiiiiieiiiieiee e 16

ODS (ON-Disk StrUCLUIE) ChANGESvvveiieeeeiiiiiiitiiee e e e e esssttee e e e e e e s e s st ee e e e e e e s sasntbreeeeaaeeesannsneeees 17
NEW ODS NUIMDEN ...ttt ettt et e e s e e e s asbe e e e s s bbe e e e s anbbeeeeannbeeeeaanes 17

Firebird 2.1 Release Notes

Size limit for exception MESSAGES INCIEASEUcvviiiiiiee i 17

New Description Field fOr GENEIAIOrSoccuviiiieeie e e e e e e e e e e e e 18

New Description Field for SQL ROIEScccooiiiiiiieiee e 18
“ODS Type’ RECOGNITIONuuiiiiiiiiie ettt e e e e e e e e e e e e e e s st re e e e e e e e e e anearnees 18
Smarter DSQL Error REPOMINGccooiiiiiiiie ettt e e e e e aaereea e 18
New Column in RDB3INAEX_SEOMENESvvieiiieeiiieeiiieeeiieesee e sieee e siee e eenaeeaneeeanneas 18

4. Global Improvements in FIrebird 2.1ooooiiiiiiiie e 19
Forced Writes on LinUX NOW WOTKS!coiiiiiiiiiiiie it 19
0= 1S Lo PRSPPI 19
Instant Fix for an Older FIrEhirdeviiiiiiieeeiiiie e 20
DatabaseS 0N REAW DEVICESuuuiieiiiiiieeeeiiiee e siiee e st e e e sttt e e s st e e e e snte e e e e abseeeeasnnbeaeeannreeeeeanns 20
Moving a Datahase t0 @ RAW DEVICEuueiiiei i 20
Special Issues for Nbak/NbaCKUPc..ovviiiiii e 20
Further Advice aDOUt RBW DEVICESccoiiiiiiiiiiiiiiie et 21
Remote Interface IMPIrOVEMENESooiiiiiiiiiee e e e e s s e e e e e s s s rar e e e e e e e aaans 22
N B 4= T o =PSRRI 22
DS @ I L o ORI 22

(@] 011101114 1 Lo o K PERPRR 23
Optimization for MUltiple INAEX SCANSccoiiiiiiiiiiie e 23
Optimize sparse bitmap OPEralioNSuueiiieiee e e e e e e s earbaeeeaeeas 23
Configuration @Nd TUNINGcoccuvrieiee e e ee e e e e e s e e e e e e e e e s s e b e e eaeeessaaansbraeeeeaeesssannrraneeaeens 23
Increased Lock Manager Limits & DefalltSc.ooiiiiiiiiiie e 23
Page sizes of 1K and 2K DePreCatedciiveiiiiiiiiiieiiiee et 23
Enlarge Disk AHOCation CHUNKSuuiiiiiiiiiiiiiie e e e e e e e e 24
Bypass Filesystem Caching 0N SUPEISEIVEYccoceeiiiiiiiiieiee e e e ettt e e e e et e e e e e sanrnees 25
Other Global IMPIrOVEMENLSuviiiiiiie e e e e s e e e e e e e s e st e e e e e e e s s asntrreeeeeeas 26
Garbage Collector RationaliSatioNcccuviiiiiiee i e e 26
Immediate Release Of EXIErNal FIlESocuuiiiiiiiiiiie e 26
Synchronization of DSQL metadata cache objects in ClassiC SErVErevveeeeiiiciiiieeeeee e, 26
BLOB IMPIOVEMENTS ...ceviviiiieeeiei ettt e e e e e eee it s s e e e e e e eeaeta s s s e e e eeeeeeessaaeeeeeeeessnsanseeeeeeennnes 26
Type Flag for Stored PrOCEAUIEScoviie it e e e e 26
Help for Getting Core DUMPS 0N LINUXuvviiiieeeeeiiiiiiiieee e e e e s esiiiiree e e e e e e e s ssensnneeeeeeeseennes 27

5. Data Definition Language (DDL)oocuiiiiiiiie ettt e e e st e e e e e e e s st baa e e e e e e e s e eannneees 28
QUICK LINKS ..o 28
DT = o7z o I I 00 = = PR PPERRR 28
Global TemMPOrary TahIESuvviiiiee i e e e e s e e e e e e s e e eatrraees 30
VIEBWS ENNBNCEMENTS ...ttt e et e et e e e et e e e s nnbae e e e s nneee s 31

SQL 2003 compliance for CREATE TRIGGERccocuiiiiieiiee e 32

SQL 2003 Compliant Alternative for Computed Fieldscoeeveeeiiiiiiiiie e 32
CREATE SEQUENCE ...ttt ettt e et e e s st e e e e st e e e s enneeeeeas 33
REVOKE ADMIN OPTION ...ooiiitiiiiiiiiiteeasitie e sstieee e st e e s sibtea e s ssteeesssnsseeeessnsseeessnsseeeesanes 34
SET/DROP DEFAULT Clauses for ALTER TABLEccviiiiiiiiee e 34
Syntaxes for Changing EXCEPLIONScccuiiiiiiiie e e e e s s e 34
ALTER EXTERNAL FUNCTION ..ottt e e et e e s anneee s 35
COMMENT SEBEEIMENLeeiiviiee ettt et s st e e e s e e e s sbbe e e s s antaeeeeasnbeeaesenneeeeaas 35
Extensions to CREATE VIEW SPeCifiCationccoieiiiiiiiiiiiiiiec e 36
RECREATE TRIGGER Statement Implementedccooiiiiiieiiiiiiiee e 36
USAgE ENNBNCEMENLSuiiiiiiiie et e s e e e e e s e et e e e e e e e e s s eaanrraeeeaeeenaas 36

6. Data Manipulation Language (DIML)eeiiieoiiiiiiiieiee ettt e e e e et e e e e e e e e e e ennnreees 38
QUICK LINKS ..o 38
CommON Table EXPrESSIONSueeeiieeiiiiciiiiieiee e e e e e ettt e e e e s e et e e s e e e e s e st ee e e e e e e e s s aasnrnaeeeas 39

THE LIST FUNCHION .ottt ettt e et e e e sttt e e e et e e e e snbae e e e e nnneeas 42

Firebird 2.1 Release Notes

The RETURNING ClAUSEeeiiiiiiiiie ettt ettt e ettt e s anssaee e s snae e e e s nnneeeeeans 43
UPDATE OR INSERT SEGBEMENTveiieiiiiiiee ettt e e e e st e e snaeeas 45

LS YV O 1\ I/ 0= S 46
INSERT With DEFAUITSeeeiiiiiiiieiiieie ettt s 47
BLOB Subtype 1 Compatibility With VarCharccccveveeiiiiiiiieeeee e, 47

Full Equality Comparisons BEtWeen BLOBSccoiiiiiiiiiiiiiiiee et e e e 48
RDB$DB_KEY Returns NULL iN OULEr JOINSccooiuiiieeiiiiieeesiieeeessiiee e s s 48
Sorting on BLOB and ARRAY Columns iS RESIOredc.ooooiiiiiiiiiiiiieiee e 48
BUIT-IN FUNCLIONS .ottt et e e st e e e e e e e e snreeeeans 48
FUNCLions ENNANCEA 1N V. 2.0.X ..eeiiiiiiiiieiiiiiie ettt e e e s e e s nnnneeas 50
DSQL Parsing of Table NameS iS SIHCLEYc.uviiiiiieie e a e 51
EXECUTE BLOCK SEBEMENTvveiieiiiiiieeeeiitiie e eiieeeeesie et e st e e st e e e ssnsaeeessnnsneesssnnseeeennns 53
DENVE TADIES ...ttt e e st e e e et e e et e e e e e nnaneee s 54
ROLLBACK RETAIN SYNEAX ..eutviiiiiiiiiieeiiiiieeessiiee e s st ee e st e e e s ssnaeee s snnsseeessnseeeessnsseeesanns 56
(O SRS Y g = PP PRR 56
Enhancements to UNION Handlingc.ccooiiiiiiiiiiiiec et e e 57
Enhancements t0 NULL LOGICuuviiiiieiiiiiiiiieies ettt e e s st e e e e e e s nnarane e e e e e e s e annes 58
Subqueries and INSERT Statements Can Now Accept UNION SetS.......ooocvvveeeeecee e, 60

New Extensions to UPDATE and DELETE SYNEaXeSuceeveeeiiiiiiiiiiiieeeeeeeesiiinieeeeee e e e e 61
Extended Context VariableScoiuuiiiiiiiie et 61
Improvements in Handling User-specified Query Planscoooooiiiiiiiiiiieiie e 65
IMProVEMENES IN SOMINGvviiiiiiiie e e s e e e e e e e s s st r e e e e e e s s enantrreaeeaens 67
NEXT VALUE FOR EXPIrESSIONcceiiiiiiiiieiiiiiieesitieeeeasiiee e siieea e s sniseessssnsseeessnsneeessnnseeesanns 68
RETURNING Clause for INSERT SEAEMENEScccuvviieiiiiiiee it 68

N 1 1o =PRSS 69
SELECT Statement & EXPreSSion SYNEAXuvveeieeeeiiiiiiiieeieeeeesscciiieeeeeee e e e s ssnsnneeeeaeeessennenes 69
Data Type of an Aggregation RESUILcooiiiiiiiiieice e a e e e 71

7. Procedural SQL (PSQL) ...occeiiiiiiiiiie ettt ettt e e e e e e et e e e e e e e e et a e e e e e e e e aaarrraareaaaeeaaann 72
QUICK LINKS ..o 72
D a et e LI s O 72
COLLATE in Stored Procedures and Parametersoooviieeeiiiiiiee i 73
WHERE CURRENT OF NOW AllIOWE fOF VIBWS ...ccoiiiiiiiiiiiiie e 73
Context Variable ROW_COUNT ENNANCEAuuviiiiieeiiiiiiiiiieeee et e e e e e esiinraee e e e e e e 73
EXPIHICIT CUMSOISuivieieeie ettt e e ettt e e e e e e s e e e e e e s e e n b b e e e e e eaeeessanntbaeeeaaeeseannssrnees 74
Defaults for Stored Procedure ArQUMENLSooiiiiiiieiiee e s icciiiiee e e e e e e s et e e e e e e e s s earrreeeeeeas 75
LEAVE <label> SyntaX SUPPOIT ... ettt e e s et e e e e e s ae e e e e e e s s ennrrrneeeaaas 77
OLD Context Variables NOW READ-0NIYceviiiiiiiiiiiiiiiie e 78
PSQL SEACK TTBCE ..vvvvvvvvirrrrrerusrrrrrrerssesserssersrrrsreserererrrer.—.........—.——..—.........—........................—. 79

Call aUDF asaVoid FUNCtion (ProCEAUIE)ceiieiiiiiiiiiieiiee et e e e 80

8. New Reserved Words and Changesoeeeiiiiii ittt e e e e 81
NEWIY RESEIVE WOIAS ...t e et e e e e et e e e e e e e s s e bbb r e e e e e e s eaantbraeeeaaeeaaanns 81
Changed from NONn-reserved t0 RESEIVEcoiiiiiiiiiiieiiee e e e e 81
Keywords Added as NON-TESEIVEXcoccuiiiiiiie e e e e r e e e e e s e anrreeeeeeas 81
Keywords NO LONGEr RESEIVEXooiii ittt e et e e e e e e e s s et reeeeaeas 82
NO Longer Reserved as KEYWOITSuvviiiieiiiiiiiiiiiei e ettt e e e e s s e e e e e e e e st e e e e e e e e s eaanes 82
9. INdeXing & OPLMIZALIONSccciiiiiiiiiee e e e e e e e e e e e s e et ae e e e e e e e e s s st b ba e et eaeeessannnrrrneeeeens 83
(@ o111 114 Lo 0 ST TV A0 SRR 83
IMPIrOVEd PLAN ClAUSEuuiiiiiiiie ettt e ettt e e e e e e et e e e e e e e e e sabtr e e e e eaeessasntbrnreeaaeeesans 83
OPtimMiZEer IMPIrOVEMENTSoeciii it e et e e e s s e e e e e s e et e e e e e e e e e e saatbbraeeeaeeessannntrrneeeaens 83
FOI All DABDASESciueeeiieiiitiee ettt e et e e s et e e e s st e e e s ante e e e s anneeeaas 84

FOr ODS 11 Dat@bhaSes ONlYeeeeiieeiiiiiiiieeeee ettt e st e e e e e s st e e e e e e e e s e nnnraaeeeeas 85
ENhancements tO INAEXINGcvviiiiiie e e s e s e e e e e e et e e e e e e e s s eaabrraereaeeeaaas 86

Vi

Firebird 2.1 Release Notes

252-byte index 1ength lIMit IS gONEciiiiiiiiceeee e 86
EXPIrESSION INOEXES ..eevieeeei ittt e et e e e e s e et e e e e e e e e e s e tnteeeeeeaeeeeennssnnees 86
Changes to NUll Keys handlingcoeeiieiiiiiiiiieee e 87
IMproved INAEX COMPIESSIONeeiiieeiiiiiiiieeeeeee e e s e sitr e e e e e e e e st e e e e e e e s s asnbrrereeaeeessaansnranees 87
Selectivity MaintenanCe Per SEOMENTcc.uvveiiiie e e e e s e e e e et e e e e e e e e e sanraees 88

10. International Language SUPPOIt (INTL) ... e e e e e e e e 89
New INTL Interface for NON-ASCI CharaCter SEtSccccuuiieiiiiiiee e 89
F Y 11 ot =PTSRS 89
ENNGNCEIMENLSeeiiiiiiiii et e st e e e e st e e e e e e bt e e e e e ansbeee e e nntneeeeann 89
LV I LU0 T TR 91
New Character SEtS/COlIAtIONSccoiiiiiiiiiiiiie e e e sbreeeeaaes 92
DevElOPMENTS IN V.2.1 ..ot e e e e e e e e e e e e s s et r e e e e e e e e e nnnraees 93

ICU CharaCter SEES ..oiiiiveiieeiiiiie e ettt et e e e ettt s ettt e et e e e e sttt e e e abae e e e e snsbe e e e e snbeeeeeannneeas 93

The UNICODE COIAIONSvvieieiiiiiee ettt e e e e st e e st e e e s nnnneeas 95
Specific Attributes fOr COllAtioNScoiiiiiiiiiiie e 95
Collation Changes iN V.2.1 ... e e e e e e e e e br e e e e e e e s snananeees 96
Metadata TEXE CONMVEISIONcceiiiiiieeiiiiiee e itieee e e siee e e e sttt e e e ssbe e e e s snbeeeeeansbeeeesenbseeeesanseeeeeannsneeeeennes 97
Repairing Your Metadata TEXLoooiiiiiiiiie et e et a e e e s e e e e eeaeas 97
SUPPOIE Charaller SELScoii it e e e e e e e e e e e e s e s bbb e e e e e e e e s e seaabbrareeaeeas 98
11, ADMINISIFALIVE FEBIUMNESeiiiiiiiiie ettt ettt e e e et e e s et e e e e anbb e e e e e nbe e e e e snbeeeeeannneeens 99
YKok o o TR I o] =R PR 99
THRE CONCEPL ..vvveieiee et e e e e e e e e e e e e e e ettt a e e e e aeeesssaastbreeeeaeessaanssrnneeaaessaannes 99
SCOPE AN SECUITY .ot ee e e ettt e e e e e e e e e e e e e et e e e e e ae e s s s ssabraereeeeessaantbrareeeaeeeaans 99
Y= = o = = PP PPPPROPTPRR 100
L= o SRS 103
Cancel a RUNNING QUENYocoiiiiiiiieie e e e sttt e e e e e e e e e e e e e s s st e ae e e e e e e s e anntbaeeeaeeeseannneees 104
More Context INFOIMELIONcoiiiiiieiiiii ettt e e e e b e e s s nreeees 105
S ot YRR 106
SUMMANY OF ChaNJES ...t e e e e e e e e e e s s et e e e e e e e e s saatbbeaeeeaaeeeans 106
NEW SECUNLY ABIADASE ... e e e e e e e e e s e s e e e e e e e e e nnaaraaeeeas 106
Using Windows Security to AUthentiCate USEISccoviiiiiiiieiie e 106
Better password ENCIYPLIONoii it e e e e e e e e e e e s s saarr e e eeaee s 106
Users can modify their OWn PassWordsc.cuvieiiieiei i 106
Non-server access to security database IS rgECtedvvieiiiiiiiiiiiiice e, 107
Active protection from brute-force attackcccoovciiieiiiii i, 107
Vulnerabilities have DEeN ClOSEAcoiiiiiiiiiie e 107
Details of the Security Changes in Firebird 2oooiiiiiiiiiiiiie e 107
F U111 g (o= (o o USRI 108

(01 S ol L 1 (= o1 (o SRR 109
Protection from Brute-force Hackingcoeeeeiiiiiiiiiiiiiie e 109
Using Windows Security to AUthentiCate USEISuvuiiiiiiiiiiiiiieiee et a e 109
SOQL PriVIIEOES ...ttt e e e e e e e re e e e e e e e e araaaaeaeaaaes 110

F X [0 T 0T U= 0] £ PR PPPR 110
Configuration Parameter “AUthentiCation”c.eevvviiiii i 110
Forcing Trusted AURENTICALIONciiiiiii i e s e e e e 111
ClaSSIC SEIVEr ON POSIX oottt e ettt e e s sttt e e e e sbe e e e s nnte e e e e s nnneeeeennnes 111
o AN 0|V = = 1 {0 1 PRSP 112
Other SecUrity IMPrOVEMENTScciii i e e e e e e e e e s st r e e e e e e s saantbeeeeeeaeeeaaans 112
isc_service_query() wrongly revealed the full database file PECevvvvveeiiiiiiiiiiiiiieiiie, 112

Any user could view the server log through the Services APlovveviiiiiiiiii e, 112
Dealing with the New Security Dat@haSecoocuiiiiiiie e e 112
Doing the Security Database UPGradecooiiiiiiiiiie e 113

Vii

Firebird 2.1 Release Notes

13, ComMMEANG-TNE ULHITIES ...ttt e e et e e s et e e e e e b e e e enees 115
General ENNBNCEMENTSeeiiiiiiiiiie ettt e e ettt e e s e be et e e s st e e e e e nnbeeeeesnbreeeenan 115
Utilities Support for Database THOOES ..veveeeeei i e et e e e e e e eeaaa e 115

T ol o IS = V=SSR SR TP 115
New Command-line Utility fRSVEMOr ..o 115

BACKUD TOOIS ..vvtiieiiee ettt e et e e e e e e s et e e e e e e e s s e st b eeeeeeaeeesssnsataaeeeeaeesaannnes 118

New On-line Incremental BaCKUpcccuuiiiiiiiii e 118

gbak Backup/Porting/ReStore ULHILYcccvviiiiiiiei e 121

ISQL QUENY ULIHITY .. e e e e e e e et e e e e e e e s e bbb ee e e e e e e s s e annrneees 122
INEW SIWITCNES ...ttt et e e e e st e e e ettt e e e e anbe e e e e abbe e e e e ansreeeesnaeeeeaas 122

New Commands and ENNGNCEMENTScooiuiiiiiiiiiiie et e e sneeee e 124

OSEC AULhENtICAliON IMBNAGETeiii ittt e e e e e e e e e e e e s s s e e e e e e e s s seabbbaeeeaeeesaanes 127

(01 S ol 1= (0 1 [o o L= SRR 127

(oD = A= U (113U PP 127
New Shutdown SEAEES (MOAES)cc.eviiieiiee et e s e e e e e e e s e e eeaens 127

BUIIAS @NA INSLAIIS ...t e e e st e e s st e e e s nnbneeeeans 128
Parameter for Instance name added t0 INSESVC.EXEcuveveeiiiiieeeiiiiiie e 128

Revised WIN32 INSLAIEN DOCScoooiieiiieiiiiiiee ettt st a e 129
Gentoo/FreeBSD detection during iNStalloooociiiiiiiie e 129

14. External FUNCHONS (UDFS) ...uuviiiiiiiii ittt e e e et e e e e e e e s e et ba e e e e e e e e s santaaeneeaeeeeaannes 130
Ability to Signal SQL NULL viaa NUull POINLENccccuviiiiiiiee et 130
UDF library diagnostic messages iMPrOVEdcooiiiuiiiiiiiie e e e e e e ssanrvae e e e e 131
UDFs Added and Changedcooiiiiiiiiieiie ettt e e s st e e e e s e et re e e e e aeeeeaas 131
IB_UDF rand() VS IB _UDF _SraN0() ...evveeeeeeeeiiiiiiiiiieeee e e e e esiiieiee e e e s senivree e e e e e e e s snannnneeeeaaeeas 131
IB_UDF _JOWEK ...ttt e s e e s st e e snt e e sst e e enteeensaeeenneeeeneeeanneeannes 132

GENEral UDF ChaNQgEScuviiiiiiei e i ittt e et e e e e e e e s st e e e e e e e e s es bbb e s e e e aeeeessanabsbeneeaeeasaanes 132
BUITA ChaNQgES ...ttt et e e e e e e et e e e e e e e s s s atbraeeeaaeeeaaas 132

15. New Configuration Parameters and Changeseevvveeiiiiiiiiieiie e 133
REAXEAATTIASCRECKINGvvveiiie i e e s e e e e s e e snerreees 133
MaXFESYSIEMCBCNE ..eeeiiieeei e e e e e e e e e e e e s e e enraaeeeeeas 133
DatabaseGrOWENINCIEIMENTcoiiiiiiie it s st e e e e e e e e nreeee e anneeas 134
EXEEINMAIFTIEACCESSieeeeee ettt ettt et e e e ettt e e e et bt e e e e nb et e e e ennbe e e e e anbaeeeeannneeas 134
=0T onY = o SRR 134
S o 7= 1 o o [TP 135

F N o010\ [0 oo o TP EETRR 135
101 o] oy TS ROPSRRI 135

(@ T (0o 11010010\ F= o1 oo [PP PPRPRR 135
USEPHIONTYSCNEAUIES ... e e e e s e et e e e e e e e e e nntaraaeeeeaeeas 136
TCPNONagIe has Changeovuiiiiieii e e e e e s e e e e e e s s b baeeeaaeas 136
Removed or Deprecated ParamELErSceviieii it et e e e e s e e e e e e e e e eans 136
Createl NEErNAIWINAOWveeieiiiiie ettt e e e s e e s enaeeeeann 136
DeadThreadsCollection iS N0 1ONQEr USEdcccuvviiiiiiie e 136

16. FIrebird 2 ProJECE TEAIMSuvviiiieeeeiiiiiiieee et e e e e s e et te e e e e e e e e s et b e et e e e e e s eaantaaeeeeaaeeeaasnsnsaaeeeeeeesaannnes 137
Appendix A: New BUIlt-in FUNCHIONScoiiii it e e e e s e e saaarreeeeas 139
Appendix B: International CharaCter SELSoiiiiiiiiiei e e e e e e eaarr e eas 149
New Character Sets and Collations Implementedcccvveeiee e 149
NAITOW CharaCer SEES ...oiiuvviiieiiiiiee ettt e ettt e e et b e e e et e e e e s aabb e e e e s snbbeeeeansbeeeesanseeeeeanns 150

[CU CarBCEEr SES ..eieiieiiieeeiiiiie e ettt ettt e ettt e e sttt e e et e e e e asbe e e e s anb et e e e s be e e e s anbae e e e e nnnbeeeeenneees 150
Appendix C: Security Database Upgrade for FIirebird 2 ..o 156
SECUNLY UPGrade SCIIPLueviiieiieee et e e e e e e e s e et e e e e e e e e e st b e e e e e eaeeessanntbeneeeaaeeaaanns 156

viii

List of Tables

16.1. Firebird Development Teams

Chapter 1

General Notes

Thisisthe second (and, hopefully, thefinal) release candidatefor Firebird 2.1. Thanksto all who havefield-tested
the Alpha, Betaand RC1 versions and reported problems. Asyou can tell from the bug-fix list, you found plenty
for usto do!

About These Notes

If you have been tracking the alpha and beta binary kits for v.2.1, you would have noticed that the most recent
v.2.0.x release notes were included. This near-final edition of the v.2.1 release notes is a merger of the notes
developed during the v.2.1 and v.2.0 beta and sub-release cycles, so the v.2.0.x documentation is no longer
distributed with the v.2.1 binaries.

The Installation, Migration/Compatibility and Bug Fixes sections are no longer included in the release notes
document. Instead, you will find them in the $fbroot$/doc/ subdirectory as separate documents.

Field Testing

This is designated a release candidate, which means it is a “late beta” with all of the planned additions and
enhancements implemented. Aswith al pre-release versions, we ask you to test this one rigorously in the field
on dispensable copies of your favourite databases! Bear in mind that thisis not quite the final release, so do
think twice before deciding to install it into a production environment!

Important
From the QA Team

The 2.1 release has many interesting new features that you can play with, like database triggers, temporary
and monitoring tables, common table expressions, recursive queries and dozens of new inbuilt functions. We
encourage you to see what you can achieve with these new features and let us know about any deficiency.

You are enthusiastically invited to post to the firebird-devel list good descriptions of any bugs or beasts you
encounter, or post bug reports directly to our Issue Tracker.

To help smoothe the transition from ol der versions, we encourage you to test this rel ease with your applications
and stress it with real-world data and loads, enabling as many hidden regressions or performance issues as
possible to surface and be fixed before final release.

Tell usit'sOK, too!

We're interested in your feedback even if you don't find any issues. “Positive” feedback helps to shorten the
rel ease cycle because, without it, it is hard to gauge how much the build is being tested in the field, in terms of
both scale and functionality. The “quality index” is estimated using download count, direct feedback, hearsay,
development stage, and such. If the positive feedback doesn't come in, the only way we can compensate for
it isto lengthen the release cycle.

So don't hesitate to share your successful test results with us. You can send your comments and findings to
pcisar AT users DOT sourceforge DOT net

Within reason, you can also ask support questions in firebird-devel but please restrict the questions to matters
concerning the new v.2.1 features. The firebird- devel list is not a support forum for Firebird newbies!

http://tracker.firebirdsql.org

General Notes

On the other hand, support questions about Firebird 2.1 Betas (or any other alphaor betabuilds) are not welcome
inthefirebird-support list, so we ask you to respect our forum rules and use thefirebird-test list (see next section)
for your pre-release support questions.

Bug Reporting

 If you think you have discovered a new bug in this release, please make a point of reading the instructions
for bug reporting in the article How to Report Bugs Effectively, at the Firebird Project website.

» If you think a bug fix hasn't worked, or has caused a regression, please locate the original bug report in the
Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide details of
the OS platform. Include reproducible test datain your report and post it to our Tracker.

2. You are warmly encouraged to make yourself known as a field-tester of this alpha by subscribing to the
field-testers' list and posting the best possible bug description you can.

3. If youwant to start adiscussion thread about abug or an implementation, please do so by subscribing to the
firebird-devel list. In that forum you might also see feedback about any tracker ticket you post regarding
this alpha.

Documentation

Y ou will find README documents for many of the new v.2 and v.2.1 featuresin your installation kit, installed
by default in the /doc/ sub-directory.

Anautomated "Release Notes' pageinthe Tracker provideslistsand linksfor all of the Tracker tickets associated
with this version and its various builds. Usethislink.

For your convenience, the many bug-fixes and regressions fixed during the development of Firebird 2.0.x and
2.1 are listed in descending chronological order in the separate Bugfixes document.

—Firebird 2 Project Team

http://www.firebirdsql.org/index.php?op=devel&sub=qa&id=bugreport_howto
http://tracker.firebirdsql.org
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?projectId=10000&styleName=Html&version=10041

Chapter 2

New In Firebird 2

New Features Implemented

This chapter summarises the new features implemented in Firebird 2, encompassing both v.2.1 and the v.2.0.x
series.

On-Disk Structure
Databases created or restored under Firebird 2 have an on-disk structure (ODS) of 11 or higher.

* Firebird 2.1 creates databases with an ODS of 11.1. It can read databases of lower ODS but most of its new
features will be unavailable to such databases.

» Firebird 2.0.x servers create databases with an ODS of 11 (sometimes expressed as 11.0). If you wish to have
the full range of v.2.1 features available, you should upgrade ODS 11 and lower databases by backing them
up and restoring them under v.2.1.

Database Triggers

(v.2.1) Newly implemented “database triggers’ are user-defined PSQL modules that can be designed to firein
various connection-level and transaction- level events. See Database Triggers.

SQL and Objects

Global Temporary Tables

(v.2.1) SQL standards-compliant global temporary tables have been implemented. These pre-defined tables are
instantiated on request for connection-specific or transaction-specific use with non-persistent data, which the
Firebird engine storesin temporary files. See Global Temporary Tables.

Common Table Expressions, Recursive DSQL Queries

(v.2.1) Standards-compliant common table expressions, which make dynamic recursive queries possible, are
introduced. See Common Table Expressions.

RETURNING Clause

(v.2.1) Optional RETURNING clause for al singleton operations update, insert and del ete operations. See RE-
TURNING Clause.

New in Firebird 2

UPDATE OR INSERT Statements for MERGE Functionality

(v.2.1) Now you can write a statement that is capable of performing either an update to an existing record or an
insert, depending on whether the targeted record exists. See UPDATE OR INSERT Statement.

LIST() function

(v.2.1) A new aggregate function LIST(<SOMETHING>) retrieves all of the SOMETHINGSs in a group and
aggregates them into a comma-separated list. See LIST Function.

Lots of New Built-in Functions

(v.2.1) Built-in functions replacing many of the UDFs from the Firebird- distributed UDF libraries. For a full
list with examples, see Built-in Functions.

“Short” BLOBs Can Masquerade as Long VARCHARSs
(v.2.1) At various levels of evaluation, the engine now treats text BLOBS that are within the 32,765-byte size

limit as though they were varchars. Now functions like cast, lower, upper, trim and substring will work with
these BLOBS, as well as concatenation and assignment to string types. See Text BLOB Compatibility.

Procedural SQL

Domains for Defining PSQL Variables and Arguments

(v.2.1) PSQL local variables and input and output arguments for stored procedures can now be declared using
domainsin lieu of canonical datatypes. See Domainsin PSQL.

COLLATE in Stored Procedures and Parameters

(v.2.1) Collations can now be applied to PSQL variables and arguments. See COLLATE in Stored Procedures.

Enhancement to PSQL error stack trace
V. Khorsun

Feature request CORE-970

(v.2.1) A PSQL error stack trace now shows line and column numbers.

http://tracker.firebirdsql.org/browse/CORE-970

New in Firebird 2

Security

Windows Security to Authenticate Users

(v.2.1) Windows “Trusted User” security can be applied for authenticating Firebird users on a Windows host.
See Windows Trusted User Security.

International Language Support

The CREATE COLLATION Command

(v.2.1) The DDL command CREATE COLLATI ON has been introduced for implementing a collation, obviating
the need to use the script for it. See CREATE COLLATION statement.

Unicode Collations Anywhere

(v.2.1) Two new Unicode collations can be applied to any character set using anew mechanism. See UNICODE
Collations.

Platform Support

Ports to Windows 2003 64-bit
D. Yemanov

Feature request CORE-819 and CORE-682

(v.2.1) 64-bit Windows platform (AMD64 and Intel EM64T) ports of Classic, Superserver and Embedded mod-
els.

Administrative

Database Monitoring via SQL

(v.2.1) Implementation of run-time database snapshot monitoring (transactions, tables, etc.) via SQL over some
new system tables that use the new global temporary tables. See Monitoring Tables.

Included in the set of tablesis one named MON$SDATABASE that provides alot of the database header infor-
mation that could not be obtained previously via SQL: such details as the on-disk structure (ODS) version, SQL
dialect, sweep interval, OIT and OAT and so on.

It is possible to use the information from the monitoring tables to cancel a rogue query. See Cancel a Running
Query.

http://tracker.firebirdsql.org/browse/CORE-819
http://tracker.firebirdsql.org/browse/CORE-682

New in Firebird 2

More Context Information

Context information providing the server engine version has been added, for retrieving via SELECT callsto the
RDB$GET_CONTEXT function. See More Context Information.

Remote Interface

(v.2.1) The remote protocol has been slightly improved to perform better in slow networks once drivers are
updated to utilise the changes. Testing showed that API round trips were reduced by about 50 percent, resulting
in about 40 per cent fewer TCP round trips. See Remote Interface Improvement.

Derived Tables
A. Brinkman

Implemented support for derived tables in DSQL (subgueries in FROM clause) as defined by SQL200X. A
derived table is a set, derived from a dynamic SELECT statement. Derived tables can be nested, if required, to
build complex queries and they can be involved in joins as though they were normal tables or views.

More details under Derived Tablesin the DML chapter.

PSQL Now Supports Named Cursors
D. Yemanov

Multiple named (i.e. explicit) cursors are now supported in PSQL and in DSQL EXECUTE BLOCK statements.
More information in the PSQL chapter Explicit Cursors.

Reimplemented Protocols on Windows
D. Yemanov

Two significant changes have been made to the Windows-only protocols.-

Local Protocol--XNET

Firebird 2.0 has replaced the former implementation of the local transport protocol (often referred to as IPC or
IPServer) with anew one, named XNET.

It serves exactly the same goal, to provide an efficient way to connect to server located on the same machine as
the connecting client without a remote node name in the connection string. The new implementation is different
and addresses the known issues with the old protocol.

Like the old IPServer implementation, the XNET implementation uses shared memory for inter-process com-
munication. However, XNET eliminates the use of window messagesto deliver attachment requests and it also
implements a different synchronization logic.

Benefits of the XNET Protocol over IPServer

Besides providing a more robust protocol for local clients, the XNET protocol brings some notable benefits:

New in Firebird 2

» jtworkswith Classic Server
» it worksfor non-interactive services and terminal sessions

* it eiminates lockups when a number of simultaneous connections are attempted

Performance

The XNET implementation should be similar to the old IPServer implementation, although XNET is expected
to be dightly faster.

Disadvantages

The one disadvantage is that the XNET and | PServer implementations are not compatible with each other. This
makes it essential that your fbclient.dll version should match the version of the server binaries you are using
(fbserver.exeor fb_inet_server.exe) exactly. It will not be possibleto to establish alocal connection if this detail
isoverlooked. (A TCP localhost loopback connection viaan ill-matched client will still do the trick, of course).

Change to WNET (“NetBEUI") Protocol
WNET (a.k.a. NetBEUI) protocol no longer performs client impersonation.

In al previous Firebird versions, remote requests via WNET are performed in the context of the client security
token. Since the server serves every connection according to its client security credentials, this meansthat, if the
client machine is running some OS user from an NT domain, that user should have appropriate permissions to
access the physical database file, UDF libraries, etc., on the server filesystem. This situation is contrary to what
is generally regarded as proper for a client-server setup with a protected database.

Suchimpersonation has been removed in Firebird 2.0. WNET connectionsare now truly client-server and behave
the same way as TCP ones, i.e., with no presumptions with regard to the rights of OS users.

Reworking of Garbage Collection
V. Khorsun

Since Firebird 1.0 and earlier, the Superserver engine has performed background garbage collection, maintain-
ing information about each new record version produced by an UPDATE or DELETE statement. As soon asthe
old versions are no longer “interesting”, i.e. when they become older than the Oldest Snapshot transaction (seen
in the gstat -header output) the engine signals for them to be removed by the garbage collector.

Background GC eiminates the need to re-read the pages containing these versions viaa SELECT COUNT(*)
FROM aTabl e or other table-scanning query from auser, as occursin Classic and in versions of InterBase prior
tov.6.0. This earlier GC mechanism is known as cooper ative garbage collection.

Background GC also averts the possibility that those pages will be missed because they are seldom read. (A
sweep, of course, would find those unused record versions and clear them, but the next sweep is not necessarily
going to happen soon.) A further benefit is the reduction in 1/0O, because of the higher probability that subse-
guently requested pages till reside in the buffer cache.

Between the point where the engine notifies the garbage collector about a page containing unused versions and
the point when the garbage collector gets around to reading that page, a new transaction could update a record

New in Firebird 2

on it. The garbage collector cannot clean up thisrecord if thislater transaction number is higher than the Oldest
Snapshot or is still active. The engine again notifies the garbage collector about this page number, overriding
the earlier natification about it and the garbage will be cleaned at some later time.

In Firebird 2.0 Superserver, both cooperative and background garbage collection are now possible. To manage
it, the new configuration parameter GCPolicy was introduced. It can be set to:

» cooperative - garbage collection will be performed only in cooperative mode (like Classic) and the engine
will not track old record versions. Thisreverts GC behaviour to that of 1B 5.6 and earlier. It isthe only option
for Classic.

» background - garbage collection will be performed only by background threads, asisthe casefor Firebird 1.5
and earlier. User table-scan requests will not remove unused record versions but will cause the GC thread to
be notified about any page where an unused record version is detected. The engine will also remember those
page numbers where UPDATE and DELETE statements created back versions.

» combined (theinstallation default for Superserver) - both background and cooperative garbage collection are
performed.

Note

The Classic server ignores this parameter and always works in “cooperative” mode.

Porting of the Services API to Classic is Complete
N. Samofatov

Porting of the Services API to Classic architectureisnow complete. All Services API functionsare now available
on both Linux and Windows Classic servers, with no limitations. Known issues with gsec error reporting in
previous versions of Firebird are eliminated.

Lock Timeout for WAIT Transactions
A. Karyakin, D. Y emanov

All Firebird versions provide two transaction wait modes: NO WAIT and WAIT. NO WAIT mode means that
lock conflicts and deadlocks are reported immediately, while WAIT performs a blocking wait which times out
only when the conflicting concurrent transaction ends by being committed or rolled back.

The new feature extends the WAIT mode by making provision to set afinite time interval to wait for the con-
current transactions. If the timeout has passed, an error (isc_lock_timeout) is reported.

Timeout intervals are specified per transaction, using the new TPB constant isc_tpb_lock timeout inthe API or,
in DSQL, the LOCK TIMEOUT <value> clause of the SET TRANSACTION statement.

New Implementation of String Search Operators
N. Samofatov

1. Theoperatorsnow work correctly with BLOBsof any size. | ssueswith only thefirst segment being searched
and with searches missing matches that straddle segment boundaries are now gone.

New in Firebird 2

2. Pattern matching now uses asingle-pass K nuth-Morris-Pratt al gorithm, improving performance when com-
plex patterns are used.

3. Theengine no longer crashes when NULL is used as ESCAPE character for LIKE

Reworking of Updatable Views
D. Yemanov

A reworking has been done to resolve problems with views that are implicitly updatable, but still have update
triggers. This is an important change that will affect systems written to take advantage of the undocumented
[mis]behaviour in previous versions.

For details, see the notes in the Compatibility chapter of the separate Installation Notes document.

Additional Database Shutdown Modes Introduced
N. Samofatov

Single-user and full shutdown modes are implemented using new [state] parametersfor thegfi x - shut and
gfi x -online commands.

Syntax Pattern

gf i x <command> [<state>] [<options>]

<command>> ::= {-shut | -online}
<state> ::= {normal | nmulti | single | full}
<options> ::= {-force <tineout> | -tran | -attach}

e normal state = online database

o multi state = multi-user shutdown mode (the legacy one, unlimited attachments of SY SDBA/owner are al-
lowed)

» gingle state = single-user shutdown (only one attachment is allowed, used by the restore process)
« full state = full/exclusive shutdown (no attachments are allowed)
For more details, refer to the section on Gfix New Shutdown Modes, in the Utilities chapter.

For alist of shutdown state flag symbols and an example of usage, see Shutdown State in the API.

UDFs Improved re NULL Handling
C. Vaderrama

Signalling SQL NULL

e Ability to signal SQL NULL viaaNULL pointer (see Signal SQL NULL in UDFs).

New in Firebird 2

» External function library ib_udf upgraded to allow the string functions ASCII_CHAR, LOWER, LPAD,
LTRIM, RPAD, RTIM, SUBSTR and SUBSTRLEN to return NULL and have it interpreted correctly.

Thescripti b_udf _upgr ade. sgl can be applied to pre-v.2 databases that have these functions declared,
to upgrade them to work with the upgraded library. This script should be used only when you are using the
new ib_udf library with Firebird v2 and operation requests are modified to anticipate nulls.

Run-time Checking for Concatenation Overflow
D. Y emanov

Compile-time checking for concatenation overflow has been replaced by run-time checking.

From Firebird 1.0 onward, concatenation operations have been checked for the possibility that the resulting
string might exceed the string length limit of 32,000 bytes, i.e. overflow. This check was performed during the
statement prepare, using the declared operand sizes and would throw an error for an expressions such as:

CAST(' que' AS VARCHAR(30000)) || CAST('rty' AS VARCHAR(30000))

From Firebird 2.0 onward, this expression throws only a warning at prepare time and the overflow check is
repeated at runtime, using the sizes of the actual operands. Theresult isthat our examplewill be executed without
errors being thrown. Theisc_concat_overflow exception is now thrown only for actual overflows, thus bringing
the behaviour of overflow detection for concatenation into line with that for arithmetic operations.

Changes to Synchronisation Logic
N. Samofatov

1. Lock contention in the lock manager and in the SuperServer thread pool manager has been reduced sig-
nificantly

2. Arareracecondition wasdetected and fixed, that could cause Superserver to hang during request processing
until the arrival of the next request

3. Lock manager memory dumps have been made more informative and OWN_hung is detected correctly

4. Decoupling of lock manager synchronization objects for different engine instances was implemented

Support for 64-bit Platforms
A. Peshkov, N. Samofatov

Firebird 2.0 will support 64-bit platforms.

Record Enumeration Limits Increased
N. Samofatov

40-bit (64-hit internally) record enumerators have been introduced to overcome the ~30GB table size limit
imposed by 32-bit record enumeration.

10

New in Firebird 2

Debugging Improvements
Various Contributors

Improved Reporting from Bugchecks

BUGCHECK log messages now include file name and line number. (A. Brinkman)

Updated Internal Structure Reporting

Routines that print out various internal structures (DSQL node tree, BLR, DYN, etc) have been updated. (N.
Samofatov)

New Debug Logging Facilities

Thread-safe and signal-safe debug logging facilities have been implemented. (N. Samofatov)

Diagnostic Enhancement

Syslog messages will be copied to the user's tty if aprocessis attached to it. (A. Peshkov)

Improved Connection Handling on POSIX Superserver
A. Peshkov

Posix SS builds now handle SIGTERM and SIGINT to shutdown all connections gracefully. (A. Peshkov)

PSQL Invariant Tracking Reworked
N. Samofatov

Invariant tracking in PSQL and request cloning logic were reworked to fix a number of issues with recursive
procedures, for example SF bug #627057.

Invariant tracking is the process performed by the BLR compiler and the optimizer to decide whether an "in-
variant" (an expression, which might be a nested subquery) is independent from the parent context. It is used to
perform one-time evaluations of such expressions and then cache the result.

If some invariant is not determined, we lose in performance. If some variant is wrongly treated as invariant,
we see wrong results.

Example

select * fromrdb$rel ati ons
where rdb$relation_id <
(select rdb$relation_id fromrdb$dat abase)

11

New in Firebird 2

This query performs only one fetch from rdb$database instead of evaluating the subquery for every row of
rdb$relations.

ROLLBACK RETAIN Syntax Support

D. Yemanov

Firebird 2.0 adds an optional RETAI N clause to the DSQL ROLLBACK statement to make it consistent with
COMMIT [RETAIN].

See ROLLBACK RETAIN Syntax in the chapter about DML.

No More Registry Search on Win32 Servers
D. Y emanov

Theroot directory lookup path has changed so that server processes on Windows no longer use the Registry.

| mportant

The command-line utilities still check the Registry.

More Optimizer Improvements
A. Brinkman

Better cost-based calculation has been included in the optimizer routines.

12

Changes to the
Firebird APl and ODS

API (Application Programming Interface)

Some needed changes have been performed in the Firebird API. They include.-

Cleanup of ibase.h
D. Yemanov, A. Peshkov

The API header file, ibase.h has been subjected to a cleanup. with the result that public headers no longer contain
private declarations.

Lock Timeout for WAIT Transactions
A. Karyakin, D. Y emanov

The new feature extends the WAIT mode by making provision to set afinite time interval to wait for the con-
current transactions. If the timeout has passed, an error (isc_lock_timeout) is reported.

Timeout intervals can now be specified per transaction, using the new TPB constant isc_tpb_lock_timeout in
the API.

Note

The DSQL equivaent isimplemented viathe LOCK TIMEOUT <value> clause of the SET TRANSACTION
Statement.

iIsc_dsqgl_sql _info() Now Includes Relation Aliases
D. Yemanov

The function call isc_dsgl_sql_info() has been extended to enable relation aliases to be retrieved, if required.

Enhancement to isc_blob_lookup_desc()
A. dos Santos Fernandes

isc_blob _lookup_desc() now also describes blobs that are outputs of stored procedures

13

Changesto the Firebird APl and ODS

API Identifies Client Version
N. Samofatov

The macro definition FB_API _VER is added to ibase.h to indicate the current API version. The number corre-
sponds to the appropriate Firebird version.

The current value of FB_API_VER is 20 (two-digit equivalent of 2.0). This macro can be used by client appli-
cations to check the version of ibase.h its being compiled with.

Additions to the isc_database_info() Structure
V. Khorsun

The following items have been added to the isc_database_info() function call structure:

isc_info_active_tran_count

Returns the number of currently active transactions.

isc_info_creation_date
Returns the date and time when the database was [re] created.

To decode the returned value, call i sc_vax_i nt eger twiceto extract (first) the date and (second) the time
portions of the ISC_TIMESTAMP. Then, use i sc_decode_ti nestanp() asusual.

Additions to the isc_transaction_info() Structure
V. Khorsun

The following items have been added to the isc_transaction_info() function call structure:

iIsc_info_tra_oldest_interesting

Returns the number of the oldest [interesting] transaction when the current transaction started. For snapshot
transactions, this is aso the number of the oldest transaction in the private copy of the transaction inventory

page (TIP).

isc_info_tra_oldest_active
» For aread-committed transaction, returns the number of the current transaction.

« For dl other transactions, returns the number of the oldest active transaction when the current transaction
Started.

14

Changesto the Firebird APl and ODS

isc_info_tra_oldest_snapshot

Returns the number of thelowest t ra_ol dest _acti ve of al transactionsthat were active when the current
transaction started.

Note

Thisvalue is used as the threshold ("high-water mark") for garbage collection.

isc_info_tra_isolation

Returnsthe isolation level of the current transaction. The format of the returned clumpletsis:

isc_info_tra_isolation,

1, isc_info_tra_consistency | isc_info_tra_concurrency |
2, isc_info_tra_read_conmtted,
isc_info_tra_no_rec_version | isc_info_tra_rec_version

That is, for Read Committed transactions, two items are returned (isolation level and record versioning policy)
while, for other transactions, one item isreturned (isolation level).

isc_info_tra_access

Returnsthe accessmode (read-only or read-write) of the current transaction. Theformat of thereturned clumplets
IS

isc_info_tra_access, 1, isc_info_tra_readonly | isc_info_tra readwite

isc_info_tra_lock_timeout

Returns the lock timeout set for the current transaction.

Improved Services API

The following improvements have been added to the Services API:

Parameter isc_spb_trusted_auth

(V.21,0DS 11.1) i sc_spb_t rust ed_aut h applies only to Windows and is used to force Firebird to use
Windows trusted authentication for the requested service.

15

Changesto the Firebird APl and ODS

Parameter isc_spb_dbname

(V.2.1, ODS 11.1) For any services related to the security database, provides the ability to supply the name of
the security database when invoking a security service remotely. It is equivaent to supplying the - dat abase
switch when calling the gsec utility remotely.

Task Execution Optimized
D. Yemanov

Services are now executed as threads rather than processes on some threadable CS builds (currently 32- bit
Windows and Solaris).

New Function for Delivering Error Text
C. Vaderrama

Thenew function fb_interpret () replacestheformerisc_interprete() for extracting thetext for aFirebird
error message from the error status vector to a client buffer.

I mportant

isc_interprete() isvulnerable to overruns and is deprecated as unsafe. The new function should be used instead.

Accommodation of New Shutdown <state> Parameters
D. Y emanov

APl Access to database shutdown is through flags appended to the isc_dpb_shutdown parameter in the DBP
argument passed to isc_attach database(). The symbols for the <state> flags are:

#define isc_dpb_shut _cache 0x1
#define isc_dpb_shut _attachnent 0x2
#define isc_dpb_shut _transaction 0x4
#define isc_dpb_shut_force 0x8
#define i sc_dpb_shut _node_mask 0x70
#define isc_dpb_shut _defaul t 0x0
#define isc_dpb_shut _nor nal 0x10
#define isc_dpb_shut_multi 0x20
#define isc_dpb_shut_single 0x30
#define isc_dpb_shut _full 0x40

Example of Usein C/C++

char dpb_buffer[256], *dpb, *p
| SC_STATUS status_vector[| SC_STATUS_LENGTH] ;
i sc_db_handl e handl e = NULL;

16

Changesto the Firebird APl and ODS

dpb = dpb_buffer;

*dpb++ = i sc_dpb_versionil;

const char* user_nane = “SYSDBA’;

const int user_nane_length = strlen(user_nane);
*dpb++ = i sc_dpb_user _nane;

*dpb++ = user_nane_| engt h;
mencpy(dpb, user_nane, user_nane_|l ength);
dpb += user_nane_| engt h;

const char* user_password = “nasterkey”

const int user_password_|length = strlen(user_password);
*dpb++ = i sc_dpb_password;

*dpb++ = user_password_| engt h;

mencpy(dpb, user_password, user_password_| ength);

dpb += user_password_| engt h;

/1l Force an imedi ate full database shutdown
*dpb++ i sc_dpb_shut down;
*dpb++ i sc_dpb_shut _force | isc_dpb_shut_full

const int dpb_length = dpb - dpb_buffer;

i sc_attach_dat abase(status_vector,
0, “enpl oyee. db”,
&handl e,
dpb_I engt h, dpb_buffer);

if (status_vector[0] == 1 && status_vector[1])
{

isc_print_status(status_vector);
}
el se
{

i sc_det ach_dat abase(status_vector, &handle);
}

ODS (On-Disk Structure) Changes

On-disk structure (ODS) changes include the following:

New ODS Number

Firebird 2.0 creates databases with an ODS (On-Disk Structure) version of 11.

Size limit for exception messages increased
V. Khorsun

Maximum size of exception messages raised from 78 to 1021 bytes.

17

Changesto the Firebird APl and ODS

New Description Field for Generators
C. Vaderrama

Added RDB$DESCRIPTION to RDB$GENERATORS, so now you can include description text when creating
generators.

New Description Field for SQL Roles
C. Vaderrama

Added RDB$DESCRIPTION and RDB$SY STEM_FLAG to RDB$ROLESto allow description text and to flag
user-defined roles, respectively.

“ODS Type” Recognition
N. Samofatov

Introduced a concept of ODS type to distinguish between InterBase and Firebird databases.

Smarter DSQL Error Reporting
C. Vaderrama

The DSQL parser will now try to report the line and column number of an incomplete statement.

New Column in RDB$Index_Segments
D. Yemanov, A. Brinkman

A new column RDBS$STATISTICS has been added to the system table RDBSINDEX_SEGMENTSto store the
per-segment selectivity values for multi-key indexes.

Note

The column of the same name in RDB$INDICES is kept for compatibility and still represents the total index
selectivity, that is used for afull index match.

18

Global Improvements
In Firebird 2.1

Some global improvements and changes have been implemented in Firebird 2.1, as engine development moves
towards the architectural changes planned for Firebird 3.

Note

Unless otherwise indicated, these improvements apply from v.2.1 forward.

Forced Writes on Linux Now Works!
A. Peshkov

For maximum database safety, we configure databases for synchronous writes, ak.a. Forced Writes ON. This
mode—strongly recommended for normal production usage—makes the write() system call return only after
the physical write to disk is complete. In turn, it guarantees that, after a COMMIT, any data modified by the
transaction is physically on the hard-drive, not waiting in the operating system's cache.

Its implementation on Linux was very simple - invoke fentl(dbFile, F SETFL, O_SYNC).

Yet databases on Linux were sometimes corrupted anyway.

Forensics

Speed tests on Linux showed that setting O_SYNC on a file has no effect at al on performance! Fine, fast
operating system we may think? Alas, no, it's a documented bug in the Linux kernel!

According to the Linux manual, “On Linux this command (i.e. fentl(fd, F_SETFL, flags)) can only change the
O_APPEND, O_ASYNC, O DIRECT, O_NOATIME, and O_NONBLOCK flags'. Thoughit isnot document-
ed in any place known to me, it turns out that an attempt to set any flag other than those listed in the manual
(such as O_SYNC, for example) won't work but it does not cause fentl() to return an error, either.

For Firebird and for InterBase versions since Day One, it means that Forced Writes has never worked on Linux.
It certainly works on Windows. It seems likely that this is not a problem that affects other operating systems,
although we cannot guarantee that. To make sure, you can check whether the implementation of fentl() on your
OS s capable of setting the O_SYNC flag.

The technique used currently, introduced in the Beta 2 release of Firebird 2.1, is to re-open the file. It should
guarantee correct operation on any OS, provided the open() system call works correctly in thisrespect. It appears
that no such problems are reported.

The Firebird devel opers have no idea why such a bug would remain unfixed almost two years after getting into
the Linux kernel's bug-tracker. Apparently, in Linux, a documented bug evolvesinto afeature...

19

http://bugzilla.kernel.org/show_bug.cgi?id=5994

Global Improvementsin Firebird 2.1

Instant Fix for an Older Firebird
Here'satipif you want to do an instant fix for the problem in an older version of Firebird: usethe “sync” option

when mounting any partition with a Firebird database on board. An example of aline in /etc/fstab:

/dev/isda® /usr/database ext3 noatimesync 1 2

Databases on Raw Devices
A. Peshkov

File system I/O can degrade performance severely when a database in Forced Writes mode grows rapidly. On
Linux, whichlacksthe appropriate system callsto grow the database efficiently, performancewith Forced Writes
can be as much as three times slower than with asynchronous writes.

When such conditions prevail, performance may be greatly enhanced by bypassing the file system entirely and
restoring the database directly to araw device. A Firebird database can be recreated on any type of block device.

Moving a Database to a Raw Device

Moving your database to araw device can be as simple asrestoring a backup directly to an unformatted partition
in the local storage system. For example,

gbak -c ny.fbk /dev/sda7

will restoreyour database onthethirdlogical disk intheextended partition of your first SCSI or SATA hard-drive
(disk0).

Note

The database does not have a “database name” other than the device name itself. In the example given, the
name of the databaseis '/dev/sdar".

Special Issues for nbak/nbackup

The physical backup utility nbackup must be supplied with an explicit file path and name for its difference
file, in order to avoid this file being written into the /dev/ directory. You can achieve this with the following
statement, using isql:

isql /dev/sda7
SQ.> alter database add difference file '/tnp/dev_sda7';

20

Global Improvementsin Firebird 2.1

To keep the size of the nbak copy within reasonable bounds, it is of benefit to know how much storage on the
deviceisactually occupied. The '-s switch of nbackup will return the size of the database in database pages:

nbackup -s -1 /dev/sda7
77173

Don't confuse the result here with the block size of the device. The figure returned—77173—is the number of
pages occupied by the database. Calculate the physical size (in bytes) as (hnumber of pages* page size). If you
are unsure of the page size, you can query it from the database header using gstat -h:

gstat -h /dev/sda7
Database "/dev/sdar"
Database header page information:

Flags 0
Checksum 12345
Generation 43
Page size 4096 <
ODSversion 111

Examples of nbackup Usage with a Raw Device

1. A backup can be performed in a script, using the output from the '-s' switch directly. For example,

DbFi | e=/ dev/ sda7

DbSi ze="nbackup -L $DbFile -S || exit 1

dd i f=$DbFil e i bs=4k count=$DbSi ze | # conpress and record DVD
nbackup -N $DbFil e

2. A physical backup using nbackup directly from the command line:

nbackup -B 0 /dev/sda7 /tnp/lvl.O

Further Advice about Raw Devices

Although no other specific issues are known at this point about the use of raw device storage for databases,
keep in mind that

» thegrowth and potential growth of the database isless obviousto end-usersthan onethat livesasafilewithin
afilesystem. If control of the production system's environment isout of your direct reach, be certain to deploy
adequate documentation for any monitoring that will be required!

 the very Windows-knowledgeable might want to try out the concept of raw device storage on Windows
systems. It has not been a project priority to explore how it might be achieved on that platform. However, if
you think you know away to do it, please fed welcometo test theideain your Windows lab and report your
observations—good or bad or indifferent—back to the firebird-devel list.

21

Global Improvementsin Firebird 2.1

Tip

Maintain your raw devices in aliases.conf. That way, in the event of needing to reconfigure the storage
hardware, there will be no need to alter any connection stringsin your application code.

Remote Interface Improvements
V. Khorsun, D. Y emanov

Feature request CORE-971

The remote protocol has been dightly improved to perform better in slow networks. In order to achieve this,
more advanced packets batching is now performed, along with some buffer transmission optimizations. In a
real world test scenario, these changes showed about 50 per cent fewer API round trips, thus incurring about
40 per cent fewer TCP roundtrips.

In Firebird 2.1 the remote interface limits the packet size of the response to variousisc XXX _info calls to the
real used length of the contained data, whereas before it sent the full specified buffer back to the client buffer,
even if only 10 bytes were actualy filled. Firebird 2.1 remote interface sends back only 10 bytesin this case.

Some of our users should see a benefit from the changes, especially two-tier clients accessing databases over
the Internet.

The changes can be summarised as

a

Batched packets delivery. Requires both server and client of version v2.1, enabled upon a successful pro-
tocol handshake. Delays sending packets of certain types which can be deferred for batched transfer with
the next packet. (Allocate/deallocate statement operations come into this category, for example.)

Pre-fetching some pieces of information about a statement or request and caching them on the client side
for (probable) following API calls. Implemented on the client side only, but relies partly on the benefits
of reduced round trips described in (a).

It works with any server version, even possibly providing a small benefit for badly written client applica-
tions, although best performanceisnot to be expected if the client iscommunicating withapre-V.2.1 server.

Reduced information responses from the engine (no trailing zeroes). As the implementation is server-side
only, it requires aV.2.1 server and any client. Even old clients will work with Firebird 2.1 and see some
benefit from the reduction of round trips, although the old remote interface, unlike the new, will still send
back big packetsfor isc_dsgl_prepare().

The changes work with either TCP/IP or NetBEUI. They are backward-compatible, so existing client code will
not be broken. However, existing code will not enable the enhancements unless drivers are updated.

API Changes

XSQLVAR
A. dos Santos Fernandes

Theidentifier of the connection character set or, when the connection character setisNONE, the BLOB character
set, isnow passed in the XSQLVAR: : sql scal e item of text BLOBSs.

22

http://tracker.firebirdsql.org/browse/CORE-971

Global Improvementsin Firebird 2.1

Optimization

Optimization for Multiple Index Scans
V. Khorsun

Feature request CORE-1069

An optimization wasdonefor index scanning when more than oneindex isto be scanned with AND conjunctions.

Optimize sparse bitmap operations
V. Khorsun

Feature request CORE-1070

Optimization was done for sparse bitmap operations (set, test and clear) when values are mostly consecutive.

Configuration and Tuning

Increased Lock Manager Limits & Defaults
D. Yemanov

Feature requests CORE-958 and CORE-937

* the maximum number of hash dotsis raised from 2048 to 65,536. Because the actual setting should be
a prime number, the exact supported maximum is 65,521 (the biggest prime number below 65,536). The
minimum is 101.

» the new default number of hash slotsis 1009

» thedefault lock table size has been increased to 1 Mb on al platforms

Page sizes of 1K and 2K Deprecated
D. Yemanov

Feature request CORE-969

Page sizes of 1K and 2K are deprecated as inefficient.

Note

The small page restriction applies to new databases only. Old ones can be attached to regardless of their page
size.

23

http://tracker.firebirdsql.org/browse/CORE-1069
http://tracker.firebirdsql.org/browse/CORE-1070
http://tracker.firebirdsql.org/browse/CORE-958
http://tracker.firebirdsql.org/browse/CORE-937
http://tracker.firebirdsql.org/browse/CORE-969

Global Improvementsin Firebird 2.1

Enlarge Disk Allocation Chunks
V. Khorsun

Feature request CORE-1229

Until v.2.1, Firebird had no special rules about allocating disk space for database file pages. Because of depen-
dencies between pages that it maintains itself, to service its “ careful write” strategy, it has just written to new-
ly-allocated pages in indeterminate order.

For databases using ODS 11.1 and higher, Firebird servers from v.2.1 onward use a different algorithm for
allocating disk space, to address two recognised problems associated with the existing approach:

1. Corruptionsresulting from out-of-space conditions on disk
Theindeterminate order of writes can give rise to a situation that, at a point where the page cache contains
alarge number of dirty pages and Firebird needs to request space for a new page in the process of writing
them out, thereisinsufficient disk spaceto fulfil the request. Under such conditionsit often happensthat the
administrator decides to shut down the database in order to make some more disk space available, causing
the remaining dirty pages in the cache to be lost. Thisleads to serious corruptions.

2. Filefragmentation
Allocating disk space in relatively small chunks can lead to significant fragmentation of the database file
at file system level, impairing the performance of large scans, as during a backup, for example.

The Solution

The solution is to introduce some rules and rational es to govern page writes according to the state of available
disk space, asfollows.-

a

Each newly allocated page writesto disk immediately before returning to the engine. If the page cannot be
written then the allocation does not happen: the PIP bit remains uncleared and the appropriate I/O error is
raised. Corruption cannot arise, sinceit is guaranteed that all dirty pagesin cache have disk space allocated
and can be written safely.

Because this change adds an extrawrite for each newly-allocated page, some performance penalty isto be
expected. To mitigate the effect, writes of newly-allocated pages are performed in batches of up to 128 Kb
and Firebird keeps track of the number of these “initialized” pages in the PIP header.

Note

A page that has been alocated, released and re-allocated is already “space in hand”, meaning that no
further verification isrequired in order to “initialize” it. Hence, anewly allocated pageis subjected to this
double-write only if it isablock that has never been allocated before.

24

http://tracker.firebirdsql.org/browse/CORE-1229

Global Improvementsin Firebird 2.1

b. To address the issue of file fragmentation, Firebird now uses the appropriate cal to the API of the file
system to preallocate disk space in relatively large chunks.

Preallocation al so gives room to avoid corruptionsin the event of an “out of disk space” condition. Chances
are that the database will have enough space preallocated to continue operating until the administrator can
make some disk space available.

| mportant
Windows Only (for Now)

Currently, only Windows file systems publish such API calls, which means that, for now, this aspect of
the solution is supported only in the Windows builds of Firebird. However, similar facilities have recently
been added to the Linux API, allowing the prospect that a suitable API function call will appear in such
popular file systems as ext3 in future.

DatabaseGrowthIincrement Configuration Parameter

For better control of disk space preallocation, the new parameter DatabaseGrowthl ncrement has been added to
firebird. conf. Itrepresentsthe upper limit for the preallocation chunk size in bytes.

Important

Please be sure to read the details regarding this configuration, under DatabaseGrowthl ncrement in the chapter
entitled “New Configuration Parameters and Changes”.

Bypass Filesystem Caching on Superserver
V. Khorsun

Feature requests CORE-1381 and CORE-1480

Firebird uses and maintains its own cache in memory for page buffers. The operating system, in turn, may
re-cache Firebird's cachein its own filesystem cache. If Firebird is configured to use acachethat islargerelative
to the available RAM and Forced Writesis on, this cache duplication drains resources for little or no benefit.

Often, when the operating system triesto cache abig file, it moves the Firebird page cache to the swap, causing
intensive, unnecessary paging. In practice, if the Firebird page cache size for Superserver is set to more than 80
per cent of the available RAM, resource problems will be extreme.

Note

Filesystem caching is of some benefit on file writes, but only if Forced Writes is OFF, which is not recom-
mended for most conditions.

Now, Superserver on both Windows and POSIX can be configured by a new configuration parameter, M ax-
FileSystemCache, to prevent or enable filesystem caching. It may provide the benefit of freeing more memory
for other operations such as sorting and, where there are multiple databases, reduce the demands made on host
resources.

25

http://tracker.firebirdsql.org/browse/CORE-1381
http://tracker.firebirdsql.org/browse/CORE-1480

Global Improvementsin Firebird 2.1

Note

For Classic, there is no escaping filesystem caching.

For details of the M axFileSystemCache parameter, see MaxFileSystemCache.

Other Global Improvements

Garbage Collector Rationalisation
V. Khorsun

Feature request CORE-1071

The background garbage collector process was reading all back versions of records on a page, including those
created by activetransactions. Since back versions of active records cannot be considered for garbage collection,
it was wasteful to read them.

Immediate Release of External Files
D. Y emanov

Feature request CORE-969

The engine will now release external table files as soon as they are no longer in use by user requests.

Synchronization of DSQL metadata cache objects in Classic server
A. dos Santos Fernandes

Feature request CORE-976

No details.

BLOB Improvements
A. dos Santos Fernandes

Feature request CORE-1169

Conversion of temporary blobs to the destination blob type now occurs when materializing.

Type Flag for Stored Procedures
D. Yemanov

Feature request CORE-779

Introduced a type flag for stored procedures, adding column RDB$PROCEDURE _TY PE to the table RDB
$PROCEDURES. Possible values are:

26

http://tracker.firebirdsql.org/browse/CORE-1071
http://tracker.firebirdsql.org/browse/CORE-969
http://tracker.firebirdsql.org/browse/CORE-976
http://tracker.firebirdsql.org/browse/CORE-969
http://tracker.firebirdsql.org/browse/CORE-779

Global Improvementsin Firebird 2.1

-O0or NULL -
legacy procedure (no validation checks are performed)

-1-
selectable procedure (one that contains a SUSPEND statement)

-2.
executable procedure (no SUSPEND statement, cannot be selected from)

Help for Getting Core Dumps on Linux
A. Peshkov

Feature request CORE-1558

The configuration parameter BugcheckAbort provides the capability to make the server stop trying to continue
operation after a bugcheck and instead, to call abort() immediately and dump a core file. Since a bugcheck
usually occurs as a result of a problem the server does not recognise, continuing operation with an unresolved
problem is not usually possible anyway, and the core dump can provide useful debug information.

In the more recent Linux distributionsthe default setups no longer dump core automatically when an application
crashes. Users often have troubles trying to get them working. Differing rules for Classic and Superserver,
combined with alack of consistency between the OS setup tools from distro to distro, make it difficult to help
out with any useful “general rule”.

Code hasbeen added for Classic and Superserver on Linux to bypassthese problems and automate generation of a
coredump filewhen an abort() on BUGCHECK occurs. The Firebird server will maketherequired 'cwd' (change
working directory) to an appropriate writable location (/tmp) and set the corefile size limit so that the 'soft’ limit
equalsthe 'hard' limit.

Note

In a release version, the automated core-dumping is active only when the BugcheckAbort parameter in
firebird.conf is set to true (1). In adebug version, it is always active.

If you need to enablethefacility, don't forget that the server needsto berestarted to activate aparameter change.

27

http://tracker.firebirdsql.org/browse/CORE-1558

Chapter 5

Data Definition
Language (DDL)

In this chapter are the additions and improvements that have been added to the SQL data definition language
subset in the Firebird 2 development cycle. Those marked asintroduced inv.2.1 are available only to ODS 11.1
and higher databases.

Quick Links

» Database Triggers

» Glaoba Temporary Tables

* Column Aliasesin CREATE VIEW

* CREATE TRIGGER SQL 2003 Variant
» Alternative Syntax for Computed Fields
* CREATE SEQUENCE

« REVOKE ADMIN OPTION

+ SET/DROP DEFAULT Clauses

» Syntaxes for Changing Exceptions
 ALTER EXTERNAL FUNCTION

¢+ COMMENT Statement

» CREATE VIEW Extensions

» Create FKs Without Exclusive Access

e Changed Logic for View Updates

o Descriptive Identifiers for BLOB Subtypes
* CREATE COLLATION statement

Database Triggers
Adriano dos Santos Fernandes

(v.2.1) A database trigger is a PSQL module that is executed when a connection or transaction event occurs.
The events and the timings of their triggers are as follows.-

CONNECT
» Database connection is established

e A transaction is started

» Triggers are fired; uncaught exceptions roll back the transaction, disconnect the attachment and are re-
turned to the client

e Thetransaction is committed

DI SCONNECT
* A transaction is started

28

Data Definition Language (DDL)

» Triggersarefired; uncaught exceptionsroll back the transaction, disconnect the attachment and are swal-
lowed

» Thetransaction is committed
* The attachment is disconnected

TRANSACTI ON START

Triggers are fired in the newly-created user transaction; uncaught exceptions are returned to the client and
the transaction is rolled back.

TRANSACTI ON COWM T
Triggers are fired in the committing transaction; uncaught exceptions roll back the trigger's savepoint, the
commit command is aborted and the exception is returned to the client.

Note

For two-phase transactions, the triggers are fired in the “prepare”, not in the commit.

TRANSACTI ON ROLLBACK

Triggers are fired during the roll-back of the transaction. Changes done will be rolled back with the trans-
action. Exceptions are swallowed

Syntax

<dat abase-trigger> ::=

{ CREATE | RECREATE |
TRI GGER <nane>
[ACTI VE | | NACTI VE]
ON <event >
[PCSI TI ON <n>]

AS
BEG N

CREATE OR ALTER}

END

<event> .=
CONNECT
| DI SCONNECT
| TRANSACTI ON START
| TRANSACTI ON COMM T
| TRANSACTI ON ROLLBACK

Rules and Restrictions
1. Database triggers type cannot be changed.

2. Permission to create, recreate, create or ater, or drop database triggers is restricted to the database owner
and SY SDBA.

Utilities Support for Database Triggers

New parameters were added to gbak, nbackup and isgl to suppress database triggers from running. They are
available only to the database owner and SY SDBA:

29

Data Definition Language (DDL)

gbak -nodbtriggers
i sql -nodbtriggers
nbackup -T

Global Temporary Tables
Vlad Khorsun

(v.2.1) Global temporary tables (GTTs) are tables that are stored in the system catal ogue with permanent meta-
data, but with temporary data. Data from different connections (or transactions, depending on the scope) are
isolated from each other, but the metadata of the GTT are shared among all connections and transactions.

There are two kinds of GTT:
» with datathat persists for the lifetime of connection in which the specified GTT was referenced; and

» with datathat persists only for the lifetime of the referencing transaction.

Syntax and Rules for GTTs

CREATE GLOBAL TEMPORARY TABLE

[ON COW T <DELETE | PRESERVE> ROWS]

Creates the metadata for the temporary table in the system catal ogue.
The clause ON COMMIT sets the kind of temporary table:

ON COMMIT PRESERVE ROWS
Data left in the given table after the end of the transaction remain in database until the connection ends.

ON COMMIT DELETE ROWS
Datain the given table are deleted from the database immediately after the end of the transaction. ON COM-
MIT DELETE ROWS s used by default if the optional clause ON COMMIT is not specified.

CREATE GLOBAL TEMPORARY TABLE
isaregular DDL statement that is processed by the engine the same way as a CREATE TABLE statement
is processed. Accordingly, it not possible to create or drop a GTT within a stored procedure or trigger.

Relation Type

GTT definitions are distinguished in the system catal ogue from one another and from permanent tables by the
value of RDB$RELATI ONS. RDBSRELATI ON_TYPE:

* A GTT with ON COMMIT PRESERVE ROWS option has RDB$RELATION_TY PE = 4

A GTT with ON COMMIT DELETE ROWS option has RDB$RELATION_TYPE = 5.

Note

For the full list of values, see RDBSTY PES.

30

Data Definition Language (DDL)

Structural Feature Support

The same structural features that you can apply to regular tables (indexes, triggers, field-level and table level
constraints) arealso availabletoaGTT, with certain restrictionson how GTTsand regul ar tablescaninterrel ate.-

a. references between persistent and temporary tables are forbidden

b. A GTT with ON COMMIT PRESERVE ROWS cannot have areference on a GTT with ON COMMIT
DELETE ROWS

c. A domain constraint cannot have areference to any GTT.

Implementation Notes

Aninstance of a GTT—a set of datarows created by and visible within the given connection or transaction—is
created when the GTT is referenced for the first time, usually at statement prepare time. Each instance has its
own private set of pages on which data and indexes are stored. The datarows and indexes have the same physical
storage layout as permanent tables.

When the connection or transaction ends, all pages of a GTT instance are released immediately. It is similar to
what happens when a DROP TABLE is performed, except that the metadata definition is retained, of course.
Thisis much quicker than the traditional row-by-row delete + garbage collection of deleted record versions.

Note

This method of deletion does not cause DELETE triggersto fire, so do not be tempted to define Before or After
Delete triggers on the false assumption that you can incorporate some kind of “last rites” that will be execute
just as your temporary data breathesits last!

The data and index pages of all GTT instances are placed in separate temporary files. Each connection has its
own temporary file created the first time the connection references some GTT.

Note

These temporary files are always opened with Forced Writes = OFF, regardless of the database setting for
Forced Writes.

No limit is placed on the number of GTT instances that can coexist. If you have N transactions active simulta-
neously and each transaction has referenced some GTT then you will have N instances of the GTT.

Views Enhancements
D. Yemanov

A couple of enhancements were made to view definitionsinv.2.1.-

Use Column Aliases in CREATE VIEW

Feature request CORE-831

31

http://tracker.firebirdsql.org/browse/CORE-831

Data Definition Language (DDL)

(v.2.1) Column aliases can now be processed as column names in the view definition.

Example

CREATE VI EWV_TEST AS
SELECT 1 D,
COL1 AS CODE
COL2 AS NAME
FROM TAB

SQL2003 compliance for CREATE TRIGGER
A. dos Santos Fernandes

Feature request CORE-711

(v.2.1) Alternative syntax is now available for CREATE TRIGGER that complies with SQL 2003.
Syntax Patterns

Existing Form

create trigger t1l

FOR at abl e

[active] before insert or update
as

begi n

end

SQL 2003 Form

create trigger t2
[active] before insert or update
ON at abl e

as
begi n

end

Note the different positions of the clause identifying the table and the different keywords pointing to the table
identifier (existing: FOR; SQL2003: ON).

Both syntaxes are valid and are available also for all CREATE TRIGGER, RECREATE TRIGGER and CRE-
ATE OR ALTER TRIGGER statements.

SQL2003 Compliant Alternative for Computed Fields
D. Yemanov

Feature request CORE-1386

32

http://tracker.firebirdsql.org/browse/CORE-711
http://tracker.firebirdsql.org/browse/CORE-1386

Data Definition Language (DDL)

(v.2.1) SQL-compliant alternative syntax GENERATED ALWAY S ASwas implemented for defining a com-
puted field in CREATE/ALTER TABLE.

Syntax Pattern

<col um nane> [<type>] GENERATED ALWAYS AS (<expr>)

Itisfully equivalent semantically with the legacy form:

<col umm nane> [<type>] COWPUTED [BY] (<expr>)

Example

CREATE TABLE T (PK I NT, EXPR GENERATED ALWAYS AS (PK + 1))

CREATE SEQUENCE

D. Yemanov

SEQUENCE has been introduced as a synonym for GENERATOR, in accordance with SQL-99. SEQUENCE
isasyntax term described in the SQL specification, whereas GENERATOR is alegacy InterBase syntax term.
Use of the standard SEQUENCE syntax in your applicationsis recommended.

A sequence generator isamechanism for generating successive exact numeric values, one at atime. A sequence
generator is a named schema object. Indialect 3itisaBIGINT, indialect 1itisan INTEGER.

Syntax patterns

CREATE { SEQUENCE | GENERATOR } <name>
DROP { SEQUENCE | GENERATOR } <name>
SET GENERATOR <name> TO <start_val ue>
ALTER SEQUENCE <name> RESTART W TH <start_val ue>
GEN_I D (<name>, <increment_val ue>)
NEXT VALUE FOR <nane>

Examples

1

CREATE SEQUENCE S_EMPLOVYEE;

ALTER SEQUENCE S_EMPLOYEE RESTART W TH O;

See a so the notes about NEXT VALUE FOR.

33

Data Definition Language (DDL)

Warning

ALTER SEQUENCE, like SET GENERATOR, isagood way to screw up the generation of key values!

REVOKE ADMIN OPTION

D. Yemanov

SY SDBA, the database creator or the owner of an object can grant rights on that object to other users. However,
those rights can be made inheritable, too. By using WITH GRANT OPTION, the grantor gives the grantee the
right to become a grantor of the same rights in turn. This ability can be removed by the original grantor with
REVOKE GRANT OPTION FROM user.

However, there's a second form that involves roles. Instead of specifying the same rights for many users (soon
it becomes a maintenance nightmare) you can create arole, assign a package of rightsto that role and then grant
the role to one or more users. Any change to the role€'s rights affect al those users.

By using WITH ADMIN OPTION, the grantor (typically the role creator) gives the grantee the right to become
a grantor of the same role in turn. Until FB v2, this ability couldn't be removed unless the original grantor
fiddled with system tables directly. Now, the ability to grant the role can be removed by the original grantor
with REVOKE ADMIN OPTION FROM user.

SET/DROP DEFAULT Clauses for ALTER TABLE
C. Vdderrama

Domains allow their defaultsto be changed or dropped. It seems natural that table fields can be manipulated the
same way without going directly to the system tables.

Syntax Pattern

ALTER TABLE t ALTER [COLUWN] ¢ SET DEFAULT def aul t _val ue;
ALTER TABLE t ALTER [COLUVN] ¢ DROP DEFAULT;

Note
e Array fields cannot have a default value.

« If you change the type of afield, the default may remain in place. This is because a field can be given the
type of a domain with a default but the field itself can override such domain. On the other hand, the field
can be given atype directly in whose case the default belongs logically to the field (albeit the information
is kept on an implicit domain created behind scenes).

Syntaxes for Changing Exceptions
D. Yemanov

The DDL statements RECREATE EXCEPTION and CREATE OR ALTER EXCEPTION (feature request SF
#1167973) have been implemented, allowing either creating, recreating or altering a custom exception, depend-
ing on whether it already exists.

Data Definition Language (DDL)

RECREATE EXCEPTION

RECREATE EXCEPTION is exactly like CREATE EXCEPTION if the exception does not already exist. If it
does exist, its definition will be completely replaced, if there are no dependencies on it.

CREATE OR ALTER EXCEPTION

CREATE OR ALTER EXCEPTION will create the exception if it does not already exist, or will ater the defi-
nition if it does, without affecting dependencies.

ALTER EXTERNAL FUNCTION
C. Vdderrama

ALTER EXTERNAL FUNCTION has been implemented, to enabletheent ry_poi nt or themodul e_nane
to be changed when the UDF declaration cannot be dropped due to existing dependencies.

COMMENT Statement
C. Vaderrama

The COMMENT statement has been implemented for setting metadata descriptions.

Syntax Pattern

COMMENT ON DATABASE |S {'txt'| NULL};

COMMENT ON <basic_type> name IS {"txt'|NULL};

COMMENT ON COLUWN t bl vi ewnane. fiel dname 1S {"txt"'|NULL};
COMMENT ON PARAMETER procnane. parname |S {'txt'| NULL};

Anempty literal string " will act asNULL sincetheinternal code (DY N in this case) works thisway with blobs.

<basi c_t ype>:
DOVAI N
TABLE
VI EW
PROCEDURE
TRI GGER
EXTERNAL FUNCTI ON
FI LTER
EXCEPTI ON
GENERATOR
SEQUENCE
| NDEX
ROLE
CHARACTER SET
COLLATI ON
SECURI TY CLASS!

Tnot implemented, because this type is hidden.

35

Data Definition Language (DDL)

Extensions to CREATE VIEW Specification

D. Yemanov
FIRST/SKIP and ROWS syntaxes and PLAN and ORDER BY clauses can how be used in view specifications.

From Firebird 2.0 onward, views are treated as fully-featured SELECT expressions. Consequently, the clauses
FIRST/SKIP, ROWS, UNION, ORDER BY and PLAN are now alowed in views and work as expected.

Syntax

For syntax details, refer to Select Statement & Expression Syntax in the chapter about DML.

RECREATE TRIGGER Statement Implemented
D. Yemanov

The DDL statement RECREATE TRIGGER statement is now availablein DDL. Semantics are the same as for
other RECREATE statements.

Usage Enhancements

The following changes will affect usage or existing, pre-Firebird 2 workarounds in existing applications or
databases to some degree.

Creating Foreign Key Constraints No Longer Requires Exclusive Access
V. Horsun

Now it is possible to create foreign key constraints without needing to get an exclusive lock on the whole
database.

Changed Logic for View Updates

Apply NOT NULL constraints to base tables only, ignoring the ones inherited by view columns from domain
definitions.

Descriptive Identifiers for BLOB Subtypes
A. Peshkov, C. Vaderrama

Previously, the only allowed syntax for declaring a blob filter was:

declare filter <nane> input_type <nunber> output_type <nunber>
entry_point <function_in_library> nodul e_nane <library_nane>;

The aternative new syntax is:

36

Data Definition Language (DDL)

declare filter <nane> input_type <menoni c> out put _type <mmenoni c>
entry_point <function_in_library> nodul e_nane <library_nanme>;

where <mnemonic> refers to a subtype identifier known to the engine.

Initially they are binary, text and others mostly for internal usage, but an adventurous user could write a new
mnemonic in rdb$types and use it, since it is parsed only at declaration time. The engine keeps the numerical
value. Remember, only negative subtype values are meant to be defined by users.

To get the predefined types, do

sel ect RDB$TYPE, RDB$TYPE_NAME, RDB$SYSTEM FLAG
from rdb$t ypes
where rdb$field _name = ' RDB$FI ELD SUB TYPE' ;

RDB$TYPE RDB$TYPE_NAME RDB$SYSTEM FLAG

Bl NARY

TEXT

BLR

ACL

RANGES

SUMVARY

FORNAT

TRANSACTI ON_DESCRI PTI ON
EXTERNAL_FI LE_DESCRI PTI ON

ONOUAWNRO
RPRRPRPRRRRRER

Examples

Original declaration:

declare filter pesh input_type 0 output_type 3
entry_point 'f' nodul e_nane 'p';

Alternative declaration:

declare filter pesh input_type binary output_type acl
entry_point 'f' modul e_nane 'p';

Declaring a name for a user defined blob subtype (remember to commit after the insertion):

SQ.> insert into rdb$types
CON> val ues(' RDB$FI ELD SUB TYPE', -100, 'XDR, 'test type', 0);
SQL> commit;
SQL> declare filter pesh2 input_type xdr output_type text
CON> entry_point 'p2' nodul e_nanme 'p';
SQ.> show filter pesh2;
BLOB Filter: PESH2
| nput subtype: -100 Qutput subtype: 1
Filter library is p
Entry point is p2

37

Data Manipulation
Language (DML)

In this chapter are the additions and improvements that have been added to the SQL data manipulation language
subset in the Firebird 2 development cycle. Those marked asintroduced inv.2.1 are available only to ODS 11.1
and higher databases.

I mportant

A new configuration parameter, named RelaxedAliasChecking was added to the firebird.conf in Firebird 2.1
to permit a slight relaxation of the Firebird 2.0.x restrictions on mixing relation aliases and table namesin a
query (see DSQL Parsing of Table Namesis Stricter, below).

This parameter will not be a permanent fixture in Firebird but isintended as a migration aid for those needing
timeto adjust existing code. Moreinformation under RelaxedAliasChecking in the chapter “New Configuration
Parameters’.

Quick Links

e Common Table Expressions

* LIST Function

* RETURNING Clause

* UPDATE OR INSERT Statement

* New JOIN Types
- NAMED COLUMNS & NATURAL JOIN
- CROSS JOIN

* INSERT with Defaults

» Text BLOB Compatibility

* Compare BLOB=BLOB

e Sorting on BLOBs

 RDB$DB_KEY Returns NULL in Outer Joins

* New Built-in Functions

» Enhancements to Built-in Functions

* |IF() Expression

e Improvement in CAST() Behaviour

o Expression Arguments for SUBSTRING()

e DSQL Parsing of Table Namesis Stricter

 EXECUTE BLOCK Statement

» Derived Tables

* ROLLBACK RETAIN Syntax

* ROWS Syntax

* UNION DISTINCT

» Improved Type Coercion in UNIONs

» UNIONsAIllowed in ANY/ALL/IN Subqueries

* New [NOT] DISTINCT Predicate

38

Data Manipulation Language (DML)

e NULL Comparison Rule Relaxed

e NULLs Ordering Changed

» UNION Setsin Subguery Constructs

» Extended Context Variables

* Query Plans Improvements

» GROUP or ORDER by Alias Name

* GROUPBY Arbitrary Expressions

e Order * Setsby Implicit Degree Number

* NEXT VALUE FOR

* RETURNING Clause for INSERT Statements

» Articles
1. Select Statement & Expression Syntax
2. DataType of an Aggregation Result

Common Table Expressions

Vlad Khorsun
Based on work by Paul Ruizendaal for Fyracle project

(v.2.1) A common table expression (CTE) islike aview that is defined locally within amain query. The engine
treats a CTE like a derived table and no intermediate materialisation of the datais performed.

Benefits of CTEs
Using CTEs allows you to specify dynamic queriesthat are recursive:
» The engine begins execution from a non-recursive member.

» For each row evaluated, it starts executing each recursive member one-by-one, using the current values from
the outer row as parameters.

* If the currently executing instance of arecursive member produces no rows, execution loops back one level
and gets the next row from the outer result set.

The memory and CPU overhead of a recursive CTE is much less than that of an equivalent recursive stored
procedure.

Recursion Limit

Currently the recursion depth is limited to a hard-coded value of 1024,

Syntax and Rules for CTEs

sel ect :
sel ect _expr for_update_clause | ock_cl ause
sel ect _expr :
wi t h_cl ause sel ect _expr_body order_cl ause rows_cl ause
| sel ect_expr_body order_cl ause rows_cl ause
wi th_cl ause :
W TH RECURSIVE with_list | WTH with_li st

39

Data Manipulation Language (DML)

with_list
with_item| with_item'," with_list
wWith_item:

synbol _tabl e_alias_name derived_columm_li st
AS ' (' select_expr ")’
sel ect _expr _body :
query_term
| select_expr_body UNI ON distinct_noise query_term
| select_expr_body UNION ALL query_term

A less formal representation:

W TH [RECURSI VE]
CTE_A [(al, a2, .)]
AS (SELECT ...),

CTE B [(bl, b2, .)]
AS (SELECT ...),

SELECT ...
FROM CTE_A, CTE_B, TABL, TAB2 ...
WHERE . . .

Rules for Non-Recursive CTEs

* Multiple table expressions can be defined in one query
» Any clauselegal in a SELECT specification islega in table expressions
» Table expressions can reference one another

» References between expressions should not have loops

» Table expressions can be used within any part of the main query or another table expression

» The same table expression can be used more than once in the main query

» Table expressions (as subqueries) can be used in INSERT, UPDATE and DELETE statements

o Table expressions are legal in PSQL code
* WITH statements can not be nested

Example of anon-recursive CTE

W TH
DEPT_YEAR BUDGET AS (
SELECT FI SCAL_YEAR, DEPT_NO,
SUM PROJECTED BUDGET) AS BUDGET
FROM PRQJ_DEPT_BUDGET
GROUP BY FI SCAL_YEAR, DEPT_NO
)
SELECT D. DEPT_NO, D. DEPARTMENT,
B_1993. BUDGET AS B 1993, B_1994. BUDGET AS B_1994,
B_1995. BUDGET AS B 1995, B _1996. BUDGET AS B_1996

40

Data Manipulation Language (DML)

FROM DEPARTMENT D

LEFT JO N DEPT_YEAR BUDGET B 1993
ON D. DEPT_NO = B_1993. DEPT_NO
AND B_1993. FI SCAL_YEAR = 1993

LEFT JO N DEPT_YEAR BUDGET B_1994
ON D. DEPT_NO = B_1994. DEPT_NO
AND B_1994. FI SCAL_YEAR = 1994

LEFT JO N DEPT_YEAR BUDGET B 1995
ON D. DEPT_NO = B_1995. DEPT_NO
AND B_1995. FI SCAL_YEAR = 1995

LEFT JO N DEPT_YEAR BUDGET B_1996
ON D. DEPT_NO = B_1996. DEPT_NO
AND B_1996. FI SCAL_YEAR = 1996

VWHERE EXI STS (

SELECT * FROM PROJ_DEPT_BUDGET B
WHERE D. DEPT_NO = B. DEPT_NO)

Rules for Recursive CTEs

* A recursive CTE is self-referencing (has areference to itself)

* Arecursive CTE isaUNION of recursive and non-recursive members:
- At least one non-recursive member (anchor) must be present
- Non-recursive members are placed first in the UNION

- Recursive members are separated from anchor members and from one another with UNION ALL clauses,
i.e,

non-recursive member (anchor)
UNION [ALL | DISTINCT]
non-recursive member (anchor)
UNION [ALL | DISTINCT]
non-recursive member (anchor)
UNION ALL

recursive member

UNION ALL

recursive member

» References between CTEs should not have loops

» Adggregates (DISTINCT, GROUP BY, HAVING) and aggregate functions (SUM, COUNT, MAX etc) are
not allowed in recursive members

» A recursive member can have only one reference to itself and only in a FROM clause
» A recursive reference cannot participate in an outer join

Example of arecursive CTE

W TH RECURSI VE
DEPT_YEAR BUDCET AS

41

Data Manipulation Language (DML)

(
SELECT FI SCAL_YEAR, DEPT_NO,

SUM PRQIECTED_BUDGET) AS BUDCET
FROM PROJ_DEPT_BUDGET
GROUP BY FI SCAL_YEAR, DEPT_NO

).

DEPT_TREE AS
(
SELECT DEPT_NO, HEAD DEPT, DEPARTMENT,
CAST('' AS VARCHAR(255)) AS | NDENT
FROM DEPARTMVENT
WHERE HEAD DEPT |'S NULL

UNI ON ALL

SELECT D. DEPT_NO, D. HEAD DEPT, D. DEPARTMENT,
H INDENT || '
FROM DEPARTMVENT D
JO N DEPT_TREE H
ON D. HEAD DEPT = H. DEPT_NO

)

SELECT D. DEPT_NG,

D. I NDENT || D. DEPARTMENT AS DEPARTMENT,
B_1993. BUDGET AS B_1993,

B_1994. BUDGET AS B_1994,

B_1995. BUDGET AS B_1995,

B_1996. BUDGET AS B_1996

FROM DEPT_TREE D
LEFT JO N DEPT_YEAR BUDGET B_ 1993
ON D. DEPT_NO = B _1993. DEPT_NO
AND B_1993. FI SCAL_YEAR = 1993

LEFT JO N DEPT_YEAR BUDGET B 1994
ON D. DEPT_NO = B _1994. DEPT_NO
AND B_1994. FI SCAL_YEAR = 1994

LEFT JO N DEPT_YEAR BUDGET B_1995
ON D. DEPT_NO = B_1995. DEPT_NO
AND B_1995. FI SCAL_YEAR = 1995

LEFT JO N DEPT_YEAR BUDGET B_1996

ON D. DEPT_NO = B _1996. DEPT_NO
AND B_1996. FI SCAL_YEAR = 1996

The LIST Function

Oleg Loa
Dmitry Y emanov

(v.2.1) This function returns a string result with the concatenated non-NULL values from a group. It returns
NULL if there are no non-NULL values.

Format

42

Data Manipulation Language (DML)

<list function> ::=
LIST ' (" [{ALL | DISTINCT}] <value expression> [',' <deliniter value>
1)

<delimter value> ::=
{ <string literal> | <paraneter> | <variable>}

Syntax Rules

1. If neither ALL nor DISTINCT is specified, ALL isimplied.

2. If <delimiter value> is omitted, acommais used to separate the concatenated values.
Other Notes

1. Numeric and date/time values are implicitly converted to strings during evaluation.

2. Theresult valueis of type BLOB with SUB_TYPE TEXT for al cases except list of BLOB with different
subtype.

3. Ordering of values within a group is implementation-defined.
Examples
[* A */
SELECT LIST(ID, ':")
FROM MY_TABLE
[* B */
SELECT TAG TYPE, LI ST(TAG VALUE)

FROM TAGS
GROUP BY TAG TYPE

The RETURNING Clause

Dmitry Y emanov
Adriano dos Santos Fernandes

(v.2.1) The purpose of this SQL enhancement isto enable the column values stored into atable as aresult of the
| NSERT, UPDATE OR | NSERT, UPDATE and DELETE statements to be returned to the client.

The most likely usage is for retrieving the value generated for a primary key inside a BEFORE-trigger. The
RETURNING clause is optional and is available in both DSQL and PSQL, although the rules differ dightly.

In DSQL, the execution of the operation itself and the return of the set occur in a single protocol round trip.

Because the RETURNING clause is designed to return a singleton set in response to compl eting an operation on
asinglerecord, it isnot valid to specify the clause in a statement that inserts, updates or deletes multiple records.

Note

In DSQL, the statement always returns the set, even if the operation has no effect on any record. Hence, at this
stage of implementation, the potential exists to return an “empty” set. (This may be changed in future.)

43

Data Manipulation Language (DML)

Syntax Patterns

I NSERT INTO ... VALUES (...)

[RETURNI NG <col um_list> [INTO <variable_list>]]

I NSERT INTO ... SELECT ...

[RETURNI NG <col um_list> [INTO <variable_list>]]

UPDATE OR I NSERT INTO ... VALUES (...) ...

[RETURNI NG <col um_list> [INTO <variable_list>]]

UPDATE ... [RETURNI NG <col um_list> [INTO <variable_list>]]

DELETE FROM . ..

[RETURNI NG <col um_list> [INTO <variable_list>]]

Rules for Using a RETURNING Clause

1. ThelNTO part (i.e. thevariablelist) isallowed in PSQL only, for assigning the output set to local variables.
Itisregectedin DSQL.

2. The presence of the RETURNING clause causes an INSERT statement to be described by the API as
i sc_info_sqgl _stnt_exec_procedureratherthani sc_i nf o_sql _stnt _i nsert . Existing con-
nectivity drivers should already be capable of supporting this feature without special alterations.

3. The RETURNING clause ignores any explicit record change (update or delete) that occurs as a result of
the execution of an AFTER trigger.

4. OLD and NEW context variables can be used in the RETURNING clause of UPDATE and INSERT OR
UPDATE statements.

5. InUPDATE and INSERT OR UPDATE statements, field references that are unqualified or qualified by
table name or relation alias are resolved to the value of the corresponding NEW context variable.

Examples

1.

I NSERT I NTO T1 (F1, F2)
VALUES (:F1, :F2)
RETURNI NG F1, F2 INTO :V1, :V2;

2.

I NSERT I NTO T2 (F1, F2)
VALUES (1, 2)
RETURNI NG | D | NTO : PK;
3.

DELETE FROM T1
WHERE F1 = 1
RETURNI NG F2;

Data Manipulation Language (DML)

UPDATE T1
SET F2 = F2 * 10
RETURNI NG OLD. F2, NEW F2;

UPDATE OR INSERT Statement

Adriano dos Santos Fernandes

(v.2.1) Thissyntax has been introduced to enable arecord to be either updated or inserted, according to whether
or not it already exists (checked with ISNOT DISTINCT). The statement isavailable in both DSQL and PSQL.

Syntax Pattern

UPDATE OR | NSERT I NTO <table or view> [(<colum_list>)]
VALUES (<val ue_list>)
[MATCHI NG <col um_li st >]
[RETURNI NG <col um_Ilist> [INTO <variable_list>]]

Examples

1

UPDATE OR I NSERT INTO T1 (F1, F2)
VALUES (:F1, :F2);

2.
UPDATE OR | NSERT | NTO EMPLOYEE (1D, NAVE)
VALUES (:1D, :NAME)
RETURNI NG | D;
3.
UPDATE OR | NSERT INTO T1 (F1, F2)
VALUES (:F1, :F2)
MATCHI NG (F1) ;
4,

UPDATE OR | NSERT | NTO EMPLOYEE (1D, NAVE)
VALUES (:1D, :NAME)
RETURNI NG OLD. NAMNE;

Usage Notes

1. When MATCHING is omitted, the existence of aprimary key isrequired.

45

Data Manipulation Language (DML)

2. INSERT and UPDATE permissions are heeded on <table or view>.

3. If the RETURNING clause is present, then the statement is described asi sc_i nf o_sql _stmt _exec_
procedur e by the API; otherwise, it isdescribed asi sc_i nfo_sql _stnt _insert.

Note

A “multiple rowsin singleton select” error will be raised if the RETURNING clause is present and more than
one record matches the search condition.

New JOIN Types

Adriano dos Santos Fernandes

(v.2.1) Two new JOIN typesareintroduced: the NAMED COLUMNSjoin anditscloserelative, the NATURAL
join.

Syntax and Rules

<nanmed colums join> ::=
<table reference> <join type> JON <table reference>
USING (<colum list>)

<natural join> ::=
<table reference> NATURAL <join type> JON <table primry>

Named columns join
1. All columns specified in <column list> should exist in the tables at both sides.

2. An equi-join (<left table>.<column> = <right table>.<column>) is automatically created for all columns
(ANDed).

3. The USING columns can be accessed without qualifiers—in this case, the result is equivalent to
COALESCE(<Iéft table>.<column>, <right table>.<column>).

4. In“SELECT *”, USING columns are expanded once, using the above rule.

Natural join
1. A *“named columnsjoin” isautomatically created with all columns common to the left and right tables.
2. If thereis no common column, a CROSS JOIN is created.

Examples

[* 1 */
select * from enpl oyee

46

Data Manipulation Language (DML)

j 0i n depart nent
usi ng (dept_no);

[* 2 *]

sel ect * from enpl oyee_proj ect
natural join enployee
natural join project;

CROSS JOIN
D. Yemanov

(V.2.0.x) CROSS JOIN is now supported. Logically, this syntax pattern:

A CRCSS JON B

is equivalent to either of the following:

AINNERJONBON1 =1
or, simply:

FROM A, B

INSERT with Defaults

D. Yemanov

Feature request

(v.2.1) Itisnow possibleto INSERT without supplying values, if Before Insert triggers and/or declared defaults
are available for every column and none is dependent on the presence of any supplied 'NEW' value.

Example

| NSERT | NTO <t abl e>
DEFAULT VALUES
[RETURNI NG <val ues>]

BLOB Subtype 1 Compatibility with VarChar
A. dos Santos Fernandes

(v.2.1) At various levels of evaluation, the engine now treats text BLOBSs that are within the 32,765-byte string
size limit as though they were varchars. Operations that now allow text BLOBSs to behave like strings are as-

47

http://tracker.firebirdsql.org/browse/CORE-863

Data Manipulation Language (DML)

signments, conversions and concatenations, aswell asthe functions CAST, LOWER, UPPER, TRIM and SUB-
STRING.

Full Equality Comparisons Between BLOBs

(v.2.0.x) Comparison can be performed on the entire content of a text BLOB.

RDB$DB_KEY Returns NULL in Outer Joins
A. dos Santos Fernandes

Feature request CORE-979

(v.2.1) By some anomaly, the physical RDB$DB_KEY has always returned a value on every output row when
specified in an outer join, thereby making atest predicated on the assumption that a non-match returnsNULL in
all fields return False when it ought to return True. Now, RDB$DB_KEY returns NULL when it should do so.

Sorting on BLOB and ARRAY Columns is Restored
Dmitry Y emanov

(v.2.1) In earlier pre-release versions of Firebird 2.1, changes were introduced to reject sorts (ORDER BY,
GROUP BY and SELECT DISTINCT operations) at prepare time if the sort clause implicitly or explicitly
involved sorting on aBLOB or ARRAY column.

That change was reversed in the RC2 pre-release version, not because it was wrong but because so many users
complained that it broke the behaviour of legacy applications.

I mportant

Thisreversion to “bad old behaviour” does not in any way imply that such querieswill magically return correct
results. A BLOB cannot be converted to a sortable type and so, as previously, DISTINCT sortingsand ORDER
BY argumentsthat involve BLOBS, will usethe BLOB_ID. Asbefore, GROUP BY arguments that are BLOB
types will prepare successfully, but will cause run-time exceptions.

Built-in Functions

(v.2.1) Some existing built-in functions have been enhanced, while alarge number of new ones has been added.

New Built-in Functions

Adriano dos Santos Fernandes
Oleg Loa
Alexey Karyakin

A number of built-in functions has been implemented in V.2.1 to replace common UDFs with the same names.
The built-in functions will not be used if the UDF of the same name is declared in the database.

48

http://tracker.firebirdsql.org/browse/CORE-979

Data Manipulation Language (DML)

Note

The choice between UDF and built-in function is decided when compiling the statement. If the statement is
compiled in a PSQL module whilst the UDF is available in the database, then the module will continue to
reguire the UDF declaration to be present until it is next recompiled.

The new built-in function DECODE() does not have an equivalent UDF in the libraries that are distributed
with Firebird.

The functions are detailed in Appendix A.

Note

Severa of these built-in functions were aready available in Firebird 2/0DS 11, viz., LOWER(), TRIM(),
BIT_LENGTH(), CHAR_LENGTH() and OCTET_LENGTH().

Enhancements to Functions
A. dos Santos Fernandes

EXTRACT(WEEK FROM DATE)
Feature request CORE-663

The EXTRACT() function is extended to support the | SO-8601 ordinal week numbers. For example:

EXTRACT (WEEK FROM date ' 30.09.2007")

returns 39

Soecify the Scale for TRUNC()
Feature request CORE-1340

In Beta 1 the implementation of the TRUNC() function supported only one argument, the value to be trun-
cated. From Beta 2, an optional second argument can be supplied to specify the scale of the truncation. For
example:

sel ect
trunc(987.65, 1),
trunc(987.65, -1)
from rdb$dat abase;

returns 987.60, 980.00

For other examples of using TRUNC() with and without the optional scale argument, refer to the alphabetical
listing of functionsin Appendix A.

Milliseconds Handling for EXTRACT(), DATEADD() and DATEDIFF()
Feature request CORE-1387

Fromv.2.1Beta2, EXTRACT(), DATEADD() and DATEDIFF() can operate with milliseconds (represent-
ed as an integer number). For example:

49

http://tracker.firebirdsql.org/browse/CORE-663
http://tracker.firebirdsql.org/browse/CORE-1340
http://tracker.firebirdsql.org/browse/CORE-1387

Data Manipulation Language (DML)

EXTRACT (M LLI SECOND FROM ti mestanp ' 01.01. 2000 01: 00: 00. 1234")

returns 123

DATEADD (M LLI SECOND, 100, tinestanp '01.01.2000 01:00: 00. 0000")
DATEDI FF (M LLI SECOND, timestanp '01.01.2000 02:00: 00. 0000', tinmestanp '01.01.2000 01:00: 00.

For more explanatory examples of using DATEADD() and DATEDIFF(), refer to the alphabetical listing
of functionsin Appendix A.

DATEADD and DATEDIFF Expanded Form Semantics
Improvement request CORE-1490

The semantics used in the choice of keywords for the expanded form of the DATEDIFF() function syntax
will be changed in the next beta or rel ease candidate. In the pattern:

DATEDI FF(<ti nestanp_part> FROM <date_ti me> FOR <date_tine>)

the keywords FROM and FOR will be changed to:

DATEDI FF(<timestanp_part> FROM <date_tine> TO <date_tine>)

The contracted form is not affected.
Similarly, the FOR keyword in the expanded form of DATEADD() will be changed to TO.

Functions Enhanced in V.2.0.x

Some function enhancements were already availablein the V.2.0.x releases:

IIF() Expression
O. Loa

(V.2.0.x) An l1F() expression can be used as a shortcut for a CASE expression that tests exactly two conditions.
It returns the value of the first sub-expression if the given search condition evaluates to TRUE, otherwise it
returns a value of the second sub-expression.

Il F (<search_condition> <valuel> <value2>)

isimplemented as a shortcut for

CASE
WHEN <sear ch_condi ti on> THEN <val uel>
ELSE <val ue2>

END

Example

50

http://tracker.firebirdsql.org/browse/CORE-1490

Data Manipulation Language (DML)

SELECT Il F(VAL > 0, VAL, -VAL) FROM OPERATI ON

Improvement in CAST() Behaviour
D. Yemanov

(V.2.0.x) Theinfamous* Datatype unknown” error (SF Bug #1371274) when attempting some castings has been
eliminated. It is now possible to use CAST to advise the engine about the data type of a parameter.

Example

SELECT CAST(? AS | NT) FROM RDB$DATABASE

Expression Arguments for SUBSTRING()
O. Loa, D. Yemanov

(V.2.0.x) The built-in function SUBSTRING() can now take arbitrary expressionsin its parameters.

Formerly, the inbuilt SUBSTRING() function accepted only constants as its second and third arguments (start
position and length, respectively). Now, the arguments can be anything that resolves to a value, including host
parameters, function results, expressions, subqueries, etc.

Note
The length of the resulting column is the same as the length of the first argument. This means that, in the

following

X = varchar (50);
substring(x from1 for 1);

the new column has alength of 50, not 1. (Thank the SQL standards committee!)

DSQL Parsing of Table Names is Stricter
A. Brinkman

Alias handling and ambiguous field detecting have been improved. In summary:

1. Whenatable dliasis provided for atable, either that alias, or no alias, must be used. It is no longer valid
to supply only the table name.

2. Ambiguity checking now checks first for ambiguity at the current level of scope, making it valid in some
conditions for columns to be used without qualifiers at a higher scope level.

Examples

1. Whenanaliasis present it must be used; or no dliasat al is allowed.

a. Thisquery was alowed in FB1.5 and earlier versions:

51

Data Manipulation Language (DML)

SELECT
RDB$SRELATI ONS. RDBSRELATI ON_NAME
FROM
RDB$SRELATI ONS R

but will now correctly report an error that thefield "RDB$SRELATIONS.RDB$RELATION_NAME"
could not be found.

Use this (preferred):

SELECT

R. RDBSRELATI ON_NAME
FROM

RDB$RELATI ONS R

or this statement:

SELECT

RDB$SRELATI ON_NAME
FROM

RDB$RELATI ONS R

b. Thestatement below will now correctly usethe Fieldl D from the subquery and from the updating table:

UPDATE
Tabl eA
SET
Fi el dA = (SELECT SUM A. Fi el dB) FROM Tabl eA A
VWHERE A. Fi el dI D = Tabl eA. Fi el dIl D)

Note

In Firebird it is possible to provide an aliasin an update statement, but many other database vendors
do not support it. These SQL statementswill improve the interchangeability of Firebird's SQL with
other SQL database products.

c. Thisexampledid not run correctly in Firebird 1.5 and earlier:

SELECT
RDBSRELATI ONS. RDBSRELATI ON_NANE,
R2. RDB$SRELATI ON_NANVE
FROM
RDB$RELATI ONS
JO N RDB$RELATI ONS R2 ON
(R2. RDB$SRELATI ON_NAMVE = RDB$RELATI ONS. RDBSRELATI ON_NAVE)

If RDBSRELATIONS contained 90 records, it would return 90 * 90 = 8100 records, but in Firebird
2 it will correctly return 90 records.

2. a Thisfaled in Firebird 1.5, but is possiblein Firebird 2:

52

Data Manipulation Language (DML)

SELECT

(SELECT RDB$RELATI ON_NAME FROM RDB$DATABASE)
FROM

RDB$SRELATI ONS

b. Ambiguity checking in subqueries: the query below would run in Firebird 1.5 without reporting an
ambiguity, but will report it in Firebird 2:

SELECT
(SELECT
FIRST 1 RDB$RELATI ON_NAVE
FROM
RDB$RELATI ONS R1
JO N RDBSRELATI ONS R2 ON
(R2. RDB$RELATI ON_NAME = RI1. RDB$RELATI ON_NAME))
FROM
RDB$DATABASE

EXECUTE BLOCK Statement
V. Khorsun

The SQL language extension EXECUTE BLOCK makes"dynamic PSQL" availableto SELECT specifications.
It has the effect of allowing a self-contained block of PSQL code to be executed in dynamic SQL asif it were
astored procedure.

Syntax pattern

EXECUTE BLOCK [(param datatype = ?, paramdatatype = ?, ...)]
[RETURNS (param dat atype, param datatype, ...)]

AS

[DECLARE VARI ABLE var datatype; ...]

BEG N

END

For theclient, thecall i sc_dsql _sql _i nf o withthe parameteri sc_i nf o_sql _stmt _t ype returns

* isc_info_sqgl _stnt_sel ect if theblock has output parameters. The semantics of acall issimilar to a
SELECT query: the client has a cursor open, can fetch data from it, and must close it after use.

* isc_info_sql _stnt_exec_procedur e if the block has no output parameters. The semantics of a call
issimilar to an EXECUTE query: the client has no cursor and execution continues until it reaches the end
of the block or is terminated by a SUSPEND.

The client should preprocess only the head of the SQL statement or use'? instead of "' asthe parameter indicator
because, in the body of the block, there may be referencesto local variables or arguments with a colon prefixed.

Example

Theuser SQL is

53

Data Manipulation Language (DML)

EXECUTE BLOCK (X | NTEGER = : X)
RETURNS (Y VARCHAR)

AS

DECLARE V | NTEGER,

BEG N
INSERT INTO T(...) VALUES (... :X ...);
SELECT ... FROM T INTO :Y;
SUSPEND;

END

The preprocessed SQL is

EXECUTE BLOCK (X | NTEGER = ?)
RETURNS (Y VARCHAR)

AS

DECLARE V | NTEGER

BEG N
I NSERT INTO T(...) VALUES (... :X ...);
SELECT ... FROM T INTO :Y;
SUSPEND;

END

Derived Tables
A. Brinkman

Implemented support for derived tables in DSQL (subgueries in FROM clause) as defined by SQL200X. A
derived table is a set, derived from a dynamic SELECT statement. Derived tables can be nested, if required, to
build complex queries and they can be involved in joins as though they were normal tables or views.

Syntax Pattern

SELECT
<select list>
FROM
<table reference |ist>

<table reference list> ::= <table reference> [{<comma> <table reference>}...]
<table reference> ::=
<table primry>
| <joined table>
<table primary> ::=
<table> [[AS] <correl ation nanme>]
| <derived tabl e>
<derived table> ::=
<query expression> [[AS] <correlation nane>]

[<left paren> <derived colum |ist> <right paren>]

<derived colum list> ::= <colum nane> [{<comra> <col umm name>}...]

Examples

Data Manipulation Language (DML)

a) Simple derived table:

SELECT
*

FROM
(SELECT
RDBSRELATI ON_NAVE, RDB$RELATI ON_| D
FROM
RDBSRELATI ONS) AS R (RELATI ON_NAME, RELATI ON_| D)

b) Aggregate on a derived table which also contains an aggregate

SELECT
DT. FI ELDS,
Count (*)
FROM
(SELECT
R. RDBSRELATI ON_NAME,
Count (*)
FROM
RDBSRELATI ONS R
JO N RDB$RELATI ON_FI ELDS RF ON (RF. RDB$SRELATI ON_NAME = R RDB$RELATI ON_NANME)
GROUP BY
R. RDB$SRELATI ON_NAME) AS DT (RELATI ON_NAME, FI ELDS)
GROUP BY
DT. FI ELDS

¢) UNION and ORDER BY example:

SELECT
DT. *
FROM
(SELECT
R RDB$SRELATI ON_NANME,
R RDB$RELATI ON_I D
FROM
RDB$RELATI ONS R
UNI ON ALL
SELECT
R RDBSOWKNER NANE,
R RDB$RELATI ON_I D
FROM
RDB$RELATI ONS R
ORDER BY
2) AS DT
WHERE
DT. RDB$SRELATI ON I D <= 4

Pointsto Note

» Every column in the derived table must have a name. Unnamed expressions like constants should be added
with an alias or the column list should be used.

» The number of columns in the column list should be the same as the number of columns from the query
expression.

55

Data Manipulation Language (DML)

» The optimizer can handle a derived table very efficiently. However, if the derived table is involved in an
inner join and contains a subquery, then no join order can be made.

ROLLBACK RETAIN Syntax

D. Yemanov
The ROLLBACK RETAIN statement is now supported in DSQL.

A “rollback retaining” feature was introduced in InterBase 6.0, but this rollback mode could be used only via
an API cal toisc_rollback retaining(). By contrast, “ commit retaining” could be used either viaan API call to
isc_commit_retaining() or by usingaDSQL COMM T RETAI N statement.

Firebird 2.0 adds an optional RETAI N clause to the DSQL ROLLBACK statement to make it consistent with
COMMIT [RETAIN].

Syntax pattern: follows that of COMMIT RETAIN.

ROWS Syntax

D. Yemanov

ROWS syntax is used to limit the number of rows retrieved from a select expression. For an uppermost-level
select statement, it would specify the number of rowsto be returned to the host program. A more understandable
aternative to the FIRST/SKIP clauses, the ROWS syntax accords with the latest SQL standard and brings some
extra benefits. It can be used in unions, any kind of subquery and in UPDATE or DELETE statements.

It isavailablein both DSQL and PSQL.

Syntax Pattern

SELECT ...
[ORDER BY <expr _list>]
RONS <expr 1> [TO <expr2>]

Examples

1

SELECT * FROM T1
UNI ON ALL

SELECT * FROM T2
ORDER BY COL
ROWS 10 TO 100

SELECT ©OL1, COL2,
(SELECT COL3 FROM T3 ORDER BY COL4 DESC ROWS 1)
FROM T4

56

Data Manipulation Language (DML)

DELETE FROM T5
CRDER BY COL5
ROWS 1

Pointsto Note

1. When <expr2> isomitted, then ROWS <exprl> is semantically equivalent to FIRST <exprl>. When both
<exprl> and <expr2> are used, then ROWS <expr1> TO <expr2> meansthesameas FIRST (<expr2>
- <exprl> + 1) SKIP (<exprl> - 1)

2. Thereisnothing that is semantically equivalent to a SKIP clause used without a FIRST clause.

Enhancements to UNION Handling

The rulesfor UNION queries have been improved as follows:

UNION DISTINCT Keyword Implementation
D. Yemanov

UNION DISTINCT is now alowed as a synonym for simple UNION, in accordance with the SQL-99 specifi-
cation. It isaminor change: DISTINCT is the default mode, according to the standard. Formerly, Firebird did
not support the explicit inclusion of the optional keyword DISTINCT.

Syntax Pattern

UNI ON [{DI STINCT | ALL}]

Improved Type Coercion in UNIONs
A. Brinkman

Automatic type coercion logic between subsets of a union is now more intelligent. Resolution of the data type
of the result of an aggregation over values of compatible data types, such as case expressions and columns at
the same position in a union query expression, Now uses smarter rules.

Syntax Rules
Let DTS be the set of data types over which we must determine the final result data type.
1. All of thedatatypesin DTS shall be comparable.
2. Case
a. If any of the datatypesin DTS s character string, then:

i. If any of the data typesin DTS is variable-length character string, then the result data type is
variable-length character string with maximum length in charactersequal to thelargest maximum
amongst the datatypesin DTS.

57

Data Manipulation Language (DML)

ii. Otherwise, the result data type is fixed-length character string with length in characters equal to
the maximum of the lengths in characters of the datatypesin DTS.

iii. The characterset/collation is used from the first character string datatypein DTS.

b. If al of the datatypesin DTS are exact numeric, then the result data type is exact numeric with scale
equal to the maximum of the scales of the data typesin DTS and the maximum precision of all data
typesin DTS.

Note

NOTE :: Checking for precision overflows is done at run-time only. The developer should take
measures to avoid the aggregation resolving to a precision overflow.

c. If any datatypein DTS is approximate numeric, then each data type in DTS shall be numeric else
an error isthrown.

d. If somedatatypein DTS is adate/time data type, then every datatype in DTS shall be a date/time
data type having the same date/time type.

e. |If any datatypein DTSis BLOB, then each datatypein DTS shall be BLOB and all with the same
sub-type.

UNIONs Allowed in ANY/ALL/IN Subqueries
D. Yemanov

The subquery element of an ANY, ALL or IN search may now be a UNION query.

Enhancements to NULL Logic

The following features involving NULL in DSQL have been implemented:

New [NOT] DISTINCT Test Treats Two NULL Operands as Equal
O. Loa, D. Yemanov

A new equivalence predicate behaves exactly like the equality/inequality predicates, but, instead of testing for
equality, it tests whether one operand is distinct from the other.

Thus, IS NOT DISTINCT treats (NULL equals NULL) asif it were true, since one NULL (or expression re-
solving to NULL) is not distinct from another. It is available in both DSQL and PSQL.

Syntax Pattern

<val ue> IS [NOT] DI STI NCT FROM <val ue>

Examples

1

SELECT * FROM T1

58

Data Manipulation Language (DML)

JAN T2
ON T1. NAME | S NOT DI STI NCT FROM T2. NAME;

SELECT * FROM T
VWHERE T. MARK | S DI STINCT FROM 'test';

Note
Pointsto note

1. Becausethe DISTINCT predicate considers that two NULL values are not distinct, it never evaluates to
the truth value UNKNOWN. Like the IS[NOT] NULL predicate, it can only be True or False.

2. TheNOT DISTINCT predicate can be optimized using an index, if oneis available.

NULL Comparison Rule Relaxed
D. Yemanov

A NULL literal can now betreated asavaluein al expressions without returning a syntax error. Y ou may now
specify expressions such as

= NULL
> NULL
+ NULL
I

A
B
A
B || NULL

Note

All such expressions evaluate to NUL L. The change does not ater nullability-aware semantics of the engine,
it simply relaxes the syntax restrictions alittle.

NULLs Ordering Changed to Comply with Standard
N. Samofatov

Placement of nullsin an ordered set has been changed to accord with the SQL standard that null ordering be
consistent, i.e. if ASC[ENDING] order puts them at the bottom, then DESC[ENDING] puts them at the top;
or vice-versa. This applies only to databases created under the new on-disk structure, since it needs to use the
index changesin order to work.

I mportant

If you override the default nulls placement, no index can be used for sorting. That is, noindex will be used for an
ASCENDING sort if NULLS LAST is specified, nor for a DESCENDING sort if NULLS FIRST is specified.

Examples

59

Data Manipulation Language (DML)

Dat abase: proc.fdb

sQL>
sQL>
sQL>
sQL>

create table gnull(a int);
insert into gnull values(null);
insert into gnull values(1l);
select a fromgnull order by a;

A
<nul | >
1
select a fromgnull order by a
A
<nul | >
1
select a fromgnull order by a
A
1
<nul | >

select a fromgnull order by a

<nul | >
1

select a fromgnull order by a

select a fromgnull order by a

<nul | >

select a fromgnull order by a

<nul | >
1

asc;

desc;

asc nulls first;

asc nulls |ast;

desc nulls last;

desc nulls first;

Subqueries and INSERT Statements Can Now Accept UNION Sets
D. Y emanov

SELECT specifications used in subqueries and in INSERT INTO <insert-specification> SELECT.
can now specify a UNION set.

. Statements

60

Data Manipulation Language (DML)

New Extensions to UPDATE and DELETE Syntaxes
O.Loa

ROWS specifications and PLAN and ORDER BY clauses can now be used in UPDATE and DELETE state-
ments.

Users can now specify explicit plans for UPDATE/DELETE statements in order to optimize them manually. It
isalso possible to limit the number of affected rows with a ROWS clause, optionally used in combination with
an ORDER BY clause to have a sorted recordset.

Syntax Pattern

UPDATE ... SET ... WHERE ...
[PLAN <pl an itens>]

[ORDER BY <val ue list>]

[RON5 <val ue> [TO <val ue>]]

or

DELETE ... FROM...

[PLAN <pl an itenms>]

[ORDER BY <val ue |ist>]

[RONE <val ue> [TO <val ue>]]

Extended Context Variables

A number of new facilities have been added to extend the context information that can be retrieved:

Sub-second Values Enabled for Time and DateTime Variables
D. Yemanov

CURRENT_TIMESTAMP, 'NOW' Now Return Milliseconds

The context variable CURRENT_TIMESTAMP and the date/time literal 'NOW' will now return the sub-second
time part in milliseconds.

Seconds Precision Enabled for CURRENT_TIME and CURRENT_TIMESTAMP
CURRENT_TIME and CURRENT_TIMESTAMP now optionally allow seconds precision
The featureis available in both DSQL and PSQL.

Syntax Pattern

CURRENT_TI ME [(<seconds precision>)]
CURRENT_TI MESTAMP [(<seconds preci sion>)]

61

Data Manipulation Language (DML)

Examples

1. SELECT CURRENT_TI ME FROM RDB$DATABASE;
2. SELECT CURRENT_TI ME(3) FROM RDB$DATABASE;
3. SELECT CURRENT_TI MESTAMP(3) FROM RDB$DATABASE;

Note

1. The maximum possible precision is 3 which means accuracy of 1/1000 second (one millisecond). This
accuracy may be improved in the future versions.

2. If no seconds precision is specified, the following values are implicit:

» Ofor CURRENT_TIME

o 3for CURRENT_TIMESTAMP

New System Functions to Retrieve Context Variables
N. Samofatov

Values of context variables can now be obtained using the system functions RDB$GET_CONTEXT and RDB
$SET_CONTEXT. These new built-in functions give access through SQL to someinformation about the current
connection and current transaction. They also provide a mechanism to retrieve user context data and associate
it with the transaction or connection.

Syntax Pattern

RDB$SET_CONTEXT(<nanespace>, <vari able>, <value>)
RDB$GET_CONTEXT(<nanespace>, <variable>)

These functions are realy a form of external function that exists inside the database intead of being called
from adynamically loaded library. The following declarations are made automatically by the engine at database
creation time:

Declaration

DECLARE EXTERNAL FUNCTI ON RDB$GET CONTEXT
VARCHAR(80)
VARCHAR(80)

RETURNS VARCHAR(255) FREE I T;

DECLARE EXTERNAL FUNCTI ON RDB$SET CONTEXT
VARCHAR(80)
VARCHAR(80) ,
VARCHAR(255)

RETURNS | NTEGER BY VALUE;

Usage

RDB$SET_CONTEXT and RDB$GET_CONTEXT set and retrieve the current value of a context variable.
Groups of context variables with similar properties are identified by Namespace identifiers. The namespace
determines the usage rules, such as whether the variables may be read and written to, and by whom.

62

Data Manipulation Language (DML)

Note

Namespace and variable names are case-sensitive.

RDB$GET_CONTEXT retrieves current value of avariable. If the variable does not exist in namespace, the
function returns NULL.

RDB$SET_CONTEXT sets a value for specific variable, if it is writable. The function returns a value of 1
if the variable existed before the call and O otherwise.

To delete avariable from a context, set itsvalueto NULL.

Pre-defined Namespaces

A fixed number of pre-defined namespacesis available:

USER_SESSION

Offers access to session-specific user-defined variables. You can define and set values for variables with any
name in this context.

USER_TRANSACTION

Offers similar possibilities for individual transactions.

SYSTEM

Provides read-only access to the following variables:

NETWORK_PROTOCOL :: The network protocol used by client to connect. Currently used values:
“TCPv4”, “WNET”, “XNET” and NULL.

CLIENT_ADDRESS :: The wire protocol address of the remote client, represented as a string. The valueis
an IP address in form "xxx.xxx.xxx.xxx" for TCPv4 protocol; the local process ID for XNET protocol; and
NULL for any other protocol.

DB_NAME :: Canonical name of the current database. It is either the aliasname (if connection viafile names
is disallowed DatabaseA ccess = NONE) or, otherwise, the fully expanded database file name.

ISOLATION_LEVEL :: The isolation level of the current transaction. The returned value will be one of
"READ COMMITTED", "SNAPSHOT", "CONSISTENCY™".

TRANSACTION_ID :: The numeric ID of the current transaction. The returned value is the same as would
be returned by the CURRENT_TRANSACTION pseudo-variable.

SESSION_ID :: The numeric ID of the current session. The returned value is the same as would be returned
by the CURRENT_CONNECTION pseudo-variable.

CURRENT _USER :: The current user. The returned value is the same as would be returned by the
CURRENT _USER pseudo-variable or the predefined variable USER.

CURRENT_ROLE :: Current role for the connection. Returns the same value as the CURRENT_ROLE
pseudo-variable.

63

Data Manipulation Language (DML)

Notes

To avoid DoS attacks against the Firebird Server, the number of variables stored for each transaction or session
context is limited to 1000.

Example of Use

set term?*”;
create procedure set_context(User_|I D varchar(40), Trn_ID integer) as
begin
RDB$SET_CONTEXT(' USER_TRANSACTION , 'Trn_ID, Trn_ID)
RDB$SET_CONTEXT(' USER_TRANSACTION , 'User_I D, User_ID)
end A

create table journal (
jrn_id integer not null primry key,
jrn_l astuser varchar(40),
jrn_l astaddr varchar(255),
jrn_lasttransacti on integer

)l\

CREATE TRI GGER Ul _JOURNAL FOR JOURNAL BEFORE | NSERT OR UPDATE

as

begi n
new.jrn_l astuser = rdb$get_context (' USER TRANSACTION , 'User_ID);
new.jrn_|l astaddr = rdb$get_context (' SYSTEM, ' CLI ENT_ADDRESS');
new.jrn_l asttransacti on = rdb$get_context (' USER TRANSACTION' , 'Trn_ID);

end "

conmit ~

execute procedure set_context('skidder', 1) ~

insert into journal (jrn_id) values(0) *
set term ;"

Since rdb$set_context returns 1 or zero, it can be made to work with asimple SELECT statement.

Example

SQ.> sel ect rdb$set_context (' USER SESSION , 'Nickolay', 'ru')
CNT> from rdb$dat abase

0 means not defined already; we have set it to 'ru’

SQ > sel ect rdb$set _context (' USER_SESSION, 'Nickolay', 'ca')
CNT> from rdb$dat abase

Data Manipulation Language (DML)

1 means it was defined already; we have changed it to 'ca

SQ > sel ect rdb$set _context (' USER_SESSI ON', ' Nickol ay', NULL)
CNT> from rdb$dat abase

1 saysit existed before; we have changed it to NULL, i.e. undefined it.

SQ.> sel ect rdb$set_context (' USER _SESSI ON', ' Nickol ay', NULL)
CNT> from rdb$dat abase

0, since nothing actually happened this time: it was aready undefined .

Improvements in Handling User-specified Query Plans
D. Yemanov

1. Plan fragments are propagated to nested levels of joins, enabling manual optimization of complex outer
joins

2. A user-supplied plan will be checked for correctnessin outer joins

3. Short-circuit optimization for user-supplied plans has been added

4. A user-specified access path can be supplied for any SELECT-based statement or clause
Syntax rules

The following schema describing the syntax rules should be helpful when composing plans.

PLAN ({ <streamretrieval > | <sorted_streans> | <joined_streans> })

<streamretrieval > ::= { <natural _scan> | <indexed_retrieval >
<navi gati onal _scan> }

<natural _scan> ::= <stream al i as> NATURAL
<i ndexed_retrieval > ::= <stream al i as> I NDEX (<i ndex_name>
[, <index_name> ...])
<navi gati onal _scan> ::= <stream al i as> ORDER <i ndex_nane>
[INDEX (<index_nanme> [, <index_name> ...])]
<sorted_streans> ::= SORT (<streamretrieval >)
<joined_streans> ::= JON (<streamretrieval > <streamretrieval >
[, <streamretrieval> ...])

| [SORT] MERGE (<sorted_streans>, <sorted_streans>)

65

Data Manipulation Language (DML)

Details

Natural scan meansthat all rows are fetched in their natural storage order. Thus, all pages must be read before
search criteria are validated.

Indexed retrieval usesanindex range scan to find row idsthat match the given search criteria. The found matches
are combined in a sparse bitmap which is sorted by page numbers, so every data page will be read only once.
After that the table pages are read and required rows are fetched from them.

Navigational scan uses an index to return rows in the given order, if such an operation is appropriate.-

» Theindex b-tree iswalked from the leftmost node to the rightmost one.

 If any search criterion is used on a column specified in an ORDER BY clause, the navigation is limited to
some subtree path, depending on a predicate.

* If any search criterion is used on other columns which are indexed, then arange index scan is performed in
advance and every fetched key hasits row id validated against the resulting bitmap. Then a data page is read
and the required row is fetched.

Note

Note that a navigational scan incurs random page 1/0, as reads are not optimized.

A sort operation performs an external sort of the given stream retrieval.

A join can be performed either via the nested loops algorithm (JOIN plan) or via the sort merge algorithm
(MERGE plan).-

* Aninner nested loop join may contain asmany streamsasare required to bejoined. All of them are equivalent.

* An outer nested loops join aways operates with two streams, so you'll see nested JOIN clauses in the case
of 3 or more outer streams joined.

A sort merge operates with two input streams which are sorted beforehand, then merged in asingle run.

Examples

SELECT RDB$RELATI ON_NAME

FROM RDB$RELATI ONS

WHERE RDB$RELATI ON_NAME LI KE ' RDB$%
PLAN (RDBSRELATI ONS NATURAL)

ORDER BY RDB$RELATI ON_NAME

SELECT R. RDB$SRELATI ON_NAVE, RF. RDB$FI ELD NANE
FROM RDB$RELATI ONS R

JO N RDBSRELATI ON_FI ELDS RF

ON R RDB$RELATI ON_NAME = RF. RDB$RELATI ON_NANE
PLAN MERGE (SORT (R NATURAL), SORT (RF NATURAL))

Notes

1. A PLAN clause may be used in all select expressions, including subqueries, derived tables and view defi-
nitions. It can be aso used in UPDATE and DEL ETE statements, because they'reimplicitly based on sel ect
expressions.

66

Data Manipulation Language (DML)

2. If aPLAN clause contains some invalid retrieval description, then either an error will be returned or this
bad clause will be silently ignored, depending on severity of the issue.

3. ORDER <navigationa_index> INDEX (<filter_indices>) kind of planis reported by the engine and can
be used in the user-supplied plans starting with FB 2.0.

Improvements in Sorting
A. Brinkman

Some useful improvements have been made to SQL sorting operations:

Order By or Group By <alias-name>

Column aliases are now alowed in both these clauses.

Examples:

1. ORDERDBY
SELECT RDB$RELATION_ID AS ID
FROM RDB$RELATI ONS
ORDER BY ID

2. GROUPBY

SELECT RDB$RELATI ON_NAVE AS | D, COUNT(*)
FROM RDB$RELATI ON_FI ELDS
GROUP BY ID

GROUP BY Arbitrary Expressions
A GROUP BY condition can how be any valid expression.

Example

GROUP BY
SUBSTRI NG(CAST((A * B) / 2 AS VARCHAR(15)) FROM 1 FCR 2)

Order * Sets by Implicit Degree Number
Order by degree (ordinal column position) now works on aselect * list.

Example

SELECT *
FROM RDB$RELATI ONS

67

Data Manipulation Language (DML)

CRDER BY 9

Parameters and Ordinal Sorts--a “Gotcha”

According to grammar rules, sincev.1.5, ORDER BY <value_expression> is allowed and <value_expression>
could be a variable or a parameter. It is tempting to assume that ORDER BY <degree_number> could thus be
validly represented as a replaceable input parameter, or an expression containing a parameter.

However, while the DSQL parser does not reject the parameterised ORDER BY clause expressionif it resolves
to an integer, the optimizer requires an absolute, constant value in order to identify the position in the output
list of the ordering column or derived field. If a parameter is accepted by the parser, the output will undergo a
“dummy sort” and the returned set will be unsorted.

NEXT VALUE FOR Expression

D. Yemanov

Added SQL-99 compliant NEXT VALUE FOR <seguence name> expression as a synonym for
GEN_ID(<generator-name>, 1), complementing the introduction of CREATE SEQUENCE syntax as the SQL
standard equivalent of CREATE GENERATOR.

Examples

1

SELECT GEN_|I D(S_EMPLOYEE, 1) FROM RDB$DATABASE;

I NSERT | NTO EMPLOYEE (I D, NAME)
VALUES (NEXT VALUE FOR S_EMPLOYEE, 'John Smith');

Note

1. Currently, increment ("step™) values not equal to 1 (one) can be used only by calling the GEN_ID function.
Future versions are expected to provide full support for SQL-99 sequence generators, which allows the
required increment values to be specified at the DDL level. Unless there is a vital need to use a step
value that is not 1, use of a NEXT VALUE FOR value expression instead of the GEN_ID function is
recommended.

2. GEN_ID(<name>, 0) allows you to retrieve the current sequence value, but it should never be used in
insert/update statements, as it produces a high risk of uniqueness violations in a concurrent environment.

RETURNING Clause for INSERT Statements
D. Yemanov

The RETURNING clause syntax has been implemented for the INSERT statement, enabling the return of a
result set from the INSERT statement. The set contains the column values actually stored. Most common usage
would be for retrieving the value of the primary key generated inside a BEFORE-trigger.

68

Data Manipulation Language (DML)

Availablein DSQL and PSQL.

Syntax Pattern

I NSERT INTO ... VALUES (...) [RETURNING <col urm_|ist> [INTO <variable_ |ist>]]

Example(s)

1

I NSERT I NTO T1 (F1, F2)
VALUES (:F1, :F2)
RETURNI NG F1, F2 INTO :V1, :V2;

I NSERT | NTO T2 (F1, F2)
VALUES (1, 2)
RETURNI NG | D | NTO : PK;

Note

1. ThelINTO part (i.e. the variable list) is allowed in PSQL only (to assign local variables) and rejected in
DSQL.

2. InDSQL, values are being returned within the same protocol roundtrip as the INSERT itself is executed.

3. If the RETURNING clause is present, then the statement is described as
isc_info_sgl_stmt_exec procedure by the API (instead of isc_info_sgl_stmt_insert), so the existing con-
nectivity drivers should support this feature automagically.

4. Any explicit record change (update or delete) performed by AFTER-triggersisignored by the RETURN-
ING clause.

5. Cursor based inserts (INSERT INTO ... SELECT ... RETURNING ...) are not supported.

6. Thisclause can return table column values or arbitrary expressions.

Articles

SELECT Statement & Expression Syntax

Dmitry Y emanov

About the semantics

» A select statement is used to return data to the caller (PSQL module or the client program)

69

Data Manipulation Language (DML)

» Select expressions retrieve parts of data that construct columns that can be in either the final result set or in
any of the intermediate sets. Select expressions are also known as subqueries.

Syntax rules

<sel ect statenent> ::=
<sel ect expressi on> [FOR UPDATE] [W TH LOCK]

<sel ect expression> ::=
<query specification> [UNTON [{ALL | DI STINCT}] <query specification>]

<query specification> ::=
SELECT [FI RST <val ue>] [SKIP <val ue>] <select |ist>
FROM <t abl e expression list>
WHERE <search condi ti on>
GROUP BY <group value list>
HAVI NG <gr oup condition>
PLAN <plan itemlist>
ORDER BY <sort value list>
ROMAS <val ue> [TO <val ue>]

<t abl e expression> ::=
<tabl e name> | <joined table> | <derived table>

<joined table> ::=
{<cross join>| <qualified join>}

<Cross join> ::=
<t abl e expressi on> CROSS JO N <t abl e expressi on>

<qualified join> ::=
<tabl e expression> [{INNER | {LEFT | RIGHT | FULL} [OQUTER]}] JO N <tabl e expression>
ON <join condition>

<derived table> :: =
"(' <select expression> ')’

Conclusions

» FOR UPDATE mode and row locking can only be performed for afinal dataset, they cannot be applied to
asubquery

» Unionsare alowed inside any subquery

» Clauses FIRST, SKIP, PLAN, ORDER BY, ROWS are alowed for any subquery

Notes

» Either FIRST/SKIP or ROWS s allowed, but a syntax error isthrown if you try to mix the syntaxes

* AnINSERT statement accepts a select expression to define a set to be inserted into atable. I1ts SELECT part
supports all the features defined for select statments/expressions

» UPDATE and DELETE statements are always based on an implicit cursor iterating through its target table
and limited with the WHERE clause. Y ou may also specify the final parts of the select expression syntax to
limit the number of affected rows or optimize the statement.

Clauses allowed at the end of UPDATE/DELETE statements are PLAN, ORDER BY and ROWS.

70

Data Manipulation Language (DML)

Data Type of an Aggregation Result
Arno Brinkman

When aggregations, CA SE evaluationsand UNIONsfor output columnsare performed over amix of comparable
data types, the engine has to choose one data type for the result. The developer often has to prepare a variable
or buffer for such results and is mystified when a request returns a data type exception. The rules followed by
the engine in determining the data type for an output column under these conditions are explained here.

1. Let DTSbethe set of datatypes over which we must determine the final result data type.
2. All of thedatatypesin DTS shall be comparable.
3. Inthe casethat

a. any of the datatypesin DTSis character string

i. If dl datatypesin DTS are fixed-length character strings, then the result is also a fixed-length
character string; otherwise the result is a variable-length character string.

The resulting string length, in characters, is equal to the maximum of the lengths, in characters,
of the datatypesin DTS.

ii. The character set and collation used are taken from the data type of the first character string in
DTS.

b. all of the datatypesin DTS are exact numeric

the result data type is exact humeric with scale equal to the maximum of the scales of the data types
in DTS and precision equal to the maximum precision of all datatypesin DTS.

c. anydatatypein DTSis approximate numeric
each datatypein DTS must be numeric, otherwise an error is thrown.
d. anydatatypein DTSisadate/time datatype

every datatype in DTS must be a date/time type having the same date/time type, otherwise an error
isthrown.

e. anydatatypein DTSisBLOB

each datatypein DTS must be BLOB and all with the same sub-type.

71

Chapter 7

Procedural SQL (PSQL)

A handful of improvements was added to the collection of PSQL extensions that came with Firebird 2. The
highlights are new capabilities to use domains and collation sequences when declaring variables and arguments
in procedures and triggers.

Quick Links

* Domainsin PSQL

* COLLATE in Stored Procedures

* WHERE CURRENT OF for Views

* ROW_COUNT Counts Rows Returned by SELECT
» Explicit Cursors

» Stored Procedure Arguments Can Take Defaults

» LEAVE <label> Flow Control Operator

* OLD Variables Now Read-only

o Stack Trace for PSQL Exceptions

» Cal UDFsas Procedures

Domains in PSQL

Adriano dos Santos Fernandes

(V.2.1) It is now possible to use a domain when declaring the data types of arguments and variables in PSQL
modules. Depending on your requirements, you can declare the argument or variable using

» the domain identifier alone, in lieu of the native data type identifier, to have the variable inherit all of the
attributes of the domain; or

» thedatatype of the domain, without inheriting CHECK constraints and the DEFAULT vaue (if declared in
the domain), by including the TYPE OF keyword in the declaration (see the syntax below)

Syntax

data_type ::=
<builtin_data_type>
| <domai n_name>
| TYPE OF <donmi n_name>

Examples

CREATE DOVAI N DOM AS | NTEGER,

CREATE PROCEDURE SP (
1 TYPE OF DOM

12 DOW)

72

Procedural SQL (PSQL)

RETURNS (
OL TYPE OF DOM
2 DOV
AS
DECLARE VARI ABLE V1 TYPE OF DOM
DECLARE VARI ABLE V2 DOM

BEG N

END

Note

A new field RDB$VALID_BLR was added in RDBSRELATIONS and RDB$TRIGGERS to indicate whether
the procedure/trigger isvalid after an ALTER DOMAIN operation. Thevalue of RDB$VALID_BLRisshown
in the ISQL commands SHOW PROCEDURE or SHOW TRIGGER.

COLLATE in Stored Procedures and Parameters
A. dos Santos Fernandes

(V.2.1) Collations can now be applied to PSQL variables, including stored procedure parameters.

WHERE CURRENT OF Now Allowed for Views

Feature request CORE-1213

(V.2.1) The cursor operator WHERE CURRENT OF can now step through a cursor set selected from aview
set, just asit doesin acursor set output from a SELECT on atable. For example:

FOR SELECT ...
FROM MY_VI EWINTO ... AS CURSCOR VI EW CURSOR DO
BEG N

DELETE FROM MY_VI EW
WHERE CURRENT COF VI EW CURSCR,

END

Context Variable ROW_COUNT Enhanced
D. Yemanov

ROW_COUNT has been enhanced so that it can now return the number of rows returned by a SELECT state-
ment.

For example, it can be used to check whether asingleton SELECT INTO statement has performed an assignment:

73

http://tracker.firebirdsql.org/browse/CORE-1213

Procedural SQL (PSQL)

BEG N
SELECT COL FROM TAB | NTO : VAR,

| F (ROW COUNT = 0) THEN
EXCEPTI ON NO_DATA_FOUND;
END

See also its usage in the examples below for explicit PSQL cursors.

Explicit Cursors
D. Yemanov

It isnow possible to declare and use multiple cursorsin PSQL. Explicit cursors are availablein aDSQL EXE-
CUTE BLOCK structure aswell asin stored procedures and triggers.

Syntax pattern

DECLARE [VARI ABLE] <cursor_nanme> CURSOR FOR (<sel ect_statenment>);
OPEN <cur sor _nane>;

FETCH <cur sor _nanme> | NTO <var_nanme> [, <var_nanme> ...];

CLOSE <cursor_name>;

Examples

1

DECLARE RNAME CHAR(31);
DECLARE C CURSOR FOR (SELECT RDB$RELATI ON_NAVE
FROM RDBSRELATI ONS) ;
BEG N
OPEN C,
WH LE (1 = 1) DO
BEG N
FETCH C | NTO : RNAME;
| F (ROW.COUNT = 0) THEN
LEAVE;
SUSPEND;
END
CLCSE G
END

DECLARE RNAME CHAR(31);

DECLARE FNAME CHAR(31);

DECLARE C CURSOR FOR (SELECT RDB$FI ELD_NAME
FROM RDB$RELATI ON_FI ELDS
WHERE RDB$RELATI ON_NAVE = : RNAMVE
ORDER BY RDB$FI ELD_POSI TI ON) ;

BEG N

FOR
SELECT RDB$RELATI ON_NANE

74

Procedural SQL (PSQL)

FROM RDB$RELATI ONS
| NTO : RNAME

DO

BEA N
OPEN C;
FETCH C | NTO : FNAME;
CLCSE C;
SUSPEND;

END

END

Note

» Cursor declaration is allowed only in the declaration section of aPSQL block/procedure/trigger, aswith any
regular local variable declaration.

e Cursor namesare required to be uniquein the given context. They must not conflict with the name of another
cursor that is"announced”, viathe AS CURSOR clause, by a FOR SELECT cursor. However, a cursor can
share its name with any other type of variable within the same context, since the operations available to
each are different.

» Positioned updates and del etes with cursors using the WHERE CURRENT OF clause are allowed.
» Attemptsto fetch from or close a FOR SELECT cursor are prohibited.

« Attempts to open a cursor that is aready open, or to fetch from or close a cursor that is already closed,
will fail.

e All cursors which were not explicitly closed will be closed automatically on exit from the current PSQL
block/procedure/trigger.

e The ROW_COUNT system variable can be used after each FETCH statement to check whether any row
was returned.

Defaults for Stored Procedure Arguments
V. Khorsun

Defaults can now be declared for stored procedure arguments.

The syntax is the same as a default value definition for a column or domain, except that you can use '="in place
of 'DEFAULT' keyword.

Arguments with default values must be last in the argument list; that is, you cannot declare an argument that
has no default value after any arguments that have been declared with default values. The caller must supply the
valuesfor all of the arguments preceding any that are to use their defaults.

For example, it isillegal to do something likethis; supply argl, arg2, niss arg3, set arg4...

Substitution of default values occurs at run-time. If you define a procedure with defaults (say P1), call it from
another procedure (say P2) and skip some final, defaulted arguments, then the default values for P1 will be
substituted by the engine at time execution P1 starts. This means that, if you change the default values for P1,
it is not necessary to recompile P2.

However, it is still necessary to disconnect all client connections, as discussed in the Borland InterBase 6 beta
"Data Definition Guide" (DataDef.pdf), in the section "Altering and dropping proceduresin use".

75

Procedural SQL (PSQL)

Examples

CONNECT ... ;
SET TERM *;
CREATE PROCEDURE P1 (X | NTEGER = 123)
RETURNS (Y | NTEGER)
AS
BEG N
Y = X
SUSPEND,;
END ~
COWM T ~
SET TERM ; "

SELECT * FROM P1,

123

SET TERM *;

CREATE PROCEDURE P2

RETURNS (Y | NTEGER)

AS

BEG N
FOR SELECT Y FROM P1 I NTO :Y
DO SUSPEND;

END A

COM T A

SET TERM ; ~

SELECT * FROM P2,

SET TERM *;
ALTER PROCEDURE P1 (X I NTEGER = CURRENT_TRANSACTI ON)
RETURNS (Y | NTEGER)
AS
BEG N
Y = X
SUSPEND;
END;, ~
COWM T ~
SET TERM ; "

SELECT * FROM P1,

76

Procedural SQL (PSQL)

5875

SELECT * FROM PZ2;

COW T;
CONNECT

SELECT * FROM PZ2;

Note

The source and BLR for the argument defaults are stored in RDB$FIELDS.

LEAVE <label> Syntax Support
D. Yemanov

New LEAVE <l abel > syntax now allows PSQL loops to be marked with labels and terminated in Java style.
The purposeisto stop execution of the current block and unwind back to the specified |abel. After that execution
resumes at the statement following the terminated loop.

Syntax pattern

<l abel _nanme>: <l oop_st at enent >

LEAVE [<l abel _nane>]

where <loop_statement> is one of: WHILE, FOR SELECT, FOR EXECUTE STATEMENT.
Examples

1

FOR
SELECT COALESCE(RDB$SYSTEM FLAG, 0), RDB$RELATI ON_NAME
FROM RDB$RELATI ONS

ORDER BY 1
| NTO : RTYPE, : RNAVE
DO
BEG N
| F (RTYPE = 0) THEN
SUSPEND;

77

Procedural SQL (PSQL)

ELSE
LEAVE; -- exits current |oop
END
2.
CNT = 100;
L1:
VWHI LE (CNT >= 0) DO
BEG N
I F (CNT < 50) THEN
LEAVE L1; -- exists WH LE | oop
CNT = CNT - 1|;
END
3.

STMI1 = ' SELECT RDB$RELATI ON_NAME FROM RDB$RELATI ONS' ;
L1:
FOR
EXECUTE STATEMENT : STMTI1 | NTO : RNAVE
DO
BEG N
STMI2 = ' SELECT RDB$FI ELD_NAME FROM RDB$RELATI ON_FI ELDS
VWHERE RDB$RELATI ON_NAME = ' ;

L2:
FOR
EXECUTE STATEMENT : STMI2 || :RNAME | NTO : FNAME
DO
BEG N
| F (RNAME = ' RDB$SDATABASE') THEN
LEAVE L1; -- exits the outer |oop
ELSE | F (RNAVE = ' RDBSRELATI ONS') THEN
LEAVE L2; -- exits the inner |oop
ELSE
SUSPEND,;
END
END
Note

Note that LEAVE without an explicit label means interrupting the current (innermost) loop.

OLD Context Variables Now Read-only
D. Y emanov

The set of OLD context variables available in trigger modules is now read-only. An attempt to assign a value
to OLD.something will be rejected.

Note

NEW context variables are now read-only in AFTER-triggers as well.

78

Procedural SQL (PSQL)

PSQL Stack Trace
V. Khorsun

The API client can now extract asimple stack trace Error Status V ector when an exception occurs during PSQL
execution (stored procedures or triggers). A stack trace is represented by one string (2048 bytes max.) and
consists of al the stored procedure and trigger names, starting from the point where the exception occurred, out
to the outermost caller. If the actual trace is longer than 2Kb, it is truncated.

Additional items are appended to the status vector as follows:

isc_stack_trace, isc_arg_string, <string |l ength> <string>

i sc_stack _traceisanew error code with value of 335544842L .
Examples

M etadata creation

CREATE TABLE ERR (
ID INT NOT NULL PRI MARY KEY,
NAVE VARCHAR(16)) ;

CREATE EXCEPTION EX '!'";
SET TERM #;

CREATE OR ALTER PROCEDURE ERR 1 AS
BEG N

EXCEPTION EX 'ID = 3';
END #

CREATE OR ALTER TRI GGER ERR Bl FOR ERR
BEFORE | NSERT AS

BEG N
IF (NEWID = 2)
THEN EXCEPTION EX 'ID = 2';

IF (NEWID = 3)
THEN EXECUTE PROCEDURE ERR 1;

IF (NEWID = 4)
THEN NEWID = 1 / O;
END A

CREATE OR ALTER PROCEDURE ERR 2 AS
BEG N

I NSERT | NTO ERR VALUES (3, '333");
END #

1. User exception from atrigger:

SQ" INSERT I NTO ERR VALUES (2, '2');
Statenment failed, SQ.CODE = -836
exception 3

79

Procedural SQL (PSQL)

-ID =2
-At trigger 'ERR BI'

2. User exception from a procedure called by atrigger:

SQ." INSERT I NTO ERR VALUES (3, '3");
Statenment failed, SQ.CODE = -836
exception 3

-ID =3

-At procedure 'ERR 1'

At trigger 'ERR BI'

3. Run-time exception occurring in trigger (division by zero):

SQ." INSERT I NTO ERR VALUES (4, '4');

Staterment failed, SQLCODE = -802

arithmetic exception, nuneric overflow, or string truncation
-At trigger 'ERR BI'

4. User exception from procedure:

SQ." EXECUTE PROCEDURE ERR 1;
Statenment failed, SQ.CODE = -836
exception 3

-ID =3

-At procedure 'ERR 1'

5. User exception from a procedure with a deeper call stack:

SQ." EXECUTE PROCEDURE ERR 2;
Statenment failed, SQ.CODE = -836
exception 3

-ID =3

-At procedure 'ERR 1'

At trigger 'ERR BI'

At procedure 'ERR 2’

Call a UDF as a Void Function (Procedure)
N. Samofatov

In PSQL, supported UDFs, e.g. RDB$SET_CONTEXT, can be called as though they were void functions (ak.a
“procedures’ in Object Pascal). For example:
BEG N
i?b.B$SE|'_CO\lTEXT(‘ USER_TRANSACTION', ' MY_VAR , '123');

END

80

Chapter 8

New Reserved
Words and Changes

The following keywords have been added, or have changed status, since Firebird 1.5. Those marked with an
asterisk (*) are not present in the SQL standard.

Newly Reserved Words

Bl T_LENGTH
BOTH

CHAR_LENGTH
CHARACTER_LENGTH
CLOSE

CROSS

FETCH

LEADI NG

LOVER
OCTET_LENGTH
OPEN

ROWS

TRAI LI NG

TR M

Changed from Non-reserved to Reserved

USI NG

Keywords Added as Non-reserved

BACKUP *
BLOCK *
COLLATI ON
COVMVENT *

DI FFERENCE *
I1F *

NEXT

SCALAR ARRAY *
SEQUENCE
RESTART
RETURNI NG *

81

New Reserved Words and Changes

Keywords No Longer Reserved

ACTI ON
RESTRI CT
V\EEKDAY *
CASCADE
ROLE
YEARDAY *
FREE I T *
TYPE

No Longer Reserved as Keywords

BASENAME *
GROUP_COMM T_WAI T *
NUM LOG BUFS *
CACHE *

LOGFI LE *

RAW PARTI TI ONS *
CHECK_PO NT_LEN *
LOG BUF_SI ZE *

82

Chapter 9

Indexing & Optimizations

Optimizations in V.2.1
Optimization improvementsin v.2.1 include:

(v.2.1) Economising on Indexed Reads for MIN() and MAX()
Indexed MIN/MAX aggregates would produce three indexed reads instead of the expected single read. So,
with an ASC index on the non-nullable COL, the query

SELECT M N(COL) FROM TAB

should be completely equivalent, to

SELECT FIRST 1 COL FROM TAB
ORDER BY 1 ASC

with both performing a single record read. However, formerly, the first query required three indexed reads
while the second one required just the expected single read. Now, they both resolve to asingle read.

The same optimization applies to the MAX() function when mapped to a DESC index.

Improved PLAN Clause

D. Yemanov

(V.2.0.x) A PLAN clause optionally allowsyou to provide your own instructionsto the engine and haveit ignore
the plan supplied by the optimizer. Firebird 2 enhancements alow you to specify more possible paths for the
engine. For example:

PLAN (A ORDER | DX1 | NDEX (IDX2, |DX3))

For more details, please refer to the topic Query Plans Improvementsin the DML chapter.

Optimizer Improvements

This section represents a collection of changes done in Firebird 2 to optimize many aspects of performance.

83

Indexing & Optimizations

For All Databases

The first group of changes affect all databases, including those not yet upgraded to ODS 11.x.

Some General Improvements
O. Loa, D. Yemanov

» Much faster algorithms to process the dirty pagestree

Firebird 2 offers amore efficient processing of the list of modified pages, a.k.a. the dirty pagestree. It affects
all kinds of batch data modifications performed in a single transaction and eliminates the known issues with
performance getting slower when using a buffer cache of >10K pages.

This change aso improves the overall performance of data modifications.

 Increased maximum page cache size to 128K pages (2GB for 16K page size)

Faster Evaluation of IN() and OR
O.Loa

Constant IN predicate or multiple OR booleans are now evaluated faster.

Sparse bitmap operations were optimized to handle multiple OR booleans or an IN (<constant list>) predicate
more efficiently, improving performance of these operations.

Improved UNIQUE Retrieval
A. Brinkman

The optimizer will now use amore realistic cost value for unique retrieval.

More Optimization of NOT Conditions
D. Yemanov

NOT conditions are simplified and optimized via an index when possible.

Example

Distribute HAVING Conjunctions to the WHERE Clause

If a HAVING clause or any outer-level select refers to a field being grouped by, this conjunct is distributed
deeper in the execution path than the grouping, thus allowing an index scan to be used. In other words, it allows
the HAVING clause not only be treated as the WHERE clause in this case, but also be optimized the same way.

84

Indexing & Optimizations

Examples

sel ect rdb$relation_id, count(*)
fromrdb$rel ati ons

group by rdb$relation_id

havi ng rdb$rel ation_id > 10

select * from(
sel ect rdb$relation_id, count(*)
fromrdb$rel ati ons
group by rdb$relation_id
) as grp (id, cnt)
where grp.id > 10

In both cases, an index scan is performed instead of afull scan.

Distribute UNION Conjunctions to the Inner Streams

Distribute UNION conjunctions to the inner streams when possible.

Improved Handling of CROSS JOIN and Merge/SORT

Improved cross join and merge/sort handling

Better Choice of Join Order for Mixed Inner/Outer Joins

reasonable join order for intermixed inner and outer joins

Equality Comparison on Expressions

MERGE PLAN may now be generated for joins using equality comparsion on expressions

For ODS 11 Databases only

This group of optimizations affects databases that were created or restored under Firebird 2 or higher.

Segment-level Selectivities are Used

See Selectivity Maintenance per Segment.

Better Support for IS NULL and STARTING WITH

Previously, ISNULL and STARTING WITH predicates were optimized separately from others, thus causing
non-optimal plans in complex ANDed/ORed boolean expressions. From v2.0 and ODS11, these predicates are
optimized in aregular way and hence benefit from all possible optimization strategies.

85

Indexing & Optimizations

Matching of Both OR and AND Nodes to Indexes

Complex boolean expressions consisting of many AND/OR predicates are now entirely mapped to available
indicesif at all possible. Previously, such complex expressions could be optimized badly.

Better JOIN Orders

Cost estimations have been improved in order to improve JOIN orders.

Indexed Order Enabled for Outer Joins

It isnow possible for indexed order to be utilised for outer joins, i.e. navigational walk.

Enhancements to Indexing

252-byte index length limit is gone
A. Brinkman

New and reworked index code is very fast and tolerant of large numbers of duplicates. The old aggregate key
length limit of 252 bytesisremoved. Now the limit depends on page size: the maximum size of the key in bytes
is 1/4 of the page size (512 on 2048, 1024 on 4096, etc.)

A 40-bit record number is included on “non leaf-level pages’ and duplicates (key entries) are sorted by this
number.

Expression Indexes
O. Loa, D. Yemanov, A. Karyakin

Arbitrary expressions applied to valuesin arow in dynamic DDL can now beindexed, allowing indexed access
paths to be available for search predicates that are based on expressions.

Syntax Pattern

CREATE [UNI QUE] [ASCI ENDI NG | DESC ENDI NG] | NDEX <i ndex name>
ON <t abl e nane>
COWPUTED BY (<val ue expression>)

Examples

1

86

Indexing & Optimizations

CREATE | NDEX | DX1 ON T1
COMPUTED BY (UPPER(COL1 COLLATE PXWCYRL));
COW T;
[*
SELECT * FROM T1
WHERE UPPER(COL1 COLLATE PXW CYRL) = ' QUAA
-- PLAN (T1 INDEX (1DX1))

CREATE | NDEX | DX2 ON T2
COVPUTED BY (EXTRACT(YEAR FROM COL2) || EXTRACT(MONTH FROM COL2));
COW T;
[* *]
SELECT * FROM T2
ORDER BY EXTRACT(YEAR FROM COL2) || EXTRACT(MONTH FROM COL2)
-~ PLAN (T2 ORDER | DX2)

Note

1. Theexpression used in the predicate must match exactly the expression used in the index declaration, in
order to alow the engine to choose an indexed access path. The given index will not be available for any
retrieval or sorting operation if the expressions do not match.

2. Expression indices have exactly the same features and limitations as regular indices, except that, by def-
inition, they cannot be composite (multi-segment).

Changes to Null keys handling

V. Khorsun, A. Brinkman
* Null keys are now bypassed for uniqueness checks. (V. Khorsun)

If anew key isinserted into a unique index, the engine skips all NULL keys before starting to check for key
duplication. It means a performance benefit as, fromv.1.5 on, NULL s have not been considered as duplicates.

* NULLsareignored during the index scan, when it makes sense to ignore them. (A. Brinkman).

Prevously, NULL keys were always scanned for all predicates. Starting with v.2.0, NULL keys are usually
skipped before the scan begins, thus allowing faster index scans.

Note

The predicates IS NULL and IS NOT DISTINCT FROM till require scanning of NULL keys and they
disable the af orementioned optimization.

Improved Index Compression
A. Brinkman

A full reworking of the index compression algorithm has made a manifold improvement in the performance
of many queries.

87

Indexing & Optimizations

Selectivity Maintenance per Segment
D. Yemanov, A. Brinkman

Index selectivities are now stored on a per-segment basis. This means that, for a compound index on columns
(A, B, C), three selectivity values will be calculated, reflecting afull index match aswell as all partial matches.
That isto say, the selectivity of the multi-segment index involves those of segment A alone (asit would beiif it
were a single-segment index), segments A and B combined (as it would be if it were a double-segment index)
and the full three-segment match (A, B, C), i.e., al the ways a compound index can be used.

This opens more opportunities to the optimizer for clever access path decisionsin cases involving partial index
matches.

The per-segment selectivity values are stored in the column RDBS$STATISTICS of table RDB
$INDEX_SEGMENTS. The column of the same name in RDB$INDICES is kept for compatibility and still
represents the total index selectivity, that is used for afull index match.

88

International Language
Support (INTL)

Adriano dos Santos Fernandes

This chapter describes the new international language support interface that was introduced with Firebird 2.
Since then, anumber of additions and improvements have been added, including the ability to implement UNI-
CODE callations from external libraries generically. New DDL syntax has been introduced to assist with this
task, in the form of the CREATE COLLATION statement.

New INTL Interface for Non-ASCIl Character Sets
A. dos Santos Fernandes

Originally described by N. Samofatov, Firebird 2's new interface for international character sets features many
enhancements that have been implemented by me.

Architecture

Firebird allows character sets and collations to be declared in any character field or variable declaration. The
default character set can al so be specified at database create time, to cause every CHAR/VARCHAR declaration
that does not specifically include a CHARACTER SET clause to use this default.

At attachment time you normally specify the character set that the client isto useto read strings. If no "client” (or
"connection™) character set is specified, character set NONE is assumed.

Two specia character sets, NONE and OCTETS, can be used in declarations. However, OCTETS cannot be
used as a connection character set. The two sets are similar, except that the space character of NONE is ASCI|I
0x20, whereas the space character OCTETS is 0x00. NONE and OCTETS are “specia” in the sense that they
follow different rules from those applicable to other character sets regarding conversions.

» With other character sets, conversion is performed as CHARSET1->UNICODE->CHARSET2.
* With NONE/OCTETS the bytes are just copied: NONE/OCTETS->CHARSET2 and CHARSET1->NONE/
OCTETS.

Enhancements

Enhancements that the new system brings include:

Well-formedness checks

Some character sets (especially multi-byte) do not accept just any string. Now, the engine verifies that strings
are well-formed when assigning from NONE/OCTETS and when strings sent by the client (the statement string
and parameters).

89

International Language Support (INTL)

Uppercasing

In Firebird 1.5.x, only the ASCII-equivalent characters are uppercased in any character set's default (binary)
collation order, which isthe one that is used if no collation is specified.

For example,

isgl -q -ch dos850

SQL> create database 'test.fdb';

SQ.> create table t (c char(1l) character set dos850);
SQ.> insert intot values ('a')
SQL> insert into t values ('e¢€'
SQL> insert into t val ues
SQL> insert into t val ues
SQ>

SQL> select c, upper(c) fromt;

NN N
@ o @

~— N —

C UPPER

Maximum String Length

In v.1.5.x the engine does not verify the logical length of multi-byte character set (MBCS) strings. Hence, a
UNICODE_FSSfield takes three times as many characters as the declared field size, three being the maximum
length of one UNICODE_FSS character.

This has been retained for compatibility for legacy character sets. However, new character sets (UTFS8, for
example) do not inherit this limitation.

sqlsubtype and Attachment Character Set

When the character set of aCHAR or VARCHAR column isanything but NONE or OCTET S and the attachment
character set isnot NONE, the sglsubtype member of an XSQLV AR pertaining to that column now contains the
attachment (connection) character set number instead of the column's character set.

90

International Language Support (INTL)

Enhancements for BLOBs

Several character set-related enhancements have been added for text BLOBS.

COLLATE clauses for BLOBs
A DML COLLATE clauseis now allowed with BLOBS.

Example

sel ect blob_colum fromtable
where bl ob_columm collate uni code = 'foo';

Full equality comparisons between BLOBs

Comparison can be performed on the entire content of atext BLOB.

Character set conversion for BLOBs

Conversion between character sets is now possible when assigning to a BLOB from a string or another BLOB

INTL Plug-ins
Character sets and collations are installed using a manifest file.

The manifest file should be put in the $rootdir/intl with a.conf extension. It is used to locate character sets and
collations in the libraries. If a character set/collation is declared more than once, it is not loaded and the error
isreported in the log.

Thefile/intl/fbintl.conf isan example of a manifest file. The following snippet is an excerpt from
/intl/fbintl.conf:

<intl_nodule fbintl>
fil ename $(this)/fbintl
</intl_modul e>

<charset |SC8859_1>
i ntl _nodul e fbintl
col lation | SCB8859_1
coll ation DA DA
coll ation DE_DE
coll ation EN_UK
coll ation EN_US
coll ation ES_ES
coll ation PT_BR
coll ation PT_PT

</ char set >

<charset W N1250>

91

International Language Support (INTL)

i ntl_nodul e fbintl

coll ation W N1250

coll ation PXW CSY

coll ation PXW HUN

coll ation PXW HUNDC
</ char set >

Note

The symbol $(this) is used to indicate the same directory as the manifest file and the library extension should
be omitted.

New Character Sets/Collations

Two character sets introduced in Firebird 2 will be of particular interest if you have struggled with the short-
comings of UNICODE_FSSin past versions.

UTF8 character set

The UNICODE_FSS character set hasanumber of problems: it'san old version of UTF8 that accepts malformed
strings and does not enforce correct maximum string length. In FB 1.5.X UTF8 isan aliasto UNICODE_FSS.

Now, UTF8 isanew character set, without the inherent problems of UNICODE_FSS.

UNICODE collations (for UTF8)

UCS _BASIC worksidentically to UTF8 with no collation specified (sortsin UNICODE code-point order). The
UNICODE collation sorts using UCA (Unicode Collation Algorithm).

Sort order sample:

isqgl -q -ch dos850

SQL> create database 'test.fdb';

SQ.> create table t (c char(1l) character set utf8);
SQ.> insert intot values ('a');
SQL> insert into t val ues A);
SQ > insert into t val ues ay;
SQL> insert into t val ues b');
SQL> insert into t val ues B');
SQ.> select * fromt order by c collate ucs_basic;

SQL> select * fromt order by c collate unicode;

92

International Language Support (INTL)

Developments in V.2.1

The 2.1 release sees further capabilities implemented for

1. using ICU charsets through fbintl

2. UNICODE callation (charset. UNICODE) being available for all fbintl charsets
3. using collation attributes

4. CREATE/DROP COLLATION statements

5. SHOW COLLATION and collation extraction in 1SQL

6. Verifying that text blobs are well-formed

7. Trandliterating text blobs automatically

ICU Character Sets

All non-wide and ASCII-based character sets present in ICU can be used by Firebird 2.1. To reduce the size
of the distribution kit, we customize ICU to include only essential character sets and any for which there was
a specific feature request.

If the character set you need is not included, you can replace the ICU libraries with another complete module,
found at our site or already installed in your operating system.

Registering an ICU Character Set Module
To use an alternative character set module, you need to register it in two places:
1. inthe server'slanguage configuration file, i nt I/ f bi nt1 . conf

2. ineach database that is going to use it

Registering a Character Set on the Server

Using atext editor, register themoduleini nt |/ f bi ntl . conf, asfollows.-

<char set NANVE>
intl_nodul e fbintl
col lation NAME [REAL- NAME]

</ char set >

93

International Language Support (INTL)

Registering a Character Set in a Database
To register the module in a database, you have two options:

» Usethe CREATE COLLATION statement, OR—

* Runtheproceduresp_r egi st er _char act er _set , the source for which can befound inmi sc/intl.
sqgl beneath your Firebird 2.1 root

The CREATE COLLATION Statement
Syntax for CREATE COLLATION

CREATE COLLATI ON <name>
FOR <charset >
[FROM <base> | FROM EXTERNAL (' <nane>')]
[NO PAD | PAD SPACE]
[CASE SENSI TI VE | CASE | NSENSI Tl VE]
[ACCENT SENSI TI VE | ACCENT | NSENSI TI VE]
["<specific-attributes>]

Note

Specific attributes should be separated by semicolon and are case sensitive.

Examples

[* 1 */

CREATE COLLATI ON UNI CODE_ENUS_ClI
FOR UTF8
FROM UNI CODE
CASE | NSENSI TI VE
' LOCALE=en_US' ;

[* 2 *]

CREATE COLLATI ON NEW COLLATI ON
FOR W N1252
PAD SPACE;

/* NEW COLLATI ON shoul d be declared in .conf file
in $root/intl directory */

Using the Stored Procedure
A Sample

Here isthe sample declarationinf bi nt | . conf:

<char set B>
intl_nodul e fbintl
col lation GB GB18030

</ char set >

94

International Language Support (INTL)

The stored procedure takes two arguments: astring that isthe character set'sidentifier as declared in the config-
uration file and a smallint that is the maximum number of bytes a single character can occupy in the encoding.
For our example:

execute procedure sp_regi ster_character_set ('GB, 4);

The UNICODE Collations

The UNICODE caollations (case sensitive and case insensitive) can be applied to any character set that is present
in fbintl. They are already registered in f bi nt | . conf, but you need to register them in the databases, with
the desired associations and attributes.

Naming Conventions

The naming convention you should useischar set _col | ati on. For example,

create collation wi nl1252_uni code
for winl252;

create collation wi n1252_uni code_ci
for wi n1252
fromw nl1252_uni code
case insensitive;

Note

The character set name should be asin fhintl.conf (i.e. 1ISO8859_1 instead of 1SO88591, for example).

Specific Attributes for Collations

Note

Some attributes may not work with some collations, even though they do not report an error.

DISABLE-COMPRESS ONS
Disable compressions (aka contractions) changing the order of agroup of characters.

Valid for collations of narrow character sets.
Format: DISABLE-COMPRESSIONS={0 | 1}
Example

DISABLE-COMPRESSIONS=1

DISABLE-EXPANSIONS
Disable expansions changing the order of a character to sort as agroup of characters.

Valid for collations of narrow character sets.

95

International Language Support (INTL)

Format: DISABLE-EXPANSIONS={0| 1}

Example

DISABLE-EXPANSIONS=1
ICU-VERSION

Specify what version of ICU library will be used. Valid values are the ones defined in the config file (intl/
fbintl.conf) in entry intl_module/icu_versions.

Valid for UNICODE and UNICODE_CI.

Format: 1CU-VERSION={default | major.minor}
Example

ICU-VERSION=3.0

LOCALE
Specify the collation locale.

Valid for UNICODE and UNICODE_CI. Requires complete version of ICU libraries.
Format: LOCALE=xx_XX

Example

LOCALE=en US

MULTI-LEVEL
Uses more than one level for ordering purposes.

Valid for collations of narrow character sets.
Format: MULTI-LEVEL={0| 1}
Example

MULTI-LEVEL=1

SPECIALSFIRST
Order special characters (spaces, symbols, etc) before al phanumeric characters.

Valid for collations of narrow character sets.
Format: SPECIALS-FIRST={0]|1}
Example

SPECIALS-FIRST=1

Collation Changes in V.2.1

Spanish

96

International Language Support (INTL)

ESES (as well as the new ES ES Cl Al) collation automaticaly uses attributes DIS
ABLE-COMPRESSIONS=1;SPECIALS-FIRST=1.

Note

The attributes are stored at database creation time, so the changes do not apply to databases with ODS
<111

The ES ES CI_Al collation was standardised to current usage.

UTF-8
Case-insensitive collation for UTF-8. See feature request CORE-972

Metadata Text Conversion

Firebird versions 2.0.x had two problems related to character sets and metadata extraction:

1. When creating or altering objects, text associated with metadata was not trandliterated from the client char-
acter set to the system (UNICODE_FSS) character set of these BLOB columns. Instead, raw bytes were
stored there.

The types of text affected were PSQL sources, descriptions, text associated with constraints and defaullts,
and so on.

Note

Even in the current version (2.1 Beta 1) the problem can still occur if CREATE or ALTER operations
are performed with the connection character set as NONE or UNICODE_FSS and you are using non-
UNICODE_FSS data

2. Inreadsfrom text BLOBS, tranditeration from the BLOB character set to the client character set was not
being performed.

Repairing Your Metadata Text

If your metadata text was created with non-ASCII encoding, you need to repair your database in order to read
the metadata correctly after upgrading it tov.2.1.

Important

The procedure involves multiple passes through the database, using scripts. It is strongly recommended that
you disconnect and reconnect before each pass.

The database should already have been converted to ODS11.1 by way of a gbak backup and restore.
Before doing anything, make a copy of the database.

In the examples that follow, the string $fbroot$ represents the path to your Firebird installation root directory,
e.g. /opt/firebird.

97

http://tracker.firebirdsql.org/browse/CORE-972

International Language Support (INTL)

Create the procedures in the database

[1] isqgl /path/to/your/database.fdb
[2] SQL> input '$fbroot$/ m sc/upgrade/ netadatal/ netadata_charset_create.sql’';

Check your database

[1] isqgl /path/to/your/database.fdb
[2] SQL> select * fromrdb$check_net adat a;

The rdb$check metadata procedure will return all objects that are touched by it.
» If noexceptionisraised, your metadatais OK and you can go to the section“ Removethe upgrade procedures’.

» Otherwise, thefirst bad object isthe last one listed before the exception.

Fixing the metadata

To fix the metadata, you need to know in what character set the objects were created. The upgrade script will
work correctly only if al your metadata was created using the same character set.

[1] isql /path/to/your/database.fdb

[2] SQL> input '$fbroot$/m sc/upgrade/ netatdatal/ metadata_charset_create.sql"';

[3] SQL> select * fromrdb$fix_netadata(' WN1252"'); -- replace WN1252 by your charset
[4] SQ> commit;

The rdb$fix_metadata procedure will return the same data as rdb$check_metadata, but it will change the meta-
data texts.

I mportant

It should be run once!

After this, you can remove the upgrade procedures.

Remove the upgrade procedures

[1] isql /path/to/your/database.fdb
[2] SQL> input '$fbroot$/ m sc/upgrade/ netadatal/ nmetadata_charset_drop. sql’

Supported Character Sets

See Appendix B at the end of these notes, for afull listing of the supported character sets.

98

Chapter 11

Administrative Features

Firebird is gradually adding new features to assist in the administration of databases. Firebird 2.1 sees the in-
troduction of a new set of system tables through which administrators can monitor transactions and statements
that are active in a database. These facilities employ a new v.2.1 DDL feature, Global Temporary Tables to
provide snapshots.

Monitoring Tables
Dmitry Y emanov

Firebird 2.1 introduces the ability to monitor server-side activity happening inside a particular database. The
engine offers a set of so-called “virtual” tables that provides the user with a snapshot of the current activity
within the given database.

Theword “virtual” meansthat thetable datais not materialised until explicitly asked for. However, the metadata
of the virtual table is stable and can be retrieved from the schema.

Note

Virtual monitoring tables exist only in ODS 11.1 (and higher) databases, so a migration via backup/restore is
required in order to use this feature.

The Concept

The key term of the monitoring feature is an activity snapshot. It represents the current state of the database,
comprising avariety of information about the databaseitself, active attachmentsand users, transactions, prepared
and running statements, and more.

A snapshot is created the first time any of the monitoring tables is being selected from in the given transaction
and it is preserved until the transaction ends, in order that multiple-table queries (e.g., master-detail ones) will
always return a consistent view of the data.

In other words, the monitoring tables always behave like a snapshot table stability (“consistency”) transaction,
even if the host transaction has been started with alower isolation level.

To refresh the snapshot, the current transaction should be finished and the monitoring tables should be queried
in a new transaction context.

Scope and Security
» Access to the monitoring tablesis available in both DSQL and PSQL.
» Complete database monitoring is available to SY SDBA and the database owner.

* Regular users are restricted to the information about their own attachments only—other attachments are
invisible to them.

99

Administrative Features

Metadata
MONS$DATABASE (connected database)

- MONSDATABASE_NAME (database pathname or alias)
- MONSPAGE_SIZE (page size)
- MON$ODS MAJOR (major ODS version)
- MONS$ODS MINOR (minor ODS version)
- MONSOLDEST_TRANSACTION (OIT number)
- MON$OLDEST_ACTIVE (OAT number)
- MONSOLDEST_SNAPSHOT (OST number)
- MONSNEXT_TRANSACTION (next transaction number)
- MONSPAGE_BUFFERS (number of pages allocated in the cache)
- MON$SQL_DIALECT (SQL dialect of the database)
- MON$SHUTDOWN_MODE (current shutdown mode)
0: online
1: multi-user shutdown
2: single-user shutdown
3: full shutdown
- MON$SWEEP_INTERVAL (sweep interval)
- MON$READ_ONLY (read-only flag)
- MONS$FORCED_WRITES (sync writes flag)
- MONSRESERVE_SPACE (reserve space flag)
- MONSCREATION_DATE (creation date/time)
- MONSPAGES (number of pages allocated on disk)
- MON$BACKUP_STATE (current physical backup state)
0: normal
1: stalled
2: merge
- MONS$STAT_ID (statistics ID)

MONSATTACHMENTS (connected attachments)

- MON$ATTACHMENT _ID (attachment D)
- MON$SERVER_PID (server process D)
- MONSSTATE (attachment state)
O:idle
1: active
- MONSATTACHMENT_NAME (connection string)
- MONSUSER (user name)
- MONS$ROLE (role name)
- MONSREMOTE_PROTOCOL (remote protocol name)
- MONSREMOTE_ADDRESS (remote address)
- MONSREMOTE_PID (remote client process ID)
- MONSREMOTE_PROCESS (remote client process pathname)
- MONSCHARACTER_SET _ID (attachment character set)
- MONS$TIMESTAMP (connection date/time)
- MON$GARBAGE_COLLECTION (garbage collection flag)
- MONS$STAT _ID (statistics ID)

100

Administrative Features

¢ columns MONSREMOTE_PID and MON$REMOTE_PROCESS containsnon-NULL valuesonly if the
client library isversion 2.1 or higher

» column MON$REMOTE_PROCESS can contain a non-pathname value if an application has specified
acustom process name via DPB

» column MON$GARBAGE_COLLECTION indicateswhether GCisallowed for thisattachment (as spec-
ified viathe DPB inisc_attach_database).

MONSTRANSACTIONS (started transactions)

- MONSTRANSACTION_ID (transaction D)
- MONSATTACHMENT_ID (attachment ID)
- MONS$STATE (transaction state)
0: idle (state after prepare, until execution begins)
1: active (state during execution and fetch. Idle state
returns after cursor is closed)
- MONSTIMESTAMP (transaction start date/time)
- MONS$TOP_TRANSACTION (top transaction)
- MON$OLDEST_TRANSACTION (loca OIT number)
- MONS$OLDEST_ACTIVE (local OAT number)
- MON$ISOLATION_MODE (isolation mode)
0: consistency
1: concurrency
2: read committed record version
3: read committed no record version
- MON$LOCK_TIMEOUT (lock timeout)
-1: infinite wait
0: no wait
N: timeout N
- MONS$READ_ONLY (read-only flag)
- MON$SAUTO_COMMIT (auto-commit flag)
- MON$AUTO_UNDO (auto-undo flag)
- MONSSTAT_ID (statistics ID)

* MONSTOP_TRANSACTION is the upper limit used by the sweeper transaction when advancing the
globa OIT. All transactions above this threshold are considered active. It is normally equivalent to the
MONS$TRANSACTION_ID but COMMIT RETAINING or ROLLBACK RETAINING will causeMON
$TOP_TRANSACTION to remain unchanged (“stuck”) when the transaction ID isincremented.

¢ MONSAUTO UNDO indicates the auto-undo status set for the transaction, i.e., whether a transac-
tion-level savepoint was created. The existence of the transaction-level savepoint allows changes to be
undone if ROLLBACK is called and the transaction is then just committed. If this savepoint does not
exist, or it does exist but the number of changes is very large, then an actual ROLLBACK is executed
and the the transaction is marked in the TIP as“ dead”.

MONSSTATEMENTS (prepared statements)

- MONS$STATEMENT _ID (statement ID)
- MONSATTACHMENT _ID (attachment ID)
- MONS$TRANSACTION_ID (transaction ID)

101

Administrative Features

- MONSSTATE (statement state)
O:idle
1: active
- MONSTIMESTAMP (statement start date/time)
- MONS$SQL_TEXT (statement text, if appropriate)
- MONSSTAT_ID (statistics ID)

¢ column MONS$SQL_TEXT contains NULL for GDML statements

¢ columns MON$TRANSACTION_ID and MONSTIMESTAMP contain valid values for active state-
ments only

MONSCALL_STACK (call stack of active PSQL requests)

- MONS$CALL_ID (call ID)

- MON$STATEMENT _ID (top-level DSQL statement D)

- MONS$CALLER_ID (caller request ID)

- MONSOBJECT_NAME (PSQL object name)

- MONSOBJECT _TY PE (PSQL object type)

- MONSTIMESTAMP (request start date/time)

- MON$SOURCE_LINE (SQL source line number)

- MON$SOURCE_COLUMN (SQL source column number)
- MONS$STAT _ID (statistics ID)

» column MON$STATEMENT_ID groups call stacks by the top-level DSQL statement that initiated the
cal chain. This ID represents an active statement record in the table MON$STATEMENTS.

 columns MON$SOURCE_LINE and MON$SOURCE_COLUMN contain line/column information re-
lated to the PSQL statement currently being executed

MONS$IO_STATS(I/O statistics)

- MON$STAT_ID (statistics ID)
- MONSSTAT_GROUP (statistics group)

0: database

1. attachment

2: transaction

3: statement

4: call
- MON$PAGE_READS (number of page reads)
- MON$PAGE_WRITES (number of page writes)
- MONS$PAGE_FETCHES (number of page fetches)
- MON$PAGE_MARKS (number of page marks)

MONSRECORD_STATS (record-level statistics)

- MONSSTAT _ID (statistics ID)

- MONS$STAT_GROUP (statistics group)
0: database
1: attachment
2: transaction

102

Administrative Features

3: statement
4: call
- MONSRECORD_SEQ READS (number of records read sequentially)
- MONSRECORD _IDX_READS (number of records read via an index)
- MONSRECORD_INSERTS (number of inserted records)
- MONSRECORD_UPDATES (number of updated records)
- MONS$RECORD_DELETES (number of deleted records)
- MON$SRECORD_BACKOUTS (number of backed out records)
- MONS$RECORD_PURGES (number of purged records)
- MONSRECORD_EXPUNGES (number of expunged records)

Note

Textual descriptions of all “state” and “mode” values can be found in the system table RDB$TY PES.

Usage

Creation of a snapshot is usually quite a fast operation, but some delay could be expected under high load
(especidly in the Classic Server).

A valid database connection is required in order to retrieve the monitoring data. The monitoring tables return
information about the attached database only. If multiple databases are being accessed on the server, each of
them has to be connected to and monitored separately.

The system variables CURRENT_CONNECTI ON and CURRENT_TRANSACTI ON could be used to select data
about the caller's current connection and transaction respectively. These variables correspond to the ID columns
of the appropriate monitoring tables.

Examples

1. RetrievelDsof al CS processes |oading CPU at the moment

SELECT MON$SERVER_PI D
FROM MONSATTACHMENTS
VWHERE MON$SATTACHMENT | D <> CURRENT_CONNECTI ON
AND MONS$STATE = 1

2. Retrieveinformation about client applications

SELECT MON$USER, MON$REMOTE_ADDRESS,
MONSREMOTE_PI D,
MON$TI MESTAMP
FROM MONSATTACHMENTS
VWHERE MON$SATTACHMENT | D <> CURRENT_CONNECTI ON

3. Getisolation level of the current transaction

SELECT MON$I SOLATI ON_MODE
FROM MON$TRANSACTI ONS

103

Administrative Features

VWHERE MONSTRANSACTI ON_I D = CURRENT_TRANSACTI ON

4. Get statements that are currently active

SELECT ATT. MON$USER,
ATT. MONSREMOTE_ADDRESS,
STMTI. MON$SQL_TEXT,
STMT. MON$TI MESTAMP
FROM MONSATTACHMENTS ATT
JO N MONSSTATEMENTS STMI
ON ATT. MONSATTACHVENT_I D = STMI. MONSATTACHVENT_| D
VWHERE ATT. MONSATTACHVENT _| D <> CURRENT_CONNECTI ON
AND STMT. MONSSTATE = 1

5. Retrievecall stacksfor al connections

W TH RECURSI VE HEAD AS
(
SELECT CALL. MON$STATEMENT | D,
CALL. MON$CALL_I D,
CALL. MONSOBJECT _NAME,
CALL. NON$SOBJECT_TYPE
FROM MONSCALL_STACK CALL
WHERE CALL. MONSCALLER I D |'S NULL
UNI ON ALL
SELECT CALL. MON$STATEMENT | D,
CALL. MON$CALL_I D,
CALL. MONSOBJECT _NAME,
CALL. NON$SOBJECT_TYPE
FROM MONSCALL_STACK CALL
JO N HEAD
ON CALL. MON$CALLER | D = HEAD. MON$CALL_I D
)
SELECT MONSATTACHVENT | D,
MONSOBJECT _NAME,
MON$OBJECT _TYPE
FROM HEAD
JO N MONSSTATEMENTS STMI
ON STMT. MON$STATEMENT | D = HEAD. MONSSTATEMENT | D
WHERE STMT. MONSATTACHVENT | D <> CURRENT CONNECTI ON

Cancel a Running Query
Runaway and long-running queries can now be cancelled from a separate connection.

There isno API function call directed at this feature. It will be up to the SysAdmin (SYSDBA or Owner) to
make use of the data available in the monitoring tables and devise an appropriate mechanism for reining in the
rogue statements.

Example

Asavery rough example, thefollowing statement will kill all statements currently running in the database, other
than any that belong to the separate connection that the SysAdmin is using himself:

104

Administrative Features

del ete from non$st at enents
where non$attachnent _id <> current_connection

More Context Information

More context information about the server and database ('SY STEM') isavailable via SELECT callsto the RDB
$GET_CONTEXT function, including the engine version.

Example

SELECT RDB$GET CONTEXT(' SYSTEM , ' ENG NE_VERSI ON)
FROM RDB$DATABASE

For detailed information about using these context calls, refer to the v.2.0.1 release notes.

105

Chapter 12

Security

In this chapter are details of the changes to Firebird security that came with the release of Firebird 2 and its
successors. Further changes and enhancements introduced in V.2.1 are highlighted.

Summary of Changes

Improving security has had alot of focusin Firebird 2.0 development. The following is asummary of the major
changes.

New security database

The new security database is renamed as securi t y2. f db. Inside, the user authentication table, where user
names and passwords are stored, is now called RDB$USERS. Thereisno longer atable named “users’ but anew
view over RDBSUSERS that is named “USERS’. Through this view, users can change their passwords.

For details of the new database, see New Security Database in the section about authentication later in this
chapter.

For instructions on updating previous security databases, refer to the section Dealing with the New Security
Database at the end of this chapter.

Using Windows Security to Authenticate Users

(V.2.1) From Firebird 2.1 onward, Windows “ Trusted User” security can be applied for authenticating Firebird
users on a Windows host. The Trusted User's security context is passed to the Firebird server instead of the
Firebird user name and password and, if it succeeds, it is used to determine the Firebird security user name.

For detail s see the section below, Windows Trusted User Security.

Better password encryption
A. Peshkov

Password encryption/decryption now uses a more secure password hash calculation algorithm.

Users can modify their own passwords
A. Peshkov

The SY SDBA remainsthe keeper of the security database. However, users can now modify their own passwords.

106

Security

Non-server access to security database is rejected
A. Peshkov

gsec now uses the Services API. The server will refuse any access to security2.fdb except through the Services
Manager.

Active protection from brute-force attack
A. Peshkov

Attempts to get access to the server using brute-force techniques on accounts and passwords are now detected
and locked out.

» Login with password is required from any remote client
» Clients making too many wrong login attempts are blocked from further attempts for a period

Support for brute-force attack protection has been included in both the attachment functions of the Firebird AP
and the Services API. For more details, see Protection from Brute-force Hacking

Vulnerabilities have been closed
A. Peshkov, C. Valderrama

Several known vulnerabilitiesin the APl have been closed.

Caution

It must be noted that the restoration of the server redirection (" multi-hop") capability to Firebird 2 poten-
tially throws up a new vulnerability. For that reason, it is controlled by a parameter (Redirection) infi r e-
bi r d. conf , which you should not enable unless you really understand itsimplications.

These days, the ability to redirect requests to other servers is dangerous. Suppose you have one careful-
ly protected firebird server, access to which is possible from the Internet. In a situation where this serv-
er has unrestricted access to your internal LAN, it will work as a gateway for incoming requests like
firebird.your.domai n.cominternal _server:/private/database.fdb .

Knowing the name or |P address of someinternal server on your LAN is enough for an intruder: he does note
even need login access to the external server. Such agateway easily overrides afirewall that is protecting your
LAN from outside attack.

Details of the Security Changes in Firebird 2

Security focus was directed at some recognised weaknesses in Firebird's security from malicious attacks:

» thelack of brute-force resistant passwords encryption in the security database

« the ability for any remote user with a valid account to open the security database and read hashes from it
(especialy interesting in combination with the first point)

 theinability for usersto change their own passwords

107

Security

 thelack of protection against remote brute-forcing of passwords on the server directly

Authentication

Firebird authentication checks a server-wide security database in order to decide whether a database or server
connection request is authorised. The security database stores the user names and passwords of all authorised
login identities.

Firebird 1.5 Authentication

In Firebird 1.5 the DES algorithm is used twice to hash the password: first by the client, then by the server,
before comparing it with the hash stored in security database. However, this sequence becomes completely
broken when the SY SDBA changes a password. The client performs the hash calculation twice and stores the
resulting hash directly in the security database. Therefore, hash management is completely client-dependent (or,
actually, client-defined).

Firebird 2: Server-side Hashing

To be able to use stronger hashes, another approach was called for. The hash to be stored on the server should
aways be calculated on the server side. Such aschemaaready existsin Firebird -- in the Services API. Thisled
to the decision to use the Services API for any client activity related to user management. Now, gsec and the
isc_user_add(modify, delete) API functions al use services to access the security database. (Embedded access
to Classic server on POSIX isthe exception --see below).

It became quite easy to make any changes to the way passwords are hashed - it is dways performed by the
server. It is no longer gsec's problem to calculate the hash for the security database: it simply asks services to
do the work!

It is worth noting that the new gsec works successfully with older Firebird versions, as long as the server's
architecture supports services.

The SHA-1 Hashing Algorithm
This method |eads to the situation where

1. ahashvalidfor user A isinvalid for user B

2. when auser changes his password -- even to exactly the same string as before -- the data stored in RDB
SUSERS.RDB$PASSWD is new.

Although this situation does not increase resistance to a brute-force attempt to crack the password, it does make
"visual" analysis of a stolen password database much harder.

The New Security Database

The structure of security database was changed. In general, now it contains a patch by Ivan Prenosil, with some
minor differences, enabling any user to change his/her own password, .

» Infirebird 1.5 the table USERS has to be readable by PUBLIC, an engine requirement without which the
password validation processwouldfail. Ivan's patch solution used aview, with the condition "WHERE USER

108

Security

="", That worked due to another bug in the enginethat left the SQL variable USER empty, not 'authenticator’,
as it might seem from engine's code.

Oncethat bug wasfixed, it was certainly possibleto add the condition "USER = "authenticator™ . For the short
term, that was OK, because the username is always converted to upper case.

» A better solution was found, that avoids making user authentication depend on an SQL trick. The result is
that the non-SY SDBA user can see only his own login in any user-management tool (gsec, or any graphical
interface that use the Services API). SY SDBA continues to have full access to manage users accounts.

New security database structure

The Firebird 2 security databaseis named securi t y2. f db. For user authentication it has a new table named
RDB$USERS that stores the new hashed passwords. A view over this table replaces the old USERS table and
enables users to change their own passwords.

The DDL for the new structures can be found in Appendix C.

gsec in Firebird 2

Special measures were thus taken to make remote connection to the security database completely impossible.
Don't be surprised if someold program fails on attempting direct access: thisis by design. Usersinformation may
now be accessed only through the Services API and the equivalent internal access to services now implemented
inthei sc_user_* API functions.

Protection from Brute-force Hacking

Current high-speed CPUs and fast WAN connections make it possibleto try to brute-force Firebird server users
passwords. Thisis especially dangerousfor Superserver which, since Firebird 1.5, performs user authentication
very fast. Classicis slower, sinceit hasto create new process for each connection, attach to the security database
within that connection and compile arequest to the table RDBSUSERS before validating login and password.
Superserver caches the connection and request, thus enabling a much faster user validation.

Given the 8-byte maximum length of the traditional Firebird password, the brute-force hacker had a reasonable
chance to break into the Firebird installation.

The v.2.0 Superserver has active protection to make a brute-force attack more difficult. After afew failed at-
temptsto log in, the user and |P address are locked for a few seconds, denying any attempt to log in with that
particular user name OR from that particular |P address for a brief period.

No setup or configuration is required for this feature. It is active automatically as soon as the Firebird 2.0
SuperServer starts up.

Using Windows Security to Authenticate Users
Alex Peshkov

(V.2.1) From Firebird 2.1 onward, Windows “ Trusted User” security can be applied for authenticating Firebird
users on aWindows host. The Trusted User's security context is passed to the Firebird server and, if it succeeds,
it is used to determine the Firebird security user name.

109

Security

Simply omitting the user and password parameters from the DPB/SPB will automatically cause Windows Trust-
ed User authentication to be applied, in almost all cases. See the Environment section, below, for exceptions.

[llustration

Suppose you have logged in to the Windows server SRV as user 'John'. If you connect to server SRV withisgl,
without specifying a Firebird user name and password:

i sql srv:enployee

and do:

SQL> sel ect CURRENT_USER from r db$dat abase;

you will get something like:

SQL Privileges

Windows users can be granted rights to access database objects and roles in the same way as regular Firebird
users, emulating the capability that has been always been available users of Unix and Linux hosted Firebird
databases.

Administrators

If amember of the built-in Domain Admins group connects to Firebird using trusted authentication, he/she will
be connected as SY SDBA.

Configuration Parameter “Authentication”

The new parameter Aut henti cati on has been added to firebird.conf for configuring the authentication
method on Windows. Possible values are.-

Authentication = Native
Provides full compatibility with previous Firebird versions, avoiding trusted authentication.

Authentication = Trusted
The Security database is ignored and only Windows authentication is used. In some respects, on Windows
this is more secure than Native, in the sense that it is no less and no more secure than the security of the
host operating system.

Authentication = Mixed
Thisisthe default setting.

To retain the legacy behaviour, whenthe | SC_USER and | SC_PASSWORD variables are set in the environ-
ment, they are picked and used instead of trusted authentication.

110

Security

Note

Trusted authentication can be coerced to override the environment variables if they are set—refer to the
notes below.

Forcing Trusted Authentication

For the situation where trusted authentication is needed and there is a likelihood that | SC_USER and | SC_
PASSWORD are set, there isanew DPB parameter that you can add to the DPB—i sc_dpb_t rust ed_aut h.

Most of the Firebird command-line utilities support parameter by means of the switch -t r u[st ed] (the ab-
breviated form is available, according to the usual rules for abbreviating switches).

Note

Thegli and nbackup utilities do not follow the pattern: they use single-letter switchesthat are somewhat arcane.
The switch of interest for gli is-K). For nbackup, watch this space. The facility to force trusted authentication
isyet to be implemented for it.

Example

C.\Pr~\bin>isql srv:db -- log in using trusted authentication
C.\Pr~\bi n>set | SC USER=user 1
C:\ Pr~\bi n>set | SC_PASSWORD=12345

C.\Pr~\bin>isql srv:db -- log in as 'userl' from environnent
C\Pr~\bin>isql -trust srv:db -- log in using trusted authentication
I mportant

Windows rules for full domain user names allow names longer than the maximum 31 characters alowed by
Firebird for user names. The 31-character limit isenforced and, from V.2.1, logins passing longer names are
disabled. This will remain the situation until the mapping of OS objects to database objects is implemented
in alater Firebird version.

Classic Server on POSIX

For reasons both technical and historical, a Classic server on POSIX with embedded clients is especialy vul-
nerable to security exposure. Users having embedded access to databases MUST be given at least read access
to the security database.

Thisisthe main reason that made implementing enhanced password hashes an absol ute requirement. A malicious
user with user-level accessto Firebird could easily steal acopy of the security database, take it home and quietly
brute-force the old DES hashes! Afterwards, he could change data in critical databases stored on that server.
Firebird 2 is much less vulnerable to this kind of compromise.

But the embedded POSIX server had one more problem with security: its implementation of the Services API
calls the command-line gsec, as normal users do. Therefore, an embedded user-maintenance utility must have
full access to security database.

111

Security

The main reason to restrict direct access to the security database was to protect it from access by old versions
of client software. Fortuitously, it also minimizes the exposure of the embedded Classic on POSIX at the same
time, since it is quite unlikely that the combination of an old client and the new server would be present on
the production box.

For Any Platform

Caution

Thelevel of Firebird security is still not satisfactory in one serious respect, so please read this section carefully
before opening port 3050 to the Internet.

An important security problem with Firebird still remains unresolved: the transmission of poorly encrypted
passwords "in clear" across the network. It is not possible to resolve this problem without breaking old clients.

To put it another way, a user who has set hig’her password using a new secure method would be unable to use
an older client to attach to the server. Taking thisinto account with plans to upgrade some aspects of the API in
the next version, the decision was made not to change the password transmission method in Firebird 2.0.

The immediate problem can be solved easily by using any IP-tunneling software (such as ZeBeDeg) to move
datato and from a Firebird server, for both 1.5 and 2.0. It remains the recommended way to access your remote
Firebird server across the Internet.

Other Security Improvements

Isc_service_query() wrongly revealed the full database file spec

Feature request CORE-1091

(V.2.1) When the server is configured "DatabaseAccess = None", i sc_servi ce_quer y() would return the
full database file path and name. It has been corrected to return the database alias—one more argument in favour
of making the use of database aliases standard practice!

Any user could view the server log through the Services API

Feature request CORE-1148

Thiswas aminor security vulnerability. Regular users are now blocked from retrieving the server log using the
Services API. Requests are explicitly checked to ensure that the authenticated user is SY SDBA.

Dealing with the New Security Database
A. Peshkov

If you try to put a pre-Firebird 2 security database -- security.fdb or a renamed isc4.gdb -- into Firebird's new
home directory and then try to connect to the server, you will get the message "Cannot attach to password

112

http://tracker.firebirdsql.org/browse/CORE-1091
http://tracker.firebirdsql.org/browse/CORE-1148

Security

database". It is not a bug: it is by design. A security database from an earlier Firebird version cannot be used
directly in Firebird 2.0 or higher.

The newly structured security database is named security2.fdb.

In order to be able to use an old security database, it is necessary to run the upgrade script
security_dat abase. sql ,thatisinthe. ./ upgr ade sub-directory of your Firebird server installation.

Note

A copy of the script appearsin Appendix C.

Doing the Security Database Upgrade
To do the upgrade, follow these steps:

1. Putyour old security database in some place known to you, but not in Firebird's new home directory. Keep
acopy available at all timesl!

2. Start Firebird 2, using its new, native security2.fdb.

3. Convert your old security database to ODS11 (i.e. backup and restore it using Firebird 2.0). Without this
step, running the security _database.sqgl script will fail!

4. Connect the restored security database as SY SDBA and run the script.
5. Stop the Firebird service.
6. Copy the upgraded database to the Firebird 2 home directory as security2.fdb.

7. Restart Firebird.

Now you should be able to connect to the Firebird 2 server using your old logins and passwords.

Nullability of RDB$PASSWD

In pre-2.0 versions of Firebird it was possible to have a user with NULL password. From v.2.0 onward, the
RDB$PASSWD field in the security database is constrained as NOT NULL.

However, to avoid exceptions during the upgrade process, the field is created as nullable by the upgrade script.
If you arereally sure you have no empty passwordsin the security database, you may modify the script yourself.
For example, you may edit the line:

RDB$PASSWD RDB$PASSVD,
to be

RDB$PASSWD RDB$PASSWD NOT NULL,

113

Security

Caution with LegacyHash

Aslongasyou configureLegacyHash = 1infirebird. conf, Firebird'ssecurity doesnot work completely.
To set thisright, it is necessary to do as follows:

1. Changethe SY SDBA password
2. Havethe users change their passwords (in 2.0 each user can change his or her own password).
3. Set LegacyHash back to default value of O, or comment it out.

4. Stop and restart Firebird for the configuration change to take effect.

114

Chapter 13

Command-line Utilities

General Enhancements

Utilities Support for Database Triggers

(V. 2.1) A new parameter was added to gbak, nbackup and isgl to suppress Database Triggers from running. It
is available only to the database owner and SY SDBA.:

gbak -nodbtriggers
i sql -nodbtriggers
nbackup -T

Firebird Services

New Command-line Utility fosvemgr
Alex Peshkov

(V.2.1) The new utility fosvemgr provides acommand-line interface to the Services API, enabling accessto any
service that isimplemented in Firebird.

Although there are numerous database administration tools around that surface the Services API through graph-
ical interfaces, the new tool addresses the problem for admins needing to access remote Unix serversin broad
networks through atext-only connection. Previoudly, meeting such a requirement needed a programmer.

Using fbsvemagr

fbsvemgr does not emulate the switchesimplemented in the traditional “g*” utilities. Rather, it isjust afront-end
through which the Services API functions and parameters can pass. Users therefore need to be familiar with the
Services API as it stands currently. The API header file—ibase.h, in the ../include directory of your Firebird
installation— should be regarded as the primary source of information about what is available, backed up by
the InterBase 6.0 beta API Guide.

Parameters

Specify the Services Manager
Thefirst required parameter for acommand line call is the Services Manager you want to connect to:

» For alocal connection use the smple symbol ser vi ce_ngr

115

Command-line Utilities

e To attach to aremote host, use the format host nane: servi ce_ngr

Foecify subsequent service parameter blocks (SPBs)
Subsequent SPBs, with values if required, follow. Any SPB can be optionally prefixed with a single '-'
symbol. For the long command lines that are typical for fosvemgr, use of the -' improves the readability
of the command line. Compare, for example, the following (each a single command line despite the line
breaks printed here):

fbsvcngr service_ngr user sysdba password nasterke
action_db_stats dbnane enpl oyee sts_hdr_pages

and

fbsvcngr service_ngr -user sysdba -password nasterke
-action_db_stats -dbnanme enpl oyee -sts_hdr_pages

SPB Syntax

The SPB syntax that fbsvemgr understands closely matches with what you would encounter in the i base. h
include file or the InterBase 6.0 APl documentation, except that a dightly abbreviated form is used to reduce
typing and shorten the command lines alittle. Here's how it works.

All SPB parameters have one of two forms: (1) i sc_spb_VALUE or (2) i sc_VALUE1_svc_VALUE2. For
fbsvemgr you just need to pick out the VALUE, VALUEL or VALUE2 part[s] when you supply your parameter.

Accordingly, for (1) you would type simply VALUE, while for (2) you would type VALUE1_VALUEZ2. For
example:

i sc_spb_dbname => dbnane

i sc_action_svc_backup => action_backup

i sc_spb_sec_usernane => sec_usernane
isc_info_svc_get_env_|lock => info_get_env_|ock

and so on.

Note

An exceptionisi sc_spb_user _nane: it can be specified as either user _nane or simply user .

It isnot realistic to attempt to describe all of the SPB parameters in release notes. In the InterBase 6.0 beta doc-
umentation it takes about 40 pages! The next section highlights some known differences between the operation
of fhsvemgr and what you might otherwise infer from the old beta documentation.

fbsvemgr Syntax Specifics

“Do'sand Don'ts’
With fhsvemgr you can perform asingle action—and get itsresultsif applicable—or you can useit to retrieve
multiple information items from the Services Manager. Y ou cannot do both in a single command.

For example,

116

Command-line Utilities

fbsvcngr service_ngr -user sysdba -password nasterke
-action_di spl ay_user

will list al current users on the local firebird server:

SYSDBA Sql Server Admi ni strator 0 0
QA _USER1 0 0
QA _USER2 0 0
QA USER3 0 0
QA _USER4 0 0
QA USER5 0 0
GUEST 0 0
SHUT1 0 0
SHUT2 0 0
QATEST 0 0
..and...

fbsvcngr service_ngr -user sysdba -password nasterke
-info_server_version -info_inplenentation

will report both the server version and its implementation:

Server version: LI-T2.1.0.15740 Firebird 2.1 Alpha 1
Server inplementation: Firebird/linux AVD64

But an attempt to mix al of thisin single command line:

fbsvcngr service_ngr -user sysdba -password nasterke
-action_di splay_user -info_server_version -info_inplenentation

raises an error;

Unknown switch “-info_server_version”

Undocumented Items
The functioni sc_spb_rpr_list_linbo_trans was omitted from the IB6 beta documentation. It is
supported in fbsvemgr.

Support for New Services API Itemsinv.2.1
Two new items that were added to the Services API in Firebird 2.1 are supported by fbsvemgr:

* isc_spb_trusted_auth (typeitastrusted_aut h) applies only to Windows. It forces Firebird to
use Windows trusted authentication.

117

Command-line Utilities

i sc_spb_dbnane gives the ability to set a database name parameter (type as dbnane) in all service
actions related to accessing the security database from a remote client, equivalent to supplying the -
dat abase switch to the gsec utility.

Note

For gsec the - dat abase switch is mostly used to specify a remote server you want to administer. In
fbsvemgr, the name of the server isaready given in thefirst parameter (viatheser vi ce_ngr symbol)
sothe[i sc_spb_] dbnanme parameter is mostly unnecessary.

Documentation Bugs
Theformat described for some parametersin the | nterBase 6 betadocumentation are buggy. Whenin trouble,
treat i base. h asthe primary source for the correct form.

Unsupported functions
» Everything to do with licensing was removed from the original InterBase 6 open source code and is
therefore not supported either in Firebird or by fbsvemgr.

» The old Config file view/modification functions have been unsupported since Firebird 1.5 and are not
implemented by fbsvemgr.

Backup Service Misbehaviour Fixed
A. Peshkov

Feature request CORE-1232

(V.2.1) Some misbehavioursthat could occur when the Services Manager was doing backup/restore operations
and some parameter items were missing or in the wrong sequence. The problem still affects lower versions,
including v.2.0.x, so care should be taken to specify al required switches and supply the database name and
backup file spec in the correct order when using the -se[vice_mgr] switch.

Disable Non-SYSDBA Access to Privileged Services
A. Peshkov

Feature request CORE-787

Non-SY SDBA access to parts of the Services API that return information about users and database paths has
been disabled. A non-privileged user can retrieve information about itself, however.

Backup Tools

Firebird 2 brings plenty of enhancements to backing up databases. a new utility for running on-line incremental
backups and some improvements to gbak to avoid some of the traps that sometimes befall end-users.

New On-line Incremental Backup
N. Samofatov

Fast, on-line, page-level incremental backup facilities have been implemented.

118

http://tracker.firebirdsql.org/browse/CORE-1232
http://tracker.firebirdsql.org/browse/CORE-787

Command-line Utilities

The backup engine comprises two parts:

NBak, the engine support module

NBackup, the tool that does the actual backups

Nbak

The functional responsihilities of NBAK are:

1

2.

3.

4.

5.

to redirect writes to difference files when asked (ALTER DATABASE BEG N BACKUP statement)

to produce a GUID for the database snapshot and write it into the database header before the ALTER
DATABASE BEG N BACKUP statement returns

to merge differences into the database when asked (ALTER DATABASE END BACKUP statement)
to mark pages written by the engine with the current SCN [page scan] counter value for the database

to increment SCN on each change of backup state

The backup state cycleis:

nbak_state normal -> nbak_state stalled -> nbak_state_ merge -> nbak_state normal

In normal state writes go directly to the main database files.
In stalled state writes go to the difference file only and the main files are read-only.

In merge state new pages are not allocated from difference files. Writes go to the main database files. Reads
of mapped pages compare both page versions and return the version which is fresher, because we don't know
if it ismerged or not.

Note

This merge state logic has one quirky part. Both Microsoft and Linux define the contents of file growth as
“undefined” i.e., garbage, and both zero-initialize them.

Thisis why we don't read mapped pages beyond the original end of the main database file and keep them
current in difference file until the end of amerge. Thisisamost half of NBak fetch and write logic, tested
by using modified PIO on existing files containing garbage.

NBackup

The functional responsibilities of NBackup are

1

2.

3.

to provide a convenient way to issue ALTER DATABASE BEGIN/END BACKUP

to fix up the database after filesystem copy (physically change nbak_state diff to
nbak_st at e_nor mal in the database header)

to create and restore incremental backups.

119

Command-line Utilities

Incremental backups are multi-level. That meansif youdo aLevel 2 backup every day and aLevel 3 backup
every hour, each Level 3 backup contains all pages changed from the beginning of the day till the hour
when the Level 3 backup is made.

Backing Up

Creating incremental backups has the following algorithm:

1. Issue ALTER DATABASE BEGQ N BACKUP to redirect writes to the difference file

2. Look up the SCN and GUID of the most recent backup at the previous level

3. Stream database pages having SCN larger than was found at step 2 to the backup file.

4. Writethe GUID of the previous-level backup to the header, to enable the consistency of the backup chain
to be checked during restore.

5. Issue ALTER DATABASE END BACKUP

6. Add arecord of this backup operation to RDB$BACKUP_HI STORY. Record current level, SCN, snapshot
GUID and some miscellaneous stuff for user consumption.

Restoring

Restore is simple: we reconstruct the physical database image for the chain of backup files, checking that
the backup_guid of each file matches prev_guid of the next one, then fix it up (change its state in header to
nbak_state normal).

Usage

nbackup <opti ons>

Valid Options

-L <dat abase> Lock database for fil esystem copy

- N <dat abase> Unl ock previously | ocked database
- F <dat abase> Fi xup dat abase after fil esystem copy
-B <l evel > <dat abase> [<fil ename>] Create incremental backup
-R <dat abase> [<file0> [<filel>. ..]] Restore incremental backup
-U <user> User nanme
- P <passwor d> Passwor d

Note

1. <database> may specify a database dlias
2. incremental backup of multi-file databases is not supported yet

3. "stdout" may be used as avalue of <filename> for the -B option

120

Command-line Utilities

User Manual
P. Vinkenoog

A user manual for NBak/NBackup has been prepared. It can be downloaded from the documentation area at the
Firebird website: www.firebirdsgl.org/pdfmanual/ - the file nameisFi r ebi r d- nbackup. pdf .

gbak Backup/Porting/Restore Utility

A number of enhancements have been added to gbak.

Changed Behaviours, New Switches
V. Khorsun

The new gbak switch

- RECREATE_DATABASE [OVERVRI TE]

is a separate switch designed to make harder for the unsuspecting to overwrite a database accidentally, as could
occur easily with the shortened form of the old switch:

- R[EPLACE_DATABASE]

In summary:

e gbak -R (or gbak -r) now applies to the new -R[ECREATE_DATABASE] switch and will never overwrite
an existing database if the O[VERWRITE] argument is absent

» Theshort form of the old gbak -R[EPLACE_DATABASE] isnow -REP[LACE_DATABASE]. Thisswitch
does not accept the O[VERWRITE] argument.

» The-REP[LACE_DATABASE] switch should be considered as deprecated, i.e. it will become unavailable
in some future Firebird release.

This change meansthat, if you have any legacy batch or cron scriptsthat rely on “gbak -r” or “gbak -R” without
modification, then the operation will except if the database exists.

If you want to retain the ability of your script to overwrite your database unconditionally, you will need to

modify the command to use either the new switch with the OVERWRITE argument or the new short form for
the old -REPLACE_DATABASE switch.

gbak Made More Version-friendly
C. Vaderrama

(V.2.1) Initslatest evolution, gbak can be used to restore a database on any version of Firebird.

121

http://www.firebirdsql.org/pdfmanual/

Command-line Utilities

Hide User Name & Password in Shell
A. Peshkov

Feature request CORE-867

(V.2.1) ghak now changes param0 to prevent the user name and password from being displayed in ps axf .

gbak -V and the “Counter” Parameter

During Firebird 1 development, an optional humeric <counter> argument was added to the -V[erbose] switch
of gbak for both backup and restore. It was intended to allow you to specify anumber and get arunning count of
rows processed asthe row counter passed each interval of that number of rows. It caused undesirable side-effects
and was removed before Firebird 1.0 was ever released. So, although it never happened, it was documented as
“implemented” in the release notes and other places.

ISQL Query Utility
Work on ISQL hasinvolved alot of bug-fixing and the introduction of afew new, useful features.

Onetrick to note is that CHAR and VARCHAR types defined in character set OCTETS (aias BINARY') now
display in hex format. Currently, this feature cannot be toggled off.

New Switches

The following command-line switches were added:

-b[ail] "Bail out"
D. lvanov, C. Vaderrama

Command line switch -b to instruct isgl to bail out on error when used in non-interactive mode, returning an
error code to the operating system.

When using scripts as input in the command line, it may be totally unappropriate to let isgl continue executing
a batch of commands after an error has happened. Therefore, the "-b[ail]" option will cause script execution to
stop at the first error it detects. No further statements in the input script will be executed and isgl will return
an error code to the operating system.

» Most cases have been covered, but if you find some error that is not recognized by isgl, you should inform
the project, asthisis afeature in progress.

» Currently thereisno differentiation by error code---any non-zero return code should be interpreted asfailure.
Depending on other options (like -0, -m and -m2) , isgl will show the error message on screen or will send
ittoafile.

Some Features

» Evenif isgl is executing nested scripts, it will cease all execution and will return to the operating system
when it detects an error. Nested scripts happen when a script A is used asisgl input but in turn A contains

122

http://tracker.firebirdsql.org/browse/CORE-867

Command-line Utilities

an INPUT command to load script B an so on. Isgl doesn't check for direct or indirect recursion, thusif the
programmer makes a mistake and script A loads itself or loads script B that in turn loads script A again, isql
will run until it exhaust memory or an error is returned from the database, at whose point -bail if activated
will stop al activity.

» DML errorswill be caught when being prepared or executed, depending on the type of error.

* Inmany cases, isgl will return the line number of a DML statement that fails during execution of a script.
(More about error line numbers ...)

» DDL errorswill be caught when being prepared or executed by default, since isgl uses AUTODDL ON by
default. However, if AUTO DLL isOFF, the server only complainswhen the script doesan explicit COMMIT
and this may involve several SQL statements.

» Thefeature can be enabled/disabled interactively or from a script by means of the command

SET BAIL [ON | OFF]
As is the case with other SET commands, simply using SET BAIL will toggle the state between activated
and deactivated. Using SET will display the state of the switch among many others.

* Evenif BAIL is activated, it doesn't mean it will change isgl behavior. An additional requirement should
be met: the session should be non-interactive. A non-interactive session happens when the user callsisgl in
batch mode, giving it a script as input.

Example

isgl -b -i nmy_fb.sql -o results.log -m-n2

Tip

However, if the user loads isgl interactively and later executes a script with the input command, this is
considered an interactive session even though isgl knowsiit is executing a script.

Example

i sql

Use CONNECT or CREATE DATABASE to specify a database
SQL> set bail;

SQL> i nput ny_fb.sql;

SQ> ~Z

Whatever contents the script has, it will be executed completely, errors and al, even if the BAIL option is
enabled.

-m2 to Output Stats and Plans
C. Vaderrama

Thisis a command-line option -M2 to send the statistics and plans to the same output file as the other output
(viathe -o[utput] switch).

123

Command-line Utilities

When the user specifies that the output should be sent to afile, two possibilities have existed for years: either
» at the command line, the switch -o followed by afile nameis used

» thecommand OUTput followed by afile nameisused, either in abatch session or in theinteractiveisqgl shell.
(In either case, simply passing the command OUTput is enough to have the output returned to the console).
However, although error messages are shown in the console, they are not output to thefile.

The -m command line switch was added, to meld (mix) the error messages with the normal output to wherever
the output was being redirected.

This left till another case: statistics about operations (SET STATs command) and SQL plans as the server
returns them. SET PLAN and SET PLANONLY commands have been treated as diagnostic messages and, as
such, were always sent to the console.

What the -m2 command line switch does is to ensure that stats and plans information go to the same file the
output has been redirected to.

Note

Neither -m nor -m2 has an interactive counterpart through a SET command. They are for use only as com-
mand-lineisgl options.

-r2 to Pass a Case-Sensitive Role Name
C. Vaderrama

The sole abjective of this parameter isto specify a case-sensitive role name.
» Thedefault switch for this parameter is -r. Roles provided in the command line are uppercased

» With-r2, theroleis passed to the engine exactly astyped in the command line.

New Commands and Enhancements

The following commands have been added or enhanced.

Ctrl-C to cancel query output

M. Kubecek
A. dos Santos Fernandes

Feature request CORE-704

(V. 2.1) Output fromaSELECT in aninteractiveisgl session can now be stopped using Ctrl-C. Note, thismerely
stops fetching rows from the buffer, it does not cancel the query.

Extension of isql SHOW SYSTEM command
A. dos Santos Fernandes

Feature request CORE-978

124

http://tracker.firebirdsql.org/browse/CORE-704
http://tracker.firebirdsql.org/browse/CORE-978

Command-line Utilities

(V. 2.1) The SHOW <object_type> command is meant to show user objects of that type. The SHOW SYSTEM
commmand is meant to show system objects but, until now, it only showed system tables. Now it lists the
predefined system UDFs incorporated into FB 2.

It may be enhanced to list system viewsif we create some of them in the future.

SHOW COLLATIONS command
A. dos Santos Fernandes

(V. 2.1) Lists al the character set/collation pairs declared in the database.

SET HEAD[ing] toggle
C. Vaderrama

Some people consider it useful to be able to do a SELECT inside isgl and have the output sent to a file, for
additional processing later, especially if the number of columns makesisgl display impracticable. However, isgl
by default prints column headers and. in this scenario, they are a nuisance.

Therefore, printing the column headers -- previously afixed feature -- can now be enabled/disabled interactively
or from a script by means of the

SET HEADi ng [ON | OFF]

command in the isgl shell. Asisthe case with other SET commands, ssimply using SET HEAD will toggle the
state between activated and deactivated.

Note

Thereis no command line option to toggle headings off.

Using SET will display the state of SET HEAD, along with other switches that can be toggled on/off in the
isgl shell.

SET SQLDA_DISPLAY ON/OFF
A. dos Santos Fernandes

This SQLDA_DISPLAY command shows the input SQLDA parameters of INSERTs, UPDATEs and
DELETEs. It was previously available only in DEBUG builds and has now been promoted to the public builds. It
showstheinformation for raw SQLVARs. Each SQLV AR representsafield in the XSQLDA, the main structure
used in the FB API to talk to clients transferring data into and out of the server.

Note

The state of this option is not included in the output when you type SET; inisqgl to see the current settings
of most options.

SET TRANSACTION Enhanced
C. Vaderrama

The SET TRANSACTION statement has been enhanced so that, now, all TPB options are supported:

125

Command-line Utilities

« NOAUTOUNDO
* IGNORELIMBO
e LOCK TIMEOUT <number>

Example
SET TRANSACTI ON WAI T SNAPSHOT NO AUTO UNDO LOCK TI MEQUT 10

See also the document doc/sgl.extensionss README.set_transaction.txt.

SHOW DATABASE now Returns ODS Version Number
C. Vaderrama

ODS (On-Disk Structure) version is now returned in the SHOW DATABASE command (C. Vaderrama)

Ability to show the line number where an error happened in a script
C. Vaderrama

In previous versions, the only reasonable way to know where a script had caused an error was using the switch
-e for echoing commands, -0 to send the output to afile and -m to merge the error output to the same file. This
way, you could observe the commands isgl executed and the errorsif they exist. The script continued executing
tothe end. The server only givesaline number related to the single command (statement) that it's executing, for
some DSQL failures. For other errors, you only know the statement caused problems.

With the addition of -b for bail as described in (1), the user is given the power to tell isgl to stop executing
scripts when an error happens, but you still need to echo the commands to the output file to discover which
statement caused the failure.

Now, the ability to signal the script-related line number of afailure enables the user to go to the script directly
and find the offending statement. When the server provides line and column information, you will be told the
exact line of DML in the script that caused the problem. When the server only indicates a failure, you will be
told the starting line of the statement that caused the failure, related to the whole script.

This feature works even if there are nested scripts, namely, if script SA includes script SB and SB causes a
failure, the line number is related to SB. When SB is read completely, isgl continues executing SA and then
isgl continues counting lines related to SA, since each file gets a separate line counter. A script SA includes SB
when SA usesthe INPUT command to load SB.

Linesare counted according to what the underlying 10 layer considers separate lines. For portsusing EDITLINE,
alineiswhat readling() providesin asingle call. Theline length limit of 32767 bytes remains unchanged.

Enhanced Command-line Help
M. Kubecek

When unknown parameters are used, isgl now shows all of the command-line parameters and their explanations
instead of just asimplelist of allowed switches.

opt/firebird/bin] isql -7

126

Command-line Utilities

Unknown switch: ?

usage: i sql [options] [<database>]
-a(all) extract netadata incl. |egacy non-SQ tables
-b(ail) bail on errors (set bail on)
-c(ache) <nune nunber of cache buffers
-ch(arset) <charset> connection charset (set nanes)
-d(at abase) <database> database nane to put in script creation
-e(cho) echo commands (set echo on)
-ex(tract) extract netadata
-i(nput) <file> input file (set input)
-m(erge) nmerge standard error
-nR2 mer ge di agnostic
-n(ocaut ocomi t) no autoconmrit DDL (set autoddl off)
- now(ar ni ngs) do not show war ni ngs
-o(utput) <file> output file (set output)

-pag(el ength) <size> page | ength
-p(assword) <password> connection password

-q(uiet) do not show the nessage "Use CONNECT..."
-r(ole) <role> rol e nane

-r2 <role> role (uses quoted identifier)
-sqgl di al ect <di al ect > SQL dialect (set sqgl dialect)
-t(ermnator) <terne command term nator (set term

-u(ser) <user> user name

- X extract netadata

-z show program and server version

gsec Authentication Manager

Changes to the gsec utility include:

gsec return code
C. Vaderrama

gsec now returns an error code when used as a non-interactive utility. Zero indicates success; any other code
indicates failure.

gfix Server Utility

Changes to the gfix utility include:

New Shutdown States (Modes)
N. Samofatov, D. Y emanov

The options for gf i x - shut [down] have been extended to include two extra states or modes to govern the
shutdown.

New Syntax Pattern

gf i x <conmmand> [<state>] [<options>]

127

Command-line Utilities

<conmand> ::= {-shut | -online}
<state> ::= {normal | nmulti | single | full}
<options> ::= {-force <tineout> | -tran | -attach}

- “normal” state = online database

- “multi” state = multi-user shutdown mode (the legacy one, unlimited attachments of SY SDBA/owner are
allowed)

- “gingle” state = single-user shutdown (only one attachment is allowed, used by the restore process)

- “full” state = full/exclusive shutdown (no attachments are allowed)

Note

“Multi” isthe default state for -shut, “normal” is the default state for -online.

The modes can be switched sequentialy:
normal <-> multi <-> single <-> full

Examples

ofix -shut single -force O
gfix -shut full -force O
gfix -online single

gfix -online

You cannot use - shut to bring a database one level “more onling” and you cannot use - onl i ne to make a
database more protected (an error will be thrown).

These are prohibited:

gfix -shut single -force O
gfix -shut multi -force O

gfix -online
gfix -online ful

gfix -shut -force O
gfix -online single

Builds and Installs

Parameter for Instance name added to instsvc.exe
D. Y emanov

Feature request CORE-673

128

http://tracker.firebirdsql.org/browse/CORE-673

Command-line Utilities

(V.2.1) i nst svc. exe now supports multi-instance installations.

Revised Win32 Installer Docs
P. Reeves

(V.2.1) The documentation for command-line setup on Windows has been revised. Seedoc/ i nstal | _w n-
dows_mmnual | y. t xt .

Help on command line switches

Feature request CORE-548

(V.2.1) On-line help is now available on the switches for command-line setup on Windows.

Gentoo/FreeBSD detection during install
A. Peshkov

Feature request CORE-1047

Gentoo or FreeBSD is now detected during configuration, making it more likely that the binary install will work
“out of the box” on these platforms.

129

http://tracker.firebirdsql.org/browse/CORE-548
http://tracker.firebirdsql.org/browse/CORE-1047

Chapter 14

External Functions (UDFs)

Ability to Signal SQL NULL via a Null Pointer
C. Vaderrama

Previousto Firebird 2, UDF authors only could guess that their UDFs might return a null, but they had no way
to ascertain it. Thisled to several problems with UDFs. It would often be assumed that a null string would be
passed as an empty string, a null numeric would be equivalent to zero and a null date would mean the base date
used by the engine.

For a numeric value, the author could not always assume null if the UDF was compiled for an environment
where it was known that null was not normally recognized.

Several UDFs, including the ib_udf library distributed with Firebird, assumed that an empty string was more
likely to signal a null parameter than a string of length zero. The trick may work with CHAR type, since the
minimum declared CHAR length is one and would contain a blank character normally: hence, binary zero in
the first position would have the effect of signalling NULL.

However, but it is not applicable to VARCHAR or CSTRING, where alength of zero isvalid.

The other solution was to rely on raw descriptors, but this imposes a lot more things to check than they would
want to tackle. The biggest problem isthat the engine won't obey the declared typefor aparameter; it will simply
send whatever data it has for that parameter, so the UDF is |eft to decide whether to reject the result or to try
to convert the parameter to the expected data type.

Since UDFshave no formal mechanismto signal errors, the returned val ue would have to be used as an indicator.

The basic problem was to keep the simplicity of the typical declarations (no descriptors) while at the same time
being able to signal null.

Theengine normally passed UDF parameters by reference. In practical terms, that means passing apointer to the
datato tell the UDF that we have SQL NULL. However, we could not impose the risk of crashing an unknown
number of different, existing public and private UDFs that do not expect NULL. The syntax had to be enhanced
to enable NULL handling to be requested explicitly.

The solution, therefore, isto restrict arequest for SQL NULL signaling to UDFs that are known to be capable
of dealing with the new scenario. To avoid adding more keywords, the NULL keyword is appended to the UDF
parameter type and no other changeis required.

Example

decl are external function sanple
int null
returns int by value...;

If you are aready using functions from i b_udf and want to take advantage of null signaling (and null
recognition) in some functions, you should connect to your desired database, run the script . . / m sc/ up-
grade/i b_udf _upgrade. sqgl thatisinthe Firebird directory, and commit afterwards.

130

External Functions (UDFs)

Caution

It is recommended to do this when no other users are connected to the database.

The code in the listed functions in that script has been modified to recognize null only when NULL is signaled
by the engine. Therefore, startingwithFBv2,rtrim(), I tri n() and severa other string functions no longer
assume that an empty string meansa NULL string.

The functions won't crash if you don't upgrade: they will simply be unable to detect NULL.

If you have never used ib_udf in your database and want to do so, you should connect to the database, run the
script . ./ udf /i b_udf 2. sqgl , preferably when no other users are connected, and commit afterwards.

Note
* Notethe"2" at the end of the name.

e Theorigina script for FB v1.5 is still available in the same directory.

UDF library diagnostic messages improved
A. Peshkov

Diagnostics regarding a missing/unusable UDF module have previously made it hard to tell whether a module
was missing or access to it was being denied due to the UDFAccess setting in firebird.conf. Now we have
separate, understandable messages for each case.

UDFs Added and Changed

UDFs added or enhanced in Firebird 2.0's supplied libraries are:

IB_UDF_rand() vs IB_UDF_srand()
F. Schlottmann-Goedde

In previous versions, the external function rand() sets the random number generator's starting point based on the
current time and then generates the pseudo-random val ue.

srand((unsi gned) time(NULL));
return ((float) rand() / (float) RAND_MAX);

The problem with this algorithm is that it will return the same value for two calls done within a second.

To work around thisissue, rand() was changed in Firebird 2.0 so that the starting point is not set explicitly. This
ensures that different values will always be returned.

In order to keep the legacy behaviour available in case somebody needsit, srand() has been introduced. It does
exactly the same as the old rand() did.

131

External Functions (UDFs)

IB_UDF lower

Thefunction| B_UDF_| ower () inthelB_UDF library might conflict with the new internal function| ower (),
if you try to declareit in adatabase using the ib_udf.sqgl script from a previous Firebird version.

/* ib_udf.sql declaration that now causes conflict */
DECLARE EXTERNAL FUNCTI ON | ower

CSTRI NG(255)

RETURNS CSTRI NG(255) FREE_IT

ENTRY_PO NT ' 1 B_UDF_| ower' MODULE_NAME 'ib_udf';

The problem will be resolved in the latest version of the new ib_udf2.sgl script, where the old UDF is declared
using a quoted identifier.

/* New declaration in ib_udf2. sql */
DECLARE EXTERNAL FUNCTI ON " LOVER"
CSTRI NG(255) NULL
RETURNS CSTRI NG(255) FREE_IT
ENTRY_PO NT ' 1 B_UDF_| ower' MODULE_NAME 'ib_udf';

Tip

It is preferable to use the interna function LOWER() than to call the UDF.

General UDF Changes

Build Changes

C. Vaderrama Contributors

The FBUDF library no longer dependson [1i b] f bcl i ent to be built.

132

Chapter 15

New Configuration
Parameters and Changes

RelaxedAliasChecking
V. Khorsun

(V.2.1) RelaxedAliasChecking is a new configuration parameter added to permit a sight relaxation of the
Firebird 2.0.x restrictions on mixing relation aliases and table names in a query. For example, with Re-
laxedAliasChecking set to true (=1) in firebird.conf, the following query will succeed in Firebird 2.1, whereas
it would fail inv.2.0.x, or inv.2.1 with the parameter set to its default of O:

SELECT ATABLE. FI ELD1, B. Fl ELD2
FROM ATABLE A JO N BTABLE B
ON A ID = BTABLE. I D

Caution

Understand that thisis atemporary facility whose purpose is to provide some headspace for migrating systems
using legacy code that exploited the tolerance of InterBase and older Firebird server versions to non-standard

SQL usage.

« Don't enable this parameter if you have no “offending” code in your applications or PSQL modules. It is
not intended as an invitation to write sloppy code!

* Regard it asatime-bomb. It will be permanently removed from a future rel ease.

MaxFileSystemCache
V. Khorsun

(V.2.1) Setsathreshold determining whether Firebird will allow the page cacheto be duplicated to thefilesystem
cache or not. If this parameter is set to any (integer) value greater than zero, its effect depends on the current
default size of the page cache: if the default page cache (in pages) islessthan the value of MaxFileSystemCache
(in pages) then filesystem caching is enabled, otherwise it is disabled.

Note

This applies both when the page cache buffer size is set implicitly by the DefaultDBCachePages setting or
explicitly as a database header attribute.

Thus,

» Todisable filesystem caching always, set MaxFileSystemCache to zero

133

New Configuration Parameters and Changes

» To enable filesystem caching always, set MaxFileSystemCache an integer value that is sufficiently large
to exceed the size of the database page cache. Remember that the effect of this value will be affected by

subseguent changes to the page cache size.

I mportant

The default setting for MaxFileSystemCache is 65536 pages, i.e. filesystem caching is enabled.

DatabaseGrowthlncrement
V. Khorsun

(V.2.1) For better control of disk space preallocation, the new parameter DatabaseGrowthlncrement has been
addedtof i rebi rd. conf . It represents the upper limit for the size, in bytes, of the chunk of disk that will be
requested for preallocation as pages for writes from the cache. Default: 134,217,728 bytes (128 MB).

For background information, please refer to the topic Enlarge Disk Allocation Chunks in the chapter “ Global
Improvementsin Firebird 2.1”.

When the engine needstoinitialize more disk space, it allocatesablock that is 1/16th of the space already all ocat-
ed, but not lessthan 128 KB and not greater than the DatabaseGrowthlncrement value. The DatabaseGrowthin-
crement value can be raised to increase the maximum size of newly-allocated blocks to more than the default
128 MB. Set it to zero to disable preallocation.

Note
e Thelower limit of the block size is purposely hard-coded at 128 MB and cannot be reconfigured.
e Spaceisnot preallocated for database shadow files.

* Predlocation is disabled for a database that has the “No reserve” option set.

ExternalFileAccess
A. Peshkov

Modified in Firebird 2, to alow thefirst path cited in External FilesAccess to be used as the default when anew
external fileis created.

LegacyHash
A. Peshkov

This parameter enables you to configure Firebird 2 to reject an old DES hash always in an upgraded security
database. If you don't use the security database upgrade procedure, this parameter does not affect Firebird op-
eration. A DES hash cannot arrive in the new security2.fdb.

Refer to the Security DB Upgrade Security section for instructions on upgrading your existing Firebird 1.5
security.fdb (or arenamed isc4.gdb) to the new security database layout.

134

New Configuration Parameters and Changes

The default valueis 1 (true).

Redirection
A. Peshkov

Parameter for controlling redirection of remote requests. It controls the multi-hop capability that was broken in
InterBase 6 and is restored in Firebird 2.

About Multi-hop

When you attach to some database using multiple hosts in the connection string, only the last host in thislist is
the one that opens the database. The other hosts act as intermediate gateways on port gds_db. Previoudly, when
working, this feature was available unconditionally. Now, it can be configured.

Remote redirection is turned off by default.

Caution

If you are considering enabling multi-hop capability, please study the Warning text in the chapter on Security
and in the documentation for this parameter in the firebird.conf file.

GCPolicy
V. Khorsun

Garbage collection policy. It is now possible to choose the policy for garbage collection on SuperServer.
The possible settings are cooperative, background and combined, as explained in the notes for GPol i cy in
firebird. conf.

Not applicable to Classic, which supports only cooperative garbage collection.

OldColumnNaming

P. Reeves

The parameter OldColumnNaming has been ported forward from Firebird 1.5.3. This parameter allows usersto
revert to pre-V 1.5 column naming behaviour in SELECT expressions. The installation default is O (disabled).
If it is enabled, the engine will not attempt to supply run-time identifiers, e.g. CONCATENATION for derived
fields where the developer has neglected to provide identifiers.

Important

This setting affects all databases on the server and will potentially produce exceptions or unpredicted results
where mixed applications are implemented.

135

New Configuration Parameters and Changes

UsePriorityScheduler
A. Peshkov

Setting this parameter to zero now disables switching of thread priorities completely. It affects only the Win32
SuperServer.

TCPNoNagle has changed

K. Kuznetzov

The default value for TcpNoNagleisnow TCP_NODELAY .

Removed or Deprecated Parameters

CreatelnternalWindow
D. Yemanov

The option Createl nternal Window isno longer required to run multiple server instances and it has been removed.

DeadThreadsCollection is no longer used
A. Peshkov

The DeadThreadsCollection parameter is no longer used at all. Dead threads are now efficiently released "on
the fly", making configuration unnecessary. Firebird 2.0 silently ignores this parameter.

136

Chapter 16

Firebird 2

Table 16.1. Firebird Development Teams

Project Teams

Developer Country Major Tasks
Dmitry Y emanov Russian Full-time database engineer/implementor, core team leader
Federation
Alex Peshkov Russian Security features coordinator; buildmaster; porting authority
Federation
Claudio Vaderrama Chile Code scrutineer; bug-finder and fixer; ISQL enhancements,
UDF fixer, designer and implementor
Vladidlav Khorsun Ukraine DB engineer, SQL feature designer/implementor
Arno Brinkman The Nether- | Indexing and Optimizer enhancements; new DSQL features
lands
Adriano dos San- Brazil New international character-set handling; text and text
tos Fernandes BLOB enhancements; new DSQL features; code scrutineer-
ing
Nickolay Samofatov Russian Designed and implemented new inline NBackup; code-fixer
Federa- and DB engineer during part of V.2.0 development
tion/Canada
Paul Beach France Release Manager; HP-UX builds; MacOS Builds; Solaris
Builds
Pavel Cisar Czech Re- | QA tools designer/coordinator
public
Philippe Makowski France QA tester
Paul Reeves France Win32 installers and builds
Sean Leyne Canada Bugtracker organizer
Dimitrios loannides Greece New Jira bugtracker implementor
Ann Harrison U.SA. Frequent technical advisor
Jim Starkey U.SA. Frequent architectural advisor; occasional bug-fixer
Roman Rokytskyy Germany | Jaybird implementor and co-coordinator
Ryan Baldwin U.K. Jaybird Type 2 driver devel oper
Evgeny Putilin Russian Java stored procedures implementation
Federation
Carlos Guzman Alvarez Spain Developer and coordinator of .NET providers for Firebird

137

Firebird 2 Project Teams

Developer Country Major Tasks
Vladimir Tsvigun Ukraine Developer and coordinator of ODBC/JDBC driver for Fire-
bird
David Rushby U.K. Developer and coordinator Klnterbase Python interface for
Firebird
Konstantin Kuznetsov Russian Solaris Intel builds
Federation
Paul Vinkenoog The Nether- | Coordinator, Firebird documentation project; documentation
lands writer and tools devel oper/implementor
Norman Dunbar U.K. Documentation writer
Pavel Menshchikov Russian Documentation translator
Federation
Tomneko Hayashi Japan Documentation transl ator
Umberto (Mimmo) Masotti Italy Documentation translator
Olivier Mascia Belgium IBPP C++ interface developer; re-implementor of Win32 in-
stallation services
Oleg Loa Russian Contributor
Federation
Grzegorz Prokopski Hungary | Debian builds
Erik Kunze Germany | SINIX-Z port; raw device enablement
Helen Borrie Australia | Release notes editor; Chief of Thought Police

138

Appendix A: New Built-in Functions

(Firebird 2.1)
Function Format Description
ABS ABS(<number>) Returns the absolute value of a number.

sel ect abs(amount) from transacti ons;

ACOS ACOS(<number>)

Returns the arc cosine of a number. Argument to
ACOS must beintherange-1to 1. Returns avalue
intherange Oto PI.

sel ect acos(x) fromy;

ASCII_CHAR ASCII_CHAR(<number>)

Returns the ASCII character with the specified

code. The argument to ASCII_CHAR must bein the
range O to 255. Theresult is returned in character set
NONE.

select ascii_char(x) fromy;

ASCII_VAL ASCII_VAL(<string>)

Returnsthe ASCII code of the first character of the
specified string.

1. ReturnsOif the string is empty

2. Throwsan error if thefirst character is mul-
ti-byte

select ascii_val (x) fromy;

ASIN ASIN(<number>)

Returns the arc sine of a number. The argument to
ASIN must bein therange -1 to 1. It returns aresult
in the range -Pl/2 to PI/2.

select asin(x) fromy;

ATAN ATAN(<number>)

Returns the arc tangent of a number. Returns avalue
in the range -P1/2 to PI/2.

select atan(x) fromy;

ATAN2 ATAN2(<number>, <number>)

Returns the arc tangent of the first number / the sec-
ond number. Returns avauein the range -PI to PI.

139

New Built-in Functions

Function

Format

Description

sel ect atan2(x,

y) from z;

BIN_AND

BIN_AND(<number>
[, <number>...])

Returns the result of abinary AND operation per-
formed on all arguments.

sel ect bin_and(fl ags,

1) fromx;

BIN_OR

BIN_OR(<number>
[, <number>...])

Returns the result of abinary OR operation per-
formed on all arguments.

sel ect bin_or(flagsi,

flags2) from x;

BIN_SHL

BIN_SHL (<number>,
<number>)

Returns the result of a binary shift left operation per-
formed on the arguments (first << second).

sel ect bin_shl (flagsl, 1) fromx;

BIN_SHR

BIN_SHR(<number>,
<number>)

Returns the result of a binary shift right operation
performed on the arguments (first >> second).

sel ect bin_shr(flagsl, 1) fromx;

BIN_XOR

BIN_XOR(<number>
[, <number>...])

Returns the result of a binary XOR operation per-
formed on all arguments.

sel ect bin_xor(flagsl,

flags2) from x;

BIT_LENGTH

BIT_LENGTH(<string>
| <string_expr>)

Returns the length of a string in bits.

sel ect

rdb$rel ati on_nane,

bit _I engt h(rdb%$rel ati on_nane),

bit_length(trin(rdb$rel ation_nane))
from rdb$rel ati ons;

CEIL |
CEILING

{ CEIL | CEILING }(<number>)

Returns a value representing the smallest integer that
is greater than or equal to the input argument.

1) select ceil(val) fromx;
2) select ceil(2.1),

ceil(-2.1) fromrdb$dat abase;

-- returns 3, -2

| CH

CHAR LENGTH
1ARACTER _LENC

5TH

CHAR_LENGTH(<string>
| <string_expr>)

Returns the number of charactersin astring or ex-
pression result.

140

New Built-i

n Functions

Function For mat

Description

sel ect
rdb$rel ati on_nane,
char _l engt h(rdb$rel ati on_nane),
char_length(trin(rdb$rel ati on_nane))
from rdb$rel ati ons;

COSs COS(<number>)

Returns the cosine of anumber. The angle is speci-
fied in radians and returns avalue in the range -1 to
1.

sel ect cos(x) fromy

COSH

COSH(<number>)

Returns the hyperbolic cosine of a number.

sel ect cosh(x) fromy;

COoT

COT(<number>)

Returns 1/ tan(argument).

select cot(x) fromy;

DATEADD See below Returns a date/time/timestamp value increased (or
decreased, when negative) by the specified amount
of time.

Format:
DATEADD(<nunber> <tinestanp_part> TO <date_time>)
DATEADD(<ti mestanp_part>, <nunber>, <date]tine>)
timestanp_part ::= { YEAR | MONTH | DAY | HOUR
M NUTE | SECOND | M LLI SECOND }
1. YEAR, MONTH and DAY cannot be used with time values.

2. HOUR, MINUTE, SECOND and MILLISECOND
values.
3. All timestamp_part values can be used with timestal

Example

sel ect dat eadd(day, -1,

from r db$dat abase;

current _date) as yg

/* or (expanded syntax) */
sel ect dateadd(-1 day for current_date) as
from rdb$dat abase;

cannot be used with date

mp values.

2st er day

yest er day

141

New Built-i

n Functions

Function Format Description
DATEDIFF See below Returns an exact numeric value representing the in-
terval of time from the first date/time/timestamp val-
ue to the second one.
Format:

DATEDI FF(<ti mestanp_part> FROM <date_ti nme3

DATEDI FF(<ti mestanp_part>, <date_tine>,

timestanp_part ::= { YEAR | MONTH | DAY |
HOUR | M NUTE | SECONI

\

1. Returnsapositive valueif the second value is great
the first one, negative when the first oneis greater,
when they are equal .

2. Comparison of date with time valuesisinvalid.

3. YEAR, MONTH, DAY and WEEKDAY cannot bg

4. HOUR, MINUTE, SECOND and MILLISECOND

5. All timestamp_part values can be used with timesta

Example

sel ect datediff(

> TO <date_tinme>)

<date_tine>)

NEEKDAY |
D | M LLI SECOND }

er than
DI ZEro

» used with time values.
cannot be used with date values.
mp values.

DAY, (cast(' TOMORROW as date) -10), currnent_date
) as datediffresult
from r db$dat abase;
DECODE See below DECODE isashortcut for a CASE ... WHEN ...
EL SE expression.
Format:
DECODE(<expression>, <search>, <result>
[, <search>, <result> ...] [, <default>»]
Example
sel ect decode(state, 0, 'deleted', 1, 'active', 'unknown') fromthings;
EXP EXP(<number>) Returns the exponential e to the argument.
sel ect exp(x) fromy;
FLOOR FLOOR(<number>) Returns avalue representing the largest integer that

isless than or equal to the input argument.

142

New Built-i

n Functions

Function For mat

Description

1) select floor(val) fromx;
2) select floor(2.1), floor(-2.1)
from rdb$dat abase; -- returns 2,

-3

GEN_UUID GEN_UUID() -- no arguments

Returns a universal unique number.

insert into records (id) value (gen_uuid(

HASH HASH(<string>)

Returns aHASH of astring.

sel ect hash(x) fromy;

LEFT LEFT(<string>, <number>)

Returns the substring of a specified length that ap-
pears at the start of aleft-to-right string.

sel ect |eft(name, - 10
from peopl e

where nane |ike

char _| engt h(nane)

' % FERNANDES' ;

1. Thefirst position in astring is 1, not O.
2. If the <number> argument eval uates to a non-intege

i, banker's rounding is applied.

LN LN(<number>)

Returns the natural logarithm of a number.

select In(x) fromy;

LOG LOG(<number>, <number>) | LOG(X, y) returnsthe logarithm base x of y.
select log(x, 10) fromy;
LOG10 LOG10(<number>) Returns the logarithm base ten of a number.

sel ect 10g10(x) fromy;

LOWER LOWER(<string>) (v.2.0.X) Returns the input argument converted to all
lower-case characters.

isqgl -q -ch dos850

SQL> create database 'test.fdb';

SQL> create table t (c char(1) character set dos850);

SQL> insert intot values ("A);

SQL> insert intot values ('"E);

SQ> insert intot values ('A);;

SQ> insert intot values ('E);

143

New Built-in Functions

Function Format Description

SQL> select c, lower(c) fromt;
C LOVER

A a

E e

A a

E é

LPAD LPAD(<string>, <num- LPAD(stringl, length, string2) prepends string2 to

ber> [, <string>]) the beginning of stringl until the length of the result
string becomes equal to length.

1. If the second string is omitted the default value is one space.
2. If the result string would exceed the length, the second string is truncated.

Example

sel ect | pad(x, 10) fromy;

MAXVALUE MAXVALUE(<value> Returns the maximum value of alist of values.
[, <value>..])

sel ect maxval ue(vl, v2, 10) fromx

MINVALUE MINVALUE(<value> Returns the minimun value of alist of values.
[, <vaue>...)

sel ect mnvalue(vl, v2, 10) fromx

MOD MOD(<number>, <number>) | Modulo: MOD(X, Y) returns the remainder part of
the division of X by Y.

sel ect mod(x, 10) fromy;

OCTET_LENGTH OCTET_LENGTH(<string> Returns the length of a string or expression result in
| <string_expr>) bytes.

sel ect
rdb$rel ati on_nane,
octet | ength(rdb$rel ati on_nane),
octet _length(trinm(rdb$rel ati on_nane))
fromrdb$rel ati ons;

OVERLAY See below Returns stringl replacing the substring FROM start
FOR length by string2.

Format:

144

New Built-in Functions

Function

Format

Description

OVERLAY(<stringl> PLACI NG <string2> FROM s

The OVERLAY functionis equivalent to:

SUBSTRI NG(<stringl> 1 FOR <start> - 1) |
SUBSTRI NG <stringl> <start> + <l ength>)

1. Thefirst position i

2. If the <start> and/or <length > argument evaluatest

nastringis 1, not 0.

cstart> [FOR <length>])

| <string2> ||

0 a non-integer, banker's rounding is applied.

If <length> is not specified, CHAR_LENGTH(<string2>) isimplied.

Pl

PI() -- no arguments

Returns the PI constant (3.1459...).

val = PlI();

POSTION

See below

Returns the start position of the first string inside the
second string, relative to the beginning of the outer
string. In the second form, an offset position may be
supplied so that the function returns aresult relative
to that position in the outer string.

POSI TION(<string> IN <string>)

POSI TI ON(<stri

ng>, <string> [, <offset-y

posi tion>])

sel ect rdb$rel ati on_nane
fromrdb$rel ati ons
wher e position(' RDB$'

IN rdb$rel ati on_nanme) = 1;

POWER POWER(<number>, <number>)

POWER(X, Y) returns X to the power of Y.

sel ect power (X,

10) fromy;

RAND

RAND() -- no argument

Returns a random number between 0 and 1.

select * fromx order by rand();

REPLACE

REPLACE(<stringtosearch>,
<findstring>, <replstring>)

Replaces all occurrences of <findstring> in <string-
tosearch> with <replstring>.

145

New Built-i

n Functions

Function Format Description
sel ect replace(x, , ',") fromy;
REVERSE REVERSE(<value>) Returns a string in reverse order. Useful function

for creating an expression index that indexes strings
from right to left.

create index people_email on people
conputed by (reverse(email));

select * from peopl e
where reverse(enail) starting with reve

2rse('.br');

RIGHT RIGHT(<string>, <number>)

Returns the substring, of the specified length, from
the right-hand end of a string.

sel ect right(rdb$rel ati on_nane,
fromrdb$rel ati ons
where rdb$rel ati on_nane |ike ' RDB$% ;

char _I engt h(rdb$r el ati on_nang)

- 4)

ROUND ROUND(<number>,

[<number>])

Returns a number rounded to the specified scale.

Example

sel ect round(salary * 1.1, 0) from peopl ¢;

If the scale (second parameter) is negative or is omitte

d, the integer part of the

valueisrounded. E.g., ROUND(123.456, -1) returns 120.000.
RPAD RPAD(<stringl>, Appends <string2> to the end of <string1l> until the
<length> [, <string2>1]) length of the result string becomes equal to <length>.
Example

sel ect rpad(x, 10) fromy;

1. If the second string is omitted the default valueis o

ne space.

2. If the result string would exceed the length, the final application of

<string2> will be truncated.

SGN SIGN(<number>)

Returns 1, 0, or -1 depending on whether the input
valueis positive, zero or negative, respectively.

sel ect sign(x) fromy;

146

New Built-i

n Functions

Function For mat

Description

SN SIN(<number>)

Returns the sine of an input number that is expressed
in radians.

sel ect sin(x) fromy;

SNH SINH(<number>)

Returns the hyperbolic sine of a number.

sel ect sinh(x) fromy;

RT SQRT(<number>)

Returns the square root of a number.

sel ect sqrt(x) fromy;

TAN TAN(<number>)

Returns the tangent of an input number that is ex-
pressed in radians.

select tan(x) fromy;

TANH TANH(<number>)

Returns the hyperbolic tangent of a number.

sel ect tanh(x) fromy;

TRIM See below

(V.2.0.x) Trims characters (default: blanks) from the
left and/or right of a string.

TRIM<left paren> [[<trimspecification>
FROM] <val ue expression> <right paren>

<trim specification> :: LEADI NG TR4

<trimcharacter> ::= <val ue expressi on>

Rules

1. If <trim
specifica
tion> is not
specified,
BOTH is
assumed.

2. If <trim
character>

is not spec-

] [<trimcharacter>]

Al LI NG BOTH

147

New Built-in Functions

Function For mat

Description

ified,''is
assumed.

If <trim
specifi-
cation>
and/or
<trim char-
acter> is
specified,
FROM
should be
specified.

If <trim
specifi-
cation>
and <trim
charac-
ter> isnot
specified,
FROM
should
not be
specified.

Example A)

sel ect
rdb$rel ati on_nane,
trin(leadi ng ' RDB$'
fromrdb$rel ati ons

fromrdb$rel ati on_nane)

where rdb$rel ati on_nanme starting with '|RDB$';
Example B)
sel ect
trimrdb$rel ati on_nanme) || is a systemtable'
fromrdb$rel ati ons
where rdb$system flag = 1;
TRUNC TRUNC(<number> Returnsthe integral part (up to the specified scale) of

[, <number>1])

anumber.

1) select trunc(x) fromy;

2) select trunc(-2.8), trunc(2.8)
from rdb$dat abase;

3) select trunc(987. 65,
from rdb$dat abase;

1), trunc(987. 65,
-- returns 987.

-- returns -2, 2

-1)

»0, 980. 00

148

Appendix B: International Character Sets

A. dos Santos Fernandes & Others

New Character Sets and Collations Implemented

The following new character set and/or collation implementations have been added in Firebird 2 releases:

set and UCS BASIC collation.

Character Set Collation Description Implemented By
1SO8859 1 ES ES CI_Al Spanish language case- and accent-insen- | A. dos Santos Fer-
sitive collation for 1SO8859 1 character | nandes
Set.
" PT_BR Brazil Portuguese collation for A. dos Santos Fer-
1SO8859 1 character set. nandes, P. H. Al-
banez
1SO8859 2 ISO_PLK Polish collation for 1SO8859 2 character | J. Glowacki, A. dos
Set. Santos Fernandes
KOI8-R KOI8-R Russian language character set and dictio- | O. Loa, A.
nary collation. Karyakin
KOI8-U KOI8-U Ukrainian language character set and dic- | O. Loa, A.
tionary collation. Karyakin
WIN1250 BS BA Bosnian language collation for WIN1250 | F. Hasovic
character set.
" WIN_CZ Al Czech language case-insensitive collation | I. Prenosil, A. dos
for WIN21250 character set Santos Fernandes
" WIN_CZ_CI_Al | Czechlanguage case- and accent-insensi- | |. Prenosil, A. dos
tive collation for WIN1250 character set | Santos Fernandes
WIN1252 WIN_PTBR Brazil Portuguese collation for WIN1252 | A. dos Santos Fer-
character set. nandes, P. H. Al-
banez
WIN1257 WIN1257_LV Latvian dictionary collation. O. Loa A.
Karyakin
" WIN1257 LT Lithuanian dictionary collation. O. Loa A.
Karyakin
" WIN1257 EE Estonian dictionary collation. O.Loa A.
Karyakin
WIN1258 (n/a) Vietnamese language subset of charset Nguyen The
WIN1258. Phuong, A. dos
Santos Fernandes
UTF8 UCS BASIC Unicode 4.0 support with UTF8 character | A. dos Santos Fer-

nandes

149

International Character Sets

Character Set Coallation Description Implemented By
" UNICODE Unicode 4.0 support with UTF8 character | A. dos Santos Fer-
set and UNICODE caollation. nandes
(Unspecified) FR_FR_CI_Al (V.2.1) French language case-insensitive | A. dos Santos Fer-
and accent-insensitive collation. nandes
CP943C (n/a) (V.2.1) Japanese character set. A. dos Santos Fer-
nandes

Narrow Character Sets

CYRL,

DOs437, DOs737, DOS775, DOS850, DOS852, DOS857, DOS858, DOS860,
DOs861, DOs862, DOS863, DOS864, DOS865, DOS866, DOS869,

| SC8859_1, 1S08B859_13, 1S0B859_2, |SCB859_3, |S0CB859_4,

| SC8859_5, 1S0B859_6, |S0B8859_ 7, |S0B859_8, |SOCB859_9,

KO 8R, KA 8U,

NEXT,

TI S620,

W N1250, W N1251, WN1252, W N1253, W N1254, W N1255, W N1256,
W N1257 and W N1258.

ICU Character Sets

UTF-8 i bm 1208 i bm 1209 i bm 5304 i bm 5305 wi ndows- 65001 cp1208

UTF- 16 | SO 10646- UCS-2 uni code csUni code ucs-2

UTF- 16BE x-utf-16be i bm 1200 i bm 1201 i bm 5297 i bm 13488
i bm 17584 wi ndows-1201 cpl200 cpl201 UTF16_Bi gEndi an

UTF- 16LE x-utf-16le i bm 1202 i bm 13490 i bm 17586
UTF16_Littl eEndi an wi ndows- 1200

UTF- 32 | SO 10646- UCS-4 csUCS4 ucs-4

UTF- 32BE UTF32_Bi gEndi an i bm 1232 i bm 1233

UTF- 32LE UTF32_Littl eEndi an i bm 1234

UTF16_PI at f or mEndi an

UTF16_CQOpposi t eEndi an

UTF32_Pl at f or mEndi an

UTF32_QOpposi t eEndi an

UTF- 7 wi ndows- 65000

| MAP- mai | box- nane

SCSU

BOCU-1 csBOCU- 1

CESU- 8

| SO-8859-1 i bm 819 I BMB19 cp819 |l atinl 8859 _1 cslSOLatinl
i so-ir-100 1SO 8859-1:1987 11 819

US- ASCI I ASCI1 ANSI _X3.4-1968 ANSI _X3.4-1986 |1SO 646.irv: 1991
i SO_646.irv: 1983 | SO646-US us csSASCI| iso-ir-6 cp367 ascii7?
646 wi ndows-20127

| SO 2022, | ocal e=j a, versi on=0 | SO 2022-JP csl SO2022JP

| SO 2022, | ocal e=j a, version=1 | SO 2022-JP-1 JI S JI S_Encodi ng

| SO 2022, | ocal e=j a, versi on=2 | SO 2022-JP-2 csl SO2022JP2

150

International Character Sets

| SO 2022, | ocal e=j a, versi on=3 JI S7 csJI SEncodi ng

| SO 2022, | ocal e=j a, versi on=4 JI S8

| SO 2022, | ocal e=ko, versi on=0 | SO 2022- KR csl SC2022KR

| SO 2022, | ocal e=ko, versi on=1 i bm 25546

| SO 2022, | ocal e=zh, versi on=0 | SO 2022- CN

| SO 2022, | ocal e=zh, versi on=1 | SO 2022- CN- EXT

HZ HzZ- GB- 2312

I SClI,version=0 x-iscii-de w ndows-57002 iscii-dev

I SCI I, version=1 x-iscii-be wi ndows-57003 iscii-bng w ndows-57006
X-iscii-as

| SCl I, version=2 x-iscii-pa wi ndows-57011 iscii-gur
I SCI I, version=3 x-iscii-gu wi ndows-57010 i scii-guj
| SCl 1, version=4 x-iscii-or windows-57007 iscii-ori
I SCl1,version=5 x-iscii-ta wi ndows-57004 iscii-tm
| SClI,version=6 x-iscii-te w ndows-57005 iscii-tlg
| SCl 1, version=7 x-iscii-ka wi ndows-57008 iscii-knd
I SCl1,version=8 x-iscii-m wi ndows-57009 iscii-nmm

gb18030 i bm 1392 w ndows- 54936

LMBCS-1 | nbcs

LMBCS- 2

LMBCS- 3

LMBCS- 4

LMBCS- 5

LMBCS- 6

LMBCS- 8

LMBCS- 11

LMBCS- 16

LMBCS- 17

LMBCS- 18

LMBCS- 19

i bm 367_P100- 1995 i bm 367 | BM367

i b 912 _P100-1995 i bm 912 i s0-8859-2 | SO 8859-2:1987 latin2
cslSOLatin2 iso-ir-101 12 8859 2 cp912 912 wi ndows- 28592

i b 913 _P100- 2000 i bm 913 i s0-8859-3 | SO 8859-3:1988 latin3
cslSOLatin3 iso-ir-109 |3 8859 3 cp913 913 wi ndows- 28593

i bm 914_P100- 1995 i bm 914 iso0-8859-4 |atin4 cslSOLatin4
iso-ir-110 |1 SO 8859-4:1988 14 8859 4 cp914 914 wi ndows- 28594

i b 915_P100- 1995 i bm 915 is0-8859-5 cyrillic cslSOLatinCyrillic
i so-ir-144 | SO 8859-5:1988 8859 5 cp915 915 w ndows- 28595

i bm 1089_P100- 1995 i bm 1089 i so-8859-6 arabic csl SOLati nArabic
i so-ir-127 |1SO 8859-6:1987 ECVA-114 ASMO- 708 8859 _6 cpl089
1089 wi ndows- 28596 | SO 8859-6-1 | SO 8859-6-E

i bm 813 _P100-1995 i bm 813 i so0-8859-7 greek greek8 ELOT_928
ECMA- 118 csl SOLati nGreek iso-ir-126 | SO 8859-7:1987 8859 7
cp813 813 wi ndows- 28597

i bm 916_P100- 1995 i bm 916 i so-8859-8 hebrew csl SOLat i nHebr ew
i so-ir-138 | SO 8859-8:1988 | SO 8859-8-1 |SO 8859-8-E 8859_8
cp916 916 w ndows- 28598

i bm 920_P100- 1995 i bm 920 i s0-8859-9 latin5 cslSOLati n5
i so-ir-148 1SO 8859-9:1989 15 8859 9 cp920 920 wi ndows- 28599
ECMA- 128

i b 921 _P100- 1995 i bm 921 iso0-8859-13 8859 13 cp921 921

i b 923_P100- 1998 i bm 923 is0-8859-15 Latin-9 19 8859 _15 latin0
csisolatinO csisolatin9 iso8859 15 fdis cp923 923 wi ndows- 28605

i bm 942 _P12A-1999 i bm 942 i bm 932 cp932 shift_jis78 sjis78
i b 942_VSUB VPUA i bm 932_VSUB_VPUA

i b 943_P15A- 2003 i bm 943 Shift_JI'S M5_Kanji csShiftJIS
w ndows- 31j csW ndows31J x-sjis X-ns-cp932 cp932 wi ndows- 932
cp943c |1 BM 943C ns932 pck sjis i bm 943 _VSUB_VPUA

i b 943 _P130-1999 i bm 943 Shift_JI'S cp943 943 i bm 943_VASCI | _VSUB_VPUA

i bm 33722_P12A- 1999 i bm 33722 i bm 5050 EUC- JP

151

International Character Sets

Ext ended_UNI X_Code_Packed_Fornat _f or _Japanese
csEUCPkdFnt Japanese X-EUC-JP eucjis w ndows-51932
i bm 33722_VPUA | BM eucJP

i bm 33722_P120- 1999 i bm 33722 i bm 5050 cp33722 33722
i bm 33722_VASCI | _VPUA

i bm 954_P101- 2000 i bm 954 EUC- JP

i bm 1373_P100- 2002 i bm 1373 w ndows- 950

w ndows- 950- 2000 Bi g5 csBi g5 wi ndows- 950 x-bi g5

i bm 950_P110- 1999 i bm 950 cp950 950

macos- 2566- 10. 2 Bi g5- HKSCS bi g5hk HKSCS- Bl Gb

i bm 1375_P100- 2003 i bm 1375 Bi g5- HKSCS

i b 1386_P100- 2002 i bm 1386 cpl386 w ndows-936 i bm 1386_VSUB_VPUA

wi ndows- 936- 2000 GBK CP936 MsS936 wi ndows- 936

i b 1383_P110- 1999 i bm 1383 GB2312 ¢sGB2312 EUC-CN i bm eucCN
hpl5CN cp1383 1383 i bm 1383_VPUA

i bm 5478_P100- 1995 i bm 5478 GB_2312-80 chinese iso-ir-58
csl SO68GB231280 gh2312-1980 GB2312. 1980-0

i bm 964_P110-1999 i bm 964 EUC- TWi bm eucTW cns11643 cp964 964
i bm 964_VPUA

i b 949 _P110-1999 i bm 949 cp949 949 i bm 949 VASCI | _VSUB_VPUA

i b 949 _P11A-1999 i bm 949 cp949c i bm 949 _VSUB_VPUA

i bm 970_P110-1995 i bm 970 EUC- KR KS_C 5601- 1987 w ndows- 51949
cSEUCKR i bm eucKR KSC 5601 5601 i bm 970_VPUA

i bm 971 _P100-1995 i bm 971 i bm 971_VPUA

i b 1363_P11B- 1998 i bm 1363 KS_C 5601- 1987 KS_C 5601- 1989 KSC 5601
csKSC56011987 korean iso-ir-149 5601 cpl363 ksc wi ndows- 949
i bm 1363_VSUB_VPUA

i b 1363_P110- 1997 i bm 1363 i bm 1363_VASCI | _VSUB_VPUA

wi ndows- 949- 2000 wi ndows- 949 KS_C 5601- 1987 KS_C 5601- 1989
KSC 5601 csKSC56011987 korean iso-ir-149 ns949

i bm 1162_P100- 1999 i bm 1162

i b 874_P100- 1995 i bm 874 i bm 9066 cp874 TIS-620 tis620.2533
eucTH cp9066

wi ndows- 874- 2000 TI S-620 wi ndows- 874 MS874

i bm 437_P100-1995 i bm 437 | BMA37 cp437 437 csPC8CodePage437
w ndows- 437

i bm 850_P100- 1995 i bm 850 | BMB50 cp850 850 csPC850Mul tilingual
wi ndows- 850

i b 851_P100- 1995 i bm 851 |1 BMB51 cp851 851 csPC851

i bm 852_P100- 1995 i bm 852 | BMB52 cp852 852 csPCp852 wi ndows- 852

i bm 855_P100- 1995 i bm 855 | BMB55 cp855 855 csl BMB55 csPCp855

i bm 856_P100- 1995 i bm 856 cp856 856

i bm 857_P100- 1995 i bm 857 | BMB57 cp857 857 csl BMB57 wi ndows- 857

i b 858_P100- 1997 i bm 858 | BMD0858 CCSI D00858 CP00858
PC-Mul tilingual - 850+euro cp858

i bm 860_P100- 1995 i bm 860 | BMB60 cp860 860 csl BMB60

i b 861_P100- 1995 i bm 861 |1 BMB61 cp861 861 cp-is cslBMB61
wi ndows- 861

i bm 862_P100- 1995 i bm 862 | BMB62 cp862 862 csPC862Lati nHebrew
DOS- 862 wi ndows- 862

i bm 863_P100- 1995 i bm 863 | BMB63 cp863 863 csl BMB63

i b 864_X110-1999 i bm 864 | BMB64 cp864 csl BVMB64

i bm 865_P100- 1995 i bm 865 | BMB65 cp865 865 csl BMB65

i b 866_P100- 1995 i bm 866 | BMB66 cp866 866 csl BMB66 wi ndows- 866

i b 867_P100- 1998 i bm 867 cp867

i b 868_P100- 1995 i bm 868 | BMB68 CP868 868 csl BMB68 cp-ar

i b 869_P100- 1995 i bm 869 | BMB69 cp869 869 cp-gr csl BVB69
wi ndows- 869

i bm 878_P100- 1996 i bm 878 KO 8-R koi 8 cskKO 8R cp878

i b 901_P100- 1999 i bm 901

i bm 902_P100- 1999 i bm 902

152

International Character Sets

i bm 922_P100- 1999 i bm 922 cp922 922

i bm 4909_P100- 1999
i bm 5346_P100- 1998
i bm 5347_P100- 1998
i bm 5348_P100- 1997
i bm 5349_P100- 1998
i bm 5350_P100- 1998
i bm 9447_P100- 2002

i bm 4909
i bm 5346
i bm 5347
i bm 5348
i bm 5349
i bm 5350
i bm 9447

ndows- 125
ndows- 125
ndows- 125
ndows- 125
ndows- 125
ndows- 125

Wi
Wi
Wi
Wi
Wi

W

W ndows- 1256- 2000 wi ndows- 1256 cpl1256

i bm 9449_P100- 2002
i bm 5354_P100- 1998
i bm 1250_P100- 1995
i b 1251_P100- 1995
i bm 1252_P100- 2000
i bm 1253_P100- 1995
i bm 1254_P100- 1995
i bm 1255_P100- 1995
i bm 5351_P100- 1998
i bm 1256_P110- 1997
i bm 5352_P100- 1998
i bm 1257_P100- 1995
i bm 5353_P100- 1998
i bm 1258_P100- 1997

i bm 9449
i bm 5354
i bm 1250
i bm 1251
i bm 1252
i bm 1253
i bm 1254
i bm 1255
i bm 5351
i bm 1256
i bm 5352
i bm 1257
i bm 5353
i bm 1258

ndows- 125
ndows- 125
ndows- 125
ndows- 125
ndows- 125
ndows- 125
ndows- 125

W

Wi
Wi
Wi
Wi
Wi
Wi
w ndows- 125
w ndows- 125

ndows- 125
ndows- 125

Wi
Wi

0
1
2
3
4
5

cp1250
cpl251
cp1252
cp1253
cpl254
cpl255

7
8
0
1
2
3
4

cpl257
cpl258

5
6

7
8

macos-0_2-10. 2 maci nt osh mac csMaci nt osh wi ndows- 10000
macos- 6- 10. 2 x- mac- gr eek wi ndows- 10006 macgr

macos-7_3-10.2 x-mac-cyrillic w ndows-10007 maccy

macos- 29- 10. 2 x-mac-central eurroman wi ndows- 10029 x-mac-ce nacce

macos- 35-10. 2 x-mac-turkish
i b 1051_P100- 1995 i bm 1051
i bm 1276_P100- 1995 i bm 1276
csAdobeSt andar dEncodi ng
i bm 1277_P100- 1995 i bm 1277
i bm 1006_P100- 1995 i bm 1006
i b 1098_P100- 1995 i bm 1098
i bm 1124 _P100- 1996 i bm 1124
i bm 1125 _P100- 1997 i bm 1125
i b 1129 _P100- 1997 i bm 1129
i b 1131 _P100- 1997 ibm 1131
i b 1133_P100- 1997 i bm 1133
i b 1381_P110- 1999 i bm 1381

w ndows- 100
hp-roman8 r
Adobe- St and

Adobe- Latin
cpl006 1006
cpl098 1098
cpll24 1124
cpll2s

cpl131

cpl381 1381

81 nmactr
oman8 r8 csHPRoman8
ar d- Encodi ng

1- Encodi ng

i bm 37_P100- 1995 i bm 37 | BM)37 i bm 037 ebcdi c-cp-us ebcdi c-cp-ca

ebcdi c-cp-wt ebcdic-cp-n

csl BMD37 cp

i bm 273_P100- 1995 i bm 273 |1 BM73 CP273

273

i bm 277_P100- 1995 i bm 277 | BMR77 cp277
csl BM77 ebcdi c-dk cpi bnmR77 277

i bm 278_P100- 1995 i bm 278 | BM278 cp278
csl BM278 ebcdi c-sv cpi bnm278 278

i bm 280_P100- 1995 i bm 280
cpi bn280 280

i bm 284_P100- 1995 i bm 284 | BM284

cpi bn284 284
i bm 285_P100- 1995 i bm 285
ebcdi c-gb cpi bn285 285
i bm 290_P100- 1995 i bm 290
i bm 297 _P100- 1995 i bm 297
cpi bm297 297
i bm 420_X120-1999 i bm 420

i bm 500_P100- 1995 i bm 500
ebcdi c-cp-ch cpi bnb00 500

| BM280

| BM285

| BM290
| BM2O7

| BMA20
i bm 424_P100- 1995 i bm 424 | BM4A24
| BM6OO

CP280
CP284
CP285

cp290
cp297

cp420
cp424
CP500

037 037 cpi bnB87 cp37
csl BM73 ebcdi c-de cpi bn273

EBCDI C- CP- DK EBCDI C- CP- NO
ebcdi c-cp-fi ebcdic-cp-se
ebcdi c-cp-it csl BM280
ebcdi c-cp-es csl BM284
ebcdi c-cp-gb csl BM285

EBCDI C- JP- kana csl BM290
ebcdi c-cp-fr csl BM97

ebcdi c-cp-arl csl BW20 420
ebcdi c-cp-he csl Bv4A24 424
ebcdi c- cp- be csl BVMb0O

153

International Character Sets

i bm 803_P100- 1999

i bm 838_P100- 1995

i bm 870_P100- 1995
ebcdi c-cp-yu csl

i bm 871_P100- 1995
ebcdic-is cpibn8

i bm 875_P100- 1995

i b 918_P100- 1995

i bm 930_P120- 1999

i b 933_P110- 1995

i bm 935_P110- 1999

i bm 937_P110- 1999

i bm 939_P120- 1999

i bm 1025_P100- 1995

i bm 1026_P100- 1995

i bm 1047_P100- 1995

i bm 1097_P100- 1995

i bm 1112 P100- 1995

i bm 1122 P100- 1999

i bm 1123 P100- 1995

i bm 1130_P100- 1997

i bm 1132_P100- 1998

i bm 1140_P100- 1997

i bm 803
i bm 838
i bm 870
BMB70
ibm 871
71 871
i bm 875
i bm 918
i bm 930
i bm 933
i bm 935
i bm 937
i bm 939

i bm 1025

cp803

| BM Thai csl| BMrhai

cp838 838 i bm 9030

| BMB70 CP870 ebcdi c-cp-roece

| BMB71 ebcdic-cp-is csl BMB71 CP871

| BMB75 cp875 875

| BMB18 CP918 ebcdic-cp-ar2 csl BwW18
i bm 5026 cp930 cpi bm®30 930

cp933 cpi bmd33 933
cp935 cpi bmd35 935
cp937 cpi bmB37 937

i bm 931 i bm 5035 cp939 939

cpl025 1025

i bm 1026
i bm 1047
i bm 1097
ibm 1112
i bm 1122
i bm 1123
i bm 1130
i bm 1132

i bm 1140 1 BMD1140 CCSI D01140 CP01140

| BMLO26 CP1026 csl BMLO26 1026

| BMLO47 cpi bml047
cpl097 1097
cplil2 1112
cpll22 1122

cpl1123 1123 cpi bm123

cpi bmL140 ebcdi c-us-37+euro

i b 1141 _P100- 1997 i bm 1141 | BM)1141 CCSI D01141 CP01141

cpi bmL141 ebcdi c-de-273+euro

i bm1142_P100- 1997 i bm 1142 | BM)1142 CCSI D01142 CP01142

cp1140
cpll4l

cpl142

cpi bnl142 ebcdi c- dk-277+eur o ebcdi c- no-277+euro

i b 1143_P100- 1997 i bm 1143 | BM)1143 CCSI D01143 CP01143

cpl143

cpi bnl143 ebcdi c-fi-278+euro ebcdic-se-278+euro
i bm 1144 _P100- 1997 i bm 1144 | BWD1144 CCSI D01144 CP01144 cpll44
cpi bnl144 ebcdic-it-280+euro

i b 1145_P100- 1997 i bm 1145 | BM)1145 CCSI D01145

cpi bnl145 ebcdi c- es-284+euro

i bm 1146_P100- 1997 i bm 1146 | BM)1146 CCSI D01146

cpi bnl146 ebcdi c- gb-285+euro

i bm 1147_P100- 1997 i bm 1147 | BM)1147 CCSI D01147

cpi bmL147 ebcdic-fr-297+euro

i b 1148 _P100- 1997 i bm 1148 | BMD1148 CCSI D01148
cpi bmL148 ebcdic-international - 500+eur o
i b 1149 _P100- 1997 i bm 1149 | BMD1149 CCSI D01149

cpi bmL149 ebcdic-is-871+euro

i b 1153_P100- 1999
i bm 1154_P100- 1999
i bm 1155_P100- 1999
i bm 1156_P100- 1999
i bm 1157_P100- 1999
i b 1158_P100- 1999
i b 1160_P100- 1999
i b 1164_P100- 1999
i bm 1364_P110- 1997
i b 1371_P100- 1999
i b 1388_P103- 2001
i b 1390_P110- 2003
i b 1399_P110- 2003

i bm 1153
i bm 1154
i bm 1155
i bm 1156
i bm 1157
i bm 1158
i bm 1160
i bm 1164
i bm 1364
i bm 1371
i bm 1388
i bm 1390
i bm 1399

cpi bnl153
cpi bnl154
cpi bnl155
cpi bnl156
cpi bnl157
cpi bnl158
cpi bnl160
cpi bnl164
cpl364
cpi bnl371
i bm 9580
cpi bnl390

i b 16684_P110- 2003 i bm 16684

i bm 4899_P100- 1998 i bm 4899 cpi bni899
i b 4971 _P100- 1999 i bm 4971 cpi bmi971
i bm 12712_P100- 1998 i bm 12712 cpi bml2712 ebcdi c- he
i bm 16804_X110-1999 i bm 16804 cpi bnl6804 ebcdi c-ar

i bm 1137_P100- 1999

i bm 1137

CP01145 cpl145

CP01146 cpll146
CP01147 cpl147
CP01148 cpl148

CP01149 cpl1149

International Character Sets

i bm 5123 _P100- 1999 i bm 5123
i bm 8482_P100- 1999 i bm 8482
i bm 37_P100- 1995, swapl f nl

i bm 1047_P100- 1995,
i b+ 1140_P100- 1997,
i bm1142_P100- 1997,
i b 1143_P100- 1997,
i b 1144_P100- 1997,
i bm 1145_P100- 1997,
i b 1146_P100- 1997,
i bm 1147_P100- 1997,
i b 1148_P100- 1997,
i b 1149_P100- 1997,
i bm 1153_P100- 1999,

i bm 12712_P100- 1998, swapl f nl
i bm 16804_X110- 1999, swapl f nl

ebcdi c- xm -us

swapl f nl
swapl f nl
swapl f nl
swapl f nl
swapl f nl
swapl f nl
swapl f nl
swapl f nl
swapl f nl
swapl f nl
swapl f nl

i bm 37-s390 i bnD37-s390

i bm 1047-s390

i bm 1140-s390

i bm 1142-s390

i bm 1143-s390

i bm 1144-s390

i bm 1145-s390

i bm 1146-s390

i bm 1147-s390

i bm 1148-s390

i bm 1149-s390

i bm 1153-s390
i bm 12712-s390
i bm 16804-s390

155

Appendix C: Security Database Upgrade
for Firebird 2

A. Peshkov

Security Upgrade Script

/* Script security_database. sql
*
The contents of this file are subject to the Initial
Devel oper's Public License Version 1.0 (the "License");
you may not use this file except in conpliance with the
Li cense. You nmay obtain a copy of the License at
http://ww. i bphoeni x. conf mai n. nf s?a=i bphoeni x&page=i bp_i dpl .

Sof tware distributed under the License is distributed AS IS,
W THOUT WARRANTY OF ANY KI ND, either express or inplied.

See the License for the specific | anguage governing rights
and limtations under the License.

The Original Code was created by Al ex Peshkov on 16- Nov- 2004
for the Firebird Open Source RDBMS project.

Copyright (c) 2004 Al ex Peshkov
and all contributors signed bel ow.

Al'l Rights Reserved.
Contri butor(s):

L S T N N R T S R R T

-- 1. tenporary table to alter donmains correctly.
CREATE TABLE UTMP (
USER_NAME VARCHAR(128) CHARACTER SET ASCI I,
SYS_USER_NAME VARCHAR(128) CHARACTER SET ASCI I,
GROUP_NAME VARCHAR(128) CHARACTER SET ASCI |,
UD | NTEGER,
G D | NTECER,
PASSWD VARCHAR(64) CHARACTER SET BI NARY,
PRI VI LEGE | NTEGER,
COMMVENT BLOB SUB_TYPE TEXT SEGVENT SI ZE 80
CHARACTER SET UNI CODE_FSS,
FI RST_NAME VARCHAR(32) CHARACTER SET UNI CODE_FSS
DEFAULT _UNI CODE_FSS "',
M DDLE_NAME VARCHAR(32) CHARACTER SET UNI CODE_FSS
DEFAULT _UNI CODE_FSS "',
LAST_NAME VARCHAR(32) CHARACTER SET UNI CODE_FSS
DEFAULT _UNI CODE_FSS '
)
COW T;

-- 2. save users data

I NSERT | NTO UTMP(USER_NAME, SYS USER NAME, GROUP_NANME,
UD GD PR VILEGE, COVENT, FIRST_NAME, M DDLE_NANME,
LAST_NAME, PASSWD)

SELECT USER_NAME, SYS_USER NAME, GROUP_NAME,

156

Security Database Upgrade for Firebird 2

UD GD PR VILEGE, COWENT, FIRST_NAVE, M DDLE_NAME,
LAST_NAME, PASSVD
FROM USERS;
COW T;

-- 3. drop old tables and donai ns
DROP TABLE USERS;

DROP TABLE HOST_| NFO,

COW T;

DROP DOVAI N COVIVENT;
DROP DOVAI N NAME_PART;
DROP DOMAI N d D

DROP DOVAI N HOST_KEY;
DROP DOVAI N HOST_NAME;
DROP DOVAI N PASSWD;
DROP DOMVAI N Ul D

DROP DOVAI N USER_NAME;
DROP DOMAI N PRI VI LEGE;
COW T;

-- 4. create new objects in database

CREATE DOVAI N RDB$SCOMMVENT AS BLOB SUB _TYPE TEXT SEGMENT Sl ZE 80
CHARACTER SET UNI CODE_FSS;

CREATE DOVAI N RDBSNAME_PART AS VARCHAR(32)
CHARACTER SET UNI CODE_FSS DEFAULT _UNI CODE_FSS '';

CREATE DOVAI N RDB$G D AS | NTEGER;

CREATE DOVAI N RDB$PASSWD AS VARCHAR(64) CHARACTER SET BI NARY;

CREATE DOVAI N RDB$UI D AS | NTEGER;

CREATE DOVAI N RDBSUSER NAME AS VARCHAR(128)

CHARACTER SET UNI CODE_FSS;

CREATE DOVAI N RDB$SUSER PRI VI LEGE AS | NTEGER;

COW T;

CREATE TABLE RDB$USERS (
RDB$USER_NANME RDBSUSER _NAVE NOT NULL PRI MARY KEY,
/* local system user name
for setuid for file perm ssions */
RDB$SYS USER NAME RDB$USER_NAME,

RDB$GROUP_NAME RDB$USER _NAME,

RDB$UI D RDB$UI D,

RDB$G D RDB$dG D,

RDB$PASSWD RDB$PASSWD, /* SEE NOTE BELOW */

/* Privilege | evel of user -
mark a user as having DBA privilege */

RDB$PRI VI LEGE RDB$USER PRI VI LEGE,

RDB$ COMVENT RDB$ COMIVENT,

RDB$FI RST_NAME RDB$SNANVE _PART,

RDB$M DDLE_NAME RDB$SNANVE _PART,

RDB$SLAST_NAVE RDB$SNAME_PART) ;
COW T;

CREATE VI EW USERS (USER_NAME, SYS USER NAME, GROUP_NAME,
Uub GD PASSW, PRIVILEGE, COMMENT, FI RST_NAME,
M DDLE_NAME, LAST_NAME, FULL_NAME) AS

SELECT RDB$USER NAMVE, RDB$SYS USER NAME, RDB$GROUP_NAME,
RDB$UI D, RDB$G D, RDBSPASSWD, RDB$PRI VI LEGE, RDBSCOMVENT,

157

Security Database Upgrade for Firebird 2

RDB$FI RST_NAME, RDB$M DDLE_NAME, RDB$LAST_NANME,
RDB$first_name || _UNICODE FSS ' ' || RDB$m ddl e_name
|| _UNICODE_FSS ' ' || RDB$I ast_nane
FROM RDB$USERS
WHERE CURRENT_USER
OR CURRENT_USER
COW T;

' SYSDBA'
RDB$USERS. RDBSUSER_NAME;

GRANT ALL ON RDB$USERS to VI EW USERS;

GRANT SELECT ON USERS to PUBLI C,

GRANT UPDATE(PASSWD, GROUP_NAME, Ul D, G D, FI RST_NAME,
M DDLE_NAME, LAST_NAME)

ON USERS TO PUBLI C;

COW T;

-- 5. nove data fromtenporary table and drop it
| NSERT | NTO RDB$USERS(RDB$USER_NAME, RDB$SYS USER NANE,
RDB$GROUP_NAME, RDB$UI D, RDB$GA D, RDB$PRI VI LEGE, RDB$COMVENT,
RDB$FI RST_NAVME, RDB$M DDLE _NAME, RDBSLAST NAME, RDB$PASSVD)
SELECT USER NAME, SYS USER NAME, GROUP_NAME, U D, d D,
PRI VI LEGE, COWENT, FIRST_NAME, M DDLE_NAME, LAST_NAME,
PASSWD
FROM UTMP;
COW T;

DROP TABLE UTMP;
COW T;

Note

in the Security chapter.

Thisfield should be constrained asNOT NULL. For information about this, see Nullability of RDB$PASSWD

158

	Firebird 2.1 Release Notes
	Table of Contents
	General Notes
	Bug Reporting
	Documentation

	New in Firebird 2
	New Features Implemented
	On-Disk Structure
	Database Triggers
	SQL and Objects
	Global Temporary Tables
	Common Table Expressions, Recursive DSQL Queries
	RETURNING Clause
	UPDATE OR INSERT Statements for MERGE Functionality
	LIST() function
	Lots of New Built-in Functions
	“Short” BLOBs Can Masquerade as Long VARCHARs

	Procedural SQL
	Domains for Defining PSQL Variables and Arguments
	COLLATE in Stored Procedures and Parameters
	Enhancement to PSQL error stack trace

	Security
	Windows Security to Authenticate Users

	International Language Support
	The CREATE COLLATION Command
	Unicode Collations Anywhere

	Platform Support
	Ports to Windows 2003 64-bit

	Administrative
	Database Monitoring via SQL
	More Context Information

	Remote Interface
	Derived Tables
	PSQL Now Supports Named Cursors
	Reimplemented Protocols on Windows
	Local Protocol--XNET
	Benefits of the XNET Protocol over IPServer
	Performance
	Disadvantages

	Change to WNET (“NetBEUI”) Protocol

	Reworking of Garbage Collection
	Porting of the Services API to Classic is Complete
	Lock Timeout for WAIT Transactions
	New Implementation of String Search Operators
	Reworking of Updatable Views
	Additional Database Shutdown Modes Introduced
	UDFs Improved re NULL Handling
	Signalling SQL NULL

	Run-time Checking for Concatenation Overflow
	Changes to Synchronisation Logic
	Support for 64-bit Platforms
	Record Enumeration Limits Increased
	Debugging Improvements
	Improved Reporting from Bugchecks
	Updated Internal Structure Reporting
	New Debug Logging Facilities
	Diagnostic Enhancement

	Improved Connection Handling on POSIX Superserver
	PSQL Invariant Tracking Reworked
	ROLLBACK RETAIN Syntax Support
	No More Registry Search on Win32 Servers
	More Optimizer Improvements

	Changes to the Firebird API and ODS
	API (Application Programming Interface)
	Cleanup of ibase.h
	Lock Timeout for WAIT Transactions
	isc_dsql_sql_info() Now Includes Relation Aliases
	Enhancement to isc_blob_lookup_desc()
	API Identifies Client Version
	Additions to the isc_database_info() Structure
	isc_info_active_tran_count
	isc_info_creation_date

	Additions to the isc_transaction_info() Structure
	isc_info_tra_oldest_interesting
	isc_info_tra_oldest_active
	isc_info_tra_oldest_snapshot
	isc_info_tra_isolation
	isc_info_tra_access
	isc_info_tra_lock_timeout

	Improved Services API
	Parameter isc_spb_trusted_auth
	Parameter isc_spb_dbname
	Task Execution Optimized

	New Function for Delivering Error Text
	Accommodation of New Shutdown <state>
 Parameters

	ODS (On-Disk Structure) Changes
	New ODS Number
	Size limit for exception messages increased
	New Description Field for Generators
	New Description Field for SQL Roles
	“ODS Type” Recognition
	Smarter DSQL Error Reporting
	New Column in RDB$Index_Segments

	Global Improvements in Firebird 2.1
	Forced Writes on Linux Now Works!
	Forensics
	Instant Fix for an Older Firebird

	Databases on Raw Devices
	Moving a Database to a Raw Device
	Special Issues for nbak/nbackup
	
	Examples of nbackup Usage with a Raw Device

	Further Advice about Raw Devices

	Remote Interface Improvements
	API Changes
	XSQLVAR

	Optimization
	Optimization for Multiple Index Scans
	Optimize sparse bitmap operations

	Configuration and Tuning
	Increased Lock Manager Limits & Defaults
	Page sizes of 1K and 2K Deprecated
	Enlarge Disk Allocation Chunks
	The Solution
	DatabaseGrowthIncrement Configuration Parameter

	Bypass Filesystem Caching on Superserver

	Other Global Improvements
	Garbage Collector Rationalisation
	Immediate Release of External Files
	Synchronization of DSQL metadata cache objects in
 Classic server
	BLOB Improvements
	Type Flag for Stored Procedures
	Help for Getting Core Dumps on Linux

	Data Definition Language (DDL)
	Quick Links
	Database Triggers
	Utilities Support for Database Triggers

	Global Temporary Tables
	Syntax and Rules for GTTs
	Implementation Notes

	Views Enhancements
	Use Column Aliases in CREATE VIEW

	SQL2003 compliance for CREATE TRIGGER
	SQL2003 Compliant Alternative for Computed Fields
	CREATE SEQUENCE
	REVOKE ADMIN OPTION
	SET/DROP DEFAULT Clauses for ALTER TABLE
	Syntaxes for Changing Exceptions
	RECREATE EXCEPTION
	CREATE OR ALTER EXCEPTION

	ALTER EXTERNAL FUNCTION
	COMMENT Statement
	Extensions to CREATE VIEW Specification
	RECREATE TRIGGER Statement Implemented
	Usage Enhancements
	Creating Foreign Key Constraints No Longer Requires
 Exclusive Access
	Changed Logic for View Updates
	Descriptive Identifiers for BLOB Subtypes

	Data Manipulation Language (DML)
	Quick Links
	Common Table Expressions
	Benefits of CTEs
	Recursion Limit
	Syntax and Rules for CTEs
	Rules for Non-Recursive CTEs
	Rules for Recursive CTEs

	The LIST Function
	The RETURNING Clause
	Rules for Using a RETURNING Clause

	UPDATE OR INSERT Statement
	Usage Notes

	New JOIN Types
	Syntax and Rules
	Named columns join
	Natural join

	CROSS JOIN

	INSERT with Defaults
	BLOB Subtype 1 Compatibility with VarChar
	Full Equality Comparisons Between BLOBs
	RDB$DB_KEY Returns NULL in Outer Joins
	Sorting on BLOB and ARRAY Columns is Restored
	Built-in Functions
	New Built-in Functions
	Enhancements to Functions

	Functions Enhanced in V.2.0.x
	IIF() Expression
	Improvement in CAST() Behaviour
	Expression Arguments for SUBSTRING()

	DSQL Parsing of Table Names is Stricter
	EXECUTE BLOCK Statement
	Derived Tables
	ROLLBACK RETAIN Syntax
	ROWS Syntax
	Enhancements to UNION Handling
	UNION DISTINCT Keyword Implementation
	Improved Type Coercion in UNIONs
	UNIONs Allowed in ANY/ALL/IN Subqueries

	Enhancements to NULL Logic
	New [NOT] DISTINCT Test Treats Two NULL Operands as
 Equal
	NULL Comparison Rule Relaxed
	NULLs Ordering Changed to Comply with Standard

	Subqueries and INSERT Statements Can Now Accept UNION
 Sets
	New Extensions to UPDATE and DELETE Syntaxes
	Extended Context Variables
	Sub-second Values Enabled for Time and DateTime
 Variables
	CURRENT_TIMESTAMP, 'NOW' Now Return Milliseconds
	Seconds Precision Enabled for CURRENT_TIME and
 CURRENT_TIMESTAMP

	New System Functions to Retrieve Context Variables
	Pre-defined Namespaces
	USER_SESSION
	USER_TRANSACTION
	SYSTEM

	Notes

	Improvements in Handling User-specified Query Plans
	Improvements in Sorting
	Order By or Group By <alias-name>
	GROUP BY Arbitrary Expressions
	Order * Sets by Implicit Degree Number
	Parameters and Ordinal Sorts--a “Gotcha”

	NEXT VALUE FOR Expression
	RETURNING Clause for INSERT Statements

	Articles
	SELECT Statement & Expression Syntax
	Data Type of an Aggregation Result

	Procedural SQL (PSQL)
	Quick Links
	Domains in PSQL
	COLLATE in Stored Procedures and Parameters
	WHERE CURRENT OF Now Allowed for Views
	Context Variable ROW_COUNT Enhanced
	Explicit Cursors
	Defaults for Stored Procedure Arguments
	LEAVE <label> Syntax Support
	OLD Context Variables Now Read-only
	PSQL Stack Trace
	Call a UDF as a Void Function (Procedure)

	New Reserved Words and Changes
	Newly Reserved Words
	Changed from Non-reserved to Reserved
	Keywords Added as Non-reserved
	Keywords No Longer Reserved
	No Longer Reserved as Keywords

	Indexing & Optimizations
	Optimizations in V.2.1
	Improved PLAN Clause
	Optimizer Improvements
	For All Databases
	Some General Improvements
	Faster Evaluation of IN() and OR
	Improved UNIQUE Retrieval
	More Optimization of NOT Conditions
	Distribute HAVING Conjunctions to the WHERE Clause
	Distribute UNION Conjunctions to the Inner Streams
	Improved Handling of CROSS JOIN and Merge/SORT
	Better Choice of Join Order for Mixed Inner/Outer
 Joins
	Equality Comparison on Expressions

	For ODS 11 Databases only
	Segment-level Selectivities are Used
	Better Support for IS NULL and STARTING WITH
	Matching of Both OR and AND Nodes to Indexes
	Better JOIN Orders
	Indexed Order Enabled for Outer Joins

	Enhancements to Indexing
	252-byte index length limit is gone
	Expression Indexes
	Changes to Null keys handling
	Improved Index Compression
	Selectivity Maintenance per Segment

	International Language Support (INTL)
	New INTL Interface for Non-ASCII Character Sets
	Architecture
	Enhancements
	Well-formedness checks
	Uppercasing
	Maximum String Length
	sqlsubtype and Attachment Character Set
	Enhancements for BLOBs
	COLLATE clauses for BLOBs
	Full equality comparisons between BLOBs
	Character set conversion for BLOBs

	INTL Plug-ins
	New Character Sets/Collations
	UTF8 character set
	UNICODE collations (for UTF8)

	Developments in V.2.1
	ICU Character Sets
	Registering an ICU Character Set Module
	Registering a Character Set on the Server
	Registering a Character Set in a Database
	The CREATE COLLATION Statement
	Using the Stored Procedure

	The UNICODE Collations
	Specific Attributes for Collations
	Collation Changes in V.2.1

	Metadata Text Conversion
	Repairing Your Metadata Text
	Create the procedures in the database
	Check your database
	Fixing the metadata
	Remove the upgrade procedures

	Supported Character Sets

	Administrative Features
	Monitoring Tables
	The Concept
	Scope and Security
	Metadata
	Usage
	Cancel a Running Query

	More Context Information

	Security
	Summary of Changes
	New security database
	Using Windows Security to Authenticate Users
	Better password encryption
	Users can modify their own passwords
	Non-server access to security database is rejected
	Active protection from brute-force attack
	Vulnerabilities have been closed

	Details of the Security Changes in Firebird 2
	Authentication
	Firebird 1.5 Authentication
	Firebird 2: Server-side Hashing
	The SHA-1 Hashing Algorithm

	The New Security Database
	New security database structure

	gsec in Firebird 2
	Protection from Brute-force Hacking

	Using Windows Security to Authenticate Users
	SQL Privileges
	Administrators
	Configuration Parameter “Authentication”
	Forcing Trusted Authentication

	Classic Server on POSIX
	For Any Platform
	Other Security Improvements
	isc_service_query() wrongly revealed the full
 database file spec
	Any user could view the server log through the
 Services API

	Dealing with the New Security Database
	Doing the Security Database Upgrade
	Nullability of RDB$PASSWD
	Caution with LegacyHash

	Command-line Utilities
	General Enhancements
	Utilities Support for Database Triggers

	Firebird Services
	New Command-line Utility fbsvcmgr
	Using fbsvcmgr
	Parameters
	SPB Syntax
	fbsvcmgr Syntax Specifics

	Backup Service Misbehaviour Fixed
	Disable Non-SYSDBA Access to Privileged Services

	Backup Tools
	New On-line Incremental Backup
	Nbak
	NBackup
	Backing Up
	Restoring
	Usage
	Valid Options

	User Manual

	gbak Backup/Porting/Restore Utility
	Changed Behaviours, New Switches
	gbak Made More Version-friendly
	Hide User Name & Password in Shell
	gbak -V and the “Counter” Parameter

	ISQL Query Utility
	New Switches
	-b[ail] "Bail out"
	Some Features

	-m2 to Output Stats and Plans
	-r2 to Pass a Case-Sensitive Role Name

	New Commands and Enhancements
	Ctrl-C to cancel query output
	Extension of isql SHOW SYSTEM command
	SHOW COLLATIONS command
	SET HEAD[ing] toggle
	SET SQLDA_DISPLAY ON/OFF
	SET TRANSACTION Enhanced
	SHOW DATABASE now Returns ODS Version Number
	Ability to show the line number where an error
 happened in a script
	Enhanced Command-line Help

	gsec Authentication Manager
	gsec return code

	gfix Server Utility
	New Shutdown States (Modes)

	Builds and Installs
	Parameter for Instance name added to instsvc.exe
	Revised Win32 Installer Docs
	Help on command line switches

	Gentoo/FreeBSD detection during install

	External Functions (UDFs)
	Ability to Signal SQL NULL via a Null Pointer
	UDF library diagnostic messages improved
	UDFs Added and Changed
	IB_UDF_rand() vs IB_UDF_srand()
	IB_UDF_lower

	General UDF Changes
	Build Changes

	New Configuration Parameters and Changes
	RelaxedAliasChecking
	MaxFileSystemCache
	DatabaseGrowthIncrement
	ExternalFileAccess
	LegacyHash
	Redirection
	About Multi-hop

	GCPolicy
	OldColumnNaming
	UsePriorityScheduler
	TCPNoNagle has changed
	Removed or Deprecated Parameters
	CreateInternalWindow
	DeadThreadsCollection is no longer used

	Firebird 2 Project Teams
	A. New Built-in Functions
	B. International Character Sets
	New Character Sets and Collations Implemented
	Narrow Character Sets
	ICU Character Sets

	C. Security Database Upgrade for Firebird 2
	Security Upgrade Script

