Firebird 1.5 Language Reference Update

Everything new in Firebird SQL since InterBase 6

Paul Vinkenoog et al.
4 July 2008, document version 1.0 — covers Firebird 1.0-1.5.5



Firebird 1.5 Language Reference Update

Everything new in Firebird SQL since InterBase 6

4 July 2008, document version 1.0 — covers Firebird 1.0-1.5.5
Paul Vinkenoog et a.







Table of Contents

R 011 0T [F o1 o o I PP SPTP 1
VEISIONS COVEIEA ....eiiiiiiiiie ettt ettt e skttt ettt e e etk bt e e e ekt e e e e e s bt e e e e s et e e s aabte e e e e anba e e e e e nbe e e e s anbneeeeans 1

U 11 g0 £ g 1T o TSRS 2

2. RESEIVEI WOITS ...ttt e ettt e oo sttt e e oo bbbt e e e e s bt e e e e st et e e e anbbe e e e e anbbeeeeennes 3
Added in 1.0 BUt remMOVED 1N 1.5 .o 3

F o (o= o T I O =g o I PRSPPI 3

TO be added iN FULUIE VEISIONS .......coiiiiiiiie ittt ettt e e et e e s et e e s s e e e e e e 4

3. Miscellaneous [anguage ElEMENLS .........eeiiiie i e e e e e e e e e e s e et e e e e e e e s seaanrraeeeaeens 5
== (SINGIE-TINE COMMENL) ... e e e e e s e e e e e s e et eeeaeeesssnntaanreeaaeesannes 5
CASE CONSLIUCE ...tttk es 5

S 00T 0 Lo 7 SRR 6

SEAICNEA CASE ..ouiutitiiiittitiietetettrrrererererereaerereaeseaeae s eaesereseseesaesesesssesesesesssasesssesebesesesesessssnsnnnnns 6

4, Data types aNA SUDLYPES ......ceviiiiiiie e e et e e e s et e e e e e e e e e e e e e e e s s aas st e e et aaee e s s e ntbaneeeaeeeeannrrrnaees 8
=L e = = T 1Y L= PSSP 8
NEW ChEIBCIEN SEES .....viiii ittt e st e e et e e e s bbb e e e e snbb e e e e e nrees 9
Character set NONE handling ChanQed ..........ooviiiiiiiiiiiiiieee e e e e e e e e e e 10
INEW COHBLIONS ...ttt ettt e e e bt e e e e bbbt e e e ea bttt e e s abb e e e e e st et e e e enbte e e e s annneee s 10

5. DDL SEAIEIMENTS ... 11
ALTER TABLE oot e e e e et e et ete e et e e et e e et e e et e e e et e aaans 11
ALTER COLUMN: POSITION NOW 1-DASEU ......uuvviviiiiiiiiiiiiiiiiiiiiiiiisisseserereraresessrsresrsnreres... 11

UNIQUE constraints NOW allOW NULLS .......couuuuiiiiiieii ettt e e e e e e e aaaaaaas 11

USING INDEX SUBCIAUSE .....ceiiiiiiiiieiiiei ettt e 12

ALTER TRIGGER ...ttt e e e et et e e e e et e e et e e et e e et eaesannasnannns 12

YW TR Tot (o R o o = PSPPI 12

ALTER TRIGGER no longer increments table change count .............cc.occcvviiieeie i 13

PLAN allOWed iN tHQQEr COUE ..uvviiiiie it e e e e e e e e e e raees 13

CREATE DA T ABASE ..o ettt sttt et e e e e e e e e ens 13

16 Kb page SiZ€ SUPPOITEX .......ccoiiiiiiiiieiee ettt e e et e e e e e s st e e e e e e s s s s nnn e e e eaaeeeaaas 13

CREATE GENERATOR ..ttt et et et et e et e et e e e et e e et e e e e e e e s aeesnannns 14
Maximum number of generators significantly raised ............cccccvveiivee i, 14

CREATE INDEX ittt ettt ettt e e et e et e e e e e e e et e e e e e e e e e e e e e s e e e e e e e e e e e e e e eens 14
UNIQUE iNdiCES NOW GlIOW NULLS ....uvuiiiiiiiiiiiiie ettt e et e e e e e s e e aaaba e e e eeeseeenenes 14
Maximum number of indices per table INCreased ............cccvvveeiiei e 14

CREATE TABLE ..ottt st et st et et e e s e et e e et e e e e e e e e enrenns 15
UNIQUE constraints NOW allOW NULLS .......couuiuiiiiiiiiieeeiee ettt e et e e e e e e e eaaaaans 15

USING INDEX SUBCIAUSE .....eeiiiiiiiiieieie ettt 16

CREATE TRIGGER ...ttt ettt e e e et e et e et e e et e e e e e e e e et e e e e e e e e aeneens 17

YW U= Tot (o) R o [0 PSPPI 17

CREATE TRIGGER no longer increments table change count ..............cccoviveeee e 18

PLAN allOWed iN tHQQEr COUE ...vviiiiii it e e e e st a e e e e e e enaaeaee s 18

CREATE VIEW ettt ettt e e et s e e e s et e s et ea e et ea e et ea e et en s e s eaaenen et enenns 18
PLAN subclause diSallOWED ..........cooiiiiiiiiiiie e 18

CREATE OR ALTER PROCEDURE ...ttt ettt ettt e et e e e e s e e e e e e ens 19
CREATE OR ALTER TRIGGER ......iiiiiiiiiie ettt ettt e et et s e e e s e e e e ens 19
DECLARE EXTERNAL FUNGCTION ..ottt st es e e e e s eas e s ensea s e ensensensensenseneensenns 19

BY DESCRIPTOR Parameter PASSING ...veeeeeeeeeiieiurrreeeeeeessiaisrtseeeseessssiassssessessessssssssssssessessannnns 20
RETURNS PARAMETER N ..ottt et et e et e et e e e e et e e e e e e e enaen 20

DROP GENERATOR ..ttt ettt ettt e e e e et e e e e e e e e e e e e e e e e e e e e e e e e aeneens 20




Firebird 1.5 Language Ref. Update

DROP TRIGGER ...ttt et e e e et e et e e et e et e e e e e e e e e e e e e e e e e e s e aeanenaen 20
DROP TRIGGER no longer increments table change count .............ccooovciiiieiee e eccciiieeer e 20
RECREATE PROCEDURE ......oiiiiiiiie et e et e e e et e et e e et e e e e e et e e e e e e e e aneenannns 21
RECREATE TABLE ..ottt et e et et e e e et s e et e e e e s e e s e e e e e e e s enaen 21
RECREATE VIEW ettt et et et et et e et e e et e e et s s e s e e e e e e e e e en 21
6. DIMIL SLALEIMIEINES ... 22
EXECUTE PROCEDURE ...ttt ettt e et et et e e et e e et e e e e e e e e e e e e e e e e e e e e nenaenns 22
RELEASE SAV EPOIN T .ttt e et e e e e et e e e et e e e e e e e e e e e e e e e s e e e e aeneens 23
ROLLBACK TO SAVEPOINT .ttt e e e e e et e et e e a et e e e e e e et e e e e e n s e ae s e ananens 23
SN Al © 1 N I L PP UP PRSPPI 24
INtErN@l SAVEPOINLES ... ...eiiiiiie et e e e e e e e e e et e e e e e e s s s st beraeeeaeeeseananebrneeeeaeeaaanns 25

S V= Lo L ES3 o [ s | P PESRPR 25
Sl I O PPN 26
Aggregate functions: Extended funCtionality ............ccccoiiiiiiieiiie e 26
Ambiguous JOIN StatemENntS rEECLE ...........c.uvvviiiieee e 28
FIRST @GN0 SKIP ..uiuiuitiiiuiiiiiitii st aessasaaasasaaaaasaasaasasassssassssssssssssssssssssssssssssssssssssnsssnsnsnsnsnsnses 29
GROUP BY UDF ..ttt et e et e e e e e e s e e s e e s e st e e s e s e s e s e e e e e e ennen 30
GROUP BY internal function, column position, and CASE .........cccceeeeieeeeeiiciiieeeee et 31
HAVING: SITCLEN TUIES ...eiiiiiieiie ittt ettt e st e e e sttt e e e ennb e e e e nnbne e e e aneeeeeaan 32
ORDER BY: Expressions and NULLS PlaCement ............eeveieeeeiiiiiiiiiei et e e e 32
ORDER BY: Stricter rules with aggregate StalemeNtS ..........uvveeiieeeeiiiiciee e 33
KA I T 1 PPN 33

R 2SO R = (1 16 35
BEGIN ... END blockS May D8 EMPLY ...cccoiiiiiiieiee e a s 35
T PPN 35
DECLARE [VARIABLE] With initidlization ..., 36
E X CEPT ION ettt e e e et et e e et e e et e e et e e et e e et e e et e e et e a et e e et e n e e nenns 36
Rethrowing a caught EXCEPLION ..........ovviiiiiii e e e a e e e e 37
Providing @ CUSLOM EITOF MESSAGE .......uvvvreeieeeeeeieiittitreee e e e e e s sstt e e e e e e e s s s sabbrrereeaeeessannrbaeeeaeens 37
EXECUTE PROCEDURE ...ttt ettt e et e et e e et e e et e e e e e e e e e e e e e e e e s e aenenaenns 37
EXECUTE ST AT EMEN T ottt e et et et e e e e e e e e s e e e s e e e e e s e s e aesenaenns 38
(o= = W L= (04 07 o SRR 38

ONE roW Of daLa FELUMMEA .........veiieiiiiiie e e e e e e e st e e e e nnneeas 39

Any number of data rOWS FELUIME .........coiiiiiiiieeee e e e e e 39
Caveats With EXECUTE STATEMENT ...ooviiiiiiieieeeeeeeeeeeee ettt 40
) PP 40
FOR EXECUTE STATEMENT ... DO ettt et et e e e e e e e e e e e e enaen 40
I Y PP 41
PLAN allOWEd iN tHQQEr COUE ...uvviiiiieee ittt e e e e e e e e e e e e st b rareeeaaeeean 41
8. CONLEXE VAITAIDIES ...ttt e e ettt e e e et e e e e e e be e e e e e nne e e e e annbeeeeennsees 42
CURRENT _CONNECTT O ..ettiieieiiii ettt e et e et e e e e et s e e e et s e e e et s e e eetn s eeeten s eaeetnseeenennaaeenes 42
CURRENT _ROLE ...ttt ettt ettt ee et ee et n e e et n e e e nn s 42
CURRENT _TRANSACTT OIN ..ttt ettt e et a et s e e e et s e e e et e e e e et s e e e eb e e e eabneeaeenaes 43
CURRENT _USER ...ttt ettt e e et e e et e e ettt e e e e et e e e e et e e e e eba s 43
DELETT NG Lttt e e ettt e e ettt e e e e et e e e e et e e e e e ta e e e e et e e e e et e e e eeba e eeeeraaaaes 44
(€ D500 B PP UPPPTTRPPPIN 44
I g I I N TP PP PPPPNN 45
ROW COUNT ...ttt ettt ettt e e e et e e e e e et e e e e e et ee e e e e e ee et e e s s eeeeeeaeeen e 45
SQLOODE ..ottt ettt et ettt e et ettt et ettt e e et et ettt ee et et ettt et et et et et et et et et et e et et et et et enane 46
UPDATT NG ..ottt ettt e et e e ettt e e e e et e e e e et e e e e eb e e e eea e e e eeaa s e e eaa e e eenan e eeenan 46
LS 101 = 0 I o] PR 47
COALESCE() ettt eeee ettt e et et et e et e e et e et e et e e et e eee e e e seeeeteeaeesaeeeeeeeesaeeeteeseeseeesaeeeesaeeseeeeeans 47




Firebird 1.5 Language Ref. Update

EXTRACT() et iteeeeeeee et e eeeseee et e e s et e e ete e e seeeeeeeseeseeeeaesaeesaeeeeeeaeesseeeeseeeseeeaeeseeessessesseeeseeeaessneeseeans 47
NULLIF(Q) +ett ettt ettt et ee et eeee st ese e et eeaeeete et e seeeseeeseeeeeeeteeseeseeeseeeaeeeseeereeneesaeeseeesessreeseeeneesaneses 48
SUBSTRING() . vveuveeeeeeueeeeeeesseeeeeeeee st eeessseseteseseseesseseeessseesseeaeesaeesessaesssseesseesesreeseesaeesaeeetesaeesreases 49
10. External fUNCLIONS (UDFS) .....coooiiiiiiiieee ettt e e e e e e et e e e e e e e e s snnraaneeaaaeas 50
=0 [0 1 Y 50
AAAHOUT e ————— 50
= Yo Lo 1Y I I TS o o Vo PPt 51
= o [0 1Y 0 1 = Pt 51
AAAMINT N e 52
=0 [0 1T o3 o Vo Pt 52
AAA K i —————————— 52
AAAY AT oo ———————— 53
ASCI I _Char 53
0 10 1 PPNt 54
0 0T 0 1T 54
(o T=T = Vo A T 01513 - 101 55
I BAT OUNA oo 55
I O G VT o= = P 55
L 00 e 55
N - Lo 56
Lt T M e ————— 57
FNUL L T o 57
S 1172 R 58
F I gt e ————— 59
L0 1 Lo IR IS 7 o T U o o 60
0 T Lo 61
T ) e e ————— 61
SO e 62
£ A T o 722 o oY« Y 62
ST 011 A 63
SUD S T L BN oo ————— 64
LR LT ToX= A =T I ST G U g Y= | 64
APPENGIX A NOLES ..ottt e e e e e e e e et e e e e e e e e s s e bt e e e e eeeeessaaatbeeeeeeaeeeeaaareraeeaaaeens 66
Character set NONE data acCepted “aS IS ....ccoiiiiiiiiiiie e e e e e 66
Understanding the WITH LOCK ClaUSE .......ccuviiiiiiie ettt e e e re e e e e 67
SyntaX and DENAVIOU ........cooeiiiiiiiiei e e e e s e e e e e e e e e e e eneees 67
How the engine deals With WITH LOCK ........uuiiiiiieiiiiiiiiiie e e ecciiire e e e s ssinrnee e e e e e ennnnes 68

The optional “OF <col umm- nanes>" SUD-ClaUSE ..........ccceeveeiiiiceee e, 69
Caveats USING WITH LOCK ..oiiiiiiiiiiiiiiiee e e e e e e ciittte e e e e e e s s et bae e e e e e e s s s sannaaeeeaeeeessannnnbaeeeaaeesaannns 69
Examples using explicit [OCKING .........cccuiiiiieii e 69

A NOLE ON CSTRING PAIAIMELENS ...vivuiiei e et i ieeiiiters s e et ettt e e e e e e e eeta s e e e e e e eeetat s e eeeeeeeereraaaaeeeeees 70
AppendiX B: DOCUMENE HISLOMY ......uvveiiieeiiiiiiiiieie e e e et e e e s s et e e e e e e e e st a e e e e e e e e s s snneranaeeaeeseaanes 71
APPENIX C: LICENSE NMOLICE ...uvviiiiieeei i it e et e e e e e e e e e e e e s e st a e e e e aeeessssataaeeeeaeeeseannssrenees 72

Vi



List of Tables

4.1. Character SetS NEW iN FIrEDITT ......cooiiiiiiiiii e 9
4.2. Collations NeW iN FIrEDITd .......oooiiiiie e e e 10
5.1, Maximum iNdiCeS P TANIE ... 15
9.1. RANQES TOI EXTRACT TESUITS .....ueieiieiiiiiie ettt ettt et e e s e e e st e e e e e e e e e 48
A.1l. How TPB settings affect eXpliCit I0CKING .......coiuiiiiiiiiiii e 68

Vii



Chapter 1

Introduction

This guide documents the changes made in Firebird 1.0 and 1.5 SQL since the fork from the open-sourced
InterBase 6.0 codebase. It covers the following areas:

* Reserved words

» Datatypes and subtypes

» DDL statements (Data Definition Language)

» DML statements (Data Manipulation Language)

» PSQL statements (Procedural SQL, used in stored procedures and triggers)
» Context variables

* Internal functions

» UDFs (User Defined Functions, also known as external functions)

To have acomplete Firebird 1.0 and 1.5 SQL reference, you need:

* ThelnterBase 6.0 beta SQL Reference (LangRef . pdf and/or SQLRef . ht mi )
» Thisdocument

Topics not discussed in this document include:

* ODSversions

» Buglistings

 Instalation and configuration

» Upgrade, migration and compatibility
» Server architectures

* AP functions

» Connection protocols

» Toolsand utilities

Consult the Release Notes for information on these subjects. Y ou can find the Release Notes and other docu-
mentation viathe Firebird Documentation Index at http://www.firebirdsgl.org/index.php?op=doc.

Versions covered

This document covers all Firebird versions up to and including 1.5.5.



http://www.firebirdsql.org/index.php?op=doc

Introduction

Authorship

Roughly 80-85% of the text in this document is new. The remainder was lifted from various Firebird Release
Notes editions, which in turn contain material from preceding sources like the Whatsnew documents. Authors
and editors of the included material are:

» J Beedey

* Helen Borrie

e Arno Brinkman

e Alex Peshkov

* Nickolay Samofatov
e Dmitry Yemanov




Chapter 2

Reserved words

Reserved words are part of the Firebird SQL language. They cannot be used asidentifiers, except when enclosed
in double quotes. However, you should avoid this unless you really have no other option.

Added in 1.0 but removed in 1.5

The following reserved words were added in Firebird 1.0 but removed again in 1.5:

BREAK
DESCRIPTOR
FIRST

SKIP
SUBSTRING

The following non-reserved words were earmarked in Firebird 1.0 as “to be avoided because of future reserva-
tion”, but no longer so in 1.5:

COALESCE
IF
NULLIF

(of these three, COALESCE and NULLIF are non-reserved keywordsin 1.5)

Added in 1.0 and 1.5

The following reserved words were added in Firebird 1.0 and are still reserved in 1.5:

CURRENT_ROLE
CURRENT_USER
RECREATE

The following reserved words were added in Firebird 1.5:

BIGINT

CASE

RELEASE

SAVEPOINT
CURRENT_CONNECTION
CURRENT_TRANSACTION
ROW_COUNT




Reserved words

The following words are not reserved, but recognized as keywords by Firebird 1.5 if used in the proper context:

COALESCE
DELETING
INSERTING
LAST
LEAVE
LOCK
NULLIF
NULLS
STATEMENT
UPDATING
USING

To be added in future versions

The following words are not reserved in Firebird 1.0 or 1.5, but should be avoided as identifiers because they
will likely be reserved in future versions:

ABS

BOOLEAN

BOTH
CHAR_LENGTH
CHARACTER_LENGTH
FALSE
LEADING
OCTET_LENGTH
TRIM

TRAILING

TRUE
UNKNOWN




Chapter 3

Miscellaneous
language elements

-- (single-line comment)

Availablein: DSQL, PSQL
Added in: 1.0
Changedin: 1.5

Description: A line starting with “- - ” (two dashes) is a comment and will be ignored. This also makes it easy
to quickly comment out aline of SQL.

In Firebird 1.5 and up, the “- - " can be placed anywhere on the line, e.g. after an SQL statement. Everything
from the double dash to the end of the line will be ignored.

Example:
-- atable to store our val ued custoners in:
create table Customers (
name var char (32),
added_by varchar (24),
custno varchar(8),
pur chases i nteger -- nunber of purchases

)

Notice that the second comment is only allowed in Firebird 1.5 and up.

CASE construct

Availablein: DSQL, ESQL, PSQL
Addedin: 1.5

Description: A CASE construct returns exactly one value from anumber of possibilities. There are two syntactic
variants:

» Thesimple CASE, comparable to aPascal case oraCsw t ch.
» The searched CASE, which workslikeaseriesof “if ... else if ... else if” clauses




Miscellaneous language elements

Simple CASE

Syntax:

CASE <expr essi on>
VWHEN <expl> THEN resultl
WHEN <exp2> THEN result?2

[ ELSE defaul tresult]

END

When thisvariant isused, <expr essi on> iscompared to <expl>, <exp2> efc., until amatch isfound, upon
which the corresponding result is returned. If thereis no match and thereisan ELSE clause, def aul tresul t
isreturned. If thereis no match and no ELSE clause, NULL isreturned.

The match is determined with the “=" operator, so if <expr essi on> is NULL, it won't match any of the
<expN>s, not even those that are NULL.

The results don't have to be literal values: they may also be field or variable names, compound expressions,
or NULL literals.

Example:

sel ect

nane,

age,

case upper (sex)
when 'M then
when 'F' then

el se ' Unknown

end,
religion

from peopl e

Searched CASE

Syntax:

CASE

' Mal e'
' Fenal e

WHEN <bool expl> THEN resultl
WHEN <bool _exp2> THEN result2

[ ELSE defaul tresult]

END

Here, the <bool _expN>s are tests that give a ternary boolean result: t r ue, f al se, or NULL. The first ex-
pression evaluating to TRUE determines the result. If no expression is TRUE and there is an ELSE clause, de-
faul tresul t isreturned. If no expression is TRUE and thereis no ELSE clause, NULL is returned.

As with the simple CASE, the results don't have to be literal values: they may also be field or variable names,
compound expressions, or NULL literals.




Miscellaneous language elements

Example:

CanVote = case
when Age >= 18 then ' Yes'
when Age < 18 then ' No'
el se ' Unsure'
end;




Chapter 4

Data types and subtypes

BIGINT data type
Added in: 1.5

Description: BIGINT is the SQL99-compliant 64-hit signed integer type. It isavailablein Dialect 3 only.
BIGINT numbers range from -2%3 .. 2531, or -9,223,372,036,854,775,808 .. 9,223,372,036,854,775,807.
Example:
create tabl e Wol eLott aRecords (
id bigint not null primry key,

description varchar (32)

)




Data types and subtypes

Addedin: 1.0, 1.5

New character sets

The following table lists the character sets added in Firebird.

Table4.1. Character setsnew in Firebird

Name Bytes/char. L anguages Added in
DOS737 1 Greek 15
DOS775 1 Baltic 15
DOS858 1 = DOS850 plus€ sign 15
DOS862 1 Hebrew 15
DOS864 1 Arabic 15
DOS866 1 Russian 15
DOS869 1 Modern Greek 15
1SO8859_2 1 Latin-2, Central European 1.0
1SO8859 3 1 Latin-3, Southern European 15
1S08859 4 1 Latin-4, Northern European 15
1S08859 5 1 Cyrillic 15
1SO8859 6 1 Arabic 15
1SO8859_7 1 Greek 15
1SO8859 8 1 Hebrew 15
1SO8859_9 1 Latin-5, Turkish 15
1SO8859 13 1 Latin-7, Baltic Rim 15
WIN1255 1 Hebrew 15
WIN1256 1 Arabic 15
WIN1257 1 Baltic 15




Data types and subtypes

Character set NONE handling changed

Changedin: 1.5.1
Description: Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or

variables with another character set, resulting in fewer trandliteration errors. For more details, see the Note at
the end of the book.

New collations

Addedin: 1.0, 1.5,1.5.1

The following table lists the collations added in Firebird.

Table4.2. Collationsnew in Firebird

Character set Collation Language Added in
1SO8859_2 cscz Czech 1.0
ISO_HUN Hungarian 15
1SO8859_13 LT LT Lithuanian 151
WIN1250 PXW_HUN Hungarian 10
WIN1251 WIN1251 UA Ukrainian and Russian 15

10




Chapter 5

DDL statements

ALTER TABLE

Availablein: DSQL, ESQL

ALTER COLUMN: POSITION now 1-based

Changedin: 1.0

Description: When changing a column'’s position, the engine now interprets the new position as 1-based. This
isin accordance with the SQL standard and the InterBase documentation, but in practice InterBase interpreted
the position as 0-based.

Syntax:
ALTER TABLE t abl enane ALTER [ COLUMN] col name POSI TI ON <newpos>

<newpos> ::= an integer between 1 and the nunber of columms

Example:

alter table Stock alter Quantity position 3

Note

Don't confuse this with the POSITION in CREATE/ALTER TRIGGER. Trigger positions are and will remain O-
based.

UNIQUE constraints now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. For a full discussion, see CREATE TABLE :: UNIQUE constraints now allow NULLS.

11



DDL statements

USING INDEX subclause

Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
 optionaly define the index to be ascending or descending (the default being ascending).

Syntax:
[ ADD] [ CONSTRAI NT constrai nt - nane]

<constrai nt-type> <constraint-definition>
[ USI NG [ ASC[ ENDI NG | DESC] ENDI NG ] | NDEX i ndex_nane]

For afull discussion and examples, see CREATE TABLE :: USING INDEX subclause.

ALTER TRIGGER

Availablein: DSQL, ESQL

Multi-action triggers

Addedin: 1.5

Description: The ALTER TRIGGER syntax has been extended to support multi-action triggers. For afull discus-
sion of thisfeature, see CREATE TRIGGER :: Multi-action triggers.

Syntax:

ALTER TRI GCGER tri gger-nane
[ ACTI VE | | NACTI VE]
{BEFORE | AFTER} <actions>
[ PCSI TI ON nunber]
AS
<trigger_body>

<actions> ::= <single_action> [ OR <single_action> [OR <single_action>]]
<single_action> ::= | NSERT | UPDATE | DELETE

12



DDL statements

ALTER TRIGGER no longer increments table change count

Changedin: 1.0

Description: Each timeyou use CREATE, ALTER or DROP TRIGGER, InterBase increments the metadata change
counter of the associated table. Once that counter reaches 255, no more metadata changes are possible on the
table (you can till work with the datathough). A backup-restore cycleis needed to reset the counter and perform
metadata operations again.

While this obligatory cleanup after many metadata changesisin itself a useful feature, it also means that users
who regularly use ALTER TRIGGER to deactivatetriggersduring e.g. bulk import operations are forced to backup
and restore much more often then needed.

Since changes to triggers don't imply structural changes to the table itself, Firebird no longer increments the

table change counter when CREATE, ALTER or DROP TRIGGER is used. One thing has remained though: once
the counter is at 255, you can no longer create, ater or drop triggers for that table.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

CREATE DATABASE

Availablein: DSQL, ESQL

16 Kb page size supported
Changedin: 1.0

Description: The maximum database page size has been raised from 8192 to 16384 bytes.

Syntax:
CREATE { DATABASE | SCHEMA}

t iDAGE_SI ZE [=] <size>]

<size> ::= 1024 | 2048 | 4096 | 8192 | 16384

13



DDL statements

CREATE GENERATOR

Availablein: DSQL, ESQL

Maximum number of generators significantly raised

Changedin: 1.0

Description: InterBase reserved only one database page for generators, limiting the total number to 123 (on 1K
pages) — 1019 (on 8K pages). Firebird has done away with that limit; you can now create more than 32,000
generators per database.

CREATE INDEX

Availablein: DSQL, ESQL

UNIQUE indices now allow NULLS

Changedin: 1.5
Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now alowed in columns
that have a UNIQUE index defined on them. For a full discussion, see CREATE TABLE :: UNIQUE constraints

now allow NULLs. As far as NULLs are concerned, the rules for unique indices are exactly the same as those
for unique keys.

Maximum number of indices per table increased

Changedin: 1.0.3and 1.5

Description: The maximum number of 64 indices per table has been removed in Firebird 1.0.3, and reintroduced
at the higher level of 256 in Firebird 1.5.

Note

Probably due to an off-by-one error in the code, the effective ceiling is 65 indices in Firebird 1.0 and 1.0.2,
and 257 indicesin Firebird 1.5.

The number of indices attainable in practice is further limited by the database page size and the number of
columns per index, as shown in the table below.

14



DDL statements

Table5.1. Maximum indices per table

Page Firebird version(s)
Sz8 1.0,1.0.2 1.0.3 1.5.x
1 cal 2 cols 3cols 1 cal 2 cols 3cols 1 col 2cols 3cols

1024 62 50 41 62 50 41 62 50 41
2048 65 65 65 126 101 84 126 101 84
4096 65 65 65 254 203 169 254 203 169
8192 65 65 65 510 408 340 257 257 257
16384 65 65 65 1022 818 681 257 257 257

Please be aware that under normal circumstances, even 64 indicesis way too many and will drastically reduce
mutation speeds. The maximum was raised to accommaodate data-warehousing applications and the like, that do
lots of bulk operations during which indices are temporarily switched off.

CREATE TABLE

Availablein: DSQL, ESQL

UNIQUE constraints now allow NULLS

Changedin: 1.5

Description: In compliance with the SQL-99 standard, NULLs — even multiple — are now allowed in columns
with a UNIQUE constraint. It is therefore possible to define a UNIQUE key on a column that has no NOT NULL
constraint.

For UNIQUE keys that span multiple columns, the logic is alittle complicated:
» Multiple rows having all the UK columns NULL are allowed.
» Multiple rows having a different subset of UK colums NULL are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values differ in at least one column, are allowed.

» Multiple rows having the same subset of UK columns NULL and the rest filled with regular values and those
regular values are the same in every column, are forbidden.

Oneway of summarizing thisisasfollows: In principle, all NULLs are considered distinct. But if two rows have
exactly the same subset of UK columns filled with non-NULL values, the NULL columns are ignored and the
non-NULL columns are decisive, just asif they congtituted the entire unique key.

15



DDL statements

USING INDEX subclause

Added in: 1.5

Description: A USING INDEX subclause can be placed at the end of aprimary, unique or foreign key definition.
Its purposeisto

» provide a user-defined name for the automatically created index that enforces the constraint, and
» optionaly define the index to be ascending or descending (the default being ascending).

Without USING INDEX, indices enforcing named constraints are named after the constraint (thisis new behaviour
in Firebird 1.5) and indices for unnamed constraints get names like RDB$FOREIGN13 or something equally
romantic.

Note

You must always provide a new name for the index. It is not possible to use pre-existing indices to enforce
constraints.

USING INDEX can be applied at field level, at table level, and (in ALTER TABLE) with ADD CONSTRAINT. It
works with named as well as unnamed key constraints. It does not work with CHECK constraints, as these don't
have their own enforcing index.

Syntax:
[ CONSTRAI NT constrai nt - nane]

<constrai nt-type> <constraint-definition>
[ USI NG [ ASCI ENDI NG | DESC ENDI NG ] | NDEX index_nane]

Examples:
The first example creates a primary key constraint PK_CUST using an index named IX_CUSTNO:
create table custoners (
custno int not null constraint pk_cust prinmary key using index ix_custno,
This, however:
create table customers (
custno int not null prinmary key using index iXx_custno,
..will giveyou aPK constraint called INTEG_7 or something similar, and an index 1X_CUSTNO.
Some more examples.
create table people (
idint not null,

ni cknane varchar(12) not null,
country char (4),

16



DDL statements

constraint pk_people primary key (id),
constrai nt uk_ni cknane uni que (nicknanme) using index ix_nick

)

alter table people
add constraint fk_people_country
foreign key (country) references countries(code)

usi ng desc index ix_people_country

| mportant

If you define a descending constraint-enforcing index on a primary or unigque key, be sure to make any foreign
keys referencing it descending as well.

CREATE TRIGGER

Availablein: DSQL, ESQL

Multi-action triggers

Added in: 1.5

Description: Triggers can now be defined to fire upon multiple operations (INSERT and/or UPDATE and/or
DELETE). Three new boolean context variables (I NSERTI NG, UPDATI NG and DELETI NG) have been added
S0 you can execute code conditionally within the trigger body depending on the type of operation.

Syntax:

CREATE TRI GCGER trigger-nane for table-nane
[ ACTI VE | | NACTI VE]
{BEFORE | AFTER} <actions>
[ POSI TI ON nunber]
AS
<trigger_body>

<single_action> [ OR <single_action> [OR <single_action>]]
| NSERT | UPDATE | DELETE

<acti ons> :
<singl e_action> ::

Example:

create trigger biu_parts for parts
before insert or update
as
begi n
/* conditional code when inserting: */
if (inserting and new.id is null)
then new.id = gen_id(gen_partrec_id, 1);

17



DDL statements

/* common code: */
new. part name_upper = upper (new. partnane) ;
end

Note

In multi-action triggers, both context variables OLD and NEW are always available. If you use them in the
wrong situation (i.e. OLD while inserting or NEW while deleting), the following happens:

e If youtry to read their field values, NULL is returned.
« If you try to assign values to them, a runtime exception is thrown.

CREATE TRIGGER no longer increments table change count

Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

CREATE VIEW

Availablein: DSQL, ESQL

PLAN subclause disallowed

Changedin: 1.5

Description: You can no longer use aPLAN subclause in aview definition.

18



DDL statements

CREATE OR ALTER PROCEDURE

Availablein: DSQL, ESQL
Addedin: 1.5

Description: If the procedure does not yet exist, it is created just as if CREATE PROCEDURE were used. If it
already exists, it is altered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same as for CREATE PROCEDURE.

CREATE OR ALTER TRIGGER

Availablein: DSQL, ESQL
Addedin: 1.5

Description: If the trigger does not yet exidt, it is created just as if CREATE TRIGGER were used. If it already
exists, it is atered and recompiled. Existing permissions and dependencies are preserved.

Syntax: Exactly the same asfor CREATE TRIGGER.

DECLARE EXTERNAL FUNCTION

Availablein: DSQL, ESQL
Description: This statement makes an external function (UDF) known to the database.
Syntax:

DECLARE EXTERNAL FUNCTI ON | ocal nane
[ <type_decl> [, <type_decl> ...]]
RETURNS {<return_type_decl > | PARAMETER 1-based_pos} [FREE_IT]
ENTRY_PO NT ' function_nane' MODULE_NAME 'Iibrary_nange'

<t ype_decl >
<return_type_decl >

= sqgltype [BY DESCRI PTOR] | CSTRI NG | ength)

= sqltype [BY {DESCRI PTOR| VALUE}] | CSTRI NE I engt h)

You may choose | ocal nane freely; thisis the name by which the function will be known to your database.
You may also vary thel engt h argument of CSTRING parameters (more about CSTRINGS in the note near the
end of the book).

19



DDL statements

BY DESCRIPTOR parameter passing

Added in: 1.0

Description: Firebird introduces the possibility to pass parameters BY DESCRIPTOR; this mechanism facilitates
the processing of NULLs in ameaningful way. Notice that this only works if the person who wrote the function
has implemented it. Simply adding “BY DESCRIPTOR” to an existing declaration does not make it work — on
the contrary! Always use the declaration block provided by the function designer.

RETURNS PARAMETER n

Added in: IB 6

Description: Inorder toreturn aBLOB, an extrainput parameter must be declared and a“RETURNSPARAMETER
n” subclause added — n being the position of said parameter. This subclause dates back to InterBase 6 beta, but
somehow didn't make it into the Language Reference (it is documented in the Devel oper's Guide though).

DROP GENERATOR

Availablein: DSQL, ESQL
Added in: 1.0

Description: Removes agenerator. Its (very small) storage space will be freed for re-use after a backup-restore
cycle.

Syntax:

DROP GENERATCOR gener at or - nane

DROP TRIGGER

Availablein: DSQL, ESQL

DROP TRIGGER no longer increments table change count

Changedin: 1.0

Description: In contrast to InterBase, Firebird does not increment the metadata change counter of the associated
table when CREATE, ALTER or DROP TRIGGER is used. For a full discussion, see ALTER TRIGGER no longer
increments table change count.

20



DDL statements

RECREATE PROCEDURE

Availablein: DSQL, ESQL
Added in: 1.0

Description: Creates or recreates a stored procedure. |f a procedure with the same name already exists, RECRE-
ATE PROCEDURE will try to drop it and create a new procedure. RECREATE PROCEDURE will fail if the ex-
isting SPisin use.

Syntax: Exactly the same as CREATE PROCEDURE.

RECREATE TABLE

Availablein: DSQL, ESQL
Added in: 1.0

Description: Creates or recreates atable. If atable with the same name already exists, RECREATE TABLE will
try to drop it (destroying all its datain the process!) and create a new table. RECREATE TABLE will fail if the
existing tableisin use.

Syntax: Exactly the same as CREATE TABLE.

RECREATE VIEW

Availablein: DSQL, ESQL
Added in: 1.5

Description: Creates or recreates a view. If aview with the same name already exists, RECREATE VIEW will
try to drop it and create a new view. RECREATE VIEW will fail if the existing view isin use.

Syntax: Exactly the same as CREATE VIEW.

21



Chapter 6

DML statements

EXECUTE PROCEDURE

Availablein: DSQL, ESQL, PSQL

Changedin: 1.5

Description: Executes astored procedure. In Firebird 1.0.x aswell asin InterBase, any input parametersfor the
SP must be supplied asliterals, host language variables (in ESQL) or local variables (in PSQL). In Firebird 1.5

and above, input parameters may also be (compound) expressions, except in static ESQL.

Syntax:

EXECUTE PROCEDURE pr ocnane
[ TRANSACTI ON transacti on]
[<in_itenr [, <in_itenr ...]]
[ RETURNI NG_VALUES <out _itenr [, <out_itenr ...]]

<in_itenp
<out _itemp ::

<paran® [<nullind>]
<outvar> [<nul i nd>]

<par anp an expression evaluating to the decl ared paraneter type
<out var > a host |anguage or PSQ. variable to receive the return val ue
<nul I'i nd> [ I NDI CATOR] : host _| ang_i ntvar
Notes
e TRANSACTION clauses are not supported in PSQL.
» Expression parameters are not supported in static ESQL, and not in Firebird versions below 1.5.
e NULL indicators are only valid in ESQL code. They must be host language variables of type
integer.
e In ESQL, variable names used as parameters or outvars must be preceded by a colon (“:"). In
PSQL the colon is generally optional, but forbidden for the trigger context variables OLD and
NEW.
Examples:

In PSQL (with optional colons):

execut e procedure MakeFul | Name
:FirstNanme, :Mddlenane, :LastNane
returni ng_val ues : Ful | Nane;

22




DML statements

The same call in ESQL (with obligatory colons):
exec sql
execut e procedure MakeFul | Nare
:FirstName, :Mddlenane, :LastNane
ret urni ng_val ues : Ful | Nare;

...and in Firebird's command-line utility isgl (with literal parameters):

execut e procedure MakeFul | Nanme
"J', 'Edgar', 'Hoover';

Note: Inisgl, don't use RETURNING_VALUES. Any output values are shown automatically.
Finally, a PSQL example with expression parameters, only possiblein Firebird 1.5 and up:
execut e procedure NMakeFul | Name

"M./Ms. ' || FirstName, M ddl enane, upper (Last Name)
returning val ues Ful | Nane;

RELEASE SAVEPOINT

Availablein: DSQL
Addedin: 1.5
Description: Deletes a named savepoint, freeing up all the resourcesit binds.
Syntax:
RELEASE SAVEPO NT nane [ ONLY]
UnlessONLY is added, al the savepoints created after the named savepoint are released as well.

For afull discussion of savepoints, see SAVEPOINT.

ROLLBACK TO SAVEPOINT
Availablein: DSQL
Addedin: 1.5

Description: Undoes everything that happened in atransaction since the creation of the savepoint.

Syntax:

ROLLBACK [WORK] TO [ SAVEPQ NT] name

23



DML statements

ROLLBACK TO SAVEPOINT performs the following operations:

All the mutations performed within the transaction since the savepoint was created are undone.

All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
reguested accessto rowslocked after the savepoint must continueto wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rowsimmediately.

For afull discussion of savepoints, see SAVEPOINT.

SAVEPOINT

Availablein: DSQL

Added in: 1.5

Description: Creates an SQL-99 compliant savepoint, to which you can later rollback your work without rolling
back the entire transaction. Savepoint mechanisms are also known as “nested transactions”.

Syntax:

SAVEPO NT <nane>

<name> ::= a user-chosen identifier, unique within the transaction

If the supplied name exists already within the same transaction, the existing savepoint is deleted and a new one
is created with the same name.

If you later want to rollback your work to the point where the savepoint was created, use:

ROLLBACK [WORK] TO [ SAVEPO NT] narne

ROLLBACK TO SAVEPOINT performs the following operations:

All the mutations performed within the transaction since the savepoint was created are undone.

All savepoints created after the one named are destroyed. All earlier savepoints are preserved, asisthe save-
point itself. This means that you can rollback to the same savepoint several times.

All implicit and explicit record locks acquired since the savepoint are released. Other transactions that have
regquested accessto rowslocked after the savepoint must continueto wait until the transaction is committed or
rolled back. Other transactions that have not already requested the rows can request and access the unlocked
rows immediately.

The internal savepoint bookkeeping can consume huge amounts of memory, especialy if you update the same
records multiple timesin one transaction. If you don't need a savepoint anymore but you're not yet ready to end
the transaction, you can delete the savepoint and free the resources it uses with:

24



DML statements

RELEASE SAVEPO NT name [ ONLY]

With ONLY, the named savepoint is the only one that gets released. Without it, all savepoints created after it
arereleased as well.

Example DSQL session using a savepoint:

create table test (id integer);
comm t;

insert into test values (1);
comm t;

insert into test values (2);
savepoi nt vy;

delete fromtest;

select * fromtest; -- returns no rows
roll back to vy;

select * fromtest; -- returns two rows
rol | back;

select * fromtest; -- returns one row

Internal savepoints

By default, the engine uses an automatic transaction-level system savepoint to perform transaction rollback.
When you issue aROLLBACK statement, all changes performed in this transaction are backed out via atransac-
tion-level savepoint and the transaction is then committed. This logic reduces the amount of garbage collection
caused by rolled back transactions.

When the volume of changes performed under a transaction-level savepoint is getting large (104—106 records
affected), the engine rel eases the transaction-level savepoint and uses the TIP mechanism to roll back the trans-
action if needed.

Tip

If you expect the volume of changes in your transaction to be large, you can use the TPB flag
i sc_tpb_no_aut o_undo to avoid the transaction-level savepoint being created.

Savepoints and PSQL

Transaction control statements are not allowed in PSQL, as that would break the atomicity of the statement that
calls the procedure. But Firebird does support the raising and handling of exceptions in PSQL, so that actions
performed in stored procedures and triggers can be selectively undone without the entire procedure failing.
Internally, automatic savepoints are used to:

» undo al actionsin a BEGIN...END block where an uncaught exception occurs,

» undo all actions performed by the SP/trigger (or, in the case of a selectable SP, al actions performed since
the last SUSPEND) when it terminates prematurely due to an uncaught error or exception.

Each PSQL exception handling block is also bounded by automatic system savepaints.

25



DML statements

SELECT

Availablein: DSQL, ESQL, PSQL

Aggregate functions: Extended functionality
Changedin: 1.5

Description: Several types of mixing and nesting aggragate functions are supported since Firebird 1.5. They
will be discussed in the following subsections. To get the complete picture, also look at the SELECT :: GROUP
BY sections.

Mixing aggregate functions from different contexts

Firebird 1.5 and up alow the use of aggregate functions from different contexts inside a single expression.

Example:
sel ect
r.rdb$rel ati on_nanme as "Tabl e nane",
( select max(i.rdb$statistics) || ' (" || count(*) || ")

fromrdb$relation_fields rf
where rf.rdb$rel ati on_nanme = r.rdb$rel ati on_nane
) as "Max. IndexSel (# fields)"
from
rdb$rel ations r
join rdb$indices i on (i.rdb$relation_nane = r.rdb$rel ati on_nane)
group by r.rdb$rel ati on_nane
havi ng max(i.rdb$statistics) > 0
order by 2

This admittedly rather contrived query shows, in the second column, the maximum index selectivity of any
index defined on atable, followed by the table'sfield count between parentheses. Of course you would normally
display the field count in a separate column, or in the column with the table name, but the purpose here is to
demonstrate that you can combine aggregates from different contextsin asingle expression.

Warning

Firebird 1.0 also executes this type of query, but gives the wrong results!

26



DML statements

Aggregate functions and GROUP BY items inside subqueries

SinceFirebird 1.5it ispossibleto use aggregate functions and/or expressions contained in the GROUPBY clause
inside a subquery.

Examples:

This query returns each table's ID and field count. The subquery refers to flds.rdb
$rel ati on_nane, whichisalso aGROUPBY item:

sel ect
flds.rdb$rel ati on_nane as "Rel ati on nane",
( select rels.rdb$relation_id
fromrdb$relations rels
where rels.rdb$rel ati on_nanme = flds.rdb$rel ati on_nane
) as "ID',
count (*) as "Fields"
fromrdb$rel ation_fields flds
group by flds.rdb$rel ati on_nane

The next query showsthe last field from each table and and its 1-based position. It uses the aggregate
function MAX in asubquery.

sel ect
flds.rdb$rel ati on_nane as "Tabl e"
( select flds2.rdb$fiel d_name
fromrdb$rel ation_fields flds2
wher e
flds2.rdb$rel ati on_nane = flds.rdb$rel ati on_nane
and flds2.rdb$field_position = max(flds.rdb$fiel d_position)
) as "Last field",
max(flds.rdb$field position) + 1 as "Last fiel dpos”
fromrdb$rel ation_fields flds
group by 1

The subguery also contains the GROUP BY item f | ds. r db$r el ati on_nane, but that's not im-
mediately obvious because in this case the GROUP BY clause uses the column number.

Subqueries inside aggregate functions
Using a singleton subselect inside (or as) an aggregate function argument is supported in Firebird 1.5 and up.
Example:

sel ect
r.rdb$rel ati on_nanme as "Tabl e",
sun( (select count(*)
fromrdb$relation_fields rf
where rf.rdb$rel ation_name = r.rdb$rel ati on_nane)
) as "Ind. x Fields"
from
rdb$rel ations r
j oin rdb$i ndi ces

27



DML statements

on (i.rdb$relation_name = r.rdb$rel ati on_nane)

group by
r.rdb$rel ati on_nane

Nesting aggregate function calls

Firebird 1.5 allows the indirect nesting of aggregate functions, provided that the inner function is from alower
SQL context. Direct nesting of aggregate function calls, asin “COUNT( MAX( price) )", is still forbidden and
punishable by exception.

Example: See under Subqueries inside aggregate functions, where COUNTY() is used inside a SUM().

Aggregate statements: Stricter HAVING and ORDER BY

Firebird 1.5 and above are stricter than previous versions about what can beincluded inthe HAVING and ORDER
BY clauses. If, in the context of an aggregate statement, an operand in aHAVING or ORDER BY item contains
acolumn name, it is only accepted if one of the following is true:

» The column name appears in an aggregate function call (e.g. “HAVI NG MAX( SALARY) > 10000").

» The operand equals or is built around a non-aggregate column that appears in the GROUP BY list (by name
or position).

» Theoperand equals or is built around a subquery, whether or not it is also a GROUP BY item.

“Is built around” means that the operand need not be exactly the same as the column or subquery. Suppose
there's a non-aggregate column “STR” in the select list. Then it's OK to use expressions like “UPPER(STR)”,
“STR||"" or “SUBSTRING(STR FROM 4 FOR 2)” inthe HAVING clause— even if these expressions don't appear
in the SELECT or GROUP BY list.

Ambiguous JOIN statements rejected

Changedin: 1.0

Description: InterBase 6 accepts and executes statements like the one below, which refers to an unqualified
column name even though that name exists in both tables participating in the JOIN:

sel ect buses. nane, garages. nane
from buses join garages on buses.garage id = garage.id
where nane = ' Phideaux |11’

The results of such a query are unpredictable. Firebird Dialect 3 returns an error if there are ambiguous field
namesin JOIN statements. Dialect 1 gives awarning but will execute the query anyway.

28



DML statements

FIRST and SKIP
Added in: 1.0
Changedin: 1.5

Description: FIRST enables the user to limit the output of a query to the first so-many rows. SKIP will suppress
the given number of rows before starting to return output.

Syntax:

SELECT [FIRST (<int-expr>)] [SKIP (<int-expr>)] <colums> FROM ...

<i nt - expr>
<col ums>

Any expression evaluating to an integer.
The usual output col um specifications.

Note

If <i nt - expr >isaninteger literal or aquery parameter, the* () " may be omitted. Subselects on
the other hand require an extra pair of parentheses.

FIRST and SKIP are both optional. When used together asin “FIRST mSKIP n”, the n topmast rows of the output
set are discarded and the first mrows of the remainder are returned.

SKIP O is alowed, but of course rather pointless. FIRST O is allowed in version 1.5 and up, where it returns an
empty set. In 1.0.x, FIRST O causes an error. Negative SKIP and/or FIRST values always result in an error.

If a SKIP lands past the end of the dataset, an empty set isreturned. If the number of rows in the dataset (or the
remainder after a SKIP) isless than the value given after FIRST, that smaller number of rowsis returned. These
are valid results, not error situations.

Examples:
The following query will return the first 10 names from the People table:

select first 10 id, nane from Peopl e
order by nanme asc

The following query will return everything but the first 10 names:

sel ect skip 10 id, name from Peopl e
order by nane asc

And this one returns the last 10 rows. Notice the double parentheses:
sel ect skip ((select count(*) - 10 from People))

id, nane from People
order by nanme asc

This query returns rows 81-100 of the People table:

select first 20 skip 80 id, nanme from Peopl e
order by nane asc

29



DML statements

Two Gotchaswith FIRST in subselects
e This:
delete from MyTabl e where IDin (select first 10 ID from M/Tabl e)

will deleteall of therowsinthetable. Ouch! The sub-select isevaluating each 10 candidate rowsfor deletion,
deleting them, slipping forward 10 more... ad infinitum, until there are no rows left. Beware!

e Querieslike:
...where F1 in (select first 5 F2 from Tabl e2 order by 1 desc)

won't work as expected, because the optimization performed by the engine transforms the IN predicate to
the correlated EXISTS predicate shown below. It's obviousthat in this case FIRST N doesn't make any sense:

...where exists
( select first 5 F2 from Tabl e2
where Tabl e2. F2 = Tabl el. F1
order by 1 desc )

GROUP BY UDF

Changedin: 1.0

Description: In Firebird, you can use the output of a user-defined function as a GROUP BY item.

Syntax:
SELECT ... FROM...
GROUP BY <itenep [, <itemr ...]
<itemp col um-name [ COLLATE col |l ation-nanme] | <udf-call>

<udf-cal | > udf -name(argl [, argN ...])
UDF callsmay be nested, but — as follows from the syntax — you cannot mix UDF callsand COLLATE inasingle
GROUPBY item.

Example:

sel ect strlen(lastnane), count(*)
from peopl e
group by strlen(l astnane)
order by 2 desc

Warning

DSQL currently lacks a mechanism to check if GROUP BY UDF subclauses are formulated correctly. Always
make sure that your GROUP BY item list correctly represents the scalar (i.e. non-aggregate) expression(s) in
your SELECT list.

30



DML statements

GROUP BY internal function, column position, and CASE

Changedin: 1.5
Description: Firebird 1.5 adds the following to the list of valid GROUP BY items:

» 1-based column position numbers (like in ORDER BY);
* Theinterna functions COALESCE, EXTRACT, NULLIF, SUBSTRING and UPPER;
» CASE constructs.

Syntax:

SELECT ... FROM...
GROUP BY <itenr [, <itemr ...]

<itenp ::= colum-nane [ COLLATE col |l ati on-nane]
| col um-position
| <function-call>
| CASE-construct

<function-call> ::= COALESCE(argl, arg2 [, argN ...])
| EXTRACT(part FROM date/tine)
| NULLI F(argl, arg2)
| SUBSTRI NG str FROM pos [ FOR count])
| UPPER(str)
| udf-name(argl [, argN ...])

Function calls may be nested. Asin previous versions, COLLATE can only be used with column names.

If you group by a column position, the expression at that position is copied internally from the select list. If it
concerns a subquery, that subquery will be executed at least twice.

Important

e A GROUP BY item cannot be a reference to an aggregate function (including those that are buried inside
an expression) from the same context.

» Asbefore, every non-aggregate column must appear inthe GROUPBY list, whether explicitly or by position.

Examples:

sel ect
case when price is null then 0 else price end,
sun( nunmber _sol d)

fromsal es_per_article

group by
case when price is null then 0 else price end

Of course this exampleis only to demonstrate the use of a CASE construct in the GROUP BY clause.
In this particular case you should first use COALESCE:

31



DML statements

sel ect
coal esce (price, 0),
sun{ nunber _sol d)
fromsal es_per_article

group by
coal esce (price, 0)

and second, you could save yourself some typing by using the column number:
sel ect

coal esce (price, 0),

sun( nunmber _sol d)

fromsal es_per_article
group by 1

HAVING: Stricter rules
Changedin: 1.5

Description: See Aggregate statements: Stricter HAVING and ORDER BY.

ORDER BY: Expressions and NULLs placement

Changedin: 1.5

Description: Inaddition to column names and positions, the ORDER BY clause can now al so contain expressions
to sort the output by. Furthermore, per-column NULLSFIRST and NULLSLAST subclauses can be used to specify
where NULLs appear in the sorted column.

Syntax:
SELECT ... FROM ...
bﬁbER BY <ordering-item> [, <ordering-itenmr ...]
<ordering-itenr ::= {colum-nanme | colum-position | expression}

[ COLLATE col | ati on- nane]

[ ASCI ENDI NG | DESC] ENDI NG ]
[ NULLS { FI RST| LAST}]

Expressions consisting of a single hon-negative number will be interpreted as 1-based column numbers and will
cause an exception if they're not in the range from 1 to the number of columns.

By default, NULLswill be placed at the end of the sort, regardless whether the order is ascending or descending.
This is the same behaviour as in previous Firebird versions. No index will be used on columns for which the
non-default NULLS FIRST placement is chosen.

The number of function or procedure invocations resulting from a sort based on a UDF or stored procedure is
unpredictable, regardless whether the ordering is specified by the expression itself or by the column position
number.

32



DML statements

Examples:

select * from nsg
order by process_tinme desc nulls first

select first 10 * from docunent
order by strlen(description) desc

sel ect doc_nunber, doc_date from payorder
uni on all

sel ect doc_nunber, doc_date from budgorder
order by 2 desc nulls last, 1 asc nulls first

ORDER BY: Stricter rules with aggregate statements
Changedin: 1.5

Description: See Aggregate statements. Stricter HAVING and ORDER BY.

WITH LOCK
Availablein: DSQL, PSQL
Added in: 1.5

Description: WITH LOCK providesalimited explicit pessimistic locking capability for cautious usein conditions
where the affected row set is:

a.  extremely small (ideally, asingleton), and
b. precisely controlled by the application code.

Thisisfor expertsonly!

The need for a pessimistic lock in Firebird is very rare indeed and should be well understood before use of
this extension is considered.

It isessential to understand the effects of transaction isolation and other transaction attributes before attempting
to implement explicit locking in your application.

Syntax:
SELECT ... FROM single_table
[ WHERE . . .]
[ FOR UPDATE [OF ...]]
[WTH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested

33



DML statements

will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

WITH LOCK can only be used with atop-level, single-table SELECT statement. It is not available:

* inasubquery specification;

» forjoined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
« withaview;

» with the output of a selectable stored procedure;

» with an externa table.

A lengthier, more in-depth discussion of “SELECT ... WITH LOCK” isincluded in the Notes. It is a must-read
for everybody who considers using this feature.




Chapter 7

PSQL statements

PSQL — Procedural SQL —isthe Firebird stored procedure and trigger language.

BEGIN ... END blocks may be empty

Availablein: PSQL
Changedin: 1.5

Description: BEGIN ... END blocks may be empty in Firebird 1.5 and up, allowing you to write stub code without
having to resort to dummy statements.

Example:
create trigger bi_atable for atable
active before insert position O
as

begi n
end

BREAK

Availablein: PSQL
Addedin: 1.0
Deprecated in: 1.5

Description: BREAK immediately terminates aWHILE or FOR loop and continues with the first statement after
the loop.

Example:

create procedure sel phrase(numint)
returns (phrase varchar(40))

as
begi n
for select Phr from Phrases into phrase do
begi n
if (num< 1) then break
suspend;

num = num- 1;

35



PSQL statements

end
phrase = '*** Ready! ***';
suspend;

end

This selectable SP returns at most numrows from the table Phrases. The variable numis decremented
in each iteration; once it is smaller than 1, the loop is terminated with BREAK. The program then
continues at theline“phrase = '*** Ready! ***';”,

I mportant

Since Firebird 1.5, BREAK is deprecated in favor of its SQL-99 compliant synonym LEAVE.

DECLARE [VARIABLE] with initialization

Availablein: PSQL
Changedin: 1.5

Description: InFirebird 1.5 and above, aPSQL local variable can beinitialized upon declaration. TheVARIABLE
keyword has become optional.

Syntax:
DECLARE [ VARI ABLE] varnane datatype [{= | DEFAULT} val ue];
Example:

create procedure proccie (a int)
returns (b int)
as
declare p int;
declare q int = 8;
declare r int default 9;
decl are variable s int;
decl are variable t int = 10;
declare variable u int default 11;
begi n
<intelligent code here>
end

EXCEPTION

Availablein: PSQL
Changedin: 1.5
Description: The EXCEPTION syntax has been extended so that the user can

a.  Rethrow acaught exception or error.
b. Provide a custom message when throwing a user-defined exception.

36



PSQL statements

Syntax:
EXCEPTI ON [ <excepti on- nane> [ cust om nessage] ]

<exception-name> ::= A previously defined exception nane

Rethrowing a caught exception

Within the exception handling block only, you can rethrow the caught exception or error by giving the EXCEP-
TION command without any arguments. Outside such blocks, this “bare” command has no effect.

Example:
when any do
begi n
insert into error_log (...) values (sqlcode, ...);
exception;
end

This example first logs some information about the exception or error, and then rethrowsiit.

Providing a custom error message

Firebird 1.5 and up alow you to override an exception's default error message by supplying an alternative one
when throwing the exception.

Examples:
exception ex_data error 'You just |ost sone val uabl e data'

exception ex_bad_type 'Wong type for record with id ' || newid;

EXECUTE PROCEDURE

Availablein: DSQL, PSQL
Changedin: 1.5

Description: In Firebird 1.5 and above, (compound) expressions are allowed as input parameters for stored
procedures called with EXECUTE PROCEDURE. See DML statements :: EXECUTE PROCEDURE for full info
and examples.

37



PSQL statements

EXECUTE STATEMENT

Availablein: PSQL
Added in: 1.5

Description: EXECUTE STATEMENT takes asingle string argument and executesit asif it had been submitted as
aDSQL statement. The exact syntax depends on the number of datarowsthat the supplied statement may return.

No data returned
Thisform is used with INSERT, UPDATE, DELETE and EXECUTE PROCEDURE statements that return no data.
Syntax:
EXECUTE STATEMENT <st at emrent >
<statenment> ::= An SQ statenent returning no data.
Example:

create procedure Dynani cSanpl eOne (ProcNane varchar (100))
as

decl are variabl e stnt varchar(1024);

decl are variable paramint;

begi n
sel ect m n(SoneFi el d) from SoneTabl e into param
stm = 'execute procedure '

| | ProcNane
[
| | cast(param as varchar(20))
[
execute statement stnt;
end

Warning

Although this form of EXECUTE STATEMENT can aso be used with all kinds of DDL strings (except CRE-
ATE/DROP DATABASE), it is generally very, very unwise to use thistrick in order to circumvent the no-DDL
rulein PSQL.

38



PSQL statements

One row of data returned
Thisform is used with singleton SELECT statements.
Syntax:
EXECUTE STATEMENT <sel ect-statement> | NTO <var> [, <var> ...]

<sel ect - st at enent >

= An SQ statenment returning at nopst one row of data.
<var > = A

PSQL variable, optionally preceded by “:”
Example:
create procedure Dynani cSanpl eTwo (Tabl eNane var char (100))
as
decl are variable paramint;
begi n
execut e statenent
"sel ect max(CheckField) from' || Tabl eNanme into :param
if (param > 100) then
exception Ex_Overflow 'Overflowin ' || Tabl eNane;
end

Any number of data rows returned

This form — analogous to “FOR SELECT ... DO” —is used with SELECT statements that may return a multi-row
dataset.

Syntax:

FOR EXECUTE STATEMENT <sel ect-statenment> | NTO <var> [, <var> ...]
DO <conpound- st at enent >

<sel ect - st at enent >
<var >

Any SELECT st atenent.
A PSQ. variable, optionally preceded by “:”

Example:

create procedure Dynani cSanpl eThr ee
( TextField varchar(100),
Tabl eNane varchar (100) )

returns
( LongLi ne varchar (32000) )
as
decl are vari abl e Chunk varchar (100);
begi n
Chunk = '";
for execute statenent
"select ' || TextField || " from' || TableNane into :Chunk
do

if (Chunk is not null) then
LongLi ne = LongLine || Chunk || ' ';
suspend;
end

39



PSQL statements

Caveats with EXECUTE STATEMENT

1. Thereisnoway to validate the syntax of the enclosed statement.
2. Thereare no dependency checks to discover whether tables or columns have been dropped.
3. Operationswill be slow because the embedded statement has to be prepared every timeit is executed.

4. Theargument string cannot contain any parameters. All variable substitution into the static part of the SQL
statement should be performed before EXECUTE STATEMENT is called.

5.  Returnvaluesarestrictly checked for datatypein order to avoid unpredictabl e type-casting exceptions. For
example, thestring' 1234' would convert to an integer, 1234, but' abc' would give a conversion error.

6. If the stored procedure has special privileges on some objects, the dynamic statement submitted in the
EXECUTE STATEMENT string does not inherit them. Privileges are restricted to those granted to the user
who is executing the procedure.

All in al, thisfeature is intended only for very cautious use and you should always take the above factorsinto
account. Bottom line: use EXECUTE STATEMENT only when other methods are impossible, or perform even
worse than EXECUTE STATEMENT.

EXIT

Availablein: PSQL
Changedin: 1.5

Description: In Firebird 1.5 and up, EXIT can be used in all PSQL. In earlier versions it is only supported in
stored procedures, not in triggers.

FOR EXECUTE STATEMENT ... DO

Availablein: PSQL
Added in: 1.5

Description: See EXECUTE STATEMENT :: Any humber of data rows returned.

40



PSQL statements

LEAVE
Availablein: PSQL
Added in: 1.5

Description: LEAVE immediately terminates a WHILE or FOR loop and continues with the first statement after
the loop.

Example:
while (b < 10) do
begi n
insert into Numbers(B) values (:b);
b=Db+ 1;
when any do
begin
execute procedure log_error (current_tinestanp, 'Error in B loop');
| eave;
end
end
c =0;
while (c < 10) do
begi n
end

If an error occursduring theinsert, the event islogged and the loop terminated. The program continues
at theline of codereading“c = 0;”

PLAN allowed in trigger code

Changedin: 1.5

Description: Before Firebird 1.5, atrigger containing aPLAN statement would be rejected by the compiler. Now
avalid plan can be included and will be used.

41



Chapter 8

Context variables

CURRENT CONNECTI ON

Availablein: DSQL, PSQL
Addedin: 1.5
Description: CURRENT _CONNECTI ON contains the system identifier of the active connection context.
Type: INTEGER
Examples:
sel ect current_connection from rdb$dat abase

execut e procedure P_Logi n(current_connecti on)

The value of CURRENT _CONNECTI| ONis stored on the database header page and reset upon restore. Since the
engine itself is not interested in this value, it is only incremented if the client reads it during a session. Hence
it is only useful as a unique identifier, not as an indicator of the number of connections since the creation or
last restoration of the database.

CURRENT ROLE

Availablein: DSQL, PSQL
Added in: 1.0

Description: CURRENT _ROLE is acontext variable containing the role of the currently connected user. If there
isno active role, CURRENT _RCOLE is NONE.

Type: VARCHAR(31)
Example:
if (current_role <> ' MANAGER )
t hen exception only_nanagers_nay_del et e;

el se
del ete from Custoners where custno = :custno;

42



Context variables

CURRENT _ROLE awaysrepresentsavalid role or NONE. If auser connects with anon-existing role, the engine
silently resetsit to NONE without returning an error.

CURRENT _TRANSACTI ON

Availablein: DSQL, PSQL
Added in: 1.5
Description: CURRENT _TRANSACTI ON contains the system identifier of the current transaction context.
Type: INTEGER
Examples:
sel ect current _transaction from rdb$dat abase
New. Txn_I D = current _transacti on;

The value of CURRENT _TRANSACTI ON is stored on the database header page and reset upon restore. Unlike
CURRENT _CONNECTI ON, itisincremented with every new transaction, whether the client readsthe value or not.

CURRENT USER

Availablein: DSQL, PSQL
Added in: 1.0

Description: CURRENT _USER is a context variable containing the name of the currently connected user. It is
fully equivalent to USER.

Type: VARCHAR(31)

Example:
create trigger bi_custoners for custonmers before insert as
begi n
New. added_by = CURRENT_USER;
New. pur chases = O0;
end

43



Context variables

DELETI NG

Availablein: PSQL
Added in: 1.5

Description: Availableintriggersonly, DELETI NGindicatesif thetrigger fired because of a DELETE operation.
Intended for use in multi-action triggers.

Type: boolean
Example:

if (deleting) then
begi n
insert into Removed_Cars (id, nake, nodel, renoved)

val ues (old.id, old.nmke, old.nodel, current_tinestanp);
end

GDSCODE

Availablein: PSQL
Added in: 1.5

Description: In aWHEN GDSCODE handling block, the GDSCODE context variable contains a numerical repre-
sentation of the current Firebird error code. It is 0 in WHEN SQLCODE, WHEN EXCEPTION and WHEN ANY
handlers, aswell as everywhere elsein PSQL.

Type: INTEGER

Example:

when gdscode 335544551, gdscode 335544552,

gdscode 335544553, gdscode 335544707
do

begi n
execute procedure | og_grant_error(gdscode);
exit;

end




Context variables

| NSERTI NG

Availablein: PSQL
Added in: 1.5

Description: Availablein triggersonly, | NSERTI NGindicates if the trigger fired because of an INSERT opera-
tion. Intended for use in multi-action triggers.

Type: boolean

Example:

if (inserting or updating) then
begi n
if (new.serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

ROW COUNT

Availablein: PSQL
Added in: 1.5

Description: ROW COUNT is a context variable containing the number of rows affected by the last DML state-
ment.

Type: INTEGER
Example:
update Figures set Nunber = 0 where id = :id;

if (row_count = 0) then
insert into Figures (id, Nunber) values (:id, 0);

Notes
e For SELECT statements, ROW COUNT currently returns O.

*  ROW CQUNT cannot be used to determine the number of rows affected by an EXECUTE STATEMENT com-
mand.

45



Context variables

SQLCODE
Availablein: PSQL
Added in: 1.5

Description: In a WHEN SQLCODE handling block, the SQLCODE context variable contains the current SQL
error code. In aWHEN ANY block it contains the SQL error code if indeed an SQL error occurred; otherwise

it contains 0. SQLCODE isaso 0 in WHEN GDSCODE and WHEN EXCEPTION handlers, aswell as everywhere
elsein PSQL.

Type: INTEGER
Example:

when any
do
begi n
if (sqlcode <> 0) then
Msg = "An SQ. error occurred!';
el se
Msg = ' Sonmet hi ng bad happened!"';
exception ex_custom Msg;
end

UPDATI NG

Available in: PSQL
Added in: 1.5

Description: Availablein triggers only, UPDATI NGindicates if the trigger fired because of an UPDATE opera-
tion. Intended for use in multi-action triggers.

Type: boolean
Example:

if (inserting or updating) then
begi n
if (new.serial_numis null) then
new. seri al _num = gen_id(gen_serials, 1);
end

46



Chapter 9

Internal functions

COALESCE()

Availablein: DSQL, ESQL, PSQL
Addedin: 1.5

Description: The COALESCE function takes two or more arguments and returns the value of the first non-NULL
argument. If all the arguments evaluate to NULL, NULL isreturned.

Return type: Depends on input.

Syntax:
COALESCE (<expl>, <exp2> [, <expN> ... ])
Example:
sel ect
coal esce (N cknanme, FirstName, "M./Ms.") || " ' || LastName

as Ful | Nane
from Per sons

This example picks the Nickname from the Persons table. If it happens to be NULL, it goes on to FirstName. If
that too isNULL, “Mr./Mrs.” isused. Finaly, it addsthe family name. All inal, it tries to use the available data
to compose afull name that is asinformal as possible. Notice that this scheme only works if absent nicknames

and first names are really NULL: if one of them is an empty string instead, COALESCE will happily return that
to the caller.

Note

In Firebird 1.0.x, where COALESCE is not available, you can accomplish the same with the *nvl external
functions.

EXTRACT()

Availablein: DSQL, ESQL, PSQL

Added in: IB 6

47



Internal functions

Description: Extracts and returns an element from a DATE, TIME or TIMESTAMP expression. It was aready
added in InterBase 6, but not documented in the Language Reference at the time.

Return type: SMALLINT or DECIMAL(6,4)

Syntax:

EXTRACT (<part> FROM <dateti me>)

<part> = YEAR | MONTH | DAY | WEEKDAY | YEARDAY
| HOUR | M NUTE | SECOND
<datetinme> ::= An expression of type DATE, TIM or TI MESTAWP

Thereturned datatypeis DECIMAL (6,4) for the SECOND part and SMALLINT for all others. Therangesare shown
in the table below.

If you try to extract a part that isn't present in the date/time argument (e.g. SECOND from a DATE or YEAR
from aTIME), an error occurs.

Table9.1. Rangesfor EXTRACT results

Part Range Comment
YEAR 1-9999
MONTH 1-12
DAY 1-31
WEEKDAY 0-6 0 = Sunday
YEARDAY 0-365 0=January 1
HOUR 0-23
MINUTE 0-59
SECOND 0.0000-59.999

NULLIF()

Availablein: DSQL, ESQL, PSQL
Added in: 1.5

Description: NULLIF returns the value of the first argument, unlessit is equal to the second. In that case, NULL
isreturned.

Return type: Depends on input.
Syntax:

NULLI F (<expl>, <exp2>)

48



Internal functions

Example:
select avg( nullif(Weight, -1) ) from Fat Peopl e
This will return the average weight of the persons listed in FatPeople, excluding those having a weight of -1,

since AVG skips NULL data. Presumably, -1 indicates “weight unknown” in this table. A plain AVG(Weight)
would include the -1 weights, thus skewing the result.

Note

In Firebird 1.0.x, where NULLIF is not available, you can accomplish the same with the *nul | i f external
functions.

SUBSTRING()

Availablein: DSQL, ESQL, PSQL
Added in: 1.0

Description: Returns a string's substring starting at the given position, either to the end of the string or with
agiven length.

Return type: CHAR(n)
Syntax:
SUBSTRI NG <str> FROM startpos [FOR | ength])

<str> := any expression evaluating to a string
startpos and length nmust be integer literals

SUBSTRING returns the stream of bytes starting at byte position st art pos (the first byte position being 1).
Without the FOR argument, it returns all the remaining bytes in the string. With FOR, it returns| engt h bytes
or the remainder of the string, whichever is shorter.

SUBSTRING can be used with:

» Any string or (var)char argument, regardless of its character set;
* Subtype O (binary) BLOBS;
* Subtype 1 (text) BLOBS, if the character set has 1 byte per character.

SUBSTRING can not be used with text BLOBs that have an underlying multi-byte character set.
Example:

i nsert into Abbr Names(Abbr Nane)
sel ect substring(LongName from1 for 3) from LongNanes

49



Chapter 10

External functions (UDFs)

External functions must be “declared” (made known) to the database before they can be used. Firebird ships
with two externa function libraries:

e i b_udf —inherited from InterBase;
» fbudf —anew library using descriptors, present as from Firebird 1.0 (Windows) and 1.5 (Linux).

Users can also create their own UDF libraries or acquire them from third parties.

addDay

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber days added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:
addday (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addDay
TI MESTAMP, | NT
RETURNS TI MESTAVP
ENTRY_POI NT ' addDay' MODULE_NAME ' f budf’

addHour

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber hours added. Use negative numbers to subtract.

Return type: TIMESTAMP

50



External functions (UDFs)

Syntax:
addhour (atinestanp, nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON addHour
TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addHour' MODULE_NAME ' f budf'’

addM | I 1 Second

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber milliseconds added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addm | I i second (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM | |'i Second

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT "addM | 1i Second" MODULE_NAME ' f budf’

addM nut e

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber minutes added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addm nute (atinmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addM nut e

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addM nute' MODULE _NAME ' f budf'

51



External functions (UDFs)

addMont h

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber months added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addnont h (ati mestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addMont h

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addMont h* MODULE _NAME ' f budf'’

addSecond

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the first argument with nunber seconds added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addsecond (ati nmestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addSecond

TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_ PO NT ' addSecond' MODULE NAME ' f budf'

addWeek

Library: fbudf

Added in: 1.0 (Win), 1.5 (Linux)

52



External functions (UDFs)

Description: Returns the first argument with nunber weeks added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:
addweek (atinmestanp, nunber)
Declaration:
DECLARE EXTERNAL FUNCTI ON addWeek
TI MESTAVP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addWek' MODULE_NAME ' f budf'’

addYear

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returnsthe first argument with nunber years added. Use negative numbers to subtract.
Return type: TIMESTAMP
Syntax:

addyear (atinestanp, nunber)
Declaration:

DECLARE EXTERNAL FUNCTI ON addYear

TI MESTANP, | NT

RETURNS TI MESTAMP
ENTRY_PO NT ' addYear' MODULE _NAME ' f budf'’

ascii _char

Library: ib_udf

Changedin: 1.0

Description: Returns the ASCII character corresponding to the integer value passed in.
Return type: CHAR(2)

Syntax (unchanged):

ascii_char (intval)

53



External functions (UDFs)

Declaration (changed):

DECLARE EXTERNAL FUNCTI ON ascii _char
| NTEGER
RETURNS CSTRING(1) FREE_IT
ENTRY_PO NT ' 1 B_UDF_ascii_char' MODULE_NAME 'i b_udf'

The declaration has been changed to reflect the fact that the UDF as such returns a 1-character C

string, not an SQL CHAR(1) as stated in the InterBase declaration. The engine will pass it on to the
caller as a CHAR(1) though.

dow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the day of the week from atimestamp argument. The returned name may be localized.
Return type: VARCHAR(15)
Syntax:
dow (ati nmestanp)
Declaration:

DECLARE EXTERNAL FUNCTI ON dow
TI MESTAMP,
VARCHAR( 15) RETURNS PARAMETER 2
ENTRY_PO NT ' DOW MODULE_NAME ' f budf"’

See also: sdow

dpower

Library: foudf

Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns x to the y'th power.
Return type: DOUBLE PRECISION
Syntax:

dpower (x, vy)




External functions (UDFs)

Declaration:
DECLARE EXTERNAL FUNCTI ON dPower
DOUBLE PREC!I SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR,
DOUBLE PRECI SI ON BY DESCRI PTOR

RETURNS PARAMETER 3
ENTRY_PO NT ' power' MODULE_NAME ' f budf'

get Exact Ti nest anp

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the system time with milliseconds precision. This function was added because
CURRENT_TIMESTAMP aways has. 0000 in the fractional part of the second.

Return type: TIMESTAMP
Syntax:
get exactti nestanp()
Declaration:
DECLARE EXTERNAL FUNCTI ON get Exact Ti mest anp

TI MESTAMP RETURNS PARAMETER 1
ENTRY_PO NT ' get Exact Ti mest anp’ MODULE_NAME ' f budf"'

| 64r ound
Seer ound.
| 64t r uncat e
Seetruncate.
| og
Library: ib_udf
Changedin: 1.5

55



External functions (UDFs)

Description: In Firebird 1.5 and up, | og returns the the base-x logarithm of y. In Firebird 1.0.x and InterBase,
it erroneoudly returns the base-y logarithm of x.

Return type: DOUBLE PRECISION
Syntax (unchanged):
log (x, )
Declaration (unchanged):
DECLARE EXTERNAL FUNCTI ON | og
DOUBLE PREC!I SI ON, DOUBLE PRECI SI ON

RETURNS DOUBLE PRECI S| ON BY VALUE
ENTRY_POINT ' I B_UDF_| 0og' MODULE_NAME 'ib_udf"

Warning

If any of your pre-1.5 databases uses| og, check your PSQL and application code. It may contain workarounds
to return the right results. Under Firebird 1.5 and up, any such workarounds should be removed or you'll get
the wrong results.

| pad

Library: ib_udf
Added in: 1.5
Changedin: 1.5.2
Description: Returns the input string | eft-padded with padchar suntil endl engt h isreached.
Return type: CHAR(n)
Syntax:

| pad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON | pad

CSTRI NG 255), | NTEGER, CSTRI NG 1)

RETURNS CSTRI NG 255) FREE | T
ENTRY_PO NT ' | B_UDF | pad’ MODULE_NAME ' i b_udf’

Notes
e |nFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

« When calling this function, make sure endl engt h does not exceed the declared result length.

56



External functions (UDFs)

[trim

Library: ib_udf
Changedin: 1.5, 1.5.2

Description: Returnsthe input string with any |eading space charactersremoved. In Firebird 1.0.x, thisfunction
returns NULL if theinput stringisempty or NULL. In 1.5 and aboveit returns' ' (an empty string) in these cases.

Return type: CHAR(n)
Syntax (unchanged):
[trim(str)
Declaration:
DECLARE EXTERNAL FUNCTION Itrim
CSTRI NG( 255)

RETURNS CSTRI NG(255) FREE I T
ENTRY_POINT ' IB_UDF_Itrim MODULE_NAME 'ib_udf'

Notes
e InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

* Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

*nul |if

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Deprecated in: 1.5

Description: Thefour *nul | i f functions—for integers, bigints, doubles and strings, respectively —each return
the first argument if it is not equal to the second. If the arguments are equal, the functions return NULL.

Return type: Varies, see declarations.

Syntax:

inullif (intl, int2)

i 64nullif (bigintl, bigint2)
dnul I'i f (doubl el, doubl e2)
snul lif (stringl, string2)

57



External functions (UDFs)

Asfrom Firebird 1.5 these functions are all deprecated. Use the new internal function NULLIF instead.

Warnings

e Thesefunctionsreturn NULL when the second argument isSNULL, even if thefirst argument isaproper value.
Thisisawrong result. The NULLIF internal function doesn't have this bug.

e i 64nul l'if anddnul I'i f will return wrong and/or bizarre resultsif it is not 100% clear to the engine that
each argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast them both
explicitly to the declared type (see declarations below).

Declarations;

DECLARE EXTERNAL FUNCTION inullif
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT " i Nul ['1f' MODULE_NAME ' f budf’

DECLARE EXTERNAL FUNCTI ON i 64nul | i f
NUMERI C( 18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS NUMERI C( 18, 4) BY DESCRI PTOR
ENTRY_PO NT "i Nul ['1f' MODULE_NAME ' fbudf’

DECLARE EXTERNAL FUNCTI ON dnul |i f
DOUBLE PRECI SI ON BY DESCRI PTOR, DOUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT " dNul ['1f' MODULE_NAME ' f budf'’

DECLARE EXTERNAL FUNCTI ON snul |i f
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,

VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT " sNul I I f* MODULE_NAME ' f budf"’

*nvl

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Deprecated in: 1.5

Description: The four nvl functions — for integers, bigints, doubles and strings, respectively — are NULL re-
placers. They each return the first argument's value if it is not NULL. If the first argument is NULL, the value
of the second argument is returned.

Return type: Varies, see declarations.
Syntax:

i nvl (intl, int2)

i 64nvl (bigintl, bigint2)

dnvl (doubl el, doubl e2)
snvl (stringl, string2)

58



External functions (UDFs)

Asfrom Firebird 1.5 these functions are all deprecated. Use the new internal function COALESCE instead.

Warning

i 64nvl and dnvl will return wrong and/or bizarre resultsif it is not absolutely clear to the engine that each
argument is of the intended type (NUMERIC(18,0) or DOUBLE PRECISION). If in doubt, cast both arguments
explicitly to the declared type (see declarations below).

Declarations:

DECLARE EXTERNAL FUNCTI ON i nvl
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS | NT BY DESCRI PTOR
ENTRY_PO NT 'idNvl' MODULE _NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64nvl
NUVERI C(18, 0) BY DESCRI PTOR, NUMERI C( 18, 0) BY DESCRI PTOR
RETURNS NUMERI C( 18, 0) BY DESCRI PTOR
ENTRY_POINT 'idNvl' MODULE_NAME ' f budf’

DECLARE EXTERNAL FUNCTI ON dnvl
DOUBLE PRECI SI ON BY DESCRI PTOR, DCUBLE PRECI SI ON BY DESCRI PTOR
RETURNS DOUBLE PRECI SI ON BY DESCRI PTOR
ENTRY_PO NT 'idNvl' MODULE_NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON snvl
VARCHAR(100) BY DESCRI PTOR, VARCHAR(100) BY DESCRI PTOR,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_PO NT 'sNvl' MODULE_NAME ' f budf'

ri ght

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the rightmost nuncthar s characters of the input string.
Return type: VARCHAR(100)
Syntax:

right (str, nunchars)
Declaration:

DECLARE EXTERNAL FUNCTI ON ri ght
VARCHAR(100) BY DESCRI PTOR, SMALLI NT,
VARCHAR(100) BY DESCRI PTOR RETURNS PARAMETER 3
ENTRY_POI NT 'right' MODULE_NAME ' f budf’

59



External functions (UDFs)

round, i 64r ound

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Changedin: 1.5

Description: These functionsreturn thewhole number that isnearest to their (scaled numeric/decimal) argument.

They do not work with floats or doubles.
Return type: INTEGER / NUMERIC(18,4)

Syntax:

round (nurber)
i 64round (bi gnurber)

Bug warning
These functions are broken for negative numbers:

e Anything between 0 and -0.6 (that's right: -0.6, not -0.5) is rounded to O.
Anything between -0.6 and -1 isrounded to +1 (plus 1).

Anything between -1 and -1.6 is rounded to -1.

Anything between -1.6 and -2 is rounded to -2.

Etcetera.

L] L] L] L]

Declarations:

In Firebird 1.0.x, the entry point for both functionsisr ound:

DECLARE EXTERNAL FUNCTI ON Round
I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round' MODULE NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Round
NUMERI C(18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' round' MODULE NAME ' f budf'

In Firebird 1.5, the entry point has been renamed to f br ound:

DECLARE EXTERNAL FUNCTI ON Round
| NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_POI NT ' f bround' MODULE_NAME ' f budf

DECLARE EXTERNAL FUNCTI ON i 64Round
NUVERI C( 18, 4) BY DESCRI PTOR, NUMERI C(18, 4) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PQO NT ' fbround’ MODULE NAME ' f budf'

60



External functions (UDFs)

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing * r ound and
*t r uncat e declarations and declare them anew, using the updated entry point names.

r pad

Library: ib_udf
Added in: 1.5
Changedin: 1.5.2
Description: Returns the input string right-padded with padchar suntil endl engt h is reached.
Return type: CHAR(n)
Syntax:

rpad (str, endlength, padchar)
Declaration:

DECLARE EXTERNAL FUNCTI ON r pad

CSTRI NG 255), | NTEGER, CSTRI NG(1)

RETURNS CSTRI NG(255) FREE I T
ENTRY_POI NT ' | B_UDF_rpad'" MODULE_NAME 'ib_udf"

Notes
e InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

« Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

« When calling this function, make sure endl engt h does not exceed the declared result length.

rtrim

Library: ib_udf
Changedin: 1.5, 1.5.2

Description: Returnsthe input string with any trailing space characters removed. In Firebird 1.0.x, thisfunction
returnsNULL if theinput stringisempty or NULL. In 1.5 and aboveit returns' ' (an empty string) in these cases.

Return type: CHAR(n)
Syntax (unchanged):

rtrim(str)

61



External functions (UDFs)

Declaration:

DECLARE EXTERNAL FUNCTION rtrim
CSTRI N& 255)
RETURNS CSTRI NG( 255) FREE | T
ENTRY_POINT ' IB_UDF_rtrim MODULE_NAME 'ib_udf'

Notes
¢ InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

« Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

sdow

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)

Description: Returns the abbreviated day of the week from a timestamp argument. The returned abbreviation
may be localized.

Return type: VARCHAR(5)
Syntax:

sdow (ati mest anp)
Declaration:

DECLARE EXTERNAL FUNCTI ON sdow
TI MESTAMP,
VARCHAR(5) RETURNS PARAMETER 2
ENTRY_POI NT ' SDOW MODULE_NAME ' f budf

See also: dow

string2bl ob

Library: foudf
Added in: 1.0 (Win), 1.5 (Linux)
Description: Returns the input string as a BLOB.

Return type: BLOB

62



External functions (UDFs)

Syntax:
string2blob (str)
Declaration:
DECLARE EXTERNAL FUNCTI ON string2bl ob
VARCHAR( 300) BY DESCRI PTOR,

BLOB RETURNS PARAMETER 2
ENTRY_PO NT ' string2bl ob' MODULE_NAME ' f budf"’

substr

Library: ib_udf
Changedin: 1.0, 1.5.2

Description: Returns a string's substring from st ar t pos to endpos, inclusively. Positions are 1-based. If
endpos is past the end of the string, Firebird's subst r returns all the characters from st ar t pos to the end
of the string. InterBase'ssubst r returned NULL in this case.

Return type: CHAR(n)
Syntax (unchanged):
substr (str, startpos, endpos)
Declaration:
DECLARE EXTERNAL FUNCTI ON substr
CSTRI N& 255), SMALLI NT, SMALLI NT

RETURNS CSTRI NG(255) FREE I T
ENTRY_PO NT ' | B_UDF_substr' MODULE_NAME 'ib_udf’

Notes
¢ InFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

Tip

Although the function arguments are dightly different, consider using the internal SQL function SUBSTRING
instead, for better compatibility.

63




External functions (UDFs)

substrl| en

Library: ib_udf
Added in: 1.0
Changedin: 1.5.2

Description: Returns the substring starting at st ar t pos and having | engt h characters (or less, if the end of
the string is reached first). Positions are 1-based. If either st art pos or | engt h issmaller than 1, an empty
string is returned.

Return type: CHAR(n)
Syntax:
substrlen (str, startpos, |ength)
Declaration:
DECLARE EXTERNAL FUNCTI ON substrlen
CSTRI NG 255), SMALLI NT, SMALLI NT

RETURNS CSTRI NG(255) FREE IT
ENTRY_PO NT ' |1 B_UDF_substrlen' MODULE_NAME 'ib_udf'

Notes
e |nFirebird 1.5.1 and below, the default declaration uses CSTRING(80) instead of CSTRING(255).

» Depending on how you declare it (see CSTRING note), this function can accept and return strings of up to
32767 characters.

Tip

Firebird 1.0 has also implemented the internal SQL function SUBSTRING, rendering subst r | en obsoletein
the same version in which it wasintroduced. In new code, use SUBSTRING.

truncate,i 64truncat e

Library: fbudf
Added in: 1.0 (Win), 1.5 (Linux)
Changedin: 1.5

Description: These functionsreturn the whole-number portion of their (scaled numeric/decimal) argument. They
do not work with floats or doubles.




External functions (UDFs)

Return type: INTEGER / NUMERIC(18)

Syntax:

truncate (nurnber)
i 64t runcat e (bi gnunber)

Warning

Both functions round to the nearest whole number that is lower than or equal to the argument. This means that
negative numbers are “truncated” downward. For instance, t r uncat e( - 2. 37) returns- 3. A rather peculiar
exception is formed by the numbers between -1 and 0, which are al truncated to 0. The only number that
truncatesto -1 is-1 itself.

Declarations;

In Firebird 1.0.x, the entry point for both functionsist r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate

I NT BY DESCRI PTOR, | NT BY DESCRI PTCR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE _NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Truncate

NUMERI C(18) BY DESCRI PTOR, NUVMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT 'truncate' MODULE NAME ' f budf'

In Firebird 1.5, the entry point has been renamed to f bt r uncat e:

DECLARE EXTERNAL FUNCTI ON Truncate

I NT BY DESCRI PTOR, | NT BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE NAME ' f budf'

DECLARE EXTERNAL FUNCTI ON i 64Truncate

NUMERI C(18) BY DESCRI PTOR, NUMERI C(18) BY DESCRI PTOR
RETURNS PARAMETER 2
ENTRY_PO NT ' fbtruncate' MODULE_NAME ' fbudf'

If you move an existing database from Firebird 1.0.x to 1.5 or higher, drop any existing * r ound and
*t runcat e declarations and declare them anew, using the updated entry point names.

65




Appendix A:
Notes

Character set NONE data accepted “as is”
In Firebird 1.5.1 and up

Firebird 1.5.1 has improved the way character set NONE data are moved to and from fields or variables with
another character set, resulting in fewer trandliteration errors.

In Firebird 1.5.0, from a client connected with character set NONE, you could read data in two incompatible
character sets — such as SIS (Japanese) and WIN1251 (Russian) — even though you could not read one of those
character sets while connected from a client with the other character set. Data would be received “asis’ and
be stored without raising an exception.

However, from this character set NONE client connection, an attempt to update any Russian or Japanese data
columns using either parameterized queries or literal strings without introducer syntax would fail with tranglit-
eration errors; and subsequent queries on the stored “NONE” data would similarly fail.

In Firebird 1.5.1, both problems have been circumvented. Data received from the client in character set NONE
aretill stored “asis’ but what is stored is an exact, binary copy of the received string. In the reverse case, when
stored data are read into this client from columns with specific character sets, there will be no transliteration
error. When the connection character set isNONE, no attempt is made in either case to resolve the string to well-
formed characters, so neither the write nor the read will throw atrandliteration error.

This opens the possibility for working with data from multiple character sets in a single database, as long as
the connection character set is NONE. The client has full responsibility for submitting strings in the appropriate
character set and converting strings returned by the engine, as needed.

Abstraction layers that have to manage this can read the low byte of the sql subt ype fieldin the XSQLVAR
structure, which contains the character set identifier.

While character set NONE literals are accepted and implicitly stored in the character set of their context, the
use of introducer syntax to coerce the character sets of literals is highly recommended when the application
is handling literals in a mixture of character sets. This should avoid the string's being misinterpreted when the
application shifts the context for literal usage to a different character set.

Note

Coercion of the character set, using the introducer syntax or casting, is still required when handling heteroge-
neous character sets from a client context that is anything other than NONE. Both methods are shown below,
using character set 1SO8859_1 as an exampletarget. Noticethe_” prefix in the introducer syntax.

Introducer syntax:
_1'SC8859_1 nystring

Casting:
CAST (nystring AS VARCHAR(n) CHARACTER SET | SC8859_1)

66



Notes

Understanding the WITH LOCK clause

This note looks a little deeper into explicit locking and its ramifications. The WITH LOCK feature, added in
Firebird 1.5, provides alimited explicit pessimistic locking capability for cautious use in conditions where the
affected row setis:

a. extremely small (idedly, asingleton), and
b. precisely controlled by the application code.

Pessimistic locks are rarely needed in Firebird. This is an expert feature, intended for use by those who thor-
oughly understand its consequences. Knowledge of the variouslevels of transaction isolation is essential. WITH
LOCK isavailablein DSQL and PSQL, and only for top-level, single-table SELECTSs. As stated in the reference
part of this guide, WITH LOCK is not available:

* inasubquery specification;

o for joined sets;

» with the DISTINCT operator, a GROUP BY clause or any other aggregating operation;
e withaview;

» with the output of a selectable stored procedure;

* with an externa table.

Syntax and behaviour

SELECT ... FROM single_table
[ WHERE . . .]
[ FOR UPDATE [OF ...]]

[ W TH LOCK]

If the WITH LOCK clause succeeds, it will secure alock on the selected rows and prevent any other transaction
from obtaining write access to any of those rows, or their dependants, until your transaction ends.

If the FOR UPDATE clause is included, the lock will be applied to each row, one by one, asit is fetched into
the server-side row cache. It becomes possible, then, that a lock which appeared to succeed when requested
will nevertheless fail subsequently, when an attempt is made to fetch a row which becomes locked by another
transaction.

Asthe engine considers, in turn, each record falling under an explicit lock statement, it returns either the record
version that is the most currently committed, regardiess of database state when the statement was submitted,
or an exception.

Wait behaviour and conflict reporting depend on the transaction parameters specified in the TPB block:

67



Notes

Table A.1. How TPB settings affect explicit locking

TPB mode Behaviour

isc_tpb_consistency Explicit locks are overridden by implicit or explicit table-level locks and areig-
nored

isc_tpb_concurrency If arecord is modified by any transaction that was committed since the trans-

. _ action attempting to get explicit lock started, or an active transaction has per-
+isc_tpb_nowait formed a modification of this record, an update conflict exception israised im-
mediately

isc_tpb_concurrency | If therecord is modified by any transaction that has committed since the transac-
_ _ tion attempting to get explicit lock started, an update conflict exception is raised
+isc_tpb_wait immediately.

If an active transaction is holding ownership on this record (viaexplicit locking
or by anormal optimistic write-lock) the transaction attempting the explicit lock
waits for the outcome of the blocking transaction and, when it finishes, attempts
to get the lock on the record again. This meansthat, if the blocking transaction
committed a modified version of this record, an update conflict exception will be
raised.

isc_tpb_read committed | If there is an active transaction holding ownership on this record (via explicit

locking or normal update), an update conflict exception is raised immediately.
+isc_tpb_nowait

isc_tpb_read committed | If there is an active transaction holding ownership on this record (viaexplicit
locking or by a normal optimistic write-lock), the transaction attempting the ex-
+isc_tpb_wait plicit lock waits for the outcome of blocking transation and when it finishes, at-
temptsto get the lock on the record again.

Update conflict exceptions can never be raised by an explicit lock statement in
this TPB mode.

How the engine deals with WITH LOCK

When an UPDATE statement triesto accessarecord that islocked by another transaction, it either raisesan update
conflict exception or waits for the locking transaction to finish, depending on TPB mode. Engine behaviour here
isthe same asif this record had already been modified by the locking transaction.

No special gdscodes are returned from conflicts involving pessimistic locks.

The engine guarantees that all records returned by an explicit lock statement are actually locked and do meet
the search conditions specified in WHERE clause, as long as the search conditions do not depend on any other
tables, viajoins, subqueries, etc. It also guaranteesthat rows not meeting the search conditionswill not belocked
by the statement. It can not guarantee that there are no rows which, though meeting the search conditions, are
not locked.

Note

This situation can arise if other, paralel transactions commit their changes during the course of the locking
statement's execution.

68



Notes

The engine locks rows at fetch time. This has important consequences if you lock several rows at once. Many
access methods for Firebird databases default to fetching output in packets of a few hundred rows (“buffered
fetches’). Most data access components cannot bring you the rows contained in the last-fetched packet, where
an error occurred.

The optional “OF <col um- nanes>" sub-clause

The FOR UPDATE clause provides a technique to prevent usage of buffered fetches, optionally with the “OF
<col um- names>" subclause to enable positioned updates.

Tip

Alternatively, it may be possible in your access components to set the size of the fetch buffer to 1. Thiswould
enableyou to processthe currently-locked row before the next isfetched and locked, or to handle errorswithout
rolling back your transaction.

Caveats using WITH LOCK

Rolling back of an implicit or explicit savepoint releases record locks that were taken under that savepoint,
but it doesn't notify waiting transactions. Applications should not depend on this behaviour as it may get
changed in the future.

While explicit locks can be used to prevent and/or handle unusual update conflict errors, the volume of
deadlock errors will grow unless you design your locking strategy carefully and control it rigorously.

Most applications do not need explicit locks at al. The main purposes of explicit locks are (1) to prevent
expensive handling of update conflict errors in heavily loaded applications and (2) to maintain integrity of
objects mapped to arelational database in aclustered environment. If your use of explicit locking doesn't fall
in one of these two categories, then it's the wrong way to do the task in Firebird.

Explicit locking is an advanced feature; do not misuseit! While solutions for these kinds of problems may be
very important for web sites handling thousands of concurrent writers, or for ERP/CRM systems operating
in large corporations, most application programs do not need to work in such conditions.

Examples using explicit locking

Simple:
SELECT * FROM DOCUMENT WHERE | D=? W TH LOCK
Multiple rows, one-by-one processing with DSQL cursor:

SELECT * FROM DOCUMENT VWHERE PARENT_I D=7
FOR UPDATE W TH LOCK

69



Notes

A note on CSTRING parameters

External functions involving strings often use the type CSTRING(n) in their declarations. This type represents
a zero-terminated string of maximum length n. Most of the functions handling CSTRINGS are programmed in
such away that they can accept and return zero-terminated strings of any length. So why the n? Because the
Firebird engine has to set up space to process the input an output parameters, and convert them to and from
SQL data types. Most strings used in databases are only dozens to hundreds of bytes long; it would be a waste
to reserve 32 KB of memory each time such a string is processed. Therefore, the standard declarations of most
CSTRING functions—asfound in thefilei b_udf . sql — specifiy alength of 255 bytes. (In Firebird 1.5.1 and
below, this default length is 80 bytes.) As an example, here's the SQL declaration of | pad:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG( 255), | NTEGER, CSTRI NG&( 1)
RETURNS CSTRI NG( 255) FREE | T
ENTRY_POI NT ' | B_UDF_| pad’ MODULE_NAME 'ib_udf"

Once you've declared a CSTRING parameter with a certain length, you cannot call the function with a longer
input string, or causeit to return astring longer than the declared output length. But the standard declarations are
just reasonabl e defaults; they're not cast in concrete, and you can change them if you want to. If you haveto | eft-
pad strings of up to 500 byteslong, then it's perfectly OK to change both 255'sin the declaration to 500 or more.

A specia caseiswhen you usually operate on short strings (say lessthen 100 bytes) but occasionally haveto call
the function with a huge (VAR)CHAR argument. Declaring CSTRING(32000) makes sure that all the callswill be
successful, but it will also cause 32000 bytes per parameter to be reserved, even in that mgjority of cases where
the strings are under 100 bytes. In that situation you may consider declaring the function twice, with different
names and different string lengths:

DECLARE EXTERNAL FUNCTI ON | pad
CSTRI NG(100), | NTEGER, CSTRI NG 1)
RETURNS CSTRI NG(100) FREE I T
ENTRY_POI NT ' | B_UDF_| pad' MODULE NAME 'ib_udf';

DECLARE EXTERNAL FUNCTI ON | padbi g
CSTRI NG(32000), | NTEGER CSTRI NG 1)
RETURNS CSTRI NG(32000) FREE | T
ENTRY_PO NT ' | B_UDF_| pad’ MODULE_NAME ' i b_udf';

Now you cancal | pad() foral thesmall stringsand | padbi g() for the occasional monster. Notice how the
declared names in the first line differ (they determine how you call the functions from within your SQL), but
the entry point (the function name in the library) is the same in both cases.

70



Appendix B:
Document History

Theexact file history isrecorded inthemanual modulein our CV Stree; see http://sourceforge.net/cvs/?group
id=9028

Revision History

1.0 4 Jul 2008 PV First publication, using 15-20% material from the Firebird Release
Notes.

71


http://sourceforge.net/cvs/?group_id=9028
http://sourceforge.net/cvs/?group_id=9028

Appendix C:
License notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense”); you may only use this Documentation if you comply with the terms of this License. Copies of the Li-
cense are available at http://www.firebirdsgl.org/pdf manual/pdl.pdf (PDF) and http://www.firebirdsgl.org/man-
ual/pdl.html (HTML).

The Original Documentation istitled Firebird 1.5 Language Reference Update.
The Initial Writers of the Original Documentation are: Paul Vinkenoog et al.
Copyright (C) 2008. All Rights Reserved. Initial Writers contact: paul at vinkenoog dot nl.

Writers and Editors of included PDL-licensed material (the “et a.”) are: J. Beesley, Helen Borrie, Arno
Brinkman, Alex Peshkov, Nickolay Samofatov, Dmitry Y emanov.

Included portions are Copyright (C) 2001-2007 by their respective authors. All Rights Reserved.

72


http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 1.5 Language Reference Update
	Table of Contents
	Introduction
	Versions covered
	Authorship

	Reserved words
	Added in 1.0 but removed in 1.5
	Added in 1.0 and 1.5
	To be added in future versions

	Miscellaneous language elements
	-- (single-line comment)
	CASE construct
	Simple CASE
	Searched CASE


	Data types and subtypes
	BIGINT data type
	New character sets
	Character set NONE handling changed
	New collations

	DDL statements
	ALTER TABLE
	ALTER COLUMN: POSITION now 1-based
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	ALTER TRIGGER
	Multi-action triggers
	ALTER TRIGGER no longer increments table change count
	PLAN allowed in trigger code

	CREATE DATABASE
	16 Kb page size supported

	CREATE GENERATOR
	Maximum number of generators significantly raised

	CREATE INDEX
	UNIQUE indices now allow NULLs
	Maximum number of indices per table increased

	CREATE TABLE
	UNIQUE constraints now allow NULLs
	USING INDEX subclause

	CREATE TRIGGER
	Multi-action triggers
	CREATE TRIGGER no longer increments table change
                  count
	PLAN allowed in trigger code

	CREATE VIEW
	PLAN subclause disallowed

	CREATE OR ALTER PROCEDURE
	CREATE OR ALTER TRIGGER
	DECLARE EXTERNAL FUNCTION
	BY DESCRIPTOR parameter passing
	RETURNS PARAMETER n

	DROP GENERATOR
	DROP TRIGGER
	DROP TRIGGER no longer increments table change count

	RECREATE PROCEDURE
	RECREATE TABLE
	RECREATE VIEW

	DML statements
	EXECUTE PROCEDURE
	RELEASE SAVEPOINT
	ROLLBACK TO SAVEPOINT
	SAVEPOINT
	Internal savepoints
	Savepoints and PSQL

	SELECT
	Aggregate functions: Extended functionality
	Mixing aggregate functions from different contexts
	Aggregate functions and GROUP BY items inside
                     subqueries
	Subqueries inside aggregate functions
	Nesting aggregate function calls
	Aggregate statements: Stricter HAVING and ORDER BY

	Ambiguous JOIN statements rejected
	FIRST and SKIP
	GROUP BY UDF
	GROUP BY internal function, column position, and CASE
	HAVING: Stricter rules
	ORDER BY: Expressions and NULLs placement
	ORDER BY: Stricter rules with aggregate statements
	WITH LOCK


	PSQL statements
	BEGIN ... END blocks may be empty
	BREAK
	DECLARE [VARIABLE] with initialization
	EXCEPTION
	Rethrowing a caught exception
	Providing a custom error message

	EXECUTE PROCEDURE
	EXECUTE STATEMENT
	No data returned
	One row of data returned
	Any number of data rows returned
	Caveats with EXECUTE STATEMENT

	EXIT
	FOR EXECUTE STATEMENT ... DO
	LEAVE
	PLAN allowed in trigger code

	Context variables
	CURRENT_CONNECTION
	CURRENT_ROLE
	CURRENT_TRANSACTION
	CURRENT_USER
	DELETING
	GDSCODE
	INSERTING
	ROW_COUNT
	SQLCODE
	UPDATING

	Internal functions
	COALESCE()
	EXTRACT()
	NULLIF()
	SUBSTRING()

	External functions (UDFs)
	addDay
	addHour
	addMilliSecond
	addMinute
	addMonth
	addSecond
	addWeek
	addYear
	ascii_char
	dow
	dpower
	getExactTimestamp
	i64round
	i64truncate
	log
	lpad
	ltrim
	*nullif
	*nvl
	right
	round, i64round
	rpad
	rtrim
	sdow
	string2blob
	substr
	substrlen
	truncate, i64truncate

	A. Notes
	Character set NONE data accepted “as is”
	Understanding the WITH LOCK clause
	Syntax and behaviour
	How the engine deals with WITH LOCK
	The optional “OF <column-names>” sub-clause
	Caveats using WITH LOCK
	Examples using explicit locking

	A note on CSTRING parameters

	B. Document History
	C. License notice

